]> git.proxmox.com Git - mirror_qemu.git/blob - util/iov.c
Merge remote-tracking branch 'remotes/mjt/tags/trivial-patches-2014-03-04' into staging
[mirror_qemu.git] / util / iov.c
1 /*
2 * Helpers for getting linearized buffers from iov / filling buffers into iovs
3 *
4 * Copyright IBM, Corp. 2007, 2008
5 * Copyright (C) 2010 Red Hat, Inc.
6 *
7 * Author(s):
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Amit Shah <amit.shah@redhat.com>
10 * Michael Tokarev <mjt@tls.msk.ru>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
14 *
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
17 */
18
19 #include "qemu/iov.h"
20 #include "qemu/sockets.h"
21
22 size_t iov_from_buf(const struct iovec *iov, unsigned int iov_cnt,
23 size_t offset, const void *buf, size_t bytes)
24 {
25 size_t done;
26 unsigned int i;
27 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
28 if (offset < iov[i].iov_len) {
29 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
30 memcpy(iov[i].iov_base + offset, buf + done, len);
31 done += len;
32 offset = 0;
33 } else {
34 offset -= iov[i].iov_len;
35 }
36 }
37 assert(offset == 0);
38 return done;
39 }
40
41 size_t iov_to_buf(const struct iovec *iov, const unsigned int iov_cnt,
42 size_t offset, void *buf, size_t bytes)
43 {
44 size_t done;
45 unsigned int i;
46 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
47 if (offset < iov[i].iov_len) {
48 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
49 memcpy(buf + done, iov[i].iov_base + offset, len);
50 done += len;
51 offset = 0;
52 } else {
53 offset -= iov[i].iov_len;
54 }
55 }
56 assert(offset == 0);
57 return done;
58 }
59
60 size_t iov_memset(const struct iovec *iov, const unsigned int iov_cnt,
61 size_t offset, int fillc, size_t bytes)
62 {
63 size_t done;
64 unsigned int i;
65 for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
66 if (offset < iov[i].iov_len) {
67 size_t len = MIN(iov[i].iov_len - offset, bytes - done);
68 memset(iov[i].iov_base + offset, fillc, len);
69 done += len;
70 offset = 0;
71 } else {
72 offset -= iov[i].iov_len;
73 }
74 }
75 assert(offset == 0);
76 return done;
77 }
78
79 size_t iov_size(const struct iovec *iov, const unsigned int iov_cnt)
80 {
81 size_t len;
82 unsigned int i;
83
84 len = 0;
85 for (i = 0; i < iov_cnt; i++) {
86 len += iov[i].iov_len;
87 }
88 return len;
89 }
90
91 /* helper function for iov_send_recv() */
92 static ssize_t
93 do_send_recv(int sockfd, struct iovec *iov, unsigned iov_cnt, bool do_send)
94 {
95 #ifdef CONFIG_POSIX
96 ssize_t ret;
97 struct msghdr msg;
98 memset(&msg, 0, sizeof(msg));
99 msg.msg_iov = iov;
100 msg.msg_iovlen = iov_cnt;
101 do {
102 ret = do_send
103 ? sendmsg(sockfd, &msg, 0)
104 : recvmsg(sockfd, &msg, 0);
105 } while (ret < 0 && errno == EINTR);
106 return ret;
107 #else
108 /* else send piece-by-piece */
109 /*XXX Note: windows has WSASend() and WSARecv() */
110 unsigned i = 0;
111 ssize_t ret = 0;
112 while (i < iov_cnt) {
113 ssize_t r = do_send
114 ? send(sockfd, iov[i].iov_base, iov[i].iov_len, 0)
115 : recv(sockfd, iov[i].iov_base, iov[i].iov_len, 0);
116 if (r > 0) {
117 ret += r;
118 } else if (!r) {
119 break;
120 } else if (errno == EINTR) {
121 continue;
122 } else {
123 /* else it is some "other" error,
124 * only return if there was no data processed. */
125 if (ret == 0) {
126 ret = -1;
127 }
128 break;
129 }
130 i++;
131 }
132 return ret;
133 #endif
134 }
135
136 ssize_t iov_send_recv(int sockfd, struct iovec *iov, unsigned iov_cnt,
137 size_t offset, size_t bytes,
138 bool do_send)
139 {
140 ssize_t total = 0;
141 ssize_t ret;
142 size_t orig_len, tail;
143 unsigned niov;
144
145 while (bytes > 0) {
146 /* Find the start position, skipping `offset' bytes:
