]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Introduce -smp , maxcpus= flag to specify maximum number of CPUS.
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
36
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef HOST_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
74
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
79
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
100
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
104
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
108
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <malloc.h>
112 #include <sys/timeb.h>
113 #include <mmsystem.h>
114 #define getopt_long_only getopt_long
115 #define memalign(align, size) malloc(size)
116 #endif
117
118 #ifdef CONFIG_SDL
119 #if defined(__APPLE__) || defined(main)
120 #include <SDL.h>
121 int qemu_main(int argc, char **argv, char **envp);
122 int main(int argc, char **argv)
123 {
124 return qemu_main(argc, argv, NULL);
125 }
126 #undef main
127 #define main qemu_main
128 #endif
129 #endif /* CONFIG_SDL */
130
131 #ifdef CONFIG_COCOA
132 #undef main
133 #define main qemu_main
134 #endif /* CONFIG_COCOA */
135
136 #include "hw/hw.h"
137 #include "hw/boards.h"
138 #include "hw/usb.h"
139 #include "hw/pcmcia.h"
140 #include "hw/pc.h"
141 #include "hw/audiodev.h"
142 #include "hw/isa.h"
143 #include "hw/baum.h"
144 #include "hw/bt.h"
145 #include "hw/watchdog.h"
146 #include "hw/smbios.h"
147 #include "hw/xen.h"
148 #include "hw/qdev.h"
149 #include "bt-host.h"
150 #include "net.h"
151 #include "monitor.h"
152 #include "console.h"
153 #include "sysemu.h"
154 #include "gdbstub.h"
155 #include "qemu-timer.h"
156 #include "qemu-char.h"
157 #include "cache-utils.h"
158 #include "block.h"
159 #include "dma.h"
160 #include "audio/audio.h"
161 #include "migration.h"
162 #include "kvm.h"
163 #include "balloon.h"
164 #include "qemu-option.h"
165
166 #include "disas.h"
167
168 #include "exec-all.h"
169
170 #include "qemu_socket.h"
171
172 #include "slirp/libslirp.h"
173
174 //#define DEBUG_NET
175 //#define DEBUG_SLIRP
176
177 #define DEFAULT_RAM_SIZE 128
178
179 static const char *data_dir;
180 const char *bios_name = NULL;
181 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
182 to store the VM snapshots */
183 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
184 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
185 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
186 static DisplayState *display_state;
187 DisplayType display_type = DT_DEFAULT;
188 const char* keyboard_layout = NULL;
189 int64_t ticks_per_sec;
190 ram_addr_t ram_size;
191 int nb_nics;
192 NICInfo nd_table[MAX_NICS];
193 int vm_running;
194 static int autostart;
195 static int rtc_utc = 1;
196 static int rtc_date_offset = -1; /* -1 means no change */
197 int cirrus_vga_enabled = 1;
198 int std_vga_enabled = 0;
199 int vmsvga_enabled = 0;
200 int xenfb_enabled = 0;
201 #ifdef TARGET_SPARC
202 int graphic_width = 1024;
203 int graphic_height = 768;
204 int graphic_depth = 8;
205 #else
206 int graphic_width = 800;
207 int graphic_height = 600;
208 int graphic_depth = 15;
209 #endif
210 static int full_screen = 0;
211 #ifdef CONFIG_SDL
212 static int no_frame = 0;
213 #endif
214 int no_quit = 0;
215 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
216 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
217 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
218 #ifdef TARGET_I386
219 int win2k_install_hack = 0;
220 int rtc_td_hack = 0;
221 #endif
222 int usb_enabled = 0;
223 int singlestep = 0;
224 int smp_cpus = 1;
225 int max_cpus = 0;
226 const char *vnc_display;
227 int acpi_enabled = 1;
228 int no_hpet = 0;
229 int virtio_balloon = 1;
230 const char *virtio_balloon_devaddr;
231 int fd_bootchk = 1;
232 int no_reboot = 0;
233 int no_shutdown = 0;
234 int cursor_hide = 1;
235 int graphic_rotate = 0;
236 #ifndef _WIN32
237 int daemonize = 0;
238 #endif
239 WatchdogTimerModel *watchdog = NULL;
240 int watchdog_action = WDT_RESET;
241 const char *option_rom[MAX_OPTION_ROMS];
242 int nb_option_roms;
243 int semihosting_enabled = 0;
244 #ifdef TARGET_ARM
245 int old_param = 0;
246 #endif
247 const char *qemu_name;
248 int alt_grab = 0;
249 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
250 unsigned int nb_prom_envs = 0;
251 const char *prom_envs[MAX_PROM_ENVS];
252 #endif
253 int boot_menu;
254
255 int nb_numa_nodes;
256 uint64_t node_mem[MAX_NODES];
257 uint64_t node_cpumask[MAX_NODES];
258
259 static CPUState *cur_cpu;
260 static CPUState *next_cpu;
261 static int timer_alarm_pending = 1;
262 /* Conversion factor from emulated instructions to virtual clock ticks. */
263 static int icount_time_shift;
264 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
265 #define MAX_ICOUNT_SHIFT 10
266 /* Compensate for varying guest execution speed. */
267 static int64_t qemu_icount_bias;
268 static QEMUTimer *icount_rt_timer;
269 static QEMUTimer *icount_vm_timer;
270 static QEMUTimer *nographic_timer;
271
272 uint8_t qemu_uuid[16];
273
274 static QEMUBootSetHandler *boot_set_handler;
275 static void *boot_set_opaque;
276
277 /***********************************************************/
278 /* x86 ISA bus support */
279
280 target_phys_addr_t isa_mem_base = 0;
281 PicState2 *isa_pic;
282
283 /***********************************************************/
284 void hw_error(const char *fmt, ...)
285 {
286 va_list ap;
287 CPUState *env;
288
289 va_start(ap, fmt);
290 fprintf(stderr, "qemu: hardware error: ");
291 vfprintf(stderr, fmt, ap);
292 fprintf(stderr, "\n");
293 for(env = first_cpu; env != NULL; env = env->next_cpu) {
294 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
295 #ifdef TARGET_I386
296 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
297 #else
298 cpu_dump_state(env, stderr, fprintf, 0);
299 #endif
300 }
301 va_end(ap);
302 abort();
303 }
304
305 static void set_proc_name(const char *s)
306 {
307 #ifdef __linux__
308 char name[16];
309 if (!s)
310 return;
311 name[sizeof(name) - 1] = 0;
312 strncpy(name, s, sizeof(name));
313 /* Could rewrite argv[0] too, but that's a bit more complicated.
314 This simple way is enough for `top'. */
315 prctl(PR_SET_NAME, name);
316 #endif
317 }
318
319 /***************/
320 /* ballooning */
321
322 static QEMUBalloonEvent *qemu_balloon_event;
323 void *qemu_balloon_event_opaque;
324
325 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
326 {
327 qemu_balloon_event = func;
328 qemu_balloon_event_opaque = opaque;
329 }
330
331 void qemu_balloon(ram_addr_t target)
332 {
333 if (qemu_balloon_event)
334 qemu_balloon_event(qemu_balloon_event_opaque, target);
335 }
336
337 ram_addr_t qemu_balloon_status(void)
338 {
339 if (qemu_balloon_event)
340 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
341 return 0;
342 }
343
344 /***********************************************************/
345 /* keyboard/mouse */
346
347 static QEMUPutKBDEvent *qemu_put_kbd_event;
348 static void *qemu_put_kbd_event_opaque;
349 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
350 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
351
352 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
353 {
354 qemu_put_kbd_event_opaque = opaque;
355 qemu_put_kbd_event = func;
356 }
357
358 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
359 void *opaque, int absolute,
360 const char *name)
361 {
362 QEMUPutMouseEntry *s, *cursor;
363
364 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
365
366 s->qemu_put_mouse_event = func;
367 s->qemu_put_mouse_event_opaque = opaque;
368 s->qemu_put_mouse_event_absolute = absolute;
369 s->qemu_put_mouse_event_name = qemu_strdup(name);
370 s->next = NULL;
371
372 if (!qemu_put_mouse_event_head) {
373 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
374 return s;
375 }
376
377 cursor = qemu_put_mouse_event_head;
378 while (cursor->next != NULL)
379 cursor = cursor->next;
380
381 cursor->next = s;
382 qemu_put_mouse_event_current = s;
383
384 return s;
385 }
386
387 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
388 {
389 QEMUPutMouseEntry *prev = NULL, *cursor;
390
391 if (!qemu_put_mouse_event_head || entry == NULL)
392 return;
393
394 cursor = qemu_put_mouse_event_head;
395 while (cursor != NULL && cursor != entry) {
396 prev = cursor;
397 cursor = cursor->next;
398 }
399
400 if (cursor == NULL) // does not exist or list empty
401 return;
402 else if (prev == NULL) { // entry is head
403 qemu_put_mouse_event_head = cursor->next;
404 if (qemu_put_mouse_event_current == entry)
405 qemu_put_mouse_event_current = cursor->next;
406 qemu_free(entry->qemu_put_mouse_event_name);
407 qemu_free(entry);
408 return;
409 }
410
411 prev->next = entry->next;
412
413 if (qemu_put_mouse_event_current == entry)
414 qemu_put_mouse_event_current = prev;
415
416 qemu_free(entry->qemu_put_mouse_event_name);
417 qemu_free(entry);
418 }
419
420 void kbd_put_keycode(int keycode)
421 {
422 if (qemu_put_kbd_event) {
423 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
424 }
425 }
426
427 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
428 {
429 QEMUPutMouseEvent *mouse_event;
430 void *mouse_event_opaque;
431 int width;
432
433 if (!qemu_put_mouse_event_current) {
434 return;
435 }
436
437 mouse_event =
438 qemu_put_mouse_event_current->qemu_put_mouse_event;
439 mouse_event_opaque =
440 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
441
442 if (mouse_event) {
443 if (graphic_rotate) {
444 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
445 width = 0x7fff;
446 else
447 width = graphic_width - 1;
448 mouse_event(mouse_event_opaque,
449 width - dy, dx, dz, buttons_state);
450 } else
451 mouse_event(mouse_event_opaque,
452 dx, dy, dz, buttons_state);
453 }
454 }
455
456 int kbd_mouse_is_absolute(void)
457 {
458 if (!qemu_put_mouse_event_current)
459 return 0;
460
461 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
462 }
463
464 void do_info_mice(Monitor *mon)
465 {
466 QEMUPutMouseEntry *cursor;
467 int index = 0;
468
469 if (!qemu_put_mouse_event_head) {
470 monitor_printf(mon, "No mouse devices connected\n");
471 return;
472 }
473
474 monitor_printf(mon, "Mouse devices available:\n");
475 cursor = qemu_put_mouse_event_head;
476 while (cursor != NULL) {
477 monitor_printf(mon, "%c Mouse #%d: %s\n",
478 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
479 index, cursor->qemu_put_mouse_event_name);
480 index++;
481 cursor = cursor->next;
482 }
483 }
484
485 void do_mouse_set(Monitor *mon, int index)
486 {
487 QEMUPutMouseEntry *cursor;
488 int i = 0;
489
490 if (!qemu_put_mouse_event_head) {
491 monitor_printf(mon, "No mouse devices connected\n");
492 return;
493 }
494
495 cursor = qemu_put_mouse_event_head;
496 while (cursor != NULL && index != i) {
497 i++;
498 cursor = cursor->next;
499 }
500
501 if (cursor != NULL)
502 qemu_put_mouse_event_current = cursor;
503 else
504 monitor_printf(mon, "Mouse at given index not found\n");
505 }
506
507 /* compute with 96 bit intermediate result: (a*b)/c */
508 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
509 {
510 union {
511 uint64_t ll;
512 struct {
513 #ifdef WORDS_BIGENDIAN
514 uint32_t high, low;
515 #else
516 uint32_t low, high;
517 #endif
518 } l;
519 } u, res;
520 uint64_t rl, rh;
521
522 u.ll = a;
523 rl = (uint64_t)u.l.low * (uint64_t)b;
524 rh = (uint64_t)u.l.high * (uint64_t)b;
525 rh += (rl >> 32);
526 res.l.high = rh / c;
527 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
528 return res.ll;
529 }
530
531 /***********************************************************/
532 /* real time host monotonic timer */
533
534 #define QEMU_TIMER_BASE 1000000000LL
535
536 #ifdef WIN32
537
538 static int64_t clock_freq;
539
540 static void init_get_clock(void)
541 {
542 LARGE_INTEGER freq;
543 int ret;
544 ret = QueryPerformanceFrequency(&freq);
545 if (ret == 0) {
546 fprintf(stderr, "Could not calibrate ticks\n");
547 exit(1);
548 }
549 clock_freq = freq.QuadPart;
550 }
551
552 static int64_t get_clock(void)
553 {
554 LARGE_INTEGER ti;
555 QueryPerformanceCounter(&ti);
556 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
557 }
558
559 #else
560
561 static int use_rt_clock;
562
563 static void init_get_clock(void)
564 {
565 use_rt_clock = 0;
566 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
567 || defined(__DragonFly__)
568 {
569 struct timespec ts;
570 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
571 use_rt_clock = 1;
572 }
573 }
574 #endif
575 }
576
577 static int64_t get_clock(void)
578 {
579 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
580 || defined(__DragonFly__)
581 if (use_rt_clock) {
582 struct timespec ts;
583 clock_gettime(CLOCK_MONOTONIC, &ts);
584 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
585 } else
586 #endif
587 {
588 /* XXX: using gettimeofday leads to problems if the date
589 changes, so it should be avoided. */
590 struct timeval tv;
591 gettimeofday(&tv, NULL);
592 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
593 }
594 }
595 #endif
596
597 /* Return the virtual CPU time, based on the instruction counter. */
598 static int64_t cpu_get_icount(void)
599 {
600 int64_t icount;
601 CPUState *env = cpu_single_env;;
602 icount = qemu_icount;
603 if (env) {
604 if (!can_do_io(env))
605 fprintf(stderr, "Bad clock read\n");
606 icount -= (env->icount_decr.u16.low + env->icount_extra);
607 }
608 return qemu_icount_bias + (icount << icount_time_shift);
609 }
610
611 /***********************************************************/
612 /* guest cycle counter */
613
614 static int64_t cpu_ticks_prev;
615 static int64_t cpu_ticks_offset;
616 static int64_t cpu_clock_offset;
617 static int cpu_ticks_enabled;
618
619 /* return the host CPU cycle counter and handle stop/restart */
620 int64_t cpu_get_ticks(void)
621 {
622 if (use_icount) {
623 return cpu_get_icount();
624 }
625 if (!cpu_ticks_enabled) {
626 return cpu_ticks_offset;
627 } else {
628 int64_t ticks;
629 ticks = cpu_get_real_ticks();
630 if (cpu_ticks_prev > ticks) {
631 /* Note: non increasing ticks may happen if the host uses
632 software suspend */
633 cpu_ticks_offset += cpu_ticks_prev - ticks;
634 }
635 cpu_ticks_prev = ticks;
636 return ticks + cpu_ticks_offset;
637 }
638 }
639
640 /* return the host CPU monotonic timer and handle stop/restart */
641 static int64_t cpu_get_clock(void)
642 {
643 int64_t ti;
644 if (!cpu_ticks_enabled) {
645 return cpu_clock_offset;
646 } else {
647 ti = get_clock();
648 return ti + cpu_clock_offset;
649 }
650 }
651
652 /* enable cpu_get_ticks() */
653 void cpu_enable_ticks(void)
654 {
655 if (!cpu_ticks_enabled) {
656 cpu_ticks_offset -= cpu_get_real_ticks();
657 cpu_clock_offset -= get_clock();
658 cpu_ticks_enabled = 1;
659 }
660 }
661
662 /* disable cpu_get_ticks() : the clock is stopped. You must not call
663 cpu_get_ticks() after that. */
664 void cpu_disable_ticks(void)
665 {
666 if (cpu_ticks_enabled) {
667 cpu_ticks_offset = cpu_get_ticks();
668 cpu_clock_offset = cpu_get_clock();
669 cpu_ticks_enabled = 0;
670 }
671 }
672
673 /***********************************************************/
674 /* timers */
675
676 #define QEMU_TIMER_REALTIME 0
677 #define QEMU_TIMER_VIRTUAL 1
678
679 struct QEMUClock {
680 int type;
681 /* XXX: add frequency */
682 };
683
684 struct QEMUTimer {
685 QEMUClock *clock;
686 int64_t expire_time;
687 QEMUTimerCB *cb;
688 void *opaque;
689 struct QEMUTimer *next;
690 };
691
692 struct qemu_alarm_timer {
693 char const *name;
694 unsigned int flags;
695
696 int (*start)(struct qemu_alarm_timer *t);
697 void (*stop)(struct qemu_alarm_timer *t);
698 void (*rearm)(struct qemu_alarm_timer *t);
699 void *priv;
700 };
701
702 #define ALARM_FLAG_DYNTICKS 0x1
703 #define ALARM_FLAG_EXPIRED 0x2
704
705 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
706 {
707 return t && (t->flags & ALARM_FLAG_DYNTICKS);
708 }
709
710 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
711 {
712 if (!alarm_has_dynticks(t))
713 return;
714
715 t->rearm(t);
716 }
717
718 /* TODO: MIN_TIMER_REARM_US should be optimized */
719 #define MIN_TIMER_REARM_US 250
720
721 static struct qemu_alarm_timer *alarm_timer;
722
723 #ifdef _WIN32
724
725 struct qemu_alarm_win32 {
726 MMRESULT timerId;
727 unsigned int period;
728 } alarm_win32_data = {0, -1};
729
730 static int win32_start_timer(struct qemu_alarm_timer *t);
731 static void win32_stop_timer(struct qemu_alarm_timer *t);
732 static void win32_rearm_timer(struct qemu_alarm_timer *t);
733
734 #else
735
736 static int unix_start_timer(struct qemu_alarm_timer *t);
737 static void unix_stop_timer(struct qemu_alarm_timer *t);
738
739 #ifdef __linux__
740
741 static int dynticks_start_timer(struct qemu_alarm_timer *t);
742 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
743 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
744
745 static int hpet_start_timer(struct qemu_alarm_timer *t);
746 static void hpet_stop_timer(struct qemu_alarm_timer *t);
747
748 static int rtc_start_timer(struct qemu_alarm_timer *t);
749 static void rtc_stop_timer(struct qemu_alarm_timer *t);
750
751 #endif /* __linux__ */
752
753 #endif /* _WIN32 */
754
755 /* Correlation between real and virtual time is always going to be
756 fairly approximate, so ignore small variation.
757 When the guest is idle real and virtual time will be aligned in
758 the IO wait loop. */
759 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
760
761 static void icount_adjust(void)
762 {
763 int64_t cur_time;
764 int64_t cur_icount;
765 int64_t delta;
766 static int64_t last_delta;
767 /* If the VM is not running, then do nothing. */
768 if (!vm_running)
769 return;
770
771 cur_time = cpu_get_clock();
772 cur_icount = qemu_get_clock(vm_clock);
773 delta = cur_icount - cur_time;
774 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
775 if (delta > 0
776 && last_delta + ICOUNT_WOBBLE < delta * 2
777 && icount_time_shift > 0) {
778 /* The guest is getting too far ahead. Slow time down. */
779 icount_time_shift--;
780 }
781 if (delta < 0
782 && last_delta - ICOUNT_WOBBLE > delta * 2
783 && icount_time_shift < MAX_ICOUNT_SHIFT) {
784 /* The guest is getting too far behind. Speed time up. */
785 icount_time_shift++;
786 }
787 last_delta = delta;
788 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
789 }
790
791 static void icount_adjust_rt(void * opaque)
792 {
793 qemu_mod_timer(icount_rt_timer,
794 qemu_get_clock(rt_clock) + 1000);
795 icount_adjust();
796 }
797
798 static void icount_adjust_vm(void * opaque)
799 {
800 qemu_mod_timer(icount_vm_timer,
801 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
802 icount_adjust();
803 }
804
805 static void init_icount_adjust(void)
806 {
807 /* Have both realtime and virtual time triggers for speed adjustment.
808 The realtime trigger catches emulated time passing too slowly,
809 the virtual time trigger catches emulated time passing too fast.
