]> git.proxmox.com Git - mirror_spl-debian.git/blob - include/sys/kmem.h
d5d3061a59c4158bd33930370d17378afbdbc45b
[mirror_spl-debian.git] / include / sys / kmem.h
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 \*****************************************************************************/
24
25 #ifndef _SPL_KMEM_H
26 #define _SPL_KMEM_H
27
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/spinlock.h>
32 #include <linux/rwsem.h>
33 #include <linux/hash.h>
34 #include <linux/rbtree.h>
35 #include <linux/ctype.h>
36 #include <asm/atomic.h>
37 #include <sys/types.h>
38 #include <sys/vmsystm.h>
39 #include <sys/kstat.h>
40 #include <sys/taskq.h>
41
42 /*
43 * Memory allocation interfaces
44 */
45 #define KM_SLEEP GFP_KERNEL /* Can sleep, never fails */
46 #define KM_NOSLEEP GFP_ATOMIC /* Can not sleep, may fail */
47 #define KM_PUSHPAGE (GFP_NOIO | __GFP_HIGH) /* Use reserved memory */
48 #define KM_NODEBUG __GFP_NOWARN /* Suppress warnings */
49 #define KM_FLAGS __GFP_BITS_MASK
50 #define KM_VMFLAGS GFP_LEVEL_MASK
51
52 /*
53 * Used internally, the kernel does not need to support this flag
54 */
55 #ifndef __GFP_ZERO
56 # define __GFP_ZERO 0x8000
57 #endif
58
59 /*
60 * PF_NOFS is a per-process debug flag which is set in current->flags to
61 * detect when a process is performing an unsafe allocation. All tasks
62 * with PF_NOFS set must strictly use KM_PUSHPAGE for allocations because
63 * if they enter direct reclaim and initiate I/O the may deadlock.
64 *
65 * When debugging is disabled, any incorrect usage will be detected and
66 * a call stack with warning will be printed to the console. The flags
67 * will then be automatically corrected to allow for safe execution. If
68 * debugging is enabled this will be treated as a fatal condition.
69 *
70 * To avoid any risk of conflicting with the existing PF_ flags. The
71 * PF_NOFS bit shadows the rarely used PF_MUTEX_TESTER bit. Only when
72 * CONFIG_RT_MUTEX_TESTER is not set, and we know this bit is unused,
73 * will the PF_NOFS bit be valid. Happily, most existing distributions
74 * ship a kernel with CONFIG_RT_MUTEX_TESTER disabled.
75 */
76 #if !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER)
77 # define PF_NOFS PF_MUTEX_TESTER
78
79 static inline void
80 sanitize_flags(struct task_struct *p, gfp_t *flags)
81 {
82 if (unlikely((p->flags & PF_NOFS) && (*flags & (__GFP_IO|__GFP_FS)))) {
83 # ifdef NDEBUG
84 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "Fixing allocation for "
85 "task %s (%d) which used GFP flags 0x%x with PF_NOFS set\n",
86 p->comm, p->pid, flags);
87 spl_debug_dumpstack(p);
88 *flags &= ~(__GFP_IO|__GFP_FS);
89 # else
90 PANIC("FATAL allocation for task %s (%d) which used GFP "
91 "flags 0x%x with PF_NOFS set\n", p->comm, p->pid, flags);
92 # endif /* NDEBUG */
93 }
94 }
95 #else
96 # define PF_NOFS 0x00000000
97 # define sanitize_flags(p, fl) ((void)0)
98 #endif /* !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER) */
99
100 /*
101 * __GFP_NOFAIL looks like it will be removed from the kernel perhaps as
102 * early as 2.6.32. To avoid this issue when it occurs in upstream kernels
103 * we retry the allocation here as long as it is not __GFP_WAIT (GFP_ATOMIC).
104 * I would prefer the caller handle the failure case cleanly but we are
105 * trying to emulate Solaris and those are not the Solaris semantics.