147 * first, skip all full-sized vector elements, */
148 for (niov = 0; niov < iov_cnt && offset >= iov[niov].iov_len; ++niov) {
149 offset -= iov[niov].iov_len;
150 }
151
152 /* niov == iov_cnt would only be valid if bytes == 0, which
153 * we already ruled out in the loop condition. */
154 assert(niov < iov_cnt);
155 iov += niov;
156 iov_cnt -= niov;
157
158 if (offset) {
159 /* second, skip `offset' bytes from the (now) first element,
160 * undo it on exit */
161 iov[0].iov_base += offset;
162 iov[0].iov_len -= offset;
163 }
164 /* Find the end position skipping `bytes' bytes: */
165 /* first, skip all full-sized elements */
166 tail = bytes;
167 for (niov = 0; niov < iov_cnt && iov[niov].iov_len <= tail; ++niov) {
168 tail -= iov[niov].iov_len;
169 }
170 if (tail) {
171 /* second, fixup the last element, and remember the original
172 * length */
173 assert(niov < iov_cnt);
174 assert(iov[niov].iov_len > tail);
175 orig_len = iov[niov].iov_len;
176 iov[niov++].iov_len = tail;
177 ret = do_send_recv(sockfd, iov, niov, do_send);
178 /* Undo the changes above before checking for errors */
179 iov[niov-1].iov_len = orig_len;
180 } else {
181 ret = do_send_recv(sockfd, iov, niov, do_send);
182 }
183 if (offset) {
184 iov[0].iov_base -= offset;
185 iov[0].iov_len += offset;
186 }
187
188 if (ret < 0) {
189 assert(errno != EINTR);
190 if (errno == EAGAIN && total > 0) {
191 return total;
192 }
193 return -1;
194 }
195
196 if (ret == 0 && !do_send) {
197 /* recv returns 0 when the peer has performed an orderly
198 * shutdown. */
199 break;
200 }
201
202 /* Prepare for the next iteration */
203 offset += ret;
204 total += ret;
205 bytes -= ret;
206 }
207
208 return total;
209 }
210
211
212 void iov_hexdump(const struct iovec *iov, const unsigned int iov_cnt,
213 FILE *fp, const char *prefix, size_t limit)
214 {
215 int v;
216 size_t size = 0;
217 char *buf;
218
219 for (v = 0; v < iov_cnt; v++) {
220 size += iov[v].iov_len;
221 }
222 size = size > limit ? limit : size;
223 buf = g_malloc(size);
224 iov_to_buf(iov, iov_cnt, 0, buf, size);
225 qemu_hexdump(buf, fp, prefix, size);
226 g_free(buf);
227 }
228
229 unsigned iov_copy(struct iovec *dst_iov, unsigned int dst_iov_cnt,
230 const struct iovec *iov, unsigned int iov_cnt,
231 size_t offset, size_t bytes)
232 {
233 size_t len;
234 unsigned int i, j;
235 for (i = 0, j = 0; i < iov_cnt && j < dst_iov_cnt && bytes; i++) {
236 if (offset >= iov[i].iov_len) {
237 offset -= iov[i].iov_len;
238 continue;
239 }
240 len = MIN(bytes, iov[i].iov_len - offset);
241
242 dst_iov[j].iov_base = iov[i].iov_base + offset;
243 dst_iov[j].iov_len = len;
244 j++;
245 bytes -= len;
246 offset = 0;
247 }
248 assert(offset == 0);
249 return j;
250 }
251
252 /* io vectors */
253
254 void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
255 {
256 qiov->iov = g_malloc(alloc_hint * sizeof(struct iovec));
257 qiov->niov = 0;
258 qiov->nalloc = alloc_hint;
259 qiov->size = 0;
260 }
261
262 void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
263 {
264 int i;
265
266 qiov->iov = iov;
267 qiov->niov = niov;
268 qiov->nalloc = -1;
269 qiov->size = 0;
270 for (i = 0; i < niov; i++)
271 qiov->size += iov[i].iov_len;
272 }
273
274 void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
275 {
276 assert(qiov->nalloc != -1);
277
278 if (qiov->niov == qiov->nalloc) {
279 qiov->nalloc = 2 * qiov->nalloc + 1;
280 qiov->iov = g_realloc(qiov->iov, qiov->nalloc * sizeof(struct iovec));
281 }
282 qiov->iov[qiov->niov].iov_base = base;
283 qiov->iov[qiov->niov].iov_len = len;
284 qiov->size += len;
285 ++qiov->niov;
286 }
287
288 /*
289 * Concatenates (partial) iovecs from src_iov to the end of dst.
