]> git.proxmox.com Git - mirror_qemu.git/blob - util/qemu-thread-win32.c
qemu-thread: Assert locks are initialized before using
[mirror_qemu.git] / util / qemu-thread-win32.c
1 /*
2 * Win32 implementation for mutex/cond/thread functions
3 *
4 * Copyright Red Hat, Inc. 2010
5 *
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef _WIN32_WINNT
15 #define _WIN32_WINNT 0x0600
16 #endif
17
18 #include "qemu/osdep.h"
19 #include "qemu-common.h"
20 #include "qemu/thread.h"
21 #include "qemu/notify.h"
22 #include "trace.h"
23 #include <process.h>
24
25 static bool name_threads;
26
27 void qemu_thread_naming(bool enable)
28 {
29 /* But note we don't actually name them on Windows yet */
30 name_threads = enable;
31
32 fprintf(stderr, "qemu: thread naming not supported on this host\n");
33 }
34
35 static void error_exit(int err, const char *msg)
36 {
37 char *pstr;
38
39 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
40 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
41 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
42 LocalFree(pstr);
43 abort();
44 }
45
46 void qemu_mutex_init(QemuMutex *mutex)
47 {
48 InitializeSRWLock(&mutex->lock);
49 mutex->initialized = true;
50 }
51
52 void qemu_mutex_destroy(QemuMutex *mutex)
53 {
54 assert(mutex->initialized);
55 mutex->initialized = false;
56 InitializeSRWLock(&mutex->lock);
57 }
58
59 void qemu_mutex_lock(QemuMutex *mutex)
60 {
61 assert(mutex->initialized);
62 AcquireSRWLockExclusive(&mutex->lock);
63 trace_qemu_mutex_locked(mutex);
64 }
65
66 int qemu_mutex_trylock(QemuMutex *mutex)
67 {
68 int owned;
69
70 assert(mutex->initialized);
71 owned = TryAcquireSRWLockExclusive(&mutex->lock);
72 if (owned) {
73 trace_qemu_mutex_locked(mutex);
74 return 0;
75 }
76 return -EBUSY;
77 }
78
79 void qemu_mutex_unlock(QemuMutex *mutex)
80 {
81 assert(mutex->initialized);
82 trace_qemu_mutex_unlocked(mutex);
83 ReleaseSRWLockExclusive(&mutex->lock);
84 }
85
86 void qemu_rec_mutex_init(QemuRecMutex *mutex)
87 {
88 InitializeCriticalSection(&mutex->lock);
89 mutex->initialized = true;
90 }
91
92 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
93 {
94 assert(mutex->initialized);
95 mutex->initialized = false;
96 DeleteCriticalSection(&mutex->lock);
97 }
98
99 void qemu_rec_mutex_lock(QemuRecMutex *mutex)
100 {
101 assert(mutex->initialized);
102 EnterCriticalSection(&mutex->lock);
103 }
104
105 int qemu_rec_mutex_trylock(QemuRecMutex *mutex)
106 {
107 assert(mutex->initialized);
108 return !TryEnterCriticalSection(&mutex->lock);
109 }
110
111 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
112 {
113 assert(mutex->initialized);
114 LeaveCriticalSection(&mutex->lock);
115 }
116
117 void qemu_cond_init(QemuCond *cond)
118 {
119 memset(cond, 0, sizeof(*cond));
120 InitializeConditionVariable(&cond->var);
121 cond->initialized = true;
122 }
123
124 void qemu_cond_destroy(QemuCond *cond)
125 {
126 assert(cond->initialized);
127 cond->initialized = false;
128 InitializeConditionVariable(&cond->var);
129 }
130
131 void qemu_cond_signal(QemuCond *cond)
132 {
133 assert(cond->initialized);
134 WakeConditionVariable(&cond->var);
135 }
136
137 void qemu_cond_broadcast(QemuCond *cond)
138 {
139 assert(cond->initialized);
140 WakeAllConditionVariable(&cond->var);
141 }
142
143 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
144 {
145 assert(cond->initialized);
146 trace_qemu_mutex_unlocked(mutex);
147 SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
148 trace_qemu_mutex_locked(mutex);
149 }
150
151 void qemu_sem_init(QemuSemaphore *sem, int init)
152 {
153 /* Manual reset. */
154 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
155 sem->initialized = true;
156 }
157
158 void qemu_sem_destroy(QemuSemaphore *sem)
159 {
160 assert(sem->initialized);
161 sem->initialized = false;
162 CloseHandle(sem->sema);
163 }
164
165 void qemu_sem_post(QemuSemaphore *sem)
166 {
167 assert(sem->initialized);
168 ReleaseSemaphore(sem->sema, 1, NULL);
169 }
170
171 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
172 {
173 int rc;
174
175 assert(sem->initialized);
176 rc = WaitForSingleObject(sem->sema, ms);
177 if (rc == WAIT_OBJECT_0) {
178 return 0;
179 }
180 if (rc != WAIT_TIMEOUT) {
181 error_exit(GetLastError(), __func__);
182 }
183 return -1;
184 }
185
186 void qemu_sem_wait(QemuSemaphore *sem)
187 {
188 assert(sem->initialized);
189 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
190 error_exit(GetLastError(), __func__);
191 }
192 }
193
194 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
195 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
196 * sequence. Such a sequence is, indeed, how QemuEvents are used by
197 * RCU and other subsystems!