106 */
107 static inline void *
108 kmalloc_nofail(size_t size, gfp_t flags)
109 {
110 void *ptr;
111
112 sanitize_flags(current, &flags);
113
114 do {
115 ptr = kmalloc(size, flags);
116 } while (ptr == NULL && (flags & __GFP_WAIT));
117
118 return ptr;
119 }
120
121 static inline void *
122 kzalloc_nofail(size_t size, gfp_t flags)
123 {
124 void *ptr;
125
126 sanitize_flags(current, &flags);
127
128 do {
129 ptr = kzalloc(size, flags);
130 } while (ptr == NULL && (flags & __GFP_WAIT));
131
132 return ptr;
133 }
134
135 static inline void *
136 kmalloc_node_nofail(size_t size, gfp_t flags, int node)
137 {
138 #ifdef HAVE_KMALLOC_NODE
139 void *ptr;
140
141 sanitize_flags(current, &flags);
142
143 do {
144 ptr = kmalloc_node(size, flags, node);
145 } while (ptr == NULL && (flags & __GFP_WAIT));
146
147 return ptr;
148 #else
149 return kmalloc_nofail(size, flags);
150 #endif /* HAVE_KMALLOC_NODE */
151 }
152
153 static inline void *
154 vmalloc_nofail(size_t size, gfp_t flags)
155 {
156 void *ptr;
157
158 sanitize_flags(current, &flags);
159
160 /*
161 * Retry failed __vmalloc() allocations once every second. The
162 * rational for the delay is that the likely failure modes are:
163 *
164 * 1) The system has completely exhausted memory, in which case
165 * delaying 1 second for the memory reclaim to run is reasonable
166 * to avoid thrashing the system.
167 * 2) The system has memory but has exhausted the small virtual
168 * address space available on 32-bit systems. Retrying the
169 * allocation immediately will only result in spinning on the
170 * virtual address space lock. It is better delay a second and
171 * hope that another process will free some of the address space.
172 * But the bottom line is there is not much we can actually do
173 * since we can never safely return a failure and honor the
174 * Solaris semantics.
175 */
176 while (1) {
177 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
178 if (unlikely((ptr == NULL) && (flags & __GFP_WAIT))) {
179 set_current_state(TASK_INTERRUPTIBLE);
180 schedule_timeout(HZ);
181 } else {
182 break;
183 }
184 }
185
186 return ptr;
187 }
188
189 static inline void *
190 vzalloc_nofail(size_t size, gfp_t flags)
191 {
192 void *ptr;
193
194 ptr = vmalloc_nofail(size, flags);
195 if (ptr)
196 memset(ptr, 0, (size));
197
198 return ptr;
199 }
200
201 #ifdef DEBUG_KMEM
202
203 /*
204 * Memory accounting functions to be used only when DEBUG_KMEM is set.
205 */
206 # ifdef HAVE_ATOMIC64_T
207
208 # define kmem_alloc_used_add(size) atomic64_add(size, &kmem_alloc_used)
209 # define kmem_alloc_used_sub(size) atomic64_sub(size, &kmem_alloc_used)
210 # define kmem_alloc_used_read() atomic64_read(&kmem_alloc_used)
211 # define kmem_alloc_used_set(size) atomic64_set(&kmem_alloc_used, size)
212 # define vmem_alloc_used_add(size) atomic64_add(size, &vmem_alloc_used)
213 # define vmem_alloc_used_sub(size) atomic64_sub(size, &vmem_alloc_used)
214 # define vmem_alloc_used_read() atomic64_read(&vmem_alloc_used)
215 # define vmem_alloc_used_set(size) atomic64_set(&vmem_alloc_used, size)
216
217 extern atomic64_t kmem_alloc_used;
218 extern unsigned long long kmem_alloc_max;
219 extern atomic64_t vmem_alloc_used;
220 extern unsigned long long vmem_alloc_max;
221
222 # else /* HAVE_ATOMIC64_T */
223
224 # define kmem_alloc_used_add(size) atomic_add(size, &kmem_alloc_used)
225 # define kmem_alloc_used_sub(size) atomic_sub(size, &kmem_alloc_used)
226 # define kmem_alloc_used_read() atomic_read(&kmem_alloc_used)
227 # define kmem_alloc_used_set(size) atomic_set(&kmem_alloc_used, size)
228 # define vmem_alloc_used_add(size) atomic_add(size, &vmem_alloc_used)
229 # define vmem_alloc_used_sub(size) atomic_sub(size, &vmem_alloc_used)
230 # define vmem_alloc_used_read() atomic_read(&vmem_alloc_used)
231 # define vmem_alloc_used_set(size) atomic_set(&vmem_alloc_used, size)
232
233 extern atomic_t kmem_alloc_used;
234 extern unsigned long long kmem_alloc_max;
235 extern atomic_t vmem_alloc_used;
236 extern unsigned long long vmem_alloc_max;
237
238 # endif /* HAVE_ATOMIC64_T */
239
240 # ifdef DEBUG_KMEM_TRACKING
241 /*
242 * DEBUG_KMEM && DEBUG_KMEM_TRACKING
243 *
244 * The maximum level of memory debugging. All memory will be accounted
245 * for and each allocation will be explicitly tracked. Any allocation
246 * which is leaked will be reported on module unload and the exact location
247 * where that memory was allocation will be reported. This level of memory
248 * tracking will have a significant impact on performance and should only
249 * be enabled for debugging. This feature may be enabled by passing
250 * --enable-debug-kmem-tracking to configure.