290 * It starts copying after skipping `soffset' bytes at the
291 * beginning of src and adds individual vectors from src to
292 * dst copies up to `sbytes' bytes total, or up to the end
293 * of src_iov if it comes first. This way, it is okay to specify
294 * very large value for `sbytes' to indicate "up to the end
295 * of src".
296 * Only vector pointers are processed, not the actual data buffers.
297 */
298 void qemu_iovec_concat_iov(QEMUIOVector *dst,
299 struct iovec *src_iov, unsigned int src_cnt,
300 size_t soffset, size_t sbytes)
301 {
302 int i;
303 size_t done;
304
305 if (!sbytes) {
306 return;
307 }
308 assert(dst->nalloc != -1);
309 for (i = 0, done = 0; done < sbytes && i < src_cnt; i++) {
310 if (soffset < src_iov[i].iov_len) {
311 size_t len = MIN(src_iov[i].iov_len - soffset, sbytes - done);
312 qemu_iovec_add(dst, src_iov[i].iov_base + soffset, len);
313 done += len;
314 soffset = 0;
315 } else {
316 soffset -= src_iov[i].iov_len;
317 }
318 }
319 assert(soffset == 0); /* offset beyond end of src */
320 }
321
322 /*
323 * Concatenates (partial) iovecs from src to the end of dst.
324 * It starts copying after skipping `soffset' bytes at the
325 * beginning of src and adds individual vectors from src to
326 * dst copies up to `sbytes' bytes total, or up to the end
327 * of src if it comes first. This way, it is okay to specify
328 * very large value for `sbytes' to indicate "up to the end
329 * of src".
330 * Only vector pointers are processed, not the actual data buffers.
331 */
332 void qemu_iovec_concat(QEMUIOVector *dst,
333 QEMUIOVector *src, size_t soffset, size_t sbytes)
334 {
335 qemu_iovec_concat_iov(dst, src->iov, src->niov, soffset, sbytes);
336 }
337
338 void qemu_iovec_destroy(QEMUIOVector *qiov)
339 {
340 assert(qiov->nalloc != -1);
341
342 qemu_iovec_reset(qiov);
343 g_free(qiov->iov);
344 qiov->nalloc = 0;
345 qiov->iov = NULL;
346 }
347
348 void qemu_iovec_reset(QEMUIOVector *qiov)
349 {
350 assert(qiov->nalloc != -1);
351
352 qiov->niov = 0;
353 qiov->size = 0;
354 }
355
356 size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
357 void *buf, size_t bytes)
358 {
359 return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
360 }
361
362 size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
363 const void *buf, size_t bytes)
364 {
365 return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
366 }
367
368 size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
369 int fillc, size_t bytes)
370 {
371 return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
372 }
373
374 /**
375 * Check that I/O vector contents are identical
376 *
377 * The IO vectors must have the same structure (same length of all parts).
378 * A typical usage is to compare vectors created with qemu_iovec_clone().
