]> git.proxmox.com Git - mirror_qemu.git/blob - util/qemu-thread-win32.c
i386: Update new x86_apicid parsing rules with die_offset support
[mirror_qemu.git] / util / qemu-thread-win32.c
1 /*
2 * Win32 implementation for mutex/cond/thread functions
3 *
4 * Copyright Red Hat, Inc. 2010
5 *
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu/osdep.h"
15 #include "qemu-common.h"
16 #include "qemu/thread.h"
17 #include "qemu/notify.h"
18 #include "qemu-thread-common.h"
19 #include <process.h>
20
21 static bool name_threads;
22
23 void qemu_thread_naming(bool enable)
24 {
25 /* But note we don't actually name them on Windows yet */
26 name_threads = enable;
27
28 fprintf(stderr, "qemu: thread naming not supported on this host\n");
29 }
30
31 static void error_exit(int err, const char *msg)
32 {
33 char *pstr;
34
35 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
36 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
37 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
38 LocalFree(pstr);
39 abort();
40 }
41
42 void qemu_mutex_init(QemuMutex *mutex)
43 {
44 InitializeSRWLock(&mutex->lock);
45 qemu_mutex_post_init(mutex);
46 }
47
48 void qemu_mutex_destroy(QemuMutex *mutex)
49 {
50 assert(mutex->initialized);
51 mutex->initialized = false;
52 InitializeSRWLock(&mutex->lock);
53 }
54
55 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
56 {
57 assert(mutex->initialized);
58 qemu_mutex_pre_lock(mutex, file, line);
59 AcquireSRWLockExclusive(&mutex->lock);
60 qemu_mutex_post_lock(mutex, file, line);
61 }
62
63 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
64 {
65 int owned;
66
67 assert(mutex->initialized);
68 owned = TryAcquireSRWLockExclusive(&mutex->lock);
69 if (owned) {
70 qemu_mutex_post_lock(mutex, file, line);
71 return 0;
72 }
73 return -EBUSY;
74 }
75
76 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
77 {
78 assert(mutex->initialized);
79 qemu_mutex_pre_unlock(mutex, file, line);
80 ReleaseSRWLockExclusive(&mutex->lock);
81 }
82
83 void qemu_rec_mutex_init(QemuRecMutex *mutex)
84 {
85 InitializeCriticalSection(&mutex->lock);
86 mutex->initialized = true;
87 }
88
89 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
90 {
91 assert(mutex->initialized);
92 mutex->initialized = false;
93 DeleteCriticalSection(&mutex->lock);
94 }
95
96 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
97 {
98 assert(mutex->initialized);
99 EnterCriticalSection(&mutex->lock);
100 }
101
102 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
103 {
104 assert(mutex->initialized);
105 return !TryEnterCriticalSection(&mutex->lock);
106 }
107
108 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
109 {
110 assert(mutex->initialized);
111 LeaveCriticalSection(&mutex->lock);
112 }
113
114 void qemu_cond_init(QemuCond *cond)
115 {
116 memset(cond, 0, sizeof(*cond));
117 InitializeConditionVariable(&cond->var);
118 cond->initialized = true;
119 }
120
121 void qemu_cond_destroy(QemuCond *cond)
122 {
123 assert(cond->initialized);
124 cond->initialized = false;
125 InitializeConditionVariable(&cond->var);
126 }
127
128 void qemu_cond_signal(QemuCond *cond)
129 {
130 assert(cond->initialized);
131 WakeConditionVariable(&cond->var);
132 }
133
134 void qemu_cond_broadcast(QemuCond *cond)
135 {
136 assert(cond->initialized);
137 WakeAllConditionVariable(&cond->var);
138 }
139
140 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
141 {
142 assert(cond->initialized);
143 qemu_mutex_pre_unlock(mutex, file, line);
144 SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
145 qemu_mutex_post_lock(mutex, file, line);
146 }
147
148 void qemu_sem_init(QemuSemaphore *sem, int init)
149 {
150 /* Manual reset. */
151 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
152 sem->initialized = true;
153 }
154
155 void qemu_sem_destroy(QemuSemaphore *sem)
156 {
157 assert(sem->initialized);
158 sem->initialized = false;
159 CloseHandle(sem->sema);
160 }
161
162 void qemu_sem_post(QemuSemaphore *sem)
163 {
164 assert(sem->initialized);
165 ReleaseSemaphore(sem->sema, 1, NULL);
166 }
167
168 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
169 {
170 int rc;
171
172 assert(sem->initialized);
173 rc = WaitForSingleObject(sem->sema, ms);
174 if (rc == WAIT_OBJECT_0) {
175 return 0;
176 }
177 if (rc != WAIT_TIMEOUT) {
178 error_exit(GetLastError(), __func__);
179 }
180 return -1;
181 }
182
183 void qemu_sem_wait(QemuSemaphore *sem)
184 {
185 assert(sem->initialized);
186 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
187 error_exit(GetLastError(), __func__);
188 }
189 }
190
191 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
192 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
193 * sequence. Such a sequence is, indeed, how QemuEvents are used by
194 * RCU and other subsystems!