251 */
252 # define kmem_alloc(sz, fl) kmem_alloc_track((sz), (fl), \
253 __FUNCTION__, __LINE__, 0, 0)
254 # define kmem_zalloc(sz, fl) kmem_alloc_track((sz), (fl)|__GFP_ZERO,\
255 __FUNCTION__, __LINE__, 0, 0)
256 # define kmem_alloc_node(sz, fl, nd) kmem_alloc_track((sz), (fl), \
257 __FUNCTION__, __LINE__, 1, nd)
258 # define kmem_free(ptr, sz) kmem_free_track((ptr), (sz))
259
260 # define vmem_alloc(sz, fl) vmem_alloc_track((sz), (fl), \
261 __FUNCTION__, __LINE__)
262 # define vmem_zalloc(sz, fl) vmem_alloc_track((sz), (fl)|__GFP_ZERO,\
263 __FUNCTION__, __LINE__)
264 # define vmem_free(ptr, sz) vmem_free_track((ptr), (sz))
265
266 extern void *kmem_alloc_track(size_t, int, const char *, int, int, int);
267 extern void kmem_free_track(const void *, size_t);
268 extern void *vmem_alloc_track(size_t, int, const char *, int);
269 extern void vmem_free_track(const void *, size_t);
270
271 # else /* DEBUG_KMEM_TRACKING */
272 /*
273 * DEBUG_KMEM && !DEBUG_KMEM_TRACKING
274 *
275 * The default build will set DEBUG_KEM. This provides basic memory
276 * accounting with little to no impact on performance. When the module
277 * is unloaded in any memory was leaked the total number of leaked bytes
278 * will be reported on the console. To disable this basic accounting
279 * pass the --disable-debug-kmem option to configure.
280 */
281 # define kmem_alloc(sz, fl) kmem_alloc_debug((sz), (fl), \
282 __FUNCTION__, __LINE__, 0, 0)
283 # define kmem_zalloc(sz, fl) kmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
284 __FUNCTION__, __LINE__, 0, 0)
285 # define kmem_alloc_node(sz, fl, nd) kmem_alloc_debug((sz), (fl), \
286 __FUNCTION__, __LINE__, 1, nd)
287 # define kmem_free(ptr, sz) kmem_free_debug((ptr), (sz))
288
289 # define vmem_alloc(sz, fl) vmem_alloc_debug((sz), (fl), \
290 __FUNCTION__, __LINE__)
291 # define vmem_zalloc(sz, fl) vmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
292 __FUNCTION__, __LINE__)
293 # define vmem_free(ptr, sz) vmem_free_debug((ptr), (sz))
294
295 extern void *kmem_alloc_debug(size_t, int, const char *, int, int, int);
296 extern void kmem_free_debug(const void *, size_t);
297 extern void *vmem_alloc_debug(size_t, int, const char *, int);
298 extern void vmem_free_debug(const void *, size_t);
299
300 # endif /* DEBUG_KMEM_TRACKING */
301 #else /* DEBUG_KMEM */
302 /*
303 * !DEBUG_KMEM && !DEBUG_KMEM_TRACKING
304 *
305 * All debugging is disabled. There will be no overhead even for
306 * minimal memory accounting. To enable basic accounting pass the
307 * --enable-debug-kmem option to configure.
308 */
309 # define kmem_alloc(sz, fl) kmalloc_nofail((sz), (fl))
310 # define kmem_zalloc(sz, fl) kzalloc_nofail((sz), (fl))
311 # define kmem_alloc_node(sz, fl, nd) kmalloc_node_nofail((sz), (fl), (nd))
312 # define kmem_free(ptr, sz) ((void)(sz), kfree(ptr))
313
314 # define vmem_alloc(sz, fl) vmalloc_nofail((sz), (fl))
315 # define vmem_zalloc(sz, fl) vzalloc_nofail((sz), (fl))
316 # define vmem_free(ptr, sz) ((void)(sz), vfree(ptr))
317
318 #endif /* DEBUG_KMEM */
319
320 extern int kmem_debugging(void);
321 extern char *kmem_vasprintf(const char *fmt, va_list ap);
322 extern char *kmem_asprintf(const char *fmt, ...);
323 extern char *strdup(const char *str);
324 extern void strfree(char *str);
325
326
327 /*
328 * Slab allocation interfaces. The SPL slab differs from the standard
329 * Linux SLAB or SLUB primarily in that each cache may be backed by slabs
330 * allocated from the physical or virtal memory address space. The virtual
331 * slabs allow for good behavior when allocation large objects of identical
332 * size. This slab implementation also supports both constructors and
333 * destructions which the Linux slab does not.