198 *
199 * Valid transitions:
200 * - free->set, when setting the event
201 * - busy->set, when setting the event, followed by SetEvent
202 * - set->free, when resetting the event
203 * - free->busy, when waiting
204 *
205 * set->busy does not happen (it can be observed from the outside but
206 * it really is set->free->busy).
207 *
208 * busy->free provably cannot happen; to enforce it, the set->free transition
209 * is done with an OR, which becomes a no-op if the event has concurrently
210 * transitioned to free or busy (and is faster than cmpxchg).
211 */
212
213 #define EV_SET 0
214 #define EV_FREE 1
215 #define EV_BUSY -1
216
217 void qemu_event_init(QemuEvent *ev, bool init)
218 {
219 /* Manual reset. */
220 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
221 ev->value = (init ? EV_SET : EV_FREE);
222 ev->initialized = true;
223 }
224
225 void qemu_event_destroy(QemuEvent *ev)
226 {
227 assert(ev->initialized);
228 ev->initialized = false;
229 CloseHandle(ev->event);
230 }
231
232 void qemu_event_set(QemuEvent *ev)
233 {
234 assert(ev->initialized);
235 /* qemu_event_set has release semantics, but because it *loads*
236 * ev->value we need a full memory barrier here.
237 */
238 smp_mb();
239 if (atomic_read(&ev->value) != EV_SET) {
240 if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
241 /* There were waiters, wake them up. */
242 SetEvent(ev->event);
243 }
244 }
245 }
246
247 void qemu_event_reset(QemuEvent *ev)
248 {
249 unsigned value;
250
251 assert(ev->initialized);
252 value = atomic_read(&ev->value);
253 smp_mb_acquire();
254 if (value == EV_SET) {
255 /* If there was a concurrent reset (or even reset+wait),
256 * do nothing. Otherwise change EV_SET->EV_FREE.
257 */
258 atomic_or(&ev->value, EV_FREE);
259 }
260 }
261
262 void qemu_event_wait(QemuEvent *ev)
263 {
264 unsigned value;
265
266 assert(ev->initialized);
267 value = atomic_read(&ev->value);
268 smp_mb_acquire();
269 if (value != EV_SET) {
270 if (value == EV_FREE) {
271 /* qemu_event_set is not yet going to call SetEvent, but we are
272 * going to do another check for EV_SET below when setting EV_BUSY.
273 * At that point it is safe to call WaitForSingleObject.
274 */
275 ResetEvent(ev->event);
276
277 /* Tell qemu_event_set that there are waiters. No need to retry
278 * because there cannot be a concurent busy->free transition.
279 * After the CAS, the event will be either set or busy.