195 *
196 * Valid transitions:
197 * - free->set, when setting the event
198 * - busy->set, when setting the event, followed by SetEvent
199 * - set->free, when resetting the event
200 * - free->busy, when waiting
201 *
202 * set->busy does not happen (it can be observed from the outside but
203 * it really is set->free->busy).
204 *
205 * busy->free provably cannot happen; to enforce it, the set->free transition
206 * is done with an OR, which becomes a no-op if the event has concurrently
207 * transitioned to free or busy (and is faster than cmpxchg).
208 */
209
210 #define EV_SET 0
211 #define EV_FREE 1
212 #define EV_BUSY -1
213
214 void qemu_event_init(QemuEvent *ev, bool init)
215 {
216 /* Manual reset. */
217 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
218 ev->value = (init ? EV_SET : EV_FREE);
219 ev->initialized = true;
220 }
221
222 void qemu_event_destroy(QemuEvent *ev)
223 {
224 assert(ev->initialized);
225 ev->initialized = false;
226 CloseHandle(ev->event);
227 }
228
229 void qemu_event_set(QemuEvent *ev)
230 {
231 assert(ev->initialized);
232 /* qemu_event_set has release semantics, but because it *loads*
233 * ev->value we need a full memory barrier here.
234 */
235 smp_mb();
236 if (atomic_read(&ev->value) != EV_SET) {
237 if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
238 /* There were waiters, wake them up. */
239 SetEvent(ev->event);
240 }
241 }
242 }
243
244 void qemu_event_reset(QemuEvent *ev)
245 {
246 unsigned value;
247
248 assert(ev->initialized);
249 value = atomic_read(&ev->value);
250 smp_mb_acquire();
251 if (value == EV_SET) {
252 /* If there was a concurrent reset (or even reset+wait),
253 * do nothing. Otherwise change EV_SET->EV_FREE.
254 */
255 atomic_or(&ev->value, EV_FREE);
256 }
257 }
258
259 void qemu_event_wait(QemuEvent *ev)
260 {
261 unsigned value;
262
263 assert(ev->initialized);
264 value = atomic_read(&ev->value);
265 smp_mb_acquire();
266 if (value != EV_SET) {
267 if (value == EV_FREE) {
268 /* qemu_event_set is not yet going to call SetEvent, but we are
269 * going to do another check for EV_SET below when setting EV_BUSY.
270 * At that point it is safe to call WaitForSingleObject.
271 */
272 ResetEvent(ev->event);
273
274 /* Tell qemu_event_set that there are waiters. No need to retry
275 * because there cannot be a concurent busy->free transition.
276 * After the CAS, the event will be either set or busy.