334 */
335 enum {
336 KMC_BIT_NOTOUCH = 0, /* Don't update ages */
337 KMC_BIT_NODEBUG = 1, /* Default behavior */
338 KMC_BIT_NOMAGAZINE = 2, /* XXX: Unsupported */
339 KMC_BIT_NOHASH = 3, /* XXX: Unsupported */
340 KMC_BIT_QCACHE = 4, /* XXX: Unsupported */
341 KMC_BIT_KMEM = 5, /* Use kmem cache */
342 KMC_BIT_VMEM = 6, /* Use vmem cache */
343 KMC_BIT_OFFSLAB = 7, /* Objects not on slab */
344 KMC_BIT_NOEMERGENCY = 8, /* Disable emergency objects */
345 KMC_BIT_DEADLOCKED = 14, /* Deadlock detected */
346 KMC_BIT_GROWING = 15, /* Growing in progress */
347 KMC_BIT_REAPING = 16, /* Reaping in progress */
348 KMC_BIT_DESTROY = 17, /* Destroy in progress */
349 KMC_BIT_TOTAL = 18, /* Proc handler helper bit */
350 KMC_BIT_ALLOC = 19, /* Proc handler helper bit */
351 KMC_BIT_MAX = 20, /* Proc handler helper bit */
352 };
353
354 /* kmem move callback return values */
355 typedef enum kmem_cbrc {
356 KMEM_CBRC_YES = 0, /* Object moved */
357 KMEM_CBRC_NO = 1, /* Object not moved */
358 KMEM_CBRC_LATER = 2, /* Object not moved, try again later */
359 KMEM_CBRC_DONT_NEED = 3, /* Neither object is needed */
360 KMEM_CBRC_DONT_KNOW = 4, /* Object unknown */
361 } kmem_cbrc_t;
362
363 #define KMC_NOTOUCH (1 << KMC_BIT_NOTOUCH)
364 #define KMC_NODEBUG (1 << KMC_BIT_NODEBUG)
365 #define KMC_NOMAGAZINE (1 << KMC_BIT_NOMAGAZINE)
366 #define KMC_NOHASH (1 << KMC_BIT_NOHASH)
367 #define KMC_QCACHE (1 << KMC_BIT_QCACHE)
368 #define KMC_KMEM (1 << KMC_BIT_KMEM)
369 #define KMC_VMEM (1 << KMC_BIT_VMEM)
370 #define KMC_OFFSLAB (1 << KMC_BIT_OFFSLAB)
371 #define KMC_NOEMERGENCY (1 << KMC_BIT_NOEMERGENCY)
372 #define KMC_DEADLOCKED (1 << KMC_BIT_DEADLOCKED)
373 #define KMC_GROWING (1 << KMC_BIT_GROWING)
374 #define KMC_REAPING (1 << KMC_BIT_REAPING)
375 #define KMC_DESTROY (1 << KMC_BIT_DESTROY)
376 #define KMC_TOTAL (1 << KMC_BIT_TOTAL)
377 #define KMC_ALLOC (1 << KMC_BIT_ALLOC)
378 #define KMC_MAX (1 << KMC_BIT_MAX)
379
380 #define KMC_REAP_CHUNK INT_MAX
381 #define KMC_DEFAULT_SEEKS 1
382
383 #define KMC_EXPIRE_AGE 0x1 /* Due to age */
384 #define KMC_EXPIRE_MEM 0x2 /* Due to low memory */
385
386 extern unsigned int spl_kmem_cache_expire;
387 extern struct list_head spl_kmem_cache_list;
388 extern struct rw_semaphore spl_kmem_cache_sem;
389
390 #define SKM_MAGIC 0x2e2e2e2e
391 #define SKO_MAGIC 0x20202020
392 #define SKS_MAGIC 0x22222222
393 #define SKC_MAGIC 0x2c2c2c2c
394
395 #define SPL_KMEM_CACHE_DELAY 15 /* Minimum slab release age */
396 #define SPL_KMEM_CACHE_REAP 0 /* Default reap everything */
397 #define SPL_KMEM_CACHE_OBJ_PER_SLAB 16 /* Target objects per slab */
398 #define SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN 8 /* Minimum objects per slab */
399 #define SPL_KMEM_CACHE_ALIGN 8 /* Default object alignment */
400
401 #define POINTER_IS_VALID(p) 0 /* Unimplemented */
402 #define POINTER_INVALIDATE(pp) /* Unimplemented */
403
404 typedef int (*spl_kmem_ctor_t)(void *, void *, int);
405 typedef void (*spl_kmem_dtor_t)(void *, void *);
406 typedef void (*spl_kmem_reclaim_t)(void *);