810 Realtime triggers occur even when idle, so use them less frequently
811 than VM triggers. */
812 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
813 qemu_mod_timer(icount_rt_timer,
814 qemu_get_clock(rt_clock) + 1000);
815 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
816 qemu_mod_timer(icount_vm_timer,
817 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
818 }
819
820 static struct qemu_alarm_timer alarm_timers[] = {
821 #ifndef _WIN32
822 #ifdef __linux__
823 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
824 dynticks_stop_timer, dynticks_rearm_timer, NULL},
825 /* HPET - if available - is preferred */
826 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
827 /* ...otherwise try RTC */
828 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
829 #endif
830 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
831 #else
832 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
833 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
834 {"win32", 0, win32_start_timer,
835 win32_stop_timer, NULL, &alarm_win32_data},
836 #endif
837 {NULL, }
838 };
839
840 static void show_available_alarms(void)
841 {
842 int i;
843
844 printf("Available alarm timers, in order of precedence:\n");
845 for (i = 0; alarm_timers[i].name; i++)
846 printf("%s\n", alarm_timers[i].name);
847 }
848
849 static void configure_alarms(char const *opt)
850 {
851 int i;
852 int cur = 0;
853 int count = ARRAY_SIZE(alarm_timers) - 1;
854 char *arg;
855 char *name;
856 struct qemu_alarm_timer tmp;
857
858 if (!strcmp(opt, "?")) {
859 show_available_alarms();
860 exit(0);
861 }
862
863 arg = strdup(opt);
864
865 /* Reorder the array */
866 name = strtok(arg, ",");
867 while (name) {
868 for (i = 0; i < count && alarm_timers[i].name; i++) {
869 if (!strcmp(alarm_timers[i].name, name))
870 break;
871 }
872
873 if (i == count) {
874 fprintf(stderr, "Unknown clock %s\n", name);
875 goto next;
876 }
877
878 if (i < cur)
879 /* Ignore */
880 goto next;
881
882 /* Swap */
883 tmp = alarm_timers[i];
884 alarm_timers[i] = alarm_timers[cur];
885 alarm_timers[cur] = tmp;
886
887 cur++;
888 next:
889 name = strtok(NULL, ",");
890 }
891
892 free(arg);
893
894 if (cur) {
895 /* Disable remaining timers */
896 for (i = cur; i < count; i++)
897 alarm_timers[i].name = NULL;
898 } else {
899 show_available_alarms();
900 exit(1);
901 }
902 }
903
904 QEMUClock *rt_clock;
905 QEMUClock *vm_clock;
906
907 static QEMUTimer *active_timers[2];
908
909 static QEMUClock *qemu_new_clock(int type)
910 {
911 QEMUClock *clock;
912 clock = qemu_mallocz(sizeof(QEMUClock));
913 clock->type = type;
914 return clock;
915 }
916
917 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
918 {
919 QEMUTimer *ts;
920
921 ts = qemu_mallocz(sizeof(QEMUTimer));
922 ts->clock = clock;
923 ts->cb = cb;
924 ts->opaque = opaque;
925 return ts;
926 }
927
928 void qemu_free_timer(QEMUTimer *ts)
929 {
930 qemu_free(ts);
931 }
932
933 /* stop a timer, but do not dealloc it */
934 void qemu_del_timer(QEMUTimer *ts)
935 {
936 QEMUTimer **pt, *t;
937
938 /* NOTE: this code must be signal safe because
939 qemu_timer_expired() can be called from a signal. */
940 pt = &active_timers[ts->clock->type];
941 for(;;) {
942 t = *pt;
943 if (!t)
944 break;
945 if (t == ts) {
946 *pt = t->next;
947 break;
948 }
949 pt = &t->next;
950 }
951 }
952
953 /* modify the current timer so that it will be fired when current_time
954 >= expire_time. The corresponding callback will be called. */
955 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
956 {
957 QEMUTimer **pt, *t;
958
959 qemu_del_timer(ts);
960
961 /* add the timer in the sorted list */
962 /* NOTE: this code must be signal safe because
963 qemu_timer_expired() can be called from a signal. */
964 pt = &active_timers[ts->clock->type];
965 for(;;) {
966 t = *pt;
967 if (!t)
968 break;
969 if (t->expire_time > expire_time)
970 break;
971 pt = &t->next;
972 }
973 ts->expire_time = expire_time;
974 ts->next = *pt;
975 *pt = ts;
976
977 /* Rearm if necessary */
978 if (pt == &active_timers[ts->clock->type]) {
979 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
980 qemu_rearm_alarm_timer(alarm_timer);
981 }
982 /* Interrupt execution to force deadline recalculation. */
983 if (use_icount)
984 qemu_notify_event();
985 }
986 }
987
988 int qemu_timer_pending(QEMUTimer *ts)
989 {
990 QEMUTimer *t;
991 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
992 if (t == ts)
993 return 1;
994 }
995 return 0;
996 }
997
998 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
999 {
1000 if (!timer_head)
1001 return 0;
1002 return (timer_head->expire_time <= current_time);
1003 }
1004
1005 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1006 {
1007 QEMUTimer *ts;
1008
1009 for(;;) {
1010 ts = *ptimer_head;
1011 if (!ts || ts->expire_time > current_time)
1012 break;
1013 /* remove timer from the list before calling the callback */
1014 *ptimer_head = ts->next;
1015 ts->next = NULL;
1016
1017 /* run the callback (the timer list can be modified) */
1018 ts->cb(ts->opaque);
1019 }
1020 }
1021
1022 int64_t qemu_get_clock(QEMUClock *clock)
1023 {
1024 switch(clock->type) {
1025 case QEMU_TIMER_REALTIME:
1026 return get_clock() / 1000000;
1027 default:
1028 case QEMU_TIMER_VIRTUAL:
1029 if (use_icount) {
1030 return cpu_get_icount();
1031 } else {
1032 return cpu_get_clock();
1033 }
1034 }
1035 }
1036
1037 static void init_timers(void)
1038 {
1039 init_get_clock();
1040 ticks_per_sec = QEMU_TIMER_BASE;
1041 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1042 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1043 }
1044
1045 /* save a timer */
1046 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1047 {
1048 uint64_t expire_time;
1049
1050 if (qemu_timer_pending(ts)) {
1051 expire_time = ts->expire_time;
1052 } else {
1053 expire_time = -1;
1054 }
1055 qemu_put_be64(f, expire_time);
1056 }
1057
1058 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1059 {
1060 uint64_t expire_time;
1061
1062 expire_time = qemu_get_be64(f);
1063 if (expire_time != -1) {
1064 qemu_mod_timer(ts, expire_time);
1065 } else {
1066 qemu_del_timer(ts);
1067 }
1068 }
1069
1070 static void timer_save(QEMUFile *f, void *opaque)
1071 {
1072 if (cpu_ticks_enabled) {
1073 hw_error("cannot save state if virtual timers are running");
1074 }
1075 qemu_put_be64(f, cpu_ticks_offset);
1076 qemu_put_be64(f, ticks_per_sec);
1077 qemu_put_be64(f, cpu_clock_offset);
1078 }
1079
1080 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1081 {
1082 if (version_id != 1 && version_id != 2)
1083 return -EINVAL;
1084 if (cpu_ticks_enabled) {
1085 return -EINVAL;
1086 }
1087 cpu_ticks_offset=qemu_get_be64(f);
1088 ticks_per_sec=qemu_get_be64(f);
1089 if (version_id == 2) {
1090 cpu_clock_offset=qemu_get_be64(f);
1091 }
1092 return 0;
1093 }
1094
1095 static void qemu_event_increment(void);
1096
1097 #ifdef _WIN32
1098 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1099 DWORD_PTR dwUser, DWORD_PTR dw1,
1100 DWORD_PTR dw2)
1101 #else
1102 static void host_alarm_handler(int host_signum)
1103 #endif
1104 {
1105 #if 0
1106 #define DISP_FREQ 1000
1107 {
1108 static int64_t delta_min = INT64_MAX;
1109 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1110 static int count;
1111 ti = qemu_get_clock(vm_clock);
1112 if (last_clock != 0) {
1113 delta = ti - last_clock;
1114 if (delta < delta_min)
1115 delta_min = delta;
1116 if (delta > delta_max)
1117 delta_max = delta;
1118 delta_cum += delta;
1119 if (++count == DISP_FREQ) {
1120 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1121 muldiv64(delta_min, 1000000, ticks_per_sec),
1122 muldiv64(delta_max, 1000000, ticks_per_sec),
1123 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1124 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1125 count = 0;
1126 delta_min = INT64_MAX;
1127 delta_max = 0;
1128 delta_cum = 0;
1129 }
1130 }
1131 last_clock = ti;
1132 }
1133 #endif
1134 if (alarm_has_dynticks(alarm_timer) ||
1135 (!use_icount &&
1136 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1137 qemu_get_clock(vm_clock))) ||
1138 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1139 qemu_get_clock(rt_clock))) {
1140 qemu_event_increment();
1141 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1142
1143 #ifndef CONFIG_IOTHREAD
1144 if (next_cpu) {
1145 /* stop the currently executing cpu because a timer occured */
1146 cpu_exit(next_cpu);
1147 #ifdef CONFIG_KQEMU
1148 if (next_cpu->kqemu_enabled) {
1149 kqemu_cpu_interrupt(next_cpu);
1150 }
1151 #endif
1152 }
1153 #endif
1154 timer_alarm_pending = 1;
1155 qemu_notify_event();
1156 }
1157 }
1158
1159 static int64_t qemu_next_deadline(void)
1160 {
1161 int64_t delta;
1162
1163 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1164 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1165 qemu_get_clock(vm_clock);
1166 } else {
1167 /* To avoid problems with overflow limit this to 2^32. */
1168 delta = INT32_MAX;
1169 }
1170
1171 if (delta < 0)
1172 delta = 0;
1173
1174 return delta;
1175 }
1176
1177 #if defined(__linux__) || defined(_WIN32)
1178 static uint64_t qemu_next_deadline_dyntick(void)
1179 {
1180 int64_t delta;
1181 int64_t rtdelta;
1182
1183 if (use_icount)
1184 delta = INT32_MAX;
1185 else
1186 delta = (qemu_next_deadline() + 999) / 1000;
1187
1188 if (active_timers[QEMU_TIMER_REALTIME]) {
1189 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1190 qemu_get_clock(rt_clock))*1000;
1191 if (rtdelta < delta)
1192 delta = rtdelta;
1193 }
1194
1195 if (delta < MIN_TIMER_REARM_US)
1196 delta = MIN_TIMER_REARM_US;
1197
1198 return delta;
1199 }
1200 #endif
1201
1202 #ifndef _WIN32
1203
1204 /* Sets a specific flag */
1205 static int fcntl_setfl(int fd, int flag)
1206 {
1207 int flags;
1208
1209 flags = fcntl(fd, F_GETFL);
1210 if (flags == -1)
1211 return -errno;
1212
1213 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1214 return -errno;
1215
1216 return 0;
1217 }
1218
1219 #if defined(__linux__)
1220
1221 #define RTC_FREQ 1024
1222
1223 static void enable_sigio_timer(int fd)
1224 {
1225 struct sigaction act;
1226
1227 /* timer signal */
1228 sigfillset(&act.sa_mask);
1229 act.sa_flags = 0;
1230 act.sa_handler = host_alarm_handler;
1231
1232 sigaction(SIGIO, &act, NULL);
1233 fcntl_setfl(fd, O_ASYNC);
1234 fcntl(fd, F_SETOWN, getpid());
1235 }
1236
1237 static int hpet_start_timer(struct qemu_alarm_timer *t)
1238 {
1239 struct hpet_info info;
1240 int r, fd;
1241
1242 fd = open("/dev/hpet", O_RDONLY);
1243 if (fd < 0)
1244 return -1;
1245
1246 /* Set frequency */
1247 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1248 if (r < 0) {
1249 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1250 "error, but for better emulation accuracy type:\n"
1251 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1252 goto fail;
1253 }
1254
1255 /* Check capabilities */
1256 r = ioctl(fd, HPET_INFO, &info);
1257 if (r < 0)
1258 goto fail;
1259
1260 /* Enable periodic mode */
1261 r = ioctl(fd, HPET_EPI, 0);
1262 if (info.hi_flags && (r < 0))
1263 goto fail;
1264
1265 /* Enable interrupt */
1266 r = ioctl(fd, HPET_IE_ON, 0);
1267 if (r < 0)
1268 goto fail;
1269
1270 enable_sigio_timer(fd);
1271 t->priv = (void *)(long)fd;
1272
1273 return 0;
1274 fail:
1275 close(fd);
1276 return -1;
1277 }
1278
1279 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1280 {
1281 int fd = (long)t->priv;
1282
1283 close(fd);
1284 }
1285
1286 static int rtc_start_timer(struct qemu_alarm_timer *t)
1287 {
1288 int rtc_fd;
1289 unsigned long current_rtc_freq = 0;
1290
1291 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1292 if (rtc_fd < 0)
1293 return -1;
1294 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1295 if (current_rtc_freq != RTC_FREQ &&
1296 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1297 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1298 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1299 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1300 goto fail;
1301 }
1302 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1303 fail:
1304 close(rtc_fd);
1305 return -1;
1306 }
1307
1308 enable_sigio_timer(rtc_fd);
1309
1310 t->priv = (void *)(long)rtc_fd;
1311
1312 return 0;
1313 }
1314
1315 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1316 {
1317 int rtc_fd = (long)t->priv;
1318
1319 close(rtc_fd);
1320 }
1321
1322 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1323 {
1324 struct sigevent ev;
1325 timer_t host_timer;
1326 struct sigaction act;
1327
1328 sigfillset(&act.sa_mask);
1329 act.sa_flags = 0;
1330 act.sa_handler = host_alarm_handler;
1331
1332 sigaction(SIGALRM, &act, NULL);
1333
1334 /*
1335 * Initialize ev struct to 0 to avoid valgrind complaining
1336 * about uninitialized data in timer_create call
1337 */
1338 memset(&ev, 0, sizeof(ev));
1339 ev.sigev_value.sival_int = 0;
1340 ev.sigev_notify = SIGEV_SIGNAL;
1341 ev.sigev_signo = SIGALRM;
1342
1343 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1344 perror("timer_create");
1345
1346 /* disable dynticks */
1347 fprintf(stderr, "Dynamic Ticks disabled\n");
1348
1349 return -1;
1350 }
1351
1352 t->priv = (void *)(long)host_timer;
1353
1354 return 0;
1355 }
1356
1357 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1358 {
1359 timer_t host_timer = (timer_t)(long)t->priv;
1360
1361 timer_delete(host_timer);
1362 }
1363
1364 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1365 {
1366 timer_t host_timer = (timer_t)(long)t->priv;
1367 struct itimerspec timeout;
1368 int64_t nearest_delta_us = INT64_MAX;
1369 int64_t current_us;
1370
1371 if (!active_timers[QEMU_TIMER_REALTIME] &&
1372 !active_timers[QEMU_TIMER_VIRTUAL])
1373 return;
1374
1375 nearest_delta_us = qemu_next_deadline_dyntick();
1376
1377 /* check whether a timer is already running */
1378 if (timer_gettime(host_timer, &timeout)) {
1379 perror("gettime");
1380 fprintf(stderr, "Internal timer error: aborting\n");
1381 exit(1);
1382 }
1383 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1384 if (current_us && current_us <= nearest_delta_us)
1385 return;
1386
1387 timeout.it_interval.tv_sec = 0;
1388 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1389 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1390 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1391 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1392 perror("settime");
1393 fprintf(stderr, "Internal timer error: aborting\n");
1394 exit(1);
1395 }
1396 }
1397
1398 #endif /* defined(__linux__) */
1399
1400 static int unix_start_timer(struct qemu_alarm_timer *t)
1401 {
1402 struct sigaction act;
1403 struct itimerval itv;
1404 int err;
1405
1406 /* timer signal */
1407 sigfillset(&act.sa_mask);
1408 act.sa_flags = 0;
1409 act.sa_handler = host_alarm_handler;
1410
1411 sigaction(SIGALRM, &act, NULL);
1412
1413 itv.it_interval.tv_sec = 0;
1414 /* for i386 kernel 2.6 to get 1 ms */
1415 itv.it_interval.tv_usec = 999;
1416 itv.it_value.tv_sec = 0;
1417 itv.it_value.tv_usec = 10 * 1000;
1418
1419 err = setitimer(ITIMER_REAL, &itv, NULL);
1420 if (err)
1421 return -1;
1422
1423 return 0;
1424 }
1425
1426 static void unix_stop_timer(struct qemu_alarm_timer *t)
1427 {
1428 struct itimerval itv;
1429
1430 memset(&itv, 0, sizeof(itv));
1431 setitimer(ITIMER_REAL, &itv, NULL);
1432 }
1433
1434 #endif /* !defined(_WIN32) */
1435
1436
1437 #ifdef _WIN32
1438
1439 static int win32_start_timer(struct qemu_alarm_timer *t)
1440 {
1441 TIMECAPS tc;
1442 struct qemu_alarm_win32 *data = t->priv;
1443 UINT flags;
1444
1445 memset(&tc, 0, sizeof(tc));
1446 timeGetDevCaps(&tc, sizeof(tc));
1447
1448 if (data->period < tc.wPeriodMin)
1449 data->period = tc.wPeriodMin;
1450
1451 timeBeginPeriod(data->period);
1452
1453 flags = TIME_CALLBACK_FUNCTION;
1454 if (alarm_has_dynticks(t))
1455 flags |= TIME_ONESHOT;
1456 else
1457 flags |= TIME_PERIODIC;
1458
1459 data->timerId = timeSetEvent(1, // interval (ms)
1460 data->period, // resolution
1461 host_alarm_handler, // function
1462 (DWORD)t, // parameter
1463 flags);
1464
1465 if (!data->timerId) {
1466 perror("Failed to initialize win32 alarm timer");
1467 timeEndPeriod(data->period);
1468 return -1;
1469 }
1470
1471 return 0;
1472 }
1473
1474 static void win32_stop_timer(struct qemu_alarm_timer *t)
1475 {
1476 struct qemu_alarm_win32 *data = t->priv;
1477
1478 timeKillEvent(data->timerId);
1479 timeEndPeriod(data->period);
1480 }
1481
1482 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1483 {
1484 struct qemu_alarm_win32 *data = t->priv;
1485 uint64_t nearest_delta_us;
1486
1487 if (!active_timers[QEMU_TIMER_REALTIME] &&
1488 !active_timers[QEMU_TIMER_VIRTUAL])
1489 return;
1490
1491 nearest_delta_us = qemu_next_deadline_dyntick();
1492 nearest_delta_us /= 1000;
1493
1494 timeKillEvent(data->timerId);
1495
1496 data->timerId = timeSetEvent(1,
1497 data->period,
1498 host_alarm_handler,
1499 (DWORD)t,
1500 TIME_ONESHOT | TIME_PERIODIC);
1501
1502 if (!data->timerId) {
1503 perror("Failed to re-arm win32 alarm timer");
1504
1505 timeEndPeriod(data->period);
1506 exit(1);
1507 }
1508 }
1509
1510 #endif /* _WIN32 */
1511
1512 static int init_timer_alarm(void)
1513 {
1514 struct qemu_alarm_timer *t = NULL;
1515 int i, err = -1;
1516
1517 for (i = 0; alarm_timers[i].name; i++) {
1518 t = &alarm_timers[i];
1519
1520 err = t->start(t);
1521 if (!err)
1522 break;
1523 }
1524
1525 if (err) {
1526 err = -ENOENT;
1527 goto fail;
1528 }
1529
1530 alarm_timer = t;
1531
1532 return 0;
1533
1534 fail:
1535 return err;
1536 }
1537
1538 static void quit_timers(void)
1539 {
1540 alarm_timer->stop(alarm_timer);
1541 alarm_timer = NULL;
1542 }
1543
1544 /***********************************************************/
1545 /* host time/date access */
1546 void qemu_get_timedate(struct tm *tm, int offset)
1547 {
1548 time_t ti;
1549 struct tm *ret;
1550
1551 time(&ti);
1552 ti += offset;
1553 if (rtc_date_offset == -1) {
1554 if (rtc_utc)
1555 ret = gmtime(&ti);
1556 else
1557 ret = localtime(&ti);
1558 } else {
1559 ti -= rtc_date_offset;
1560 ret = gmtime(&ti);
1561 }
1562
1563 memcpy(tm, ret, sizeof(struct tm));
1564 }
1565
1566 int qemu_timedate_diff(struct tm *tm)
1567 {
1568 time_t seconds;
1569
1570 if (rtc_date_offset == -1)
1571 if (rtc_utc)
1572 seconds = mktimegm(tm);
1573 else
1574 seconds = mktime(tm);
1575 else
1576 seconds = mktimegm(tm) + rtc_date_offset;
1577
1578 return seconds - time(NULL);
1579 }
1580
1581 #ifdef _WIN32
1582 static void socket_cleanup(void)
1583 {
1584 WSACleanup();
1585 }
1586
1587 static int socket_init(void)
1588 {
1589 WSADATA Data;
1590 int ret, err;
1591
1592 ret = WSAStartup(MAKEWORD(2,2), &Data);
1593 if (ret != 0) {
1594 err = WSAGetLastError();
1595 fprintf(stderr, "WSAStartup: %d\n", err);
1596 return -1;
1597 }
1598 atexit(socket_cleanup);
1599 return 0;
1600 }
1601 #endif
1602