379 *
380 * @a: I/O vector
381 * @b: I/O vector
382 * @ret: Offset to first mismatching byte or -1 if match
383 */
384 ssize_t qemu_iovec_compare(QEMUIOVector *a, QEMUIOVector *b)
385 {
386 int i;
387 ssize_t offset = 0;
388
389 assert(a->niov == b->niov);
390 for (i = 0; i < a->niov; i++) {
391 size_t len = 0;
392 uint8_t *p = (uint8_t *)a->iov[i].iov_base;
393 uint8_t *q = (uint8_t *)b->iov[i].iov_base;
394
395 assert(a->iov[i].iov_len == b->iov[i].iov_len);
396 while (len < a->iov[i].iov_len && *p++ == *q++) {
397 len++;
398 }
399
400 offset += len;
401
402 if (len != a->iov[i].iov_len) {
403 return offset;
404 }
405 }
406 return -1;
407 }
408
409 typedef struct {
410 int src_index;
411 struct iovec *src_iov;
412 void *dest_base;
413 } IOVectorSortElem;
414
415 static int sortelem_cmp_src_base(const void *a, const void *b)
416 {
417 const IOVectorSortElem *elem_a = a;
418 const IOVectorSortElem *elem_b = b;
419
420 /* Don't overflow */
421 if (elem_a->src_iov->iov_base < elem_b->src_iov->iov_base) {
422 return -1;
423 } else if (elem_a->src_iov->iov_base > elem_b->src_iov->iov_base) {
424 return 1;
425 } else {
426 return 0;
427 }
428 }
429
430 static int sortelem_cmp_src_index(const void *a, const void *b)
431 {
432 const IOVectorSortElem *elem_a = a;
433 const IOVectorSortElem *elem_b = b;
434
435 return elem_a->src_index - elem_b->src_index;
436 }
437
438 /**
439 * Copy contents of I/O vector
440 *
441 * The relative relationships of overlapping iovecs are preserved. This is
442 * necessary to ensure identical semantics in the cloned I/O vector.
443 */
444 void qemu_iovec_clone(QEMUIOVector *dest, const QEMUIOVector *src, void *buf)
445 {
446 IOVectorSortElem sortelems[src->niov];
447 void *last_end;
448 int i;
449
450 /* Sort by source iovecs by base address */
451 for (i = 0; i < src->niov; i++) {
452 sortelems[i].src_index = i;
453 sortelems[i].src_iov = &src->iov[i];
454 }
455 qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_base);
456
457 /* Allocate buffer space taking into account overlapping iovecs */
458 last_end = NULL;
459 for (i = 0; i < src->niov; i++) {
460 struct iovec *cur = sortelems[i].src_iov;
461 ptrdiff_t rewind = 0;
462
463 /* Detect overlap */
464 if (last_end && last_end > cur->iov_base) {
465 rewind = last_end - cur->iov_base;
466 }
467
468 sortelems[i].dest_base = buf - rewind;
469 buf += cur->iov_len - MIN(rewind, cur->iov_len);
470 last_end = MAX(cur->iov_base + cur->iov_len, last_end);
471 }
472
473 /* Sort by source iovec index and build destination iovec */
474 qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_index);
475 for (i = 0; i < src->niov; i++) {
476 qemu_iovec_add(dest, sortelems[i].dest_base, src->iov[i].iov_len);
477 }
478 }
479
480 size_t iov_discard_front(struct iovec **iov, unsigned int *iov_cnt,
481 size_t bytes)
482 {
483 size_t total = 0;
484 struct iovec *cur;
485
486 for (cur = *iov; *iov_cnt > 0; cur++) {
487 if (cur->iov_len > bytes) {
488 cur->iov_base += bytes;
489 cur->iov_len -= bytes;
490 total += bytes;
491 break;
492 }
493
494 bytes -= cur->iov_len;
495 total += cur->iov_len;
496 *iov_cnt -= 1;
497 }
498
499 *iov = cur;
500 return total;
501 }
502
503 size_t iov_discard_back(struct iovec *iov, unsigned int *iov_cnt,
504 size_t bytes)
505 {
506 size_t total = 0;
507 struct iovec *cur;
508
509 if (*iov_cnt == 0) {
510 return 0;
511 }
512
513 cur = iov + (*iov_cnt - 1);
514
515 while (*iov_cnt > 0) {
516 if (cur->iov_len > bytes) {
517 cur->iov_len -= bytes;
518 total += bytes;
519 break;
520 }
521
522 bytes -= cur->iov_len;
523 total += cur->iov_len;
524 cur--;
525 *iov_cnt -= 1;
526 }
527
528 return total;
529 }