277 */
278 if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
279 value = EV_SET;
280 } else {
281 value = EV_BUSY;
282 }
283 }
284 if (value == EV_BUSY) {
285 WaitForSingleObject(ev->event, INFINITE);
286 }
287 }
288 }
289
290 struct QemuThreadData {
291 /* Passed to win32_start_routine. */
292 void *(*start_routine)(void *);
293 void *arg;
294 short mode;
295 NotifierList exit;
296
297 /* Only used for joinable threads. */
298 bool exited;
299 void *ret;
300 CRITICAL_SECTION cs;
301 };
302
303 static bool atexit_registered;
304 static NotifierList main_thread_exit;
305
306 static __thread QemuThreadData *qemu_thread_data;
307
308 static void run_main_thread_exit(void)
309 {
310 notifier_list_notify(&main_thread_exit, NULL);
311 }
312
313 void qemu_thread_atexit_add(Notifier *notifier)
314 {
315 if (!qemu_thread_data) {
316 if (!atexit_registered) {
317 atexit_registered = true;
318 atexit(run_main_thread_exit);
319 }
320 notifier_list_add(&main_thread_exit, notifier);
321 } else {
322 notifier_list_add(&qemu_thread_data->exit, notifier);
323 }
324 }
325
326 void qemu_thread_atexit_remove(Notifier *notifier)
327 {
328 notifier_remove(notifier);
329 }
330
331 static unsigned __stdcall win32_start_routine(void *arg)
332 {
333 QemuThreadData *data = (QemuThreadData *) arg;
334 void *(*start_routine)(void *) = data->start_routine;
335 void *thread_arg = data->arg;
336
337 qemu_thread_data = data;
338 qemu_thread_exit(start_routine(thread_arg));
339 abort();
340 }
341
342 void qemu_thread_exit(void *arg)
343 {
344 QemuThreadData *data = qemu_thread_data;
345
346 notifier_list_notify(&data->exit, NULL);
347 if (data->mode == QEMU_THREAD_JOINABLE) {
348 data->ret = arg;
349 EnterCriticalSection(&data->cs);
350 data->exited = true;
351 LeaveCriticalSection(&data->cs);
352 } else {
353 g_free(data);
354 }
355 _endthreadex(0);
356 }
357
358 void *qemu_thread_join(QemuThread *thread)
359 {
360 QemuThreadData *data;
361 void *ret;
362 HANDLE handle;
363
364 data = thread->data;
365 if (data->mode == QEMU_THREAD_DETACHED) {
366 return NULL;
367 }
368
369 /*
370 * Because multiple copies of the QemuThread can exist via
371 * qemu_thread_get_self, we need to store a value that cannot
372 * leak there. The simplest, non racy way is to store the TID,
373 * discard the handle that _beginthreadex gives back, and
374 * get another copy of the handle here.
375 */
376 handle = qemu_thread_get_handle(thread);
377 if (handle) {
378 WaitForSingleObject(handle, INFINITE);
379 CloseHandle(handle);
380 }
381 ret = data->ret;
382 DeleteCriticalSection(&data->cs);
383 g_free(data);
384 return ret;
385 }
386
387 void qemu_thread_create(QemuThread *thread, const char *name,
388 void *(*start_routine)(void *),
389 void *arg, int mode)
390 {
391 HANDLE hThread;
392 struct QemuThreadData *data;
393
394 data = g_malloc(sizeof *data);
395 data->start_routine = start_routine;
396 data->arg = arg;
397 data->mode = mode;
398 data->exited = false;
399 notifier_list_init(&data->exit);
400
401 if (data->mode != QEMU_THREAD_DETACHED) {
402 InitializeCriticalSection(&data->cs);
403 }
404
405 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
406 data, 0, &thread->tid);
407 if (!hThread) {
408 error_exit(GetLastError(), __func__);
409 }
410 CloseHandle(hThread);
411 thread->data = data;
412 }
413
414 void qemu_thread_get_self(QemuThread *thread)
415 {
416 thread->data = qemu_thread_data;
417 thread->tid = GetCurrentThreadId();
418 }
419
420 HANDLE qemu_thread_get_handle(QemuThread *thread)
421 {
422 QemuThreadData *data;
423 HANDLE handle;
424
425 data = thread->data;
426 if (data->mode == QEMU_THREAD_DETACHED) {
427 return NULL;
428 }
429
430 EnterCriticalSection(&data->cs);
431 if (!data->exited) {
432 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
433 THREAD_SET_CONTEXT, FALSE, thread->tid);
434 } else {
435 handle = NULL;
436 }
437 LeaveCriticalSection(&data->cs);
438 return handle;
439 }
440
441 bool qemu_thread_is_self(QemuThread *thread)
442 {
443 return GetCurrentThreadId() == thread->tid;
444 }