1603 /***********************************************************/
1604 /* Bluetooth support */
1605 static int nb_hcis;
1606 static int cur_hci;
1607 static struct HCIInfo *hci_table[MAX_NICS];
1608
1609 static struct bt_vlan_s {
1610 struct bt_scatternet_s net;
1611 int id;
1612 struct bt_vlan_s *next;
1613 } *first_bt_vlan;
1614
1615 /* find or alloc a new bluetooth "VLAN" */
1616 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1617 {
1618 struct bt_vlan_s **pvlan, *vlan;
1619 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1620 if (vlan->id == id)
1621 return &vlan->net;
1622 }
1623 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1624 vlan->id = id;
1625 pvlan = &first_bt_vlan;
1626 while (*pvlan != NULL)
1627 pvlan = &(*pvlan)->next;
1628 *pvlan = vlan;
1629 return &vlan->net;
1630 }
1631
1632 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1633 {
1634 }
1635
1636 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1637 {
1638 return -ENOTSUP;
1639 }
1640
1641 static struct HCIInfo null_hci = {
1642 .cmd_send = null_hci_send,
1643 .sco_send = null_hci_send,
1644 .acl_send = null_hci_send,
1645 .bdaddr_set = null_hci_addr_set,
1646 };
1647
1648 struct HCIInfo *qemu_next_hci(void)
1649 {
1650 if (cur_hci == nb_hcis)
1651 return &null_hci;
1652
1653 return hci_table[cur_hci++];
1654 }
1655
1656 static struct HCIInfo *hci_init(const char *str)
1657 {
1658 char *endp;
1659 struct bt_scatternet_s *vlan = 0;
1660
1661 if (!strcmp(str, "null"))
1662 /* null */
1663 return &null_hci;
1664 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1665 /* host[:hciN] */
1666 return bt_host_hci(str[4] ? str + 5 : "hci0");
1667 else if (!strncmp(str, "hci", 3)) {
1668 /* hci[,vlan=n] */
1669 if (str[3]) {
1670 if (!strncmp(str + 3, ",vlan=", 6)) {
1671 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1672 if (*endp)
1673 vlan = 0;
1674 }
1675 } else
1676 vlan = qemu_find_bt_vlan(0);
1677 if (vlan)
1678 return bt_new_hci(vlan);
1679 }
1680
1681 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1682
1683 return 0;
1684 }
1685
1686 static int bt_hci_parse(const char *str)
1687 {
1688 struct HCIInfo *hci;
1689 bdaddr_t bdaddr;
1690
1691 if (nb_hcis >= MAX_NICS) {
1692 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1693 return -1;
1694 }
1695
1696 hci = hci_init(str);
1697 if (!hci)
1698 return -1;
1699
1700 bdaddr.b[0] = 0x52;
1701 bdaddr.b[1] = 0x54;
1702 bdaddr.b[2] = 0x00;
1703 bdaddr.b[3] = 0x12;
1704 bdaddr.b[4] = 0x34;
1705 bdaddr.b[5] = 0x56 + nb_hcis;
1706 hci->bdaddr_set(hci, bdaddr.b);
1707
1708 hci_table[nb_hcis++] = hci;
1709
1710 return 0;
1711 }
1712
1713 static void bt_vhci_add(int vlan_id)
1714 {
1715 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1716
1717 if (!vlan->slave)
1718 fprintf(stderr, "qemu: warning: adding a VHCI to "
1719 "an empty scatternet %i\n", vlan_id);
1720
1721 bt_vhci_init(bt_new_hci(vlan));
1722 }
1723
1724 static struct bt_device_s *bt_device_add(const char *opt)
1725 {
1726 struct bt_scatternet_s *vlan;
1727 int vlan_id = 0;
1728 char *endp = strstr(opt, ",vlan=");
1729 int len = (endp ? endp - opt : strlen(opt)) + 1;
1730 char devname[10];
1731
1732 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1733
1734 if (endp) {
1735 vlan_id = strtol(endp + 6, &endp, 0);
1736 if (*endp) {
1737 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1738 return 0;
1739 }
1740 }
1741
1742 vlan = qemu_find_bt_vlan(vlan_id);
1743
1744 if (!vlan->slave)
1745 fprintf(stderr, "qemu: warning: adding a slave device to "
1746 "an empty scatternet %i\n", vlan_id);
1747
1748 if (!strcmp(devname, "keyboard"))
1749 return bt_keyboard_init(vlan);
1750
1751 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1752 return 0;
1753 }
1754
1755 static int bt_parse(const char *opt)
1756 {
1757 const char *endp, *p;
1758 int vlan;
1759
1760 if (strstart(opt, "hci", &endp)) {
1761 if (!*endp || *endp == ',') {
1762 if (*endp)
1763 if (!strstart(endp, ",vlan=", 0))
1764 opt = endp + 1;
1765
1766 return bt_hci_parse(opt);
1767 }
1768 } else if (strstart(opt, "vhci", &endp)) {
1769 if (!*endp || *endp == ',') {
1770 if (*endp) {
1771 if (strstart(endp, ",vlan=", &p)) {
1772 vlan = strtol(p, (char **) &endp, 0);
1773 if (*endp) {
1774 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1775 return 1;
1776 }
1777 } else {
1778 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1779 return 1;
1780 }
1781 } else
1782 vlan = 0;
1783
1784 bt_vhci_add(vlan);
1785 return 0;
1786 }
1787 } else if (strstart(opt, "device:", &endp))
1788 return !bt_device_add(endp);
1789
1790 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1791 return 1;
1792 }
1793
1794 /***********************************************************/
1795 /* QEMU Block devices */
1796
1797 #define HD_ALIAS "index=%d,media=disk"
1798 #define CDROM_ALIAS "index=2,media=cdrom"
1799 #define FD_ALIAS "index=%d,if=floppy"
1800 #define PFLASH_ALIAS "if=pflash"
1801 #define MTD_ALIAS "if=mtd"
1802 #define SD_ALIAS "index=0,if=sd"
1803
1804 static QemuOptsList drive_opt_list = {
1805 .name = "drive",
1806 .head = TAILQ_HEAD_INITIALIZER(drive_opt_list.head),
1807 .desc = {
1808 {
1809 .name = "bus",
1810 .type = QEMU_OPT_NUMBER,
1811 .help = "bus number",
1812 },{
1813 .name = "unit",
1814 .type = QEMU_OPT_NUMBER,
1815 .help = "unit number (i.e. lun for scsi)",
1816 },{
1817 .name = "if",
1818 .type = QEMU_OPT_STRING,
1819 .help = "interface (ide, scsi, sd, mtd, floppy, pflash, virtio)",
1820 },{
1821 .name = "index",
1822 .type = QEMU_OPT_NUMBER,
1823 },{
1824 .name = "cyls",
1825 .type = QEMU_OPT_NUMBER,
1826 .help = "number of cylinders (ide disk geometry)",
1827 },{
1828 .name = "heads",
1829 .type = QEMU_OPT_NUMBER,
1830 .help = "number of heads (ide disk geometry)",
1831 },{
1832 .name = "secs",
1833 .type = QEMU_OPT_NUMBER,
1834 .help = "number of sectors (ide disk geometry)",
1835 },{
1836 .name = "trans",
1837 .type = QEMU_OPT_STRING,
1838 .help = "chs translation (auto, lba. none)",
1839 },{
1840 .name = "media",
1841 .type = QEMU_OPT_STRING,
1842 .help = "media type (disk, cdrom)",
1843 },{
1844 .name = "snapshot",
1845 .type = QEMU_OPT_BOOL,
1846 },{
1847 .name = "file",
1848 .type = QEMU_OPT_STRING,
1849 .help = "disk image",
1850 },{
1851 .name = "cache",
1852 .type = QEMU_OPT_STRING,
1853 .help = "host cache usage (none, writeback, writethrough)",
1854 },{
1855 .name = "format",
1856 .type = QEMU_OPT_STRING,
1857 .help = "disk format (raw, qcow2, ...)",
1858 },{
1859 .name = "serial",
1860 .type = QEMU_OPT_STRING,
1861 },{
1862 .name = "werror",
1863 .type = QEMU_OPT_STRING,
1864 },{
1865 .name = "addr",
1866 .type = QEMU_OPT_STRING,
1867 .help = "pci address (virtio only)",
1868 },
1869 { /* end if list */ }
1870 },
1871 };
1872
1873 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1874 {
1875 va_list ap;
1876 char optstr[1024];
1877 QemuOpts *opts;
1878
1879 va_start(ap, fmt);
1880 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1881 va_end(ap);
1882
1883 opts = qemu_opts_parse(&drive_opt_list, optstr, NULL);
1884 if (!opts) {
1885 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1886 __FUNCTION__, optstr);
1887 return NULL;
1888 }
1889 if (file)
1890 qemu_opt_set(opts, "file", file);
1891 return opts;
1892 }
1893
1894 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1895 {
1896 DriveInfo *dinfo;
1897
1898 /* seek interface, bus and unit */
1899
1900 TAILQ_FOREACH(dinfo, &drives, next) {
1901 if (dinfo->type == type &&
1902 dinfo->bus == bus &&
1903 dinfo->unit == unit)
1904 return dinfo;
1905 }
1906
1907 return NULL;
1908 }
1909
1910 DriveInfo *drive_get_by_id(char *id)
1911 {
1912 DriveInfo *dinfo;
1913
1914 TAILQ_FOREACH(dinfo, &drives, next) {
1915 if (strcmp(id, dinfo->id))
1916 continue;
1917 return dinfo;
1918 }
1919 return NULL;
1920 }
1921
1922 int drive_get_max_bus(BlockInterfaceType type)
1923 {
1924 int max_bus;
1925 DriveInfo *dinfo;
1926
1927 max_bus = -1;
1928 TAILQ_FOREACH(dinfo, &drives, next) {
1929 if(dinfo->type == type &&
1930 dinfo->bus > max_bus)
1931 max_bus = dinfo->bus;
1932 }
1933 return max_bus;
1934 }
1935
1936 const char *drive_get_serial(BlockDriverState *bdrv)
1937 {
1938 DriveInfo *dinfo;
1939
1940 TAILQ_FOREACH(dinfo, &drives, next) {
1941 if (dinfo->bdrv == bdrv)
1942 return dinfo->serial;
1943 }
1944
1945 return "\0";
1946 }
1947
1948 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1949 {
1950 DriveInfo *dinfo;
1951
1952 TAILQ_FOREACH(dinfo, &drives, next) {
1953 if (dinfo->bdrv == bdrv)
1954 return dinfo->onerror;
1955 }
1956
1957 return BLOCK_ERR_STOP_ENOSPC;
1958 }
1959
1960 static void bdrv_format_print(void *opaque, const char *name)
1961 {
1962 fprintf(stderr, " %s", name);
1963 }
1964
1965 void drive_uninit(BlockDriverState *bdrv)
1966 {
1967 DriveInfo *dinfo;
1968
1969 TAILQ_FOREACH(dinfo, &drives, next) {
1970 if (dinfo->bdrv != bdrv)
1971 continue;
1972 qemu_opts_del(dinfo->opts);
1973 TAILQ_REMOVE(&drives, dinfo, next);
1974 qemu_free(dinfo);
1975 break;
1976 }
1977 }
1978
1979 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1980 int *fatal_error)
1981 {
1982 const char *buf;
1983 const char *file = NULL;
1984 char devname[128];
1985 const char *serial;
1986 const char *mediastr = "";
1987 BlockInterfaceType type;
1988 enum { MEDIA_DISK, MEDIA_CDROM } media;
1989 int bus_id, unit_id;
1990 int cyls, heads, secs, translation;
1991 BlockDriver *drv = NULL;
1992 QEMUMachine *machine = opaque;
1993 int max_devs;
1994 int index;
1995 int cache;
1996 int bdrv_flags, onerror;
1997 const char *devaddr;
1998 DriveInfo *dinfo;
1999 int snapshot = 0;
2000
2001 *fatal_error = 1;
2002
2003 translation = BIOS_ATA_TRANSLATION_AUTO;
2004 cache = 1;
2005
2006 if (machine->use_scsi) {
2007 type = IF_SCSI;
2008 max_devs = MAX_SCSI_DEVS;
2009 pstrcpy(devname, sizeof(devname), "scsi");
2010 } else {
2011 type = IF_IDE;
2012 max_devs = MAX_IDE_DEVS;
2013 pstrcpy(devname, sizeof(devname), "ide");
2014 }
2015 media = MEDIA_DISK;
2016
2017 /* extract parameters */
2018 bus_id = qemu_opt_get_number(opts, "bus", 0);
2019 unit_id = qemu_opt_get_number(opts, "unit", -1);
2020 index = qemu_opt_get_number(opts, "index", -1);
2021
2022 cyls = qemu_opt_get_number(opts, "cyls", 0);
2023 heads = qemu_opt_get_number(opts, "heads", 0);
2024 secs = qemu_opt_get_number(opts, "secs", 0);
2025
2026 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2027
2028 file = qemu_opt_get(opts, "file");
2029 serial = qemu_opt_get(opts, "serial");
2030
2031 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2032 pstrcpy(devname, sizeof(devname), buf);
2033 if (!strcmp(buf, "ide")) {
2034 type = IF_IDE;
2035 max_devs = MAX_IDE_DEVS;
2036 } else if (!strcmp(buf, "scsi")) {
2037 type = IF_SCSI;
2038 max_devs = MAX_SCSI_DEVS;
2039 } else if (!strcmp(buf, "floppy")) {
2040 type = IF_FLOPPY;
2041 max_devs = 0;
2042 } else if (!strcmp(buf, "pflash")) {
2043 type = IF_PFLASH;
2044 max_devs = 0;
2045 } else if (!strcmp(buf, "mtd")) {
2046 type = IF_MTD;
2047 max_devs = 0;
2048 } else if (!strcmp(buf, "sd")) {
2049 type = IF_SD;
2050 max_devs = 0;
2051 } else if (!strcmp(buf, "virtio")) {
2052 type = IF_VIRTIO;
2053 max_devs = 0;
2054 } else if (!strcmp(buf, "xen")) {
2055 type = IF_XEN;
2056 max_devs = 0;
2057 } else {
2058 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2059 return NULL;
2060 }
2061 }
2062
2063 if (cyls || heads || secs) {
2064 if (cyls < 1 || cyls > 16383) {
2065 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2066 return NULL;
2067 }
2068 if (heads < 1 || heads > 16) {
2069 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2070 return NULL;
2071 }
2072 if (secs < 1 || secs > 63) {
2073 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2074 return NULL;
2075 }
2076 }
2077
2078 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2079 if (!cyls) {
2080 fprintf(stderr,
2081 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2082 buf);
2083 return NULL;
2084 }
2085 if (!strcmp(buf, "none"))
2086 translation = BIOS_ATA_TRANSLATION_NONE;
2087 else if (!strcmp(buf, "lba"))
2088 translation = BIOS_ATA_TRANSLATION_LBA;
2089 else if (!strcmp(buf, "auto"))
2090 translation = BIOS_ATA_TRANSLATION_AUTO;
2091 else {
2092 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2093 return NULL;
2094 }
2095 }
2096
2097 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2098 if (!strcmp(buf, "disk")) {
2099 media = MEDIA_DISK;
2100 } else if (!strcmp(buf, "cdrom")) {
2101 if (cyls || secs || heads) {
2102 fprintf(stderr,
2103 "qemu: '%s' invalid physical CHS format\n", buf);
2104 return NULL;
2105 }
2106 media = MEDIA_CDROM;
2107 } else {
2108 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2109 return NULL;
2110 }
2111 }
2112
2113 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2114 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2115 cache = 0;
2116 else if (!strcmp(buf, "writethrough"))
2117 cache = 1;
2118 else if (!strcmp(buf, "writeback"))
2119 cache = 2;
2120 else {
2121 fprintf(stderr, "qemu: invalid cache option\n");
2122 return NULL;
2123 }
2124 }
2125
2126 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2127 if (strcmp(buf, "?") == 0) {
2128 fprintf(stderr, "qemu: Supported formats:");
2129 bdrv_iterate_format(bdrv_format_print, NULL);
2130 fprintf(stderr, "\n");
2131 return NULL;
2132 }
2133 drv = bdrv_find_format(buf);
2134 if (!drv) {
2135 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2136 return NULL;
2137 }
2138 }
2139
2140 onerror = BLOCK_ERR_STOP_ENOSPC;
2141 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2142 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2143 fprintf(stderr, "werror is no supported by this format\n");
2144 return NULL;
2145 }
2146 if (!strcmp(buf, "ignore"))
2147 onerror = BLOCK_ERR_IGNORE;
2148 else if (!strcmp(buf, "enospc"))
2149 onerror = BLOCK_ERR_STOP_ENOSPC;
2150 else if (!strcmp(buf, "stop"))
2151 onerror = BLOCK_ERR_STOP_ANY;
2152 else if (!strcmp(buf, "report"))
2153 onerror = BLOCK_ERR_REPORT;
2154 else {
2155 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2156 return NULL;
2157 }
2158 }
2159
2160 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2161 if (type != IF_VIRTIO) {
2162 fprintf(stderr, "addr is not supported\n");
2163 return NULL;
2164 }
2165 }
2166
2167 /* compute bus and unit according index */
2168
2169 if (index != -1) {
2170 if (bus_id != 0 || unit_id != -1) {
2171 fprintf(stderr,
2172 "qemu: index cannot be used with bus and unit\n");
2173 return NULL;
2174 }
2175 if (max_devs == 0)
2176 {
2177 unit_id = index;
2178 bus_id = 0;
2179 } else {
2180 unit_id = index % max_devs;
2181 bus_id = index / max_devs;
2182 }
2183 }
2184
2185 /* if user doesn't specify a unit_id,
2186 * try to find the first free
2187 */
2188
2189 if (unit_id == -1) {
2190 unit_id = 0;
2191 while (drive_get(type, bus_id, unit_id) != NULL) {
2192 unit_id++;
2193 if (max_devs && unit_id >= max_devs) {
2194 unit_id -= max_devs;
2195 bus_id++;
2196 }
2197 }
2198 }
2199
2200 /* check unit id */
2201
2202 if (max_devs && unit_id >= max_devs) {
2203 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2204 unit_id, max_devs - 1);
2205 return NULL;
2206 }
2207
2208 /*
2209 * ignore multiple definitions
2210 */
2211
2212 if (drive_get(type, bus_id, unit_id) != NULL) {
2213 *fatal_error = 0;
2214 return NULL;
2215 }
2216
2217 /* init */
2218
2219 dinfo = qemu_mallocz(sizeof(*dinfo));
2220 if ((buf = qemu_opt_get(opts, "id")) != NULL) {
2221 dinfo->id = qemu_strdup(buf);
2222 } else {
2223 /* no id supplied -> create one */
2224 dinfo->id = qemu_mallocz(32);
2225 if (type == IF_IDE || type == IF_SCSI)
2226 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2227 if (max_devs)
2228 snprintf(dinfo->id, 32, "%s%i%s%i",
2229 devname, bus_id, mediastr, unit_id);
2230 else
2231 snprintf(dinfo->id, 32, "%s%s%i",
2232 devname, mediastr, unit_id);
2233 }
2234 dinfo->bdrv = bdrv_new(dinfo->id);
2235 dinfo->devaddr = devaddr;
2236 dinfo->type = type;
2237 dinfo->bus = bus_id;
2238 dinfo->unit = unit_id;
2239 dinfo->onerror = onerror;
2240 dinfo->opts = opts;
2241 if (serial)
2242 strncpy(dinfo->serial, serial, sizeof(serial));
2243 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2244
2245 switch(type) {
2246 case IF_IDE:
2247 case IF_SCSI:
2248 case IF_XEN:
2249 switch(media) {
2250 case MEDIA_DISK:
2251 if (cyls != 0) {
2252 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2253 bdrv_set_translation_hint(dinfo->bdrv, translation);
2254 }
2255 break;
2256 case MEDIA_CDROM:
2257 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2258 break;
2259 }
2260 break;
2261 case IF_SD:
2262 /* FIXME: This isn't really a floppy, but it's a reasonable
2263 approximation. */
2264 case IF_FLOPPY:
2265 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2266 break;
2267 case IF_PFLASH:
2268 case IF_MTD:
2269 case IF_VIRTIO:
2270 break;
2271 case IF_COUNT:
2272 abort();
2273 }
2274 if (!file) {
2275 *fatal_error = 0;
2276 return NULL;
2277 }
2278 bdrv_flags = 0;
2279 if (snapshot) {
2280 bdrv_flags |= BDRV_O_SNAPSHOT;
2281 cache = 2; /* always use write-back with snapshot */
2282 }
2283 if (cache == 0) /* no caching */
2284 bdrv_flags |= BDRV_O_NOCACHE;
2285 else if (cache == 2) /* write-back */
2286 bdrv_flags |= BDRV_O_CACHE_WB;
2287 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2288 fprintf(stderr, "qemu: could not open disk image %s\n",
2289 file);
2290 return NULL;
2291 }
2292 if (bdrv_key_required(dinfo->bdrv))
2293 autostart = 0;
2294 *fatal_error = 0;
2295 return dinfo;
2296 }
2297
2298 static int drive_init_func(QemuOpts *opts, void *opaque)
2299 {
2300 QEMUMachine *machine = opaque;
2301 int fatal_error = 0;
2302
2303 if (drive_init(opts, machine, &fatal_error) == NULL) {
2304 if (fatal_error)
2305 return 1;
2306 }
2307 return 0;
2308 }
2309
2310 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2311 {
2312 if (NULL == qemu_opt_get(opts, "snapshot")) {
2313 qemu_opt_set(opts, "snapshot", "on");
2314 }
2315 return 0;
2316 }
2317
2318 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2319 {
2320 boot_set_handler = func;
2321 boot_set_opaque = opaque;
2322 }
2323
2324 int qemu_boot_set(const char *boot_devices)
2325 {
2326 if (!boot_set_handler) {
2327 return -EINVAL;
2328 }
2329 return boot_set_handler(boot_set_opaque, boot_devices);
2330 }
2331
2332 static int parse_bootdevices(char *devices)
2333 {
2334 /* We just do some generic consistency checks */
2335 const char *p;
2336 int bitmap = 0;
2337
2338 for (p = devices; *p != '\0'; p++) {
2339 /* Allowed boot devices are:
2340 * a-b: floppy disk drives
2341 * c-f: IDE disk drives
2342 * g-m: machine implementation dependant drives
2343 * n-p: network devices
2344 * It's up to each machine implementation to check if the given boot
2345 * devices match the actual hardware implementation and firmware
2346 * features.