280 */
281 if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
282 value = EV_SET;
283 } else {
284 value = EV_BUSY;
285 }
286 }
287 if (value == EV_BUSY) {
288 WaitForSingleObject(ev->event, INFINITE);
289 }
290 }
291 }
292
293 struct QemuThreadData {
294 /* Passed to win32_start_routine. */
295 void *(*start_routine)(void *);
296 void *arg;
297 short mode;
298 NotifierList exit;
299
300 /* Only used for joinable threads. */
301 bool exited;
302 void *ret;
303 CRITICAL_SECTION cs;
304 };
305
306 static bool atexit_registered;
307 static NotifierList main_thread_exit;
308
309 static __thread QemuThreadData *qemu_thread_data;
310
311 static void run_main_thread_exit(void)
312 {
313 notifier_list_notify(&main_thread_exit, NULL);
314 }
315
316 void qemu_thread_atexit_add(Notifier *notifier)
317 {
318 if (!qemu_thread_data) {
319 if (!atexit_registered) {
320 atexit_registered = true;
321 atexit(run_main_thread_exit);
322 }
323 notifier_list_add(&main_thread_exit, notifier);
324 } else {
325 notifier_list_add(&qemu_thread_data->exit, notifier);
326 }
327 }
328
329 void qemu_thread_atexit_remove(Notifier *notifier)
330 {
331 notifier_remove(notifier);
332 }
333
334 static unsigned __stdcall win32_start_routine(void *arg)
335 {
336 QemuThreadData *data = (QemuThreadData *) arg;
337 void *(*start_routine)(void *) = data->start_routine;
338 void *thread_arg = data->arg;
339
340 qemu_thread_data = data;
341 qemu_thread_exit(start_routine(thread_arg));
342 abort();
343 }
344
345 void qemu_thread_exit(void *arg)
346 {
347 QemuThreadData *data = qemu_thread_data;
348
349 notifier_list_notify(&data->exit, NULL);
350 if (data->mode == QEMU_THREAD_JOINABLE) {
351 data->ret = arg;
352 EnterCriticalSection(&data->cs);
353 data->exited = true;
354 LeaveCriticalSection(&data->cs);
355 } else {
356 g_free(data);
357 }
358 _endthreadex(0);
359 }
360
361 void *qemu_thread_join(QemuThread *thread)
362 {
363 QemuThreadData *data;
364 void *ret;
365 HANDLE handle;
366
367 data = thread->data;
368 if (data->mode == QEMU_THREAD_DETACHED) {
369 return NULL;
370 }
371
372 /*
373 * Because multiple copies of the QemuThread can exist via
374 * qemu_thread_get_self, we need to store a value that cannot
375 * leak there. The simplest, non racy way is to store the TID,
376 * discard the handle that _beginthreadex gives back, and
377 * get another copy of the handle here.
378 */
379 handle = qemu_thread_get_handle(thread);
380 if (handle) {
381 WaitForSingleObject(handle, INFINITE);
382 CloseHandle(handle);
383 }
384 ret = data->ret;
385 DeleteCriticalSection(&data->cs);
386 g_free(data);
387 return ret;
388 }
389
390 void qemu_thread_create(QemuThread *thread, const char *name,
391 void *(*start_routine)(void *),
392 void *arg, int mode)
393 {
394 HANDLE hThread;
395 struct QemuThreadData *data;
396
397 data = g_malloc(sizeof *data);
398 data->start_routine = start_routine;
399 data->arg = arg;
400 data->mode = mode;
401 data->exited = false;
402 notifier_list_init(&data->exit);
403
404 if (data->mode != QEMU_THREAD_DETACHED) {
405 InitializeCriticalSection(&data->cs);
406 }
407
408 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
409 data, 0, &thread->tid);
410 if (!hThread) {
411 error_exit(GetLastError(), __func__);
412 }
413 CloseHandle(hThread);
414 thread->data = data;
415 }
416
417 void qemu_thread_get_self(QemuThread *thread)
418 {
419 thread->data = qemu_thread_data;
420 thread->tid = GetCurrentThreadId();
421 }
422
423 HANDLE qemu_thread_get_handle(QemuThread *thread)
424 {
425 QemuThreadData *data;
426 HANDLE handle;
427
428 data = thread->data;
429 if (data->mode == QEMU_THREAD_DETACHED) {
430 return NULL;
431 }
432
433 EnterCriticalSection(&data->cs);
434 if (!data->exited) {
435 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
436 THREAD_SET_CONTEXT, FALSE, thread->tid);
437 } else {
438 handle = NULL;
439 }
440 LeaveCriticalSection(&data->cs);
441 return handle;
442 }
443
444 bool qemu_thread_is_self(QemuThread *thread)
445 {
446 return GetCurrentThreadId() == thread->tid;
447 }