2347 */
2348 if (*p < 'a' || *p > 'p') {
2349 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2350 exit(1);
2351 }
2352 if (bitmap & (1 << (*p - 'a'))) {
2353 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2354 exit(1);
2355 }
2356 bitmap |= 1 << (*p - 'a');
2357 }
2358 return bitmap;
2359 }
2360
2361 static void restore_boot_devices(void *opaque)
2362 {
2363 char *standard_boot_devices = opaque;
2364
2365 qemu_boot_set(standard_boot_devices);
2366
2367 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2368 qemu_free(standard_boot_devices);
2369 }
2370
2371 static void numa_add(const char *optarg)
2372 {
2373 char option[128];
2374 char *endptr;
2375 unsigned long long value, endvalue;
2376 int nodenr;
2377
2378 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2379 if (!strcmp(option, "node")) {
2380 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2381 nodenr = nb_numa_nodes;
2382 } else {
2383 nodenr = strtoull(option, NULL, 10);
2384 }
2385
2386 if (get_param_value(option, 128, "mem", optarg) == 0) {
2387 node_mem[nodenr] = 0;
2388 } else {
2389 value = strtoull(option, &endptr, 0);
2390 switch (*endptr) {
2391 case 0: case 'M': case 'm':
2392 value <<= 20;
2393 break;
2394 case 'G': case 'g':
2395 value <<= 30;
2396 break;
2397 }
2398 node_mem[nodenr] = value;
2399 }
2400 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2401 node_cpumask[nodenr] = 0;
2402 } else {
2403 value = strtoull(option, &endptr, 10);
2404 if (value >= 64) {
2405 value = 63;
2406 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2407 } else {
2408 if (*endptr == '-') {
2409 endvalue = strtoull(endptr+1, &endptr, 10);
2410 if (endvalue >= 63) {
2411 endvalue = 62;
2412 fprintf(stderr,
2413 "only 63 CPUs in NUMA mode supported.\n");
2414 }
2415 value = (1 << (endvalue + 1)) - (1 << value);
2416 } else {
2417 value = 1 << value;
2418 }
2419 }
2420 node_cpumask[nodenr] = value;
2421 }
2422 nb_numa_nodes++;
2423 }
2424 return;
2425 }
2426
2427 /***********************************************************/
2428 /* USB devices */
2429
2430 static USBPort *used_usb_ports;
2431 static USBPort *free_usb_ports;
2432
2433 /* ??? Maybe change this to register a hub to keep track of the topology. */
2434 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2435 usb_attachfn attach)
2436 {
2437 port->opaque = opaque;
2438 port->index = index;
2439 port->attach = attach;
2440 port->next = free_usb_ports;
2441 free_usb_ports = port;
2442 }
2443
2444 int usb_device_add_dev(USBDevice *dev)
2445 {
2446 USBPort *port;
2447
2448 /* Find a USB port to add the device to. */
2449 port = free_usb_ports;
2450 if (!port->next) {
2451 USBDevice *hub;
2452
2453 /* Create a new hub and chain it on. */
2454 free_usb_ports = NULL;
2455 port->next = used_usb_ports;
2456 used_usb_ports = port;
2457
2458 hub = usb_hub_init(VM_USB_HUB_SIZE);
2459 usb_attach(port, hub);
2460 port = free_usb_ports;
2461 }
2462
2463 free_usb_ports = port->next;
2464 port->next = used_usb_ports;
2465 used_usb_ports = port;
2466 usb_attach(port, dev);
2467 return 0;
2468 }
2469
2470 static void usb_msd_password_cb(void *opaque, int err)
2471 {
2472 USBDevice *dev = opaque;
2473
2474 if (!err)
2475 usb_device_add_dev(dev);
2476 else
2477 dev->handle_destroy(dev);
2478 }
2479
2480 static int usb_device_add(const char *devname, int is_hotplug)
2481 {
2482 const char *p;
2483 USBDevice *dev;
2484
2485 if (!free_usb_ports)
2486 return -1;
2487
2488 if (strstart(devname, "host:", &p)) {
2489 dev = usb_host_device_open(p);
2490 } else if (!strcmp(devname, "mouse")) {
2491 dev = usb_mouse_init();
2492 } else if (!strcmp(devname, "tablet")) {
2493 dev = usb_tablet_init();
2494 } else if (!strcmp(devname, "keyboard")) {
2495 dev = usb_keyboard_init();
2496 } else if (strstart(devname, "disk:", &p)) {
2497 BlockDriverState *bs;
2498
2499 dev = usb_msd_init(p);
2500 if (!dev)
2501 return -1;
2502 bs = usb_msd_get_bdrv(dev);
2503 if (bdrv_key_required(bs)) {
2504 autostart = 0;
2505 if (is_hotplug) {
2506 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2507 dev);
2508 return 0;
2509 }
2510 }
2511 } else if (!strcmp(devname, "wacom-tablet")) {
2512 dev = usb_wacom_init();
2513 } else if (strstart(devname, "serial:", &p)) {
2514 dev = usb_serial_init(p);
2515 #ifdef CONFIG_BRLAPI
2516 } else if (!strcmp(devname, "braille")) {
2517 dev = usb_baum_init();
2518 #endif
2519 } else if (strstart(devname, "net:", &p)) {
2520 int nic = nb_nics;
2521
2522 if (net_client_init(NULL, "nic", p) < 0)
2523 return -1;
2524 nd_table[nic].model = "usb";
2525 dev = usb_net_init(&nd_table[nic]);
2526 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2527 dev = usb_bt_init(devname[2] ? hci_init(p) :
2528 bt_new_hci(qemu_find_bt_vlan(0)));
2529 } else {
2530 return -1;
2531 }
2532 if (!dev)
2533 return -1;
2534
2535 return usb_device_add_dev(dev);
2536 }
2537
2538 int usb_device_del_addr(int bus_num, int addr)
2539 {
2540 USBPort *port;
2541 USBPort **lastp;
2542 USBDevice *dev;
2543
2544 if (!used_usb_ports)
2545 return -1;
2546
2547 if (bus_num != 0)
2548 return -1;
2549
2550 lastp = &used_usb_ports;
2551 port = used_usb_ports;
2552 while (port && port->dev->addr != addr) {
2553 lastp = &port->next;
2554 port = port->next;
2555 }
2556
2557 if (!port)
2558 return -1;
2559
2560 dev = port->dev;
2561 *lastp = port->next;
2562 usb_attach(port, NULL);
2563 dev->handle_destroy(dev);
2564 port->next = free_usb_ports;
2565 free_usb_ports = port;
2566 return 0;
2567 }
2568
2569 static int usb_device_del(const char *devname)
2570 {
2571 int bus_num, addr;
2572 const char *p;
2573
2574 if (strstart(devname, "host:", &p))
2575 return usb_host_device_close(p);
2576
2577 if (!used_usb_ports)
2578 return -1;
2579
2580 p = strchr(devname, '.');
2581 if (!p)
2582 return -1;
2583 bus_num = strtoul(devname, NULL, 0);
2584 addr = strtoul(p + 1, NULL, 0);
2585
2586 return usb_device_del_addr(bus_num, addr);
2587 }
2588
2589 static int usb_parse(const char *cmdline)
2590 {
2591 return usb_device_add(cmdline, 0);
2592 }
2593
2594 void do_usb_add(Monitor *mon, const char *devname)
2595 {
2596 usb_device_add(devname, 1);
2597 }
2598
2599 void do_usb_del(Monitor *mon, const char *devname)
2600 {
2601 usb_device_del(devname);
2602 }
2603
2604 void usb_info(Monitor *mon)
2605 {
2606 USBDevice *dev;
2607 USBPort *port;
2608 const char *speed_str;
2609
2610 if (!usb_enabled) {
2611 monitor_printf(mon, "USB support not enabled\n");
2612 return;
2613 }
2614
2615 for (port = used_usb_ports; port; port = port->next) {
2616 dev = port->dev;
2617 if (!dev)
2618 continue;
2619 switch(dev->speed) {
2620 case USB_SPEED_LOW:
2621 speed_str = "1.5";
2622 break;
2623 case USB_SPEED_FULL:
2624 speed_str = "12";
2625 break;
2626 case USB_SPEED_HIGH:
2627 speed_str = "480";
2628 break;
2629 default:
2630 speed_str = "?";
2631 break;
2632 }
2633 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2634 0, dev->addr, speed_str, dev->devname);
2635 }
2636 }
2637
2638 /***********************************************************/
2639 /* PCMCIA/Cardbus */
2640
2641 static struct pcmcia_socket_entry_s {
2642 PCMCIASocket *socket;
2643 struct pcmcia_socket_entry_s *next;
2644 } *pcmcia_sockets = 0;
2645
2646 void pcmcia_socket_register(PCMCIASocket *socket)
2647 {
2648 struct pcmcia_socket_entry_s *entry;
2649
2650 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2651 entry->socket = socket;
2652 entry->next = pcmcia_sockets;
2653 pcmcia_sockets = entry;
2654 }
2655
2656 void pcmcia_socket_unregister(PCMCIASocket *socket)
2657 {
2658 struct pcmcia_socket_entry_s *entry, **ptr;
2659
2660 ptr = &pcmcia_sockets;
2661 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2662 if (entry->socket == socket) {
2663 *ptr = entry->next;
2664 qemu_free(entry);
2665 }
2666 }
2667
2668 void pcmcia_info(Monitor *mon)
2669 {
2670 struct pcmcia_socket_entry_s *iter;
2671
2672 if (!pcmcia_sockets)
2673 monitor_printf(mon, "No PCMCIA sockets\n");
2674
2675 for (iter = pcmcia_sockets; iter; iter = iter->next)
2676 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2677 iter->socket->attached ? iter->socket->card_string :
2678 "Empty");
2679 }
2680
2681 /***********************************************************/
2682 /* register display */
2683
2684 struct DisplayAllocator default_allocator = {
2685 defaultallocator_create_displaysurface,
2686 defaultallocator_resize_displaysurface,
2687 defaultallocator_free_displaysurface
2688 };
2689
2690 void register_displaystate(DisplayState *ds)
2691 {
2692 DisplayState **s;
2693 s = &display_state;
2694 while (*s != NULL)
2695 s = &(*s)->next;
2696 ds->next = NULL;
2697 *s = ds;
2698 }
2699
2700 DisplayState *get_displaystate(void)
2701 {
2702 return display_state;
2703 }
2704
2705 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2706 {
2707 if(ds->allocator == &default_allocator) ds->allocator = da;
2708 return ds->allocator;
2709 }
2710
2711 /* dumb display */
2712
2713 static void dumb_display_init(void)
2714 {
2715 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2716 ds->allocator = &default_allocator;
2717 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2718 register_displaystate(ds);
2719 }
2720
2721 /***********************************************************/
2722 /* I/O handling */
2723
2724 typedef struct IOHandlerRecord {
2725 int fd;
2726 IOCanRWHandler *fd_read_poll;
2727 IOHandler *fd_read;
2728 IOHandler *fd_write;
2729 int deleted;
2730 void *opaque;
2731 /* temporary data */
2732 struct pollfd *ufd;
2733 struct IOHandlerRecord *next;
2734 } IOHandlerRecord;
2735
2736 static IOHandlerRecord *first_io_handler;
2737
2738 /* XXX: fd_read_poll should be suppressed, but an API change is
2739 necessary in the character devices to suppress fd_can_read(). */
2740 int qemu_set_fd_handler2(int fd,
2741 IOCanRWHandler *fd_read_poll,
2742 IOHandler *fd_read,
2743 IOHandler *fd_write,
2744 void *opaque)
2745 {
2746 IOHandlerRecord **pioh, *ioh;
2747
2748 if (!fd_read && !fd_write) {
2749 pioh = &first_io_handler;
2750 for(;;) {
2751 ioh = *pioh;
2752 if (ioh == NULL)
2753 break;
2754 if (ioh->fd == fd) {
2755 ioh->deleted = 1;
2756 break;
2757 }
2758 pioh = &ioh->next;
2759 }
2760 } else {
2761 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2762 if (ioh->fd == fd)
2763 goto found;
2764 }
2765 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2766 ioh->next = first_io_handler;
2767 first_io_handler = ioh;
2768 found:
2769 ioh->fd = fd;
2770 ioh->fd_read_poll = fd_read_poll;
2771 ioh->fd_read = fd_read;
2772 ioh->fd_write = fd_write;
2773 ioh->opaque = opaque;
2774 ioh->deleted = 0;
2775 }
2776 return 0;
2777 }
2778
2779 int qemu_set_fd_handler(int fd,
2780 IOHandler *fd_read,
2781 IOHandler *fd_write,
2782 void *opaque)
2783 {
2784 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2785 }
2786
2787 #ifdef _WIN32
2788 /***********************************************************/
2789 /* Polling handling */
2790
2791 typedef struct PollingEntry {
2792 PollingFunc *func;
2793 void *opaque;
2794 struct PollingEntry *next;
2795 } PollingEntry;
2796
2797 static PollingEntry *first_polling_entry;
2798
2799 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2800 {
2801 PollingEntry **ppe, *pe;
2802 pe = qemu_mallocz(sizeof(PollingEntry));
2803 pe->func = func;
2804 pe->opaque = opaque;
2805 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2806 *ppe = pe;
2807 return 0;
2808 }
2809
2810 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2811 {
2812 PollingEntry **ppe, *pe;
2813 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2814 pe = *ppe;
2815 if (pe->func == func && pe->opaque == opaque) {
2816 *ppe = pe->next;
2817 qemu_free(pe);
2818 break;
2819 }
2820 }
2821 }
2822
2823 /***********************************************************/
2824 /* Wait objects support */
2825 typedef struct WaitObjects {
2826 int num;
2827 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2828 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2829 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2830 } WaitObjects;
2831
2832 static WaitObjects wait_objects = {0};
2833
2834 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2835 {
2836 WaitObjects *w = &wait_objects;
2837
2838 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2839 return -1;
2840 w->events[w->num] = handle;
2841 w->func[w->num] = func;
2842 w->opaque[w->num] = opaque;
2843 w->num++;
2844 return 0;
2845 }
2846
2847 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2848 {
2849 int i, found;
2850 WaitObjects *w = &wait_objects;
2851
2852 found = 0;
2853 for (i = 0; i < w->num; i++) {
2854 if (w->events[i] == handle)
2855 found = 1;
2856 if (found) {
2857 w->events[i] = w->events[i + 1];
2858 w->func[i] = w->func[i + 1];
2859 w->opaque[i] = w->opaque[i + 1];
2860 }
2861 }
2862 if (found)
2863 w->num--;
2864 }
2865 #endif
2866
2867 /***********************************************************/
2868 /* ram save/restore */
2869
2870 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2871 {
2872 int v;
2873
2874 v = qemu_get_byte(f);
2875 switch(v) {
2876 case 0:
2877 if (qemu_get_buffer(f, buf, len) != len)
2878 return -EIO;
2879 break;
2880 case 1:
2881 v = qemu_get_byte(f);
2882 memset(buf, v, len);
2883 break;
2884 default:
2885 return -EINVAL;
2886 }
2887
2888 if (qemu_file_has_error(f))
2889 return -EIO;
2890
2891 return 0;
2892 }
2893
2894 static int ram_load_v1(QEMUFile *f, void *opaque)
2895 {
2896 int ret;
2897 ram_addr_t i;
2898
2899 if (qemu_get_be32(f) != last_ram_offset)
2900 return -EINVAL;
2901 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2902 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2903 if (ret)
2904 return ret;
2905 }
2906 return 0;
2907 }
2908
2909 #define BDRV_HASH_BLOCK_SIZE 1024
2910 #define IOBUF_SIZE 4096
2911 #define RAM_CBLOCK_MAGIC 0xfabe
2912
2913 typedef struct RamDecompressState {
2914 z_stream zstream;
2915 QEMUFile *f;
2916 uint8_t buf[IOBUF_SIZE];
2917 } RamDecompressState;
2918
2919 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2920 {
2921 int ret;
2922 memset(s, 0, sizeof(*s));
2923 s->f = f;
2924 ret = inflateInit(&s->zstream);
2925 if (ret != Z_OK)
2926 return -1;
2927 return 0;
2928 }
2929
2930 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2931 {
2932 int ret, clen;
2933
2934 s->zstream.avail_out = len;
2935 s->zstream.next_out = buf;
2936 while (s->zstream.avail_out > 0) {
2937 if (s->zstream.avail_in == 0) {
2938 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2939 return -1;
2940 clen = qemu_get_be16(s->f);
2941 if (clen > IOBUF_SIZE)
2942 return -1;
2943 qemu_get_buffer(s->f, s->buf, clen);
2944 s->zstream.avail_in = clen;
2945 s->zstream.next_in = s->buf;
2946 }
2947 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2948 if (ret != Z_OK && ret != Z_STREAM_END) {
2949 return -1;
2950 }
2951 }
2952 return 0;
2953 }
2954
2955 static void ram_decompress_close(RamDecompressState *s)
2956 {
2957 inflateEnd(&s->zstream);
2958 }
2959
2960 #define RAM_SAVE_FLAG_FULL 0x01
2961 #define RAM_SAVE_FLAG_COMPRESS 0x02
2962 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2963 #define RAM_SAVE_FLAG_PAGE 0x08
2964 #define RAM_SAVE_FLAG_EOS 0x10
2965
2966 static int is_dup_page(uint8_t *page, uint8_t ch)
2967 {
2968 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2969 uint32_t *array = (uint32_t *)page;
2970 int i;
2971
2972 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2973 if (array[i] != val)
2974 return 0;
2975 }
2976
2977 return 1;
2978 }
2979
2980 static int ram_save_block(QEMUFile *f)
2981 {
2982 static ram_addr_t current_addr = 0;
2983 ram_addr_t saved_addr = current_addr;
2984 ram_addr_t addr = 0;
2985 int found = 0;
2986
2987 while (addr < last_ram_offset) {
2988 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2989 uint8_t *p;
2990
2991 cpu_physical_memory_reset_dirty(current_addr,
2992 current_addr + TARGET_PAGE_SIZE,
2993 MIGRATION_DIRTY_FLAG);
2994
2995 p = qemu_get_ram_ptr(current_addr);
2996
2997 if (is_dup_page(p, *p)) {
2998 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2999 qemu_put_byte(f, *p);
3000 } else {
3001 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3002 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3003 }
3004
3005 found = 1;
3006 break;
3007 }
3008 addr += TARGET_PAGE_SIZE;
3009 current_addr = (saved_addr + addr) % last_ram_offset;
3010 }
3011
3012 return found;
3013 }
3014
3015 static uint64_t bytes_transferred = 0;
3016
3017 static ram_addr_t ram_save_remaining(void)
3018 {
3019 ram_addr_t addr;
3020 ram_addr_t count = 0;
3021
3022 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3023 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3024 count++;
3025 }
3026
3027 return count;
3028 }
3029
3030 uint64_t ram_bytes_remaining(void)
3031 {
3032 return ram_save_remaining() * TARGET_PAGE_SIZE;
3033 }
3034
3035 uint64_t ram_bytes_transferred(void)
3036 {
3037 return bytes_transferred;
3038 }
3039
3040 uint64_t ram_bytes_total(void)
3041 {
3042 return last_ram_offset;
3043 }
3044
3045 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3046 {
3047 ram_addr_t addr;
3048 uint64_t bytes_transferred_last;
3049 double bwidth = 0;
3050 uint64_t expected_time = 0;
3051
3052 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3053 qemu_file_set_error(f);
3054 return 0;
3055 }
3056
3057 if (stage == 1) {
3058 /* Make sure all dirty bits are set */
3059 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3060 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3061 cpu_physical_memory_set_dirty(addr);
3062 }
3063
3064 /* Enable dirty memory tracking */
3065 cpu_physical_memory_set_dirty_tracking(1);
3066
3067 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3068 }
3069
3070 bytes_transferred_last = bytes_transferred;
3071 bwidth = get_clock();
3072
3073 while (!qemu_file_rate_limit(f)) {
3074 int ret;
3075
3076 ret = ram_save_block(f);
3077 bytes_transferred += ret * TARGET_PAGE_SIZE;
3078 if (ret == 0) /* no more blocks */
3079 break;
3080 }
3081
3082 bwidth = get_clock() - bwidth;
3083 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3084
3085 /* if we haven't transferred anything this round, force expected_time to a
3086 * a very high value, but without crashing */
3087 if (bwidth == 0)
3088 bwidth = 0.000001;
3089
3090 /* try transferring iterative blocks of memory */
3091
3092 if (stage == 3) {
3093
3094 /* flush all remaining blocks regardless of rate limiting */
3095 while (ram_save_block(f) != 0) {
3096 bytes_transferred += TARGET_PAGE_SIZE;
3097 }
3098 cpu_physical_memory_set_dirty_tracking(0);
3099 }
3100
3101 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3102
3103 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3104
3105 return (stage == 2) && (expected_time <= migrate_max_downtime());
3106 }
3107
3108 static int ram_load_dead(QEMUFile *f, void *opaque)
3109 {
3110 RamDecompressState s1, *s = &s1;
3111 uint8_t buf[10];
3112 ram_addr_t i;
3113
3114 if (ram_decompress_open(s, f) < 0)
3115 return -EINVAL;
3116 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3117 if (ram_decompress_buf(s, buf, 1) < 0) {
3118 fprintf(stderr, "Error while reading ram block header\n");
3119 goto error;
3120 }
3121 if (buf[0] == 0) {
3122 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3123 BDRV_HASH_BLOCK_SIZE) < 0) {
3124 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3125 goto error;
3126 }
3127 } else {
3128 error:
3129 printf("Error block header\n");
3130 return -EINVAL;
3131 }
3132 }
3133 ram_decompress_close(s);
3134
3135 return 0;
3136 }
3137
3138 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3139 {
3140 ram_addr_t addr;
3141 int flags;
3142
3143 if (version_id == 1)
3144 return ram_load_v1(f, opaque);
3145
3146 if (version_id == 2) {
3147 if (qemu_get_be32(f) != last_ram_offset)
3148 return -EINVAL;
3149 return ram_load_dead(f, opaque);
3150 }
3151
3152 if (version_id != 3)
3153 return -EINVAL;
3154
3155 do {
3156 addr = qemu_get_be64(f);
3157
3158 flags = addr & ~TARGET_PAGE_MASK;
3159 addr &= TARGET_PAGE_MASK;
3160
3161 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3162 if (addr != last_ram_offset)
3163 return -EINVAL;
3164 }
3165
3166 if (flags & RAM_SAVE_FLAG_FULL) {
3167 if (ram_load_dead(f, opaque) < 0)
3168 return -EINVAL;
3169 }
3170
3171 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3172 uint8_t ch = qemu_get_byte(f);
3173 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3174 #ifndef _WIN32
3175 if (ch == 0 &&
3176 (!kvm_enabled() || kvm_has_sync_mmu())) {
3177 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3178 }
3179 #endif
3180 } else if (flags & RAM_SAVE_FLAG_PAGE)
3181 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3182 } while (!(flags & RAM_SAVE_FLAG_EOS));
3183
3184 return 0;
3185 }
3186
3187 void qemu_service_io(void)
3188 {
3189 qemu_notify_event();
3190 }
3191
3192 /***********************************************************/
3193 /* bottom halves (can be seen as timers which expire ASAP) */
3194
3195 struct QEMUBH {
3196 QEMUBHFunc *cb;
3197 void *opaque;
3198 int scheduled;
3199 int idle;
3200 int deleted;
3201 QEMUBH *next;
3202 };
3203
3204 static QEMUBH *first_bh = NULL;
3205
3206 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3207 {
3208 QEMUBH *bh;
3209 bh = qemu_mallocz(sizeof(QEMUBH));
3210 bh->cb = cb;
3211 bh->opaque = opaque;
3212 bh->next = first_bh;
3213 first_bh = bh;
3214 return bh;
3215 }
3216
3217 int qemu_bh_poll(void)
3218 {
3219 QEMUBH *bh, **bhp;
3220 int ret;
3221
3222 ret = 0;
3223 for (bh = first_bh; bh; bh = bh->next) {
3224 if (!bh->deleted && bh->scheduled) {
3225 bh->scheduled = 0;
3226 if (!bh->idle)
3227 ret = 1;
3228 bh->idle = 0;
3229 bh->cb(bh->opaque);
3230 }
3231 }
3232
3233 /* remove deleted bhs */
3234 bhp = &first_bh;
3235 while (*bhp) {
3236 bh = *bhp;
3237 if (bh->deleted) {
3238 *bhp = bh->next;
3239 qemu_free(bh);
3240 } else
3241 bhp = &bh->next;
3242 }
3243
3244 return ret;
3245 }
3246
3247 void qemu_bh_schedule_idle(QEMUBH *bh)
3248 {
3249 if (bh->scheduled)
3250 return;
3251 bh->scheduled = 1;
3252 bh->idle = 1;
3253 }
3254
3255 void qemu_bh_schedule(QEMUBH *bh)
3256 {
3257 if (bh->scheduled)
3258 return;
3259 bh->scheduled = 1;
3260 bh->idle = 0;
3261 /* stop the currently executing CPU to execute the BH ASAP */
3262 qemu_notify_event();
3263 }
3264
3265 void qemu_bh_cancel(QEMUBH *bh)
3266 {
3267 bh->scheduled = 0;
3268 }
3269
3270 void qemu_bh_delete(QEMUBH *bh)
3271 {
3272 bh->scheduled = 0;
3273 bh->deleted = 1;
3274 }
3275
3276 static void qemu_bh_update_timeout(int *timeout)
3277 {
3278 QEMUBH *bh;
3279
3280 for (bh = first_bh; bh; bh = bh->next) {
3281 if (!bh->deleted && bh->scheduled) {
3282 if (bh->idle) {
3283 /* idle bottom halves will be polled at least
3284 * every 10ms */
3285 *timeout = MIN(10, *timeout);
3286 } else {
3287 /* non-idle bottom halves will be executed
3288 * immediately */
3289 *timeout = 0;
3290 break;
3291 }
3292 }
3293 }
3294 }
3295
3296 /***********************************************************/
3297 /* machine registration */
3298
3299 static QEMUMachine *first_machine = NULL;
3300 QEMUMachine *current_machine = NULL;
3301
3302 int qemu_register_machine(QEMUMachine *m)
3303 {
3304 QEMUMachine **pm;
3305 pm = &first_machine;
3306 while (*pm != NULL)
3307 pm = &(*pm)->next;
3308 m->next = NULL;
3309 *pm = m;
3310 return 0;
3311 }
3312
3313 static QEMUMachine *find_machine(const char *name)
3314 {
3315 QEMUMachine *m;
3316
3317 for(m = first_machine; m != NULL; m = m->next) {
3318 if (!strcmp(m->name, name))
3319 return m;
3320 if (m->alias && !strcmp(m->alias, name))
3321 return m;
3322 }
3323 return NULL;
3324 }
3325
3326 static QEMUMachine *find_default_machine(void)
3327 {
3328 QEMUMachine *m;
3329
3330 for(m = first_machine; m != NULL; m = m->next) {
3331 if (m->is_default) {
3332 return m;
3333 }
3334 }
3335 return NULL;
3336 }
3337
3338 /***********************************************************/
3339 /* main execution loop */
3340
3341 static void gui_update(void *opaque)
3342 {
3343 uint64_t interval = GUI_REFRESH_INTERVAL;
3344 DisplayState *ds = opaque;
3345 DisplayChangeListener *dcl = ds->listeners;
3346
3347 dpy_refresh(ds);
3348
3349 while (dcl != NULL) {
3350 if (dcl->gui_timer_interval &&
3351 dcl->gui_timer_interval < interval)
3352 interval = dcl->gui_timer_interval;
3353 dcl = dcl->next;
3354 }
3355 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3356 }
3357
3358 static void nographic_update(void *opaque)
3359 {
3360 uint64_t interval = GUI_REFRESH_INTERVAL;
3361
3362 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3363 }
3364
3365 struct vm_change_state_entry {
3366 VMChangeStateHandler *cb;
3367 void *opaque;
3368 LIST_ENTRY (vm_change_state_entry) entries;
3369 };
3370
3371 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3372
3373 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3374 void *opaque)
3375 {
3376 VMChangeStateEntry *e;
3377
3378 e = qemu_mallocz(sizeof (*e));
3379
3380 e->cb = cb;
3381 e->opaque = opaque;
3382 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3383 return e;
3384 }
3385
3386 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3387 {
3388 LIST_REMOVE (e, entries);
3389 qemu_free (e);
3390 }
3391
3392 static void vm_state_notify(int running, int reason)
3393 {
3394 VMChangeStateEntry *e;
3395
3396 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3397 e->cb(e->opaque, running, reason);
3398 }
3399 }
3400
3401 static void resume_all_vcpus(void);
3402 static void pause_all_vcpus(void);
3403
3404 void vm_start(void)
3405 {
3406 if (!vm_running) {
3407 cpu_enable_ticks();
3408 vm_running = 1;
3409 vm_state_notify(1, 0);
3410 qemu_rearm_alarm_timer(alarm_timer);
3411 resume_all_vcpus();
3412 }
3413 }
3414
3415 /* reset/shutdown handler */
3416
3417 typedef struct QEMUResetEntry {
3418 TAILQ_ENTRY(QEMUResetEntry) entry;
3419 QEMUResetHandler *func;
3420 void *opaque;
3421 } QEMUResetEntry;
3422
3423 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3424 TAILQ_HEAD_INITIALIZER(reset_handlers);
3425 static int reset_requested;
3426 static int shutdown_requested;
3427 static int powerdown_requested;
3428 static int debug_requested;
3429 static int vmstop_requested;
3430
3431 int qemu_shutdown_requested(void)
3432 {
3433 int r = shutdown_requested;
3434 shutdown_requested = 0;
3435 return r;
3436 }
3437
3438 int qemu_reset_requested(void)
3439 {
3440 int r = reset_requested;
3441 reset_requested = 0;
3442 return r;
3443 }
3444
3445 int qemu_powerdown_requested(void)
3446 {
3447 int r = powerdown_requested;
3448 powerdown_requested = 0;
3449 return r;
3450 }
3451
3452 static int qemu_debug_requested(void)
3453 {
3454 int r = debug_requested;
3455 debug_requested = 0;
3456 return r;
3457 }
3458
3459 static int qemu_vmstop_requested(void)
3460 {
3461 int r = vmstop_requested;
3462 vmstop_requested = 0;
3463 return r;
3464 }
3465
3466 static void do_vm_stop(int reason)
3467 {
3468 if (vm_running) {
3469 cpu_disable_ticks();
3470 vm_running = 0;
3471 pause_all_vcpus();
3472 vm_state_notify(0, reason);
3473 }
3474 }
3475
3476 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3477 {
3478 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3479
3480 re->func = func;
3481 re->opaque = opaque;
3482 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3483 }
3484
3485 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3486 {
3487 QEMUResetEntry *re;
3488
3489 TAILQ_FOREACH(re, &reset_handlers, entry) {
3490 if (re->func == func && re->opaque == opaque) {
3491 TAILQ_REMOVE(&reset_handlers, re, entry);
3492 qemu_free(re);
3493 return;
3494 }
3495 }
3496 }
3497
3498 void qemu_system_reset(void)
3499 {
3500 QEMUResetEntry *re, *nre;
3501
3502 /* reset all devices */
3503 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3504 re->func(re->opaque);
3505 }
3506 }
3507
3508 void qemu_system_reset_request(void)
3509 {
3510 if (no_reboot) {
3511 shutdown_requested = 1;
3512 } else {
3513 reset_requested = 1;
3514 }
3515 qemu_notify_event();
3516 }
3517
3518 void qemu_system_shutdown_request(void)
3519 {
3520 shutdown_requested = 1;
3521 qemu_notify_event();
3522 }
3523
3524 void qemu_system_powerdown_request(void)
3525 {
3526 powerdown_requested = 1;
3527 qemu_notify_event();
3528 }
3529
3530 #ifdef CONFIG_IOTHREAD
3531 static void qemu_system_vmstop_request(int reason)
3532 {
3533 vmstop_requested = reason;
3534 qemu_notify_event();
3535 }
3536 #endif
3537
3538 #ifndef _WIN32
3539 static int io_thread_fd = -1;
3540
3541 static void qemu_event_increment(void)
3542 {
3543 static const char byte = 0;
3544
3545 if (io_thread_fd == -1)
3546 return;
3547
3548 write(io_thread_fd, &byte, sizeof(byte));
3549 }
3550
3551 static void qemu_event_read(void *opaque)
3552 {
3553 int fd = (unsigned long)opaque;
3554 ssize_t len;
3555
3556 /* Drain the notify pipe */
3557 do {
3558 char buffer[512];
3559 len = read(fd, buffer, sizeof(buffer));
3560 } while ((len == -1 && errno == EINTR) || len > 0);
3561 }
3562
3563 static int qemu_event_init(void)
3564 {
3565 int err;
3566 int fds[2];
3567
3568 err = pipe(fds);
3569 if (err == -1)
3570 return -errno;
3571
3572 err = fcntl_setfl(fds[0], O_NONBLOCK);
3573 if (err < 0)
3574 goto fail;
3575
3576 err = fcntl_setfl(fds[1], O_NONBLOCK);
3577 if (err < 0)
3578 goto fail;
3579
3580 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3581 (void *)(unsigned long)fds[0]);
3582
3583 io_thread_fd = fds[1];
3584 return 0;
3585
3586 fail:
3587 close(fds[0]);
3588 close(fds[1]);
3589 return err;
3590 }
3591 #else
3592 HANDLE qemu_event_handle;
3593
3594 static void dummy_event_handler(void *opaque)
3595 {
3596 }
3597
3598 static int qemu_event_init(void)
3599 {
3600 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3601 if (!qemu_event_handle) {
3602 perror("Failed CreateEvent");
3603 return -1;
3604 }
3605 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3606 return 0;
3607 }
3608
3609 static void qemu_event_increment(void)
3610 {
3611 SetEvent(qemu_event_handle);
3612 }
3613 #endif
3614
3615 static int cpu_can_run(CPUState *env)
3616 {
3617 if (env->stop)
3618 return 0;
3619 if (env->stopped)
3620 return 0;
3621 return 1;
3622 }
3623
3624 #ifndef CONFIG_IOTHREAD
3625 static int qemu_init_main_loop(void)
3626 {
3627 return qemu_event_init();
3628 }
3629
3630 void qemu_init_vcpu(void *_env)
3631 {
3632 CPUState *env = _env;
3633
3634 if (kvm_enabled())
3635 kvm_init_vcpu(env);
3636 return;
3637 }
3638
3639 int qemu_cpu_self(void *env)
3640 {
3641 return 1;
3642 }
3643
3644 static void resume_all_vcpus(void)
3645 {
3646 }
3647
3648 static void pause_all_vcpus(void)
3649 {
3650 }
3651
3652 void qemu_cpu_kick(void *env)
3653 {
3654 return;
3655 }
3656
3657 void qemu_notify_event(void)
3658 {
3659 CPUState *env = cpu_single_env;
3660
3661 if (env) {
3662 cpu_exit(env);
3663 #ifdef USE_KQEMU
3664 if (env->kqemu_enabled)
3665 kqemu_cpu_interrupt(env);
3666 #endif
3667 }
3668 }
3669
3670 #define qemu_mutex_lock_iothread() do { } while (0)
3671 #define qemu_mutex_unlock_iothread() do { } while (0)
3672
3673 void vm_stop(int reason)
3674 {
3675 do_vm_stop(reason);
3676 }
3677
3678 #else /* CONFIG_IOTHREAD */
3679
3680 #include "qemu-thread.h"
3681
3682 QemuMutex qemu_global_mutex;
3683 static QemuMutex qemu_fair_mutex;
3684
3685 static QemuThread io_thread;
3686
3687 static QemuThread *tcg_cpu_thread;
3688 static QemuCond *tcg_halt_cond;
3689
3690 static int qemu_system_ready;
3691 /* cpu creation */
3692 static QemuCond qemu_cpu_cond;
3693 /* system init */
3694 static QemuCond qemu_system_cond;
3695 static QemuCond qemu_pause_cond;
3696
3697 static void block_io_signals(void);
3698 static void unblock_io_signals(void);
3699 static int tcg_has_work(void);
3700
3701 static int qemu_init_main_loop(void)
3702 {
3703 int ret;
3704
3705 ret = qemu_event_init();
3706 if (ret)
3707 return ret;
3708
3709 qemu_cond_init(&qemu_pause_cond);
3710 qemu_mutex_init(&qemu_fair_mutex);
3711 qemu_mutex_init(&qemu_global_mutex);
3712 qemu_mutex_lock(&qemu_global_mutex);
3713
3714 unblock_io_signals();
3715 qemu_thread_self(&io_thread);
3716
3717 return 0;
3718 }
3719
3720 static void qemu_wait_io_event(CPUState *env)
3721 {
3722 while (!tcg_has_work())
3723 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3724
3725 qemu_mutex_unlock(&qemu_global_mutex);
3726
3727 /*
3728 * Users of qemu_global_mutex can be starved, having no chance
3729 * to acquire it since this path will get to it first.
3730 * So use another lock to provide fairness.
3731 */
3732 qemu_mutex_lock(&qemu_fair_mutex);
3733 qemu_mutex_unlock(&qemu_fair_mutex);
3734
3735 qemu_mutex_lock(&qemu_global_mutex);
3736 if (env->stop) {
3737 env->stop = 0;
3738 env->stopped = 1;
3739 qemu_cond_signal(&qemu_pause_cond);
3740 }
3741 }
3742
3743 static int qemu_cpu_exec(CPUState *env);
3744
3745 static void *kvm_cpu_thread_fn(void *arg)
3746 {
3747 CPUState *env = arg;
3748
3749 block_io_signals();
3750 qemu_thread_self(env->thread);
3751
3752 /* signal CPU creation */
3753 qemu_mutex_lock(&qemu_global_mutex);
3754 env->created = 1;
3755 qemu_cond_signal(&qemu_cpu_cond);
3756
3757 /* and wait for machine initialization */
3758 while (!qemu_system_ready)
3759 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3760
3761 while (1) {
3762 if (cpu_can_run(env))
3763 qemu_cpu_exec(env);
3764 qemu_wait_io_event(env);
3765 }
3766
3767 return NULL;
3768 }
3769
3770 static void tcg_cpu_exec(void);
3771
3772 static void *tcg_cpu_thread_fn(void *arg)
3773 {
3774 CPUState *env = arg;
3775
3776 block_io_signals();
3777 qemu_thread_self(env->thread);
3778
3779 /* signal CPU creation */
3780 qemu_mutex_lock(&qemu_global_mutex);
3781 for (env = first_cpu; env != NULL; env = env->next_cpu)
3782 env->created = 1;
3783 qemu_cond_signal(&qemu_cpu_cond);
3784
3785 /* and wait for machine initialization */
3786 while (!qemu_system_ready)
3787 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3788
3789 while (1) {
3790 tcg_cpu_exec();
3791 qemu_wait_io_event(cur_cpu);
3792 }
3793
3794 return NULL;
3795 }
3796
3797 void qemu_cpu_kick(void *_env)
3798 {
3799 CPUState *env = _env;
3800 qemu_cond_broadcast(env->halt_cond);
3801 if (kvm_enabled())
3802 qemu_thread_signal(env->thread, SIGUSR1);
3803 }
3804
3805 int qemu_cpu_self(void *env)
3806 {
3807 return (cpu_single_env != NULL);
3808 }
3809
3810 static void cpu_signal(int sig)
3811 {
3812 if (cpu_single_env)
3813 cpu_exit(cpu_single_env);
3814 }
3815
3816 static void block_io_signals(void)
3817 {
3818 sigset_t set;
3819 struct sigaction sigact;
3820
3821 sigemptyset(&set);
3822 sigaddset(&set, SIGUSR2);
3823 sigaddset(&set, SIGIO);
3824 sigaddset(&set, SIGALRM);
3825 pthread_sigmask(SIG_BLOCK, &set, NULL);
3826
3827 sigemptyset(&set);
3828 sigaddset(&set, SIGUSR1);
3829 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3830
3831 memset(&sigact, 0, sizeof(sigact));
3832 sigact.sa_handler = cpu_signal;
3833 sigaction(SIGUSR1, &sigact, NULL);
3834 }
3835
3836 static void unblock_io_signals(void)
3837 {
3838 sigset_t set;
3839
3840 sigemptyset(&set);
3841 sigaddset(&set, SIGUSR2);
3842 sigaddset(&set, SIGIO);
3843 sigaddset(&set, SIGALRM);
3844 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3845
3846 sigemptyset(&set);
3847 sigaddset(&set, SIGUSR1);
3848 pthread_sigmask(SIG_BLOCK, &set, NULL);
3849 }
3850
3851 static void qemu_signal_lock(unsigned int msecs)
3852 {
3853 qemu_mutex_lock(&qemu_fair_mutex);
3854
3855 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3856 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3857 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3858 break;
3859 }
3860 qemu_mutex_unlock(&qemu_fair_mutex);
3861 }
3862
3863 static void qemu_mutex_lock_iothread(void)
3864 {
3865 if (kvm_enabled()) {
3866 qemu_mutex_lock(&qemu_fair_mutex);
3867 qemu_mutex_lock(&qemu_global_mutex);
3868 qemu_mutex_unlock(&qemu_fair_mutex);
3869 } else
3870 qemu_signal_lock(100);
3871 }
3872
3873 static void qemu_mutex_unlock_iothread(void)
3874 {
3875 qemu_mutex_unlock(&qemu_global_mutex);
3876 }
3877
3878 static int all_vcpus_paused(void)
3879 {
3880 CPUState *penv = first_cpu;
3881
3882 while (penv) {
3883 if (!penv->stopped)
3884 return 0;
3885 penv = (CPUState *)penv->next_cpu;
3886 }
3887
3888 return 1;
3889 }
3890
3891 static void pause_all_vcpus(void)
3892 {
3893 CPUState *penv = first_cpu;
3894
3895 while (penv) {
3896 penv->stop = 1;
3897 qemu_thread_signal(penv->thread, SIGUSR1);
3898 qemu_cpu_kick(penv);
3899 penv = (CPUState *)penv->next_cpu;
3900 }
3901
3902 while (!all_vcpus_paused()) {
3903 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3904 penv = first_cpu;
3905 while (penv) {
3906 qemu_thread_signal(penv->thread, SIGUSR1);
3907 penv = (CPUState *)penv->next_cpu;
3908 }
3909 }
3910 }
3911
3912 static void resume_all_vcpus(void)
3913 {
3914 CPUState *penv = first_cpu;
3915
3916 while (penv) {
3917 penv->stop = 0;
3918 penv->stopped = 0;
3919 qemu_thread_signal(penv->thread, SIGUSR1);
3920 qemu_cpu_kick(penv);
3921 penv = (CPUState *)penv->next_cpu;
3922 }
3923 }
3924
3925 static void tcg_init_vcpu(void *_env)
3926 {
3927 CPUState *env = _env;
3928 /* share a single thread for all cpus with TCG */
3929 if (!tcg_cpu_thread) {
3930 env->thread = qemu_mallocz(sizeof(QemuThread));
3931 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3932 qemu_cond_init(env->halt_cond);
3933 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3934 while (env->created == 0)
3935 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3936 tcg_cpu_thread = env->thread;
3937 tcg_halt_cond = env->halt_cond;
3938 } else {
3939 env->thread = tcg_cpu_thread;
3940 env->halt_cond = tcg_halt_cond;
3941 }
3942 }
3943
3944 static void kvm_start_vcpu(CPUState *env)
3945 {
3946 kvm_init_vcpu(env);
3947 env->thread = qemu_mallocz(sizeof(QemuThread));
3948 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3949 qemu_cond_init(env->halt_cond);
3950 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3951 while (env->created == 0)
3952 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3953 }
3954
3955 void qemu_init_vcpu(void *_env)
3956 {
3957 CPUState *env = _env;
3958
3959 if (kvm_enabled())
3960 kvm_start_vcpu(env);
3961 else
3962 tcg_init_vcpu(env);
3963 }
3964
3965 void qemu_notify_event(void)
3966 {
3967 qemu_event_increment();
3968 }
3969
3970 void vm_stop(int reason)
3971 {
3972 QemuThread me;
3973 qemu_thread_self(&me);
3974
3975 if (!qemu_thread_equal(&me, &io_thread)) {
3976 qemu_system_vmstop_request(reason);
3977 /*
3978 * FIXME: should not return to device code in case
3979 * vm_stop() has been requested.
3980 */
3981 if (cpu_single_env) {
3982 cpu_exit(cpu_single_env);
3983 cpu_single_env->stop = 1;
3984 }
3985 return;
3986 }
3987 do_vm_stop(reason);
3988 }
3989
3990 #endif
3991
3992
3993 #ifdef _WIN32
3994 static void host_main_loop_wait(int *timeout)
3995 {
3996 int ret, ret2, i;
3997 PollingEntry *pe;
3998
3999
4000 /* XXX: need to suppress polling by better using win32 events */
4001 ret = 0;
4002 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4003 ret |= pe->func(pe->opaque);
4004 }
4005 if (ret == 0) {
4006 int err;
4007 WaitObjects *w = &wait_objects;
4008
4009 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4010 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4011 if (w->func[ret - WAIT_OBJECT_0])
4012 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4013
4014 /* Check for additional signaled events */
4015 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4016
4017 /* Check if event is signaled */
4018 ret2 = WaitForSingleObject(w->events[i], 0);
4019 if(ret2 == WAIT_OBJECT_0) {
4020 if (w->func[i])
4021 w->func[i](w->opaque[i]);
4022 } else if (ret2 == WAIT_TIMEOUT) {
4023 } else {
4024 err = GetLastError();
4025 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4026 }
4027 }
4028 } else if (ret == WAIT_TIMEOUT) {
4029 } else {
4030 err = GetLastError();
4031 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4032 }
4033 }
4034
4035 *timeout = 0;
4036 }
4037 #else
4038 static void host_main_loop_wait(int *timeout)
4039 {
4040 }
4041 #endif
4042
4043 void main_loop_wait(int timeout)
4044 {
4045 IOHandlerRecord *ioh;
4046 fd_set rfds, wfds, xfds;
4047 int ret, nfds;
4048 struct timeval tv;
4049
4050 qemu_bh_update_timeout(&timeout);
4051
4052 host_main_loop_wait(&timeout);
4053
4054 /* poll any events */
4055 /* XXX: separate device handlers from system ones */
4056 nfds = -1;
4057 FD_ZERO(&rfds);
4058 FD_ZERO(&wfds);
4059 FD_ZERO(&xfds);
4060 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4061 if (ioh->deleted)
4062 continue;
4063 if (ioh->fd_read &&
4064 (!ioh->fd_read_poll ||
4065 ioh->fd_read_poll(ioh->opaque) != 0)) {
4066 FD_SET(ioh->fd, &rfds);
4067 if (ioh->fd > nfds)
4068 nfds = ioh->fd;
4069 }
4070 if (ioh->fd_write) {
4071 FD_SET(ioh->fd, &wfds);
4072 if (ioh->fd > nfds)
4073 nfds = ioh->fd;
4074 }
4075 }
4076
4077 tv.tv_sec = timeout / 1000;
4078 tv.tv_usec = (timeout % 1000) * 1000;
4079
4080 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4081
4082 qemu_mutex_unlock_iothread();
4083 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4084 qemu_mutex_lock_iothread();
4085 if (ret > 0) {
4086 IOHandlerRecord **pioh;
4087
4088 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4089 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4090 ioh->fd_read(ioh->opaque);
4091 }
4092 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4093 ioh->fd_write(ioh->opaque);
4094 }
4095 }
4096
4097 /* remove deleted IO handlers */
4098 pioh = &first_io_handler;
4099 while (*pioh) {
4100 ioh = *pioh;
4101 if (ioh->deleted) {
4102 *pioh = ioh->next;
4103 qemu_free(ioh);
4104 } else
4105 pioh = &ioh->next;
4106 }
4107 }
4108
4109 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4110
4111 /* rearm timer, if not periodic */
4112 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4113 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4114 qemu_rearm_alarm_timer(alarm_timer);
4115 }
4116
4117 /* vm time timers */
4118 if (vm_running) {
4119 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4120 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4121 qemu_get_clock(vm_clock));
4122 }
4123
4124 /* real time timers */
4125 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4126 qemu_get_clock(rt_clock));
4127
4128 /* Check bottom-halves last in case any of the earlier events triggered
4129 them. */
4130 qemu_bh_poll();
4131
4132 }
4133
4134 static int qemu_cpu_exec(CPUState *env)
4135 {
4136 int ret;
4137 #ifdef CONFIG_PROFILER
4138 int64_t ti;
4139 #endif
4140
4141 #ifdef CONFIG_PROFILER
4142 ti = profile_getclock();
4143 #endif
4144 if (use_icount) {
4145 int64_t count;
4146 int decr;
4147 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4148 env->icount_decr.u16.low = 0;
4149 env->icount_extra = 0;
4150 count = qemu_next_deadline();
4151 count = (count + (1 << icount_time_shift) - 1)
4152 >> icount_time_shift;
4153 qemu_icount += count;
4154 decr = (count > 0xffff) ? 0xffff : count;
4155 count -= decr;
4156 env->icount_decr.u16.low = decr;
4157 env->icount_extra = count;
4158 }
4159 ret = cpu_exec(env);
4160 #ifdef CONFIG_PROFILER
4161 qemu_time += profile_getclock() - ti;
4162 #endif
4163 if (use_icount) {
4164 /* Fold pending instructions back into the
4165 instruction counter, and clear the interrupt flag. */
4166 qemu_icount -= (env->icount_decr.u16.low
4167 + env->icount_extra);
4168 env->icount_decr.u32 = 0;
4169 env->icount_extra = 0;
4170 }
4171 return ret;
4172 }
4173
4174 static void tcg_cpu_exec(void)
4175 {
4176 int ret = 0;
4177
4178 if (next_cpu == NULL)
4179 next_cpu = first_cpu;
4180 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4181 CPUState *env = cur_cpu = next_cpu;
4182
4183 if (!vm_running)
4184 break;
4185 if (timer_alarm_pending) {
4186 timer_alarm_pending = 0;
4187 break;
4188 }
4189 if (cpu_can_run(env))
4190 ret = qemu_cpu_exec(env);
4191 if (ret == EXCP_DEBUG) {
4192 gdb_set_stop_cpu(env);
4193 debug_requested = 1;
4194 break;
4195 }
4196 }
4197 }
4198
4199 static int cpu_has_work(CPUState *env)
4200 {
4201 if (env->stop)
4202 return 1;
4203 if (env->stopped)
4204 return 0;
4205 if (!env->halted)
4206 return 1;
4207 if (qemu_cpu_has_work(env))
4208 return 1;
4209 return 0;
4210 }
4211
4212 static int tcg_has_work(void)
4213 {
4214 CPUState *env;
4215
4216 for (env = first_cpu; env != NULL; env = env->next_cpu)
4217 if (cpu_has_work(env))
4218 return 1;
4219 return 0;
4220 }
4221
4222 static int qemu_calculate_timeout(void)
4223 {
4224 #ifndef CONFIG_IOTHREAD
4225 int timeout;
4226
4227 if (!vm_running)
4228 timeout = 5000;
4229 else if (tcg_has_work())
4230 timeout = 0;
4231 else if (!use_icount)
4232 timeout = 5000;
4233 else {
4234 /* XXX: use timeout computed from timers */
4235 int64_t add;
4236 int64_t delta;
4237 /* Advance virtual time to the next event. */
4238 if (use_icount == 1) {
4239 /* When not using an adaptive execution frequency
4240 we tend to get badly out of sync with real time,
4241 so just delay for a reasonable amount of time. */
4242 delta = 0;
4243 } else {
4244 delta = cpu_get_icount() - cpu_get_clock();
4245 }
4246 if (delta > 0) {
4247 /* If virtual time is ahead of real time then just
4248 wait for IO. */
4249 timeout = (delta / 1000000) + 1;
4250 } else {
4251 /* Wait for either IO to occur or the next
4252 timer event. */
4253 add = qemu_next_deadline();
4254 /* We advance the timer before checking for IO.
4255 Limit the amount we advance so that early IO
4256 activity won't get the guest too far ahead. */
4257 if (add > 10000000)
4258 add = 10000000;
4259 delta += add;
4260 add = (add + (1 << icount_time_shift) - 1)
4261 >> icount_time_shift;
4262 qemu_icount += add;
4263 timeout = delta / 1000000;
4264 if (timeout < 0)
4265 timeout = 0;
4266 }
4267 }
4268
4269 return timeout;
4270 #else /* CONFIG_IOTHREAD */
4271 return 1000;
4272 #endif
4273 }
4274
4275 static int vm_can_run(void)
4276 {
4277 if (powerdown_requested)
4278 return 0;
4279 if (reset_requested)
4280 return 0;
4281 if (shutdown_requested)
4282 return 0;
4283 if (debug_requested)
4284 return 0;
4285 return 1;
4286 }
4287
4288 static void main_loop(void)
4289 {
4290 int r;
4291
4292 #ifdef CONFIG_IOTHREAD
4293 qemu_system_ready = 1;
4294 qemu_cond_broadcast(&qemu_system_cond);
4295 #endif
4296
4297 for (;;) {
4298 do {
4299 #ifdef CONFIG_PROFILER
4300 int64_t ti;
4301 #endif
4302 #ifndef CONFIG_IOTHREAD
4303 tcg_cpu_exec();
4304 #endif
4305 #ifdef CONFIG_PROFILER
4306 ti = profile_getclock();
4307 #endif
4308 main_loop_wait(qemu_calculate_timeout());
4309 #ifdef CONFIG_PROFILER
4310 dev_time += profile_getclock() - ti;
4311 #endif
4312 } while (vm_can_run());
4313
4314 if (qemu_debug_requested())
4315 vm_stop(EXCP_DEBUG);
4316 if (qemu_shutdown_requested()) {
4317 if (no_shutdown) {
4318 vm_stop(0);
4319 no_shutdown = 0;
4320 } else
4321 break;
4322 }
4323 if (qemu_reset_requested()) {
4324 pause_all_vcpus();
4325 qemu_system_reset();
4326 resume_all_vcpus();
4327 }
4328 if (qemu_powerdown_requested())
4329 qemu_system_powerdown();
4330 if ((r = qemu_vmstop_requested()))
4331 vm_stop(r);
4332 }
4333 pause_all_vcpus();
4334 }
4335
4336 static void version(void)
4337 {
4338 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4339 }
4340
4341 static void help(int exitcode)
4342 {
4343 version();
4344 printf("usage: %s [options] [disk_image]\n"
4345 "\n"
4346 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4347 "\n"
4348 #define DEF(option, opt_arg, opt_enum, opt_help) \
4349 opt_help
4350 #define DEFHEADING(text) stringify(text) "\n"
4351 #include "qemu-options.h"
4352 #undef DEF
4353 #undef DEFHEADING
4354 #undef GEN_DOCS
4355 "\n"
4356 "During emulation, the following keys are useful:\n"
4357 "ctrl-alt-f toggle full screen\n"
4358 "ctrl-alt-n switch to virtual console 'n'\n"
4359 "ctrl-alt toggle mouse and keyboard grab\n"
4360 "\n"
4361 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4362 ,
4363 "qemu",
4364 DEFAULT_RAM_SIZE,
4365 #ifndef _WIN32
4366 DEFAULT_NETWORK_SCRIPT,
4367 DEFAULT_NETWORK_DOWN_SCRIPT,
4368 #endif
4369 DEFAULT_GDBSTUB_PORT,
4370 "/tmp/qemu.log");
4371 exit(exitcode);
4372 }
4373
4374 #define HAS_ARG 0x0001
4375
4376 enum {
4377 #define DEF(option, opt_arg, opt_enum, opt_help) \
4378 opt_enum,
4379 #define DEFHEADING(text)
4380 #include "qemu-options.h"
4381 #undef DEF
4382 #undef DEFHEADING
4383 #undef GEN_DOCS
4384 };
4385
4386 typedef struct QEMUOption {
4387 const char *name;
4388 int flags;
4389 int index;
4390 } QEMUOption;
4391
4392 static const QEMUOption qemu_options[] = {
4393 { "h", 0, QEMU_OPTION_h },
4394 #define DEF(option, opt_arg, opt_enum, opt_help) \
4395 { option, opt_arg, opt_enum },
4396 #define DEFHEADING(text)
4397 #include "qemu-options.h"
4398 #undef DEF
4399 #undef DEFHEADING
4400 #undef GEN_DOCS
4401 { NULL },
4402 };
4403
4404 #ifdef HAS_AUDIO
4405 struct soundhw soundhw[] = {
4406 #ifdef HAS_AUDIO_CHOICE
4407 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4408 {
4409 "pcspk",
4410 "PC speaker",
4411 0,
4412 1,
4413 { .init_isa = pcspk_audio_init }
4414 },
4415 #endif
4416
4417 #ifdef CONFIG_SB16
4418 {
4419 "sb16",
4420 "Creative Sound Blaster 16",
4421 0,
4422 1,
4423 { .init_isa = SB16_init }
4424 },
4425 #endif
4426
4427 #ifdef CONFIG_CS4231A
4428 {
4429 "cs4231a",
4430 "CS4231A",
4431 0,
4432 1,
4433 { .init_isa = cs4231a_init }
4434 },
4435 #endif
4436
4437 #ifdef CONFIG_ADLIB
4438 {
4439 "adlib",
4440 #ifdef HAS_YMF262
4441 "Yamaha YMF262 (OPL3)",
4442 #else
4443 "Yamaha YM3812 (OPL2)",
4444 #endif
4445 0,
4446 1,
4447 { .init_isa = Adlib_init }
4448 },
4449 #endif
4450
4451 #ifdef CONFIG_GUS
4452 {
4453 "gus",
4454 "Gravis Ultrasound GF1",
4455 0,
4456 1,
4457 { .init_isa = GUS_init }
4458 },
4459 #endif
4460
4461 #ifdef CONFIG_AC97
4462 {
4463 "ac97",
4464 "Intel 82801AA AC97 Audio",
4465 0,
4466 0,
4467 { .init_pci = ac97_init }
4468 },
4469 #endif
4470
4471 #ifdef CONFIG_ES1370
4472 {
4473 "es1370",
4474 "ENSONIQ AudioPCI ES1370",
4475 0,
4476 0,
4477 { .init_pci = es1370_init }
4478 },
4479 #endif
4480
4481 #endif /* HAS_AUDIO_CHOICE */
4482
4483 { NULL, NULL, 0, 0, { NULL } }
4484 };
4485
4486 static void select_soundhw (const char *optarg)
4487 {
4488 struct soundhw *c;
4489
4490 if (*optarg == '?') {
4491 show_valid_cards:
4492
4493 printf ("Valid sound card names (comma separated):\n");
4494 for (c = soundhw; c->name; ++c) {
4495 printf ("%-11s %s\n", c->name, c->descr);
4496 }
4497 printf ("\n-soundhw all will enable all of the above\n");
4498 exit (*optarg != '?');
4499 }
4500 else {
4501 size_t l;
4502 const char *p;
4503 char *e;
4504 int bad_card = 0;
4505
4506 if (!strcmp (optarg, "all")) {
4507 for (c = soundhw; c->name; ++c) {
4508 c->enabled = 1;
4509 }
4510 return;
4511 }
4512
4513 p = optarg;
4514 while (*p) {
4515 e = strchr (p, ',');
4516 l = !e ? strlen (p) : (size_t) (e - p);
4517
4518 for (c = soundhw; c->name; ++c) {
4519 if (!strncmp (c->name, p, l)) {
4520 c->enabled = 1;
4521 break;
4522 }
4523 }
4524
4525 if (!c->name) {
4526 if (l > 80) {
4527 fprintf (stderr,
4528 "Unknown sound card name (too big to show)\n");
4529 }
4530 else {
4531 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4532 (int) l, p);
4533 }
4534 bad_card = 1;
4535 }
4536 p += l + (e != NULL);
4537 }
4538
4539 if (bad_card)
4540 goto show_valid_cards;
4541 }
4542 }
4543 #endif
4544
4545 static void select_vgahw (const char *p)
4546 {
4547 const char *opts;
4548
4549 cirrus_vga_enabled = 0;
4550 std_vga_enabled = 0;
4551 vmsvga_enabled = 0;
4552 xenfb_enabled = 0;
4553 if (strstart(p, "std", &opts)) {
4554 std_vga_enabled = 1;
4555 } else if (strstart(p, "cirrus", &opts)) {
4556 cirrus_vga_enabled = 1;
4557 } else if (strstart(p, "vmware", &opts)) {
4558 vmsvga_enabled = 1;
4559 } else if (strstart(p, "xenfb", &opts)) {
4560 xenfb_enabled = 1;
4561 } else if (!strstart(p, "none", &opts)) {
4562 invalid_vga:
4563 fprintf(stderr, "Unknown vga type: %s\n", p);
4564 exit(1);
4565 }
4566 while (*opts) {
4567 const char *nextopt;
4568
4569 if (strstart(opts, ",retrace=", &nextopt)) {
4570 opts = nextopt;
4571 if (strstart(opts, "dumb", &nextopt))
4572 vga_retrace_method = VGA_RETRACE_DUMB;
4573 else if (strstart(opts, "precise", &nextopt))
4574 vga_retrace_method = VGA_RETRACE_PRECISE;
4575 else goto invalid_vga;
4576 } else goto invalid_vga;
4577 opts = nextopt;
4578 }
4579 }
4580
4581 #ifdef TARGET_I386
4582 static int balloon_parse(const char *arg)
4583 {
4584 char buf[128];
4585 const char *p;
4586
4587 if (!strcmp(arg, "none")) {
4588 virtio_balloon = 0;
4589 } else if (!strncmp(arg, "virtio", 6)) {
4590 virtio_balloon = 1;
4591 if (arg[6] == ',') {
4592 p = arg + 7;
4593 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4594 virtio_balloon_devaddr = strdup(buf);
4595 }
4596 }
4597 } else {
4598 return -1;
4599 }
4600 return 0;
4601 }
4602 #endif
4603
4604 #ifdef _WIN32
4605 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4606 {
4607 exit(STATUS_CONTROL_C_EXIT);
4608 return TRUE;
4609 }
4610 #endif
4611
4612 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4613 {
4614 int ret;
4615
4616 if(strlen(str) != 36)
4617 return -1;
4618
4619 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4620 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4621 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4622
4623 if(ret != 16)
4624 return -1;
4625
4626 #ifdef TARGET_I386
4627 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4628 #endif
4629
4630 return 0;
4631 }
4632
4633 #define MAX_NET_CLIENTS 32
4634
4635 #ifndef _WIN32
4636
4637 static void termsig_handler(int signal)
4638 {
4639 qemu_system_shutdown_request();
4640 }
4641
4642 static void sigchld_handler(int signal)
4643 {
4644 waitpid(-1, NULL, WNOHANG);
4645 }
4646
4647 static void sighandler_setup(void)
4648 {
4649 struct sigaction act;
4650
4651 memset(&act, 0, sizeof(act));
4652 act.sa_handler = termsig_handler;
4653 sigaction(SIGINT, &act, NULL);
4654 sigaction(SIGHUP, &act, NULL);
4655 sigaction(SIGTERM, &act, NULL);
4656
4657 act.sa_handler = sigchld_handler;
4658 act.sa_flags = SA_NOCLDSTOP;
4659 sigaction(SIGCHLD, &act, NULL);
4660 }
4661
4662 #endif
4663
4664 #ifdef _WIN32
4665 /* Look for support files in the same directory as the executable. */
4666 static char *find_datadir(const char *argv0)
4667 {
4668 char *p;
4669 char buf[MAX_PATH];
4670 DWORD len;
4671
4672 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4673 if (len == 0) {
4674 return NULL;
4675 }
4676
4677 buf[len] = 0;
4678 p = buf + len - 1;
4679 while (p != buf && *p != '\\')
4680 p--;
4681 *p = 0;
4682 if (access(buf, R_OK) == 0) {
4683 return qemu_strdup(buf);
4684 }
4685 return NULL;
4686 }
4687 #else /* !_WIN32 */
4688
4689 /* Find a likely location for support files using the location of the binary.
4690 For installed binaries this will be "$bindir/../share/qemu". When
4691 running from the build tree this will be "$bindir/../pc-bios". */
4692 #define SHARE_SUFFIX "/share/qemu"
4693 #define BUILD_SUFFIX "/pc-bios"
4694 static char *find_datadir(const char *argv0)
4695 {
4696 char *dir;
4697 char *p = NULL;
4698 char *res;
4699 #ifdef PATH_MAX
4700 char buf[PATH_MAX];
4701 #endif
4702 size_t max_len;
4703
4704 #if defined(__linux__)
4705 {
4706 int len;
4707 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4708 if (len > 0) {
4709 buf[len] = 0;
4710 p = buf;
4711 }
4712 }
4713 #elif defined(__FreeBSD__)
4714 {
4715 int len;
4716 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4717 if (len > 0) {
4718 buf[len] = 0;
4719 p = buf;
4720 }
4721 }
4722 #endif
4723 /* If we don't have any way of figuring out the actual executable
4724 location then try argv[0]. */
4725 if (!p) {
4726 #ifdef PATH_MAX
4727 p = buf;
4728 #endif
4729 p = realpath(argv0, p);
4730 if (!p) {
4731 return NULL;
4732 }
4733 }
4734 dir = dirname(p);
4735 dir = dirname(dir);
4736
4737 max_len = strlen(dir) +
4738 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4739 res = qemu_mallocz(max_len);
4740 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4741 if (access(res, R_OK)) {
4742 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4743 if (access(res, R_OK)) {
4744 qemu_free(res);
4745 res = NULL;
4746 }
4747 }
4748 #ifndef PATH_MAX
4749 free(p);
4750 #endif
4751 return res;
4752 }
4753 #undef SHARE_SUFFIX
4754 #undef BUILD_SUFFIX
4755 #endif
4756
4757 char *qemu_find_file(int type, const char *name)
4758 {
4759 int len;
4760 const char *subdir;
4761 char *buf;
4762
4763 /* If name contains path separators then try it as a straight path. */
4764 if ((strchr(name, '/') || strchr(name, '\\'))
4765 && access(name, R_OK) == 0) {
4766 return strdup(name);
4767 }
4768 switch (type) {
4769 case QEMU_FILE_TYPE_BIOS:
4770 subdir = "";
4771 break;
4772 case QEMU_FILE_TYPE_KEYMAP:
4773 subdir = "keymaps/";
4774 break;
4775 default:
4776 abort();
4777 }
4778 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4779 buf = qemu_mallocz(len);
4780 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4781 if (access(buf, R_OK)) {
4782 qemu_free(buf);
4783 return NULL;
4784 }
4785 return buf;
4786 }
4787
4788 struct device_config {
4789 enum {
4790 DEV_GENERIC, /* -device */
4791 DEV_USB, /* -usbdevice */
4792 DEV_BT, /* -bt */
4793 } type;
4794 const char *cmdline;
4795 TAILQ_ENTRY(device_config) next;
4796 };
4797 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4798
4799 static void add_device_config(int type, const char *cmdline)
4800 {
4801 struct device_config *conf;
4802
4803 conf = qemu_mallocz(sizeof(*conf));
4804 conf->type = type;
4805 conf->cmdline = cmdline;
4806 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4807 }
4808
4809 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4810 {
4811 struct device_config *conf;
4812 int rc;
4813
4814 TAILQ_FOREACH(conf, &device_configs, next) {
4815 if (conf->type != type)
4816 continue;
4817 rc = func(conf->cmdline);
4818 if (0 != rc)
4819 return rc;
4820 }
4821 return 0;
4822 }
4823
4824 static int generic_parse(const char *cmdline)
4825 {
4826 DeviceState *dev;
4827
4828 dev = qdev_device_add(cmdline);
4829 if (!dev)
4830 return -1;
4831 return 0;
4832 }
4833
4834 int main(int argc, char **argv, char **envp)
4835 {
4836 const char *gdbstub_dev = NULL;
4837 uint32_t boot_devices_bitmap = 0;
4838 int i;
4839 int snapshot, linux_boot, net_boot;
4840 const char *initrd_filename;
4841 const char *kernel_filename, *kernel_cmdline;
4842 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4843 DisplayState *ds;
4844 DisplayChangeListener *dcl;
4845 int cyls, heads, secs, translation;
4846 const char *net_clients[MAX_NET_CLIENTS];
4847 int nb_net_clients;
4848 QemuOpts *hda_opts = NULL;
4849 int optind;
4850 const char *r, *optarg;
4851 CharDriverState *monitor_hd = NULL;
4852 const char *monitor_device;
4853 const char *serial_devices[MAX_SERIAL_PORTS];
4854 int serial_device_index;
4855 const char *parallel_devices[MAX_PARALLEL_PORTS];
4856 int parallel_device_index;
4857 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4858 int virtio_console_index;
4859 const char *loadvm = NULL;
4860 QEMUMachine *machine;
4861 const char *cpu_model;
4862 #ifndef _WIN32
4863 int fds[2];
4864 #endif
4865 int tb_size;
4866 const char *pid_file = NULL;
4867 const char *incoming = NULL;
4868 #ifndef _WIN32
4869 int fd = 0;
4870 struct passwd *pwd = NULL;
4871 const char *chroot_dir = NULL;
4872 const char *run_as = NULL;
4873 #endif
4874 CPUState *env;
4875 int show_vnc_port = 0;
4876
4877 qemu_cache_utils_init(envp);
4878
4879 LIST_INIT (&vm_change_state_head);
4880 #ifndef _WIN32
4881 {
4882 struct sigaction act;
4883 sigfillset(&act.sa_mask);
4884 act.sa_flags = 0;
4885 act.sa_handler = SIG_IGN;
4886 sigaction(SIGPIPE, &act, NULL);
4887 }
4888 #else
4889 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4890 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4891 QEMU to run on a single CPU */
4892 {
4893 HANDLE h;
4894 DWORD mask, smask;
4895 int i;
4896 h = GetCurrentProcess();
4897 if (GetProcessAffinityMask(h, &mask, &smask)) {
4898 for(i = 0; i < 32; i++) {
4899 if (mask & (1 << i))
4900 break;
4901 }
4902 if (i != 32) {
4903 mask = 1 << i;
4904 SetProcessAffinityMask(h, mask);
4905 }
4906 }
4907 }
4908 #endif
4909
4910 module_call_init(MODULE_INIT_MACHINE);
4911 machine = find_default_machine();
4912 cpu_model = NULL;
4913 initrd_filename = NULL;
4914 ram_size = 0;
4915 snapshot = 0;
4916 kernel_filename = NULL;
4917 kernel_cmdline = "";
4918 cyls = heads = secs = 0;
4919 translation = BIOS_ATA_TRANSLATION_AUTO;
4920 monitor_device = "vc:80Cx24C";
4921
4922 serial_devices[0] = "vc:80Cx24C";
4923 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4924 serial_devices[i] = NULL;
4925 serial_device_index = 0;
4926
4927 parallel_devices[0] = "vc:80Cx24C";
4928 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4929 parallel_devices[i] = NULL;
4930 parallel_device_index = 0;
4931
4932 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4933 virtio_consoles[i] = NULL;
4934 virtio_console_index = 0;
4935
4936 for (i = 0; i < MAX_NODES; i++) {
4937 node_mem[i] = 0;
4938 node_cpumask[i] = 0;
4939 }
4940
4941 nb_net_clients = 0;
4942 nb_numa_nodes = 0;
4943 nb_nics = 0;
4944
4945 tb_size = 0;
4946 autostart= 1;
4947
4948 register_watchdogs();
4949
4950 optind = 1;
4951 for(;;) {
4952 if (optind >= argc)
4953 break;
4954 r = argv[optind];
4955 if (r[0] != '-') {
4956 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4957 } else {
4958 const QEMUOption *popt;
4959
4960 optind++;
4961 /* Treat --foo the same as -foo. */
4962 if (r[1] == '-')
4963 r++;
4964 popt = qemu_options;
4965 for(;;) {
4966 if (!popt->name) {
4967 fprintf(stderr, "%s: invalid option -- '%s'\n",
4968 argv[0], r);
4969 exit(1);
4970 }
4971 if (!strcmp(popt->name, r + 1))
4972 break;
4973 popt++;
4974 }
4975 if (popt->flags & HAS_ARG) {
4976 if (optind >= argc) {
4977 fprintf(stderr, "%s: option '%s' requires an argument\n",
4978 argv[0], r);
4979 exit(1);
4980 }
4981 optarg = argv[optind++];
4982 } else {
4983 optarg = NULL;
4984 }
4985
4986 switch(popt->index) {
4987 case QEMU_OPTION_M:
4988 machine = find_machine(optarg);
4989 if (!machine) {
4990 QEMUMachine *m;
4991 printf("Supported machines are:\n");
4992 for(m = first_machine; m != NULL; m = m->next) {
4993 if (m->alias)
4994 printf("%-10s %s (alias of %s)\n",
4995 m->alias, m->desc, m->name);
4996 printf("%-10s %s%s\n",
4997 m->name, m->desc,
4998 m->is_default ? " (default)" : "");
4999 }
5000 exit(*optarg != '?');
5001 }
5002 break;
5003 case QEMU_OPTION_cpu:
5004 /* hw initialization will check this */
5005 if (*optarg == '?') {
5006 /* XXX: implement xxx_cpu_list for targets that still miss it */
5007 #if defined(cpu_list)
5008 cpu_list(stdout, &fprintf);
5009 #endif
5010 exit(0);
5011 } else {
5012 cpu_model = optarg;
5013 }
5014 break;
5015 case QEMU_OPTION_initrd:
5016 initrd_filename = optarg;
5017 break;
5018 case QEMU_OPTION_hda:
5019 if (cyls == 0)
5020 hda_opts = drive_add(optarg, HD_ALIAS, 0);
5021 else
5022 hda_opts = drive_add(optarg, HD_ALIAS
5023 ",cyls=%d,heads=%d,secs=%d%s",
5024 0, cyls, heads, secs,
5025 translation == BIOS_ATA_TRANSLATION_LBA ?
5026 ",trans=lba" :
5027 translation == BIOS_ATA_TRANSLATION_NONE ?
5028 ",trans=none" : "");
5029 break;
5030 case QEMU_OPTION_hdb:
5031 case QEMU_OPTION_hdc:
5032 case QEMU_OPTION_hdd:
5033 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5034 break;
5035 case QEMU_OPTION_drive:
5036 drive_add(NULL, "%s", optarg);
5037 break;
5038 case QEMU_OPTION_mtdblock:
5039 drive_add(optarg, MTD_ALIAS);
5040 break;
5041 case QEMU_OPTION_sd:
5042 drive_add(optarg, SD_ALIAS);
5043 break;
5044 case QEMU_OPTION_pflash:
5045 drive_add(optarg, PFLASH_ALIAS);
5046 break;
5047 case QEMU_OPTION_snapshot:
5048 snapshot = 1;
5049 break;
5050 case QEMU_OPTION_hdachs:
5051 {
5052 const char *p;
5053 p = optarg;
5054 cyls = strtol(p, (char **)&p, 0);
5055 if (cyls < 1 || cyls > 16383)
5056 goto chs_fail;
5057 if (*p != ',')
5058 goto chs_fail;
5059 p++;
5060 heads = strtol(p, (char **)&p, 0);
5061 if (heads < 1 || heads > 16)
5062 goto chs_fail;
5063 if (*p != ',')
5064 goto chs_fail;
5065 p++;
5066 secs = strtol(p, (char **)&p, 0);
5067 if (secs < 1 || secs > 63)
5068 goto chs_fail;
5069 if (*p == ',') {
5070 p++;
5071 if (!strcmp(p, "none"))
5072 translation = BIOS_ATA_TRANSLATION_NONE;
5073 else if (!strcmp(p, "lba"))
5074 translation = BIOS_ATA_TRANSLATION_LBA;
5075 else if (!strcmp(p, "auto"))
5076 translation = BIOS_ATA_TRANSLATION_AUTO;
5077 else
5078 goto chs_fail;
5079 } else if (*p != '\0') {
5080 chs_fail:
5081 fprintf(stderr, "qemu: invalid physical CHS format\n");
5082 exit(1);
5083 }
5084 if (hda_opts != NULL) {
5085 char num[16];
5086 snprintf(num, sizeof(num), "%d", cyls);
5087 qemu_opt_set(hda_opts, "cyls", num);
5088 snprintf(num, sizeof(num), "%d", heads);
5089 qemu_opt_set(hda_opts, "heads", num);
5090 snprintf(num, sizeof(num), "%d", secs);
5091 qemu_opt_set(hda_opts, "secs", num);
5092 if (translation == BIOS_ATA_TRANSLATION_LBA)
5093 qemu_opt_set(hda_opts, "trans", "lba");
5094 if (translation == BIOS_ATA_TRANSLATION_NONE)
5095 qemu_opt_set(hda_opts, "trans", "none");
5096 }
5097 }
5098 break;
5099 case QEMU_OPTION_numa:
5100 if (nb_numa_nodes >= MAX_NODES) {
5101 fprintf(stderr, "qemu: too many NUMA nodes\n");
5102 exit(1);
5103 }
5104 numa_add(optarg);
5105 break;
5106 case QEMU_OPTION_nographic:
5107 display_type = DT_NOGRAPHIC;
5108 break;
5109 #ifdef CONFIG_CURSES
5110 case QEMU_OPTION_curses:
5111 display_type = DT_CURSES;
5112 break;
5113 #endif
5114 case QEMU_OPTION_portrait:
5115 graphic_rotate = 1;
5116 break;
5117 case QEMU_OPTION_kernel:
5118 kernel_filename = optarg;
5119 break;
5120 case QEMU_OPTION_append:
5121 kernel_cmdline = optarg;
5122 break;
5123 case QEMU_OPTION_cdrom:
5124 drive_add(optarg, CDROM_ALIAS);
5125 break;
5126 case QEMU_OPTION_boot:
5127 {
5128 static const char * const params[] = {
5129 "order", "once", "menu", NULL
5130 };
5131 char buf[sizeof(boot_devices)];
5132 char *standard_boot_devices;
5133 int legacy = 0;
5134
5135 if (!strchr(optarg, '=')) {
5136 legacy = 1;
5137 pstrcpy(buf, sizeof(buf), optarg);
5138 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5139 fprintf(stderr,
5140 "qemu: unknown boot parameter '%s' in '%s'\n",
5141 buf, optarg);
5142 exit(1);
5143 }
5144
5145 if (legacy ||
5146 get_param_value(buf, sizeof(buf), "order", optarg)) {
5147 boot_devices_bitmap = parse_bootdevices(buf);
5148 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5149 }
5150 if (!legacy) {
5151 if (get_param_value(buf, sizeof(buf),
5152 "once", optarg)) {
5153 boot_devices_bitmap |= parse_bootdevices(buf);
5154 standard_boot_devices = qemu_strdup(boot_devices);
5155 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5156 qemu_register_reset(restore_boot_devices,
5157 standard_boot_devices);
5158 }
5159 if (get_param_value(buf, sizeof(buf),
5160 "menu", optarg)) {
5161 if (!strcmp(buf, "on")) {
5162 boot_menu = 1;
5163 } else if (!strcmp(buf, "off")) {
5164 boot_menu = 0;
5165 } else {
5166 fprintf(stderr,
5167 "qemu: invalid option value '%s'\n",
5168 buf);
5169 exit(1);
5170 }
5171 }
5172 }
5173 }
5174 break;
5175 case QEMU_OPTION_fda:
5176 case QEMU_OPTION_fdb:
5177 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5178 break;
5179 #ifdef TARGET_I386
5180 case QEMU_OPTION_no_fd_bootchk:
5181 fd_bootchk = 0;
5182 break;
5183 #endif
5184 case QEMU_OPTION_net:
5185 if (nb_net_clients >= MAX_NET_CLIENTS) {
5186 fprintf(stderr, "qemu: too many network clients\n");
5187 exit(1);
5188 }
5189 net_clients[nb_net_clients] = optarg;
5190 nb_net_clients++;
5191 break;
5192 #ifdef CONFIG_SLIRP
5193 case QEMU_OPTION_tftp:
5194 legacy_tftp_prefix = optarg;
5195 break;
5196 case QEMU_OPTION_bootp:
5197 legacy_bootp_filename = optarg;
5198 break;
5199 #ifndef _WIN32
5200 case QEMU_OPTION_smb:
5201 net_slirp_smb(optarg);
5202 break;
5203 #endif
5204 case QEMU_OPTION_redir:
5205 net_slirp_redir(optarg);
5206 break;
5207 #endif
5208 case QEMU_OPTION_bt:
5209 add_device_config(DEV_BT, optarg);
5210 break;
5211 #ifdef HAS_AUDIO
5212 case QEMU_OPTION_audio_help:
5213 AUD_help ();
5214 exit (0);
5215 break;
5216 case QEMU_OPTION_soundhw:
5217 select_soundhw (optarg);
5218 break;
5219 #endif
5220 case QEMU_OPTION_h:
5221 help(0);
5222 break;
5223 case QEMU_OPTION_version:
5224 version();
5225 exit(0);
5226 break;
5227 case QEMU_OPTION_m: {
5228 uint64_t value;
5229 char *ptr;
5230
5231 value = strtoul(optarg, &ptr, 10);
5232 switch (*ptr) {
5233 case 0: case 'M': case 'm':
5234 value <<= 20;
5235 break;
5236 case 'G': case 'g':
5237 value <<= 30;
5238 break;
5239 default:
5240 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5241 exit(1);
5242 }
5243
5244 /* On 32-bit hosts, QEMU is limited by virtual address space */
5245 if (value > (2047 << 20)
5246 #ifndef CONFIG_KQEMU
5247 && HOST_LONG_BITS == 32
5248 #endif
5249 ) {
5250 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5251 exit(1);
5252 }
5253 if (value != (uint64_t)(ram_addr_t)value) {
5254 fprintf(stderr, "qemu: ram size too large\n");
5255 exit(1);
5256 }
5257 ram_size = value;
5258 break;
5259 }
5260 case QEMU_OPTION_d:
5261 {
5262 int mask;
5263 const CPULogItem *item;
5264
5265 mask = cpu_str_to_log_mask(optarg);
5266 if (!mask) {
5267 printf("Log items (comma separated):\n");
5268 for(item = cpu_log_items; item->mask != 0; item++) {
5269 printf("%-10s %s\n", item->name, item->help);
5270 }
5271 exit(1);
5272 }
5273 cpu_set_log(mask);
5274 }
5275 break;
5276 case QEMU_OPTION_s:
5277 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5278 break;
5279 case QEMU_OPTION_gdb:
5280 gdbstub_dev = optarg;
5281 break;
5282 case QEMU_OPTION_L:
5283 data_dir = optarg;
5284 break;
5285 case QEMU_OPTION_bios:
5286 bios_name = optarg;
5287 break;
5288 case QEMU_OPTION_singlestep:
5289 singlestep = 1;
5290 break;
5291 case QEMU_OPTION_S:
5292 autostart = 0;
5293 break;
5294 #ifndef _WIN32
5295 case QEMU_OPTION_k:
5296 keyboard_layout = optarg;
5297 break;
5298 #endif
5299 case QEMU_OPTION_localtime:
5300 rtc_utc = 0;
5301 break;
5302 case QEMU_OPTION_vga:
5303 select_vgahw (optarg);
5304 break;
5305 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5306 case QEMU_OPTION_g:
5307 {
5308 const char *p;
5309 int w, h, depth;
5310 p = optarg;
5311 w = strtol(p, (char **)&p, 10);
5312 if (w <= 0) {
5313 graphic_error:
5314 fprintf(stderr, "qemu: invalid resolution or depth\n");
5315 exit(1);
5316 }
5317 if (*p != 'x')
5318 goto graphic_error;
5319 p++;
5320 h = strtol(p, (char **)&p, 10);
5321 if (h <= 0)
5322 goto graphic_error;
5323 if (*p == 'x') {
5324 p++;
5325 depth = strtol(p, (char **)&p, 10);
5326 if (depth != 8 && depth != 15 && depth != 16 &&
5327 depth != 24 && depth != 32)
5328 goto graphic_error;
5329 } else if (*p == '\0') {
5330 depth = graphic_depth;
5331 } else {
5332 goto graphic_error;
5333 }
5334
5335 graphic_width = w;
5336 graphic_height = h;
5337 graphic_depth = depth;
5338 }
5339 break;
5340 #endif
5341 case QEMU_OPTION_echr:
5342 {
5343 char *r;
5344 term_escape_char = strtol(optarg, &r, 0);
5345 if (r == optarg)
5346 printf("Bad argument to echr\n");
5347 break;
5348 }
5349 case QEMU_OPTION_monitor:
5350 monitor_device = optarg;
5351 break;
5352 case QEMU_OPTION_serial:
5353 if (serial_device_index >= MAX_SERIAL_PORTS) {
5354 fprintf(stderr, "qemu: too many serial ports\n");
5355 exit(1);
5356 }
5357 serial_devices[serial_device_index] = optarg;
5358 serial_device_index++;
5359 break;
5360 case QEMU_OPTION_watchdog:
5361 i = select_watchdog(optarg);
5362 if (i > 0)
5363 exit (i == 1 ? 1 : 0);
5364 break;
5365 case QEMU_OPTION_watchdog_action:
5366 if (select_watchdog_action(optarg) == -1) {
5367 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5368 exit(1);
5369 }
5370 break;
5371 case QEMU_OPTION_virtiocon:
5372 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5373 fprintf(stderr, "qemu: too many virtio consoles\n");
5374 exit(1);
5375 }
5376 virtio_consoles[virtio_console_index] = optarg;
5377 virtio_console_index++;
5378 break;
5379 case QEMU_OPTION_parallel:
5380 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5381 fprintf(stderr, "qemu: too many parallel ports\n");
5382 exit(1);
5383 }
5384 parallel_devices[parallel_device_index] = optarg;
5385 parallel_device_index++;
5386 break;
5387 case QEMU_OPTION_loadvm:
5388 loadvm = optarg;
5389 break;
5390 case QEMU_OPTION_full_screen:
5391 full_screen = 1;
5392 break;
5393 #ifdef CONFIG_SDL
5394 case QEMU_OPTION_no_frame:
5395 no_frame = 1;
5396 break;
5397 case QEMU_OPTION_alt_grab:
5398 alt_grab = 1;
5399 break;
5400 case QEMU_OPTION_no_quit:
5401 no_quit = 1;
5402 break;
5403 case QEMU_OPTION_sdl:
5404 display_type = DT_SDL;
5405 break;
5406 #endif
5407 case QEMU_OPTION_pidfile:
5408 pid_file = optarg;
5409 break;
5410 #ifdef TARGET_I386
5411 case QEMU_OPTION_win2k_hack:
5412 win2k_install_hack = 1;
5413 break;
5414 case QEMU_OPTION_rtc_td_hack:
5415 rtc_td_hack = 1;
5416 break;
5417 case QEMU_OPTION_acpitable:
5418 if(acpi_table_add(optarg) < 0) {
5419 fprintf(stderr, "Wrong acpi table provided\n");
5420 exit(1);
5421 }
5422 break;
5423 case QEMU_OPTION_smbios:
5424 if(smbios_entry_add(optarg) < 0) {
5425 fprintf(stderr, "Wrong smbios provided\n");
5426 exit(1);
5427 }
5428 break;
5429 #endif
5430 #ifdef CONFIG_KQEMU
5431 case QEMU_OPTION_enable_kqemu:
5432 kqemu_allowed = 1;
5433 break;
5434 case QEMU_OPTION_kernel_kqemu:
5435 kqemu_allowed = 2;
5436 break;
5437 #endif
5438 #ifdef CONFIG_KVM
5439 case QEMU_OPTION_enable_kvm:
5440 kvm_allowed = 1;
5441 #ifdef CONFIG_KQEMU
5442 kqemu_allowed = 0;
5443 #endif
5444 break;
5445 #endif
5446 case QEMU_OPTION_usb:
5447 usb_enabled = 1;
5448 break;
5449 case QEMU_OPTION_usbdevice:
5450 usb_enabled = 1;
5451 add_device_config(DEV_USB, optarg);
5452 break;
5453 case QEMU_OPTION_device:
5454 add_device_config(DEV_GENERIC, optarg);
5455 break;
5456 case QEMU_OPTION_smp:
5457 {
5458 char *p;
5459 char option[128];
5460 smp_cpus = strtol(optarg, &p, 10);
5461 if (smp_cpus < 1) {
5462 fprintf(stderr, "Invalid number of CPUs\n");
5463 exit(1);
5464 }
5465 if (*p++ != ',')
5466 break;
5467 if (get_param_value(option, 128, "maxcpus", p))
5468 max_cpus = strtol(option, NULL, 0);
5469 if (max_cpus < smp_cpus) {
5470 fprintf(stderr, "maxcpus must be equal to or greater than "
5471 "smp\n");
5472 exit(1);
5473 }
5474 if (max_cpus > 255) {
5475 fprintf(stderr, "Unsupported number of maxcpus\n");
5476 exit(1);
5477 }
5478 break;
5479 }
5480 case QEMU_OPTION_vnc:
5481 display_type = DT_VNC;
5482 vnc_display = optarg;
5483 break;
5484 #ifdef TARGET_I386
5485 case QEMU_OPTION_no_acpi:
5486 acpi_enabled = 0;
5487 break;
5488 case QEMU_OPTION_no_hpet:
5489 no_hpet = 1;
5490 break;
5491 case QEMU_OPTION_balloon:
5492 if (balloon_parse(optarg) < 0) {
5493 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5494 exit(1);
5495 }
5496 break;
5497 #endif
5498 case QEMU_OPTION_no_reboot:
5499 no_reboot = 1;
5500 break;
5501 case QEMU_OPTION_no_shutdown:
5502 no_shutdown = 1;
5503 break;
5504 case QEMU_OPTION_show_cursor:
5505 cursor_hide = 0;
5506 break;
5507 case QEMU_OPTION_uuid:
5508 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5509 fprintf(stderr, "Fail to parse UUID string."
5510 " Wrong format.\n");
5511 exit(1);
5512 }
5513 break;
5514 #ifndef _WIN32
5515 case QEMU_OPTION_daemonize:
5516 daemonize = 1;
5517 break;
5518 #endif
5519 case QEMU_OPTION_option_rom:
5520 if (nb_option_roms >= MAX_OPTION_ROMS) {
5521 fprintf(stderr, "Too many option ROMs\n");
5522 exit(1);
5523 }
5524 option_rom[nb_option_roms] = optarg;
5525 nb_option_roms++;
5526 break;
5527 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5528 case QEMU_OPTION_semihosting:
5529 semihosting_enabled = 1;
5530 break;
5531 #endif
5532 case QEMU_OPTION_name:
5533 qemu_name = qemu_strdup(optarg);
5534 {
5535 char *p = strchr(qemu_name, ',');
5536 if (p != NULL) {
5537 *p++ = 0;
5538 if (strncmp(p, "process=", 8)) {
5539 fprintf(stderr, "Unknown subargument %s to -name", p);
5540 exit(1);
5541 }
5542 p += 8;
5543 set_proc_name(p);
5544 }
5545 }
5546 break;
5547 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5548 case QEMU_OPTION_prom_env:
5549 if (nb_prom_envs >= MAX_PROM_ENVS) {
5550 fprintf(stderr, "Too many prom variables\n");
5551 exit(1);
5552 }
5553 prom_envs[nb_prom_envs] = optarg;
5554 nb_prom_envs++;
5555 break;
5556 #endif
5557 #ifdef TARGET_ARM
5558 case QEMU_OPTION_old_param:
5559 old_param = 1;
5560 break;
5561 #endif
5562 case QEMU_OPTION_clock:
5563 configure_alarms(optarg);
5564 break;
5565 case QEMU_OPTION_startdate:
5566 {
5567 struct tm tm;
5568 time_t rtc_start_date;
5569 if (!strcmp(optarg, "now")) {
5570 rtc_date_offset = -1;
5571 } else {
5572 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5573 &tm.tm_year,
5574 &tm.tm_mon,
5575 &tm.tm_mday,
5576 &tm.tm_hour,
5577 &tm.tm_min,
5578 &tm.tm_sec) == 6) {
5579 /* OK */
5580 } else if (sscanf(optarg, "%d-%d-%d",
5581 &tm.tm_year,
5582 &tm.tm_mon,
5583 &tm.tm_mday) == 3) {
5584 tm.tm_hour = 0;
5585 tm.tm_min = 0;
5586 tm.tm_sec = 0;
5587 } else {
5588 goto date_fail;
5589 }
5590 tm.tm_year -= 1900;
5591 tm.tm_mon--;
5592 rtc_start_date = mktimegm(&tm);
5593 if (rtc_start_date == -1) {
5594 date_fail:
5595 fprintf(stderr, "Invalid date format. Valid format are:\n"
5596 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5597 exit(1);
5598 }
5599 rtc_date_offset = time(NULL) - rtc_start_date;
5600 }
5601 }
5602 break;
5603 case QEMU_OPTION_tb_size:
5604 tb_size = strtol(optarg, NULL, 0);
5605 if (tb_size < 0)
5606 tb_size = 0;
5607 break;
5608 case QEMU_OPTION_icount:
5609 use_icount = 1;
5610 if (strcmp(optarg, "auto") == 0) {
5611 icount_time_shift = -1;
5612 } else {
5613 icount_time_shift = strtol(optarg, NULL, 0);
5614 }
5615 break;
5616 case QEMU_OPTION_incoming:
5617 incoming = optarg;
5618 break;
5619 #ifndef _WIN32
5620 case QEMU_OPTION_chroot:
5621 chroot_dir = optarg;
5622 break;
5623 case QEMU_OPTION_runas:
5624 run_as = optarg;
5625 break;
5626 #endif
5627 #ifdef CONFIG_XEN
5628 case QEMU_OPTION_xen_domid:
5629 xen_domid = atoi(optarg);
5630 break;
5631 case QEMU_OPTION_xen_create:
5632 xen_mode = XEN_CREATE;
5633 break;
5634 case QEMU_OPTION_xen_attach:
5635 xen_mode = XEN_ATTACH;
5636 break;
5637 #endif
5638 }
5639 }
5640 }
5641
5642 /* If no data_dir is specified then try to find it relative to the
5643 executable path. */
5644 if (!data_dir) {
5645 data_dir = find_datadir(argv[0]);
5646 }
5647 /* If all else fails use the install patch specified when building. */
5648 if (!data_dir) {
5649 data_dir = CONFIG_QEMU_SHAREDIR;
5650 }
5651
5652 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5653 if (kvm_allowed && kqemu_allowed) {
5654 fprintf(stderr,
5655 "You can not enable both KVM and kqemu at the same time\n");
5656 exit(1);
5657 }
5658 #endif
5659
5660 /*
5661 * Default to max_cpus = smp_cpus, in case the user doesn't
5662 * specify a max_cpus value.
5663 */
5664 if (!max_cpus)
5665 max_cpus = smp_cpus;
5666
5667 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5668 if (smp_cpus > machine->max_cpus) {
5669 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5670 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5671 machine->max_cpus);
5672 exit(1);
5673 }
5674
5675 if (display_type == DT_NOGRAPHIC) {
5676 if (serial_device_index == 0)
5677 serial_devices[0] = "stdio";
5678 if (parallel_device_index == 0)
5679 parallel_devices[0] = "null";
5680 if (strncmp(monitor_device, "vc", 2) == 0)
5681 monitor_device = "stdio";
5682 }
5683
5684 #ifndef _WIN32
5685 if (daemonize) {
5686 pid_t pid;
5687
5688 if (pipe(fds) == -1)
5689 exit(1);
5690
5691 pid = fork();
5692 if (pid > 0) {
5693 uint8_t status;
5694 ssize_t len;
5695
5696 close(fds[1]);
5697
5698 again:
5699 len = read(fds[0], &status, 1);
5700 if (len == -1 && (errno == EINTR))
5701 goto again;
5702
5703 if (len != 1)
5704 exit(1);
5705 else if (status == 1) {
5706 fprintf(stderr, "Could not acquire pidfile\n");
5707 exit(1);
5708 } else
5709 exit(0);
5710 } else if (pid < 0)
5711 exit(1);
5712
5713 setsid();
5714
5715 pid = fork();
5716 if (pid > 0)
5717 exit(0);
5718 else if (pid < 0)
5719 exit(1);
5720
5721 umask(027);
5722
5723 signal(SIGTSTP, SIG_IGN);
5724 signal(SIGTTOU, SIG_IGN);
5725 signal(SIGTTIN, SIG_IGN);
5726 }
5727
5728 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5729 if (daemonize) {
5730 uint8_t status = 1;
5731 write(fds[1], &status, 1);
5732 } else
5733 fprintf(stderr, "Could not acquire pid file\n");
5734 exit(1);
5735 }
5736 #endif
5737
5738 #ifdef CONFIG_KQEMU
5739 if (smp_cpus > 1)
5740 kqemu_allowed = 0;
5741 #endif
5742 if (qemu_init_main_loop()) {
5743 fprintf(stderr, "qemu_init_main_loop failed\n");
5744 exit(1);
5745 }
5746 linux_boot = (kernel_filename != NULL);
5747
5748 if (!linux_boot && *kernel_cmdline != '\0') {
5749 fprintf(stderr, "-append only allowed with -kernel option\n");
5750 exit(1);
5751 }
5752
5753 if (!linux_boot && initrd_filename != NULL) {
5754 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5755 exit(1);
5756 }
5757
5758 setvbuf(stdout, NULL, _IOLBF, 0);
5759
5760 init_timers();
5761 if (init_timer_alarm() < 0) {
5762 fprintf(stderr, "could not initialize alarm timer\n");
5763 exit(1);
5764 }
5765 if (use_icount && icount_time_shift < 0) {
5766 use_icount = 2;
5767 /* 125MIPS seems a reasonable initial guess at the guest speed.
5768 It will be corrected fairly quickly anyway. */
5769 icount_time_shift = 3;
5770 init_icount_adjust();
5771 }
5772
5773 #ifdef _WIN32
5774 socket_init();
5775 #endif
5776
5777 /* init network clients */
5778 if (nb_net_clients == 0) {
5779 /* if no clients, we use a default config */
5780 net_clients[nb_net_clients++] = "nic";
5781 #ifdef CONFIG_SLIRP
5782 net_clients[nb_net_clients++] = "user";
5783 #endif
5784 }
5785
5786 for(i = 0;i < nb_net_clients; i++) {
5787 if (net_client_parse(net_clients[i]) < 0)
5788 exit(1);
5789 }
5790
5791 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5792 net_set_boot_mask(net_boot);
5793
5794 net_client_check();
5795
5796 /* init the bluetooth world */
5797 if (foreach_device_config(DEV_BT, bt_parse))
5798 exit(1);
5799
5800 /* init the memory */
5801 if (ram_size == 0)
5802 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5803
5804 #ifdef CONFIG_KQEMU
5805 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5806 guest ram allocation. It needs to go away. */
5807 if (kqemu_allowed) {
5808 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5809 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5810 if (!kqemu_phys_ram_base) {
5811 fprintf(stderr, "Could not allocate physical memory\n");
5812 exit(1);
5813 }
5814 }
5815 #endif
5816
5817 /* init the dynamic translator */
5818 cpu_exec_init_all(tb_size * 1024 * 1024);
5819
5820 bdrv_init();
5821
5822 /* we always create the cdrom drive, even if no disk is there */
5823 drive_add(NULL, CDROM_ALIAS);
5824
5825 /* we always create at least one floppy */
5826 drive_add(NULL, FD_ALIAS, 0);
5827
5828 /* we always create one sd slot, even if no card is in it */
5829 drive_add(NULL, SD_ALIAS);
5830
5831 /* open the virtual block devices */
5832 if (snapshot)
5833 qemu_opts_foreach(&drive_opt_list, drive_enable_snapshot, NULL, 0);
5834 if (qemu_opts_foreach(&drive_opt_list, drive_init_func, machine, 1) != 0)
5835 exit(1);
5836
5837 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5838 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5839
5840 #ifndef _WIN32
5841 /* must be after terminal init, SDL library changes signal handlers */
5842 sighandler_setup();
5843 #endif
5844
5845 /* Maintain compatibility with multiple stdio monitors */
5846 if (!strcmp(monitor_device,"stdio")) {
5847 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5848 const char *devname = serial_devices[i];
5849 if (devname && !strcmp(devname,"mon:stdio")) {
5850 monitor_device = NULL;
5851 break;
5852 } else if (devname && !strcmp(devname,"stdio")) {
5853 monitor_device = NULL;
5854 serial_devices[i] = "mon:stdio";
5855 break;
5856 }
5857 }
5858 }
5859
5860 if (nb_numa_nodes > 0) {
5861 int i;
5862
5863 if (nb_numa_nodes > smp_cpus) {
5864 nb_numa_nodes = smp_cpus;
5865 }
5866
5867 /* If no memory size if given for any node, assume the default case
5868 * and distribute the available memory equally across all nodes
5869 */
5870 for (i = 0; i < nb_numa_nodes; i++) {
5871 if (node_mem[i] != 0)
5872 break;
5873 }
5874 if (i == nb_numa_nodes) {
5875 uint64_t usedmem = 0;
5876
5877 /* On Linux, the each node's border has to be 8MB aligned,
5878 * the final node gets the rest.
5879 */
5880 for (i = 0; i < nb_numa_nodes - 1; i++) {
5881 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5882 usedmem += node_mem[i];
5883 }
5884 node_mem[i] = ram_size - usedmem;
5885 }
5886
5887 for (i = 0; i < nb_numa_nodes; i++) {
5888 if (node_cpumask[i] != 0)
5889 break;
5890 }
5891 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5892 * must cope with this anyway, because there are BIOSes out there in
5893 * real machines which also use this scheme.
5894 */
5895 if (i == nb_numa_nodes) {
5896 for (i = 0; i < smp_cpus; i++) {
5897 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5898 }
5899 }
5900 }
5901
5902 if (kvm_enabled()) {
5903 int ret;
5904
5905 ret = kvm_init(smp_cpus);
5906 if (ret < 0) {
5907 fprintf(stderr, "failed to initialize KVM\n");
5908 exit(1);
5909 }
5910 }
5911
5912 if (monitor_device) {
5913 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5914 if (!monitor_hd) {
5915 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5916 exit(1);
5917 }
5918 }
5919
5920 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5921 const char *devname = serial_devices[i];
5922 if (devname && strcmp(devname, "none")) {
5923 char label[32];
5924 snprintf(label, sizeof(label), "serial%d", i);
5925 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5926 if (!serial_hds[i]) {
5927 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5928 devname);
5929 exit(1);
5930 }
5931 }
5932 }
5933
5934 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5935 const char *devname = parallel_devices[i];
5936 if (devname && strcmp(devname, "none")) {
5937 char label[32];
5938 snprintf(label, sizeof(label), "parallel%d", i);
5939 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5940 if (!parallel_hds[i]) {
5941 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5942 devname);
5943 exit(1);
5944 }
5945 }
5946 }
5947
5948 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5949 const char *devname = virtio_consoles[i];
5950 if (devname && strcmp(devname, "none")) {
5951 char label[32];
5952 snprintf(label, sizeof(label), "virtcon%d", i);
5953 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5954 if (!virtcon_hds[i]) {
5955 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5956 devname);
5957 exit(1);
5958 }
5959 }
5960 }
5961
5962 module_call_init(MODULE_INIT_DEVICE);
5963
5964 if (machine->compat_props) {
5965 qdev_prop_register_compat(machine->compat_props);
5966 }
5967 machine->init(ram_size, boot_devices,
5968 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5969
5970
5971 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5972 for (i = 0; i < nb_numa_nodes; i++) {
5973 if (node_cpumask[i] & (1 << env->cpu_index)) {
5974 env->numa_node = i;
5975 }
5976 }
5977 }
5978
5979 current_machine = machine;
5980
5981 /* init USB devices */
5982 if (usb_enabled) {
5983 foreach_device_config(DEV_USB, usb_parse);
5984 }
5985
5986 /* init generic devices */
5987 if (foreach_device_config(DEV_GENERIC, generic_parse))
5988 exit(1);
5989
5990 if (!display_state)
5991 dumb_display_init();
5992 /* just use the first displaystate for the moment */
5993 ds = display_state;
5994
5995 if (display_type == DT_DEFAULT) {
5996 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5997 display_type = DT_SDL;
5998 #else
5999 display_type = DT_VNC;
6000 vnc_display = "localhost:0,to=99";
6001 show_vnc_port = 1;
6002 #endif
6003 }
6004
6005
6006 switch (display_type) {
6007 case DT_NOGRAPHIC:
6008 break;
6009 #if defined(CONFIG_CURSES)
6010 case DT_CURSES:
6011 curses_display_init(ds, full_screen);
6012 break;
6013 #endif
6014 #if defined(CONFIG_SDL)
6015 case DT_SDL:
6016 sdl_display_init(ds, full_screen, no_frame);
6017 break;
6018 #elif defined(CONFIG_COCOA)
6019 case DT_SDL:
6020 cocoa_display_init(ds, full_screen);
6021 break;
6022 #endif
6023 case DT_VNC:
6024 vnc_display_init(ds);
6025 if (vnc_display_open(ds, vnc_display) < 0)
6026 exit(1);
6027
6028 if (show_vnc_port) {
6029 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6030 }
6031 break;
6032 default:
6033 break;
6034 }
6035 dpy_resize(ds);
6036
6037 dcl = ds->listeners;
6038 while (dcl != NULL) {
6039 if (dcl->dpy_refresh != NULL) {
6040 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6041 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6042 }
6043 dcl = dcl->next;
6044 }
6045
6046 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6047 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6048 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6049 }
6050
6051 text_consoles_set_display(display_state);
6052 qemu_chr_initial_reset();
6053
6054 if (monitor_device && monitor_hd)
6055 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6056
6057 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6058 const char *devname = serial_devices[i];
6059 if (devname && strcmp(devname, "none")) {
6060 if (strstart(devname, "vc", 0))
6061 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6062 }
6063 }
6064
6065 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6066 const char *devname = parallel_devices[i];
6067 if (devname && strcmp(devname, "none")) {
6068 if (strstart(devname, "vc", 0))
6069 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6070 }
6071 }
6072
6073 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6074 const char *devname = virtio_consoles[i];
6075 if (virtcon_hds[i] && devname) {
6076 if (strstart(devname, "vc", 0))
6077 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6078 }
6079 }
6080
6081 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6082 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6083 gdbstub_dev);
6084 exit(1);
6085 }
6086
6087 if (loadvm)
6088 do_loadvm(cur_mon, loadvm);
6089
6090 if (incoming)
6091 qemu_start_incoming_migration(incoming);
6092
6093 if (autostart)
6094 vm_start();
6095
6096 #ifndef _WIN32
6097 if (daemonize) {
6098 uint8_t status = 0;
6099 ssize_t len;
6100
6101 again1:
6102 len = write(fds[1], &status, 1);
6103 if (len == -1 && (errno == EINTR))
6104 goto again1;
6105
6106 if (len != 1)
6107 exit(1);
6108
6109 chdir("/");
6110 TFR(fd = open("/dev/null", O_RDWR));
6111 if (fd == -1)
6112 exit(1);
6113 }
6114
6115 if (run_as) {
6116 pwd = getpwnam(run_as);
6117 if (!pwd) {
6118 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6119 exit(1);
6120 }
6121 }
6122
6123 if (chroot_dir) {
6124 if (chroot(chroot_dir) < 0) {
6125 fprintf(stderr, "chroot failed\n");
6126 exit(1);
6127 }
6128 chdir("/");
6129 }
6130
6131 if (run_as) {
6132 if (setgid(pwd->pw_gid) < 0) {
6133 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6134 exit(1);
6135 }
6136 if (setuid(pwd->pw_uid) < 0) {
6137 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6138 exit(1);
6139 }
6140 if (setuid(0) != -1) {
6141 fprintf(stderr, "Dropping privileges failed\n");
6142 exit(1);
6143 }
6144 }
6145
6146 if (daemonize) {
6147 dup2(fd, 0);
6148 dup2(fd, 1);
6149 dup2(fd, 2);
6150
6151 close(fd);
6152 }
6153 #endif
6154
6155 main_loop();
6156 quit_timers();
6157 net_cleanup();
6158
6159 return 0;
6160 }