407
408 typedef struct spl_kmem_magazine {
409 uint32_t skm_magic; /* Sanity magic */
410 uint32_t skm_avail; /* Available objects */
411 uint32_t skm_size; /* Magazine size */
412 uint32_t skm_refill; /* Batch refill size */
413 struct spl_kmem_cache *skm_cache; /* Owned by cache */
414 unsigned long skm_age; /* Last cache access */
415 unsigned int skm_cpu; /* Owned by cpu */
416 void *skm_objs[0]; /* Object pointers */
417 } spl_kmem_magazine_t;
418
419 typedef struct spl_kmem_obj {
420 uint32_t sko_magic; /* Sanity magic */
421 void *sko_addr; /* Buffer address */
422 struct spl_kmem_slab *sko_slab; /* Owned by slab */
423 struct list_head sko_list; /* Free object list linkage */
424 } spl_kmem_obj_t;
425
426 typedef struct spl_kmem_slab {
427 uint32_t sks_magic; /* Sanity magic */
428 uint32_t sks_objs; /* Objects per slab */
429 struct spl_kmem_cache *sks_cache; /* Owned by cache */
430 struct list_head sks_list; /* Slab list linkage */
431 struct list_head sks_free_list; /* Free object list */
432 unsigned long sks_age; /* Last modify jiffie */
433 uint32_t sks_ref; /* Ref count used objects */
434 } spl_kmem_slab_t;
435
436 typedef struct spl_kmem_alloc {
437 struct spl_kmem_cache *ska_cache; /* Owned by cache */
438 int ska_flags; /* Allocation flags */
439 taskq_ent_t ska_tqe; /* Task queue entry */
440 } spl_kmem_alloc_t;
441
442 typedef struct spl_kmem_emergency {
443 struct rb_node ske_node; /* Emergency tree linkage */
444 void *ske_obj; /* Buffer address */
445 } spl_kmem_emergency_t;
446
447 typedef struct spl_kmem_cache {
448 uint32_t skc_magic; /* Sanity magic */
449 uint32_t skc_name_size; /* Name length */
450 char *skc_name; /* Name string */
451 spl_kmem_magazine_t *skc_mag[NR_CPUS]; /* Per-CPU warm cache */
452 uint32_t skc_mag_size; /* Magazine size */
453 uint32_t skc_mag_refill; /* Magazine refill count */
454 spl_kmem_ctor_t skc_ctor; /* Constructor */
455 spl_kmem_dtor_t skc_dtor; /* Destructor */
456 spl_kmem_reclaim_t skc_reclaim; /* Reclaimator */
457 void *skc_private; /* Private data */
458 void *skc_vmp; /* Unused */
459 unsigned long skc_flags; /* Flags */
460 uint32_t skc_obj_size; /* Object size */
461 uint32_t skc_obj_align; /* Object alignment */
462 uint32_t skc_slab_objs; /* Objects per slab */
463 uint32_t skc_slab_size; /* Slab size */
464 uint32_t skc_delay; /* Slab reclaim interval */
465 uint32_t skc_reap; /* Slab reclaim count */
466 atomic_t skc_ref; /* Ref count callers */
467 taskqid_t skc_taskqid; /* Slab reclaim task */
468 struct list_head skc_list; /* List of caches linkage */
469 struct list_head skc_complete_list;/* Completely alloc'ed */
470 struct list_head skc_partial_list; /* Partially alloc'ed */
471 struct rb_root skc_emergency_tree; /* Min sized objects */
472 spinlock_t skc_lock; /* Cache lock */
473 wait_queue_head_t skc_waitq; /* Allocation waiters */
474 uint64_t skc_slab_fail; /* Slab alloc failures */
475 uint64_t skc_slab_create;/* Slab creates */
476 uint64_t skc_slab_destroy;/* Slab destroys */
477 uint64_t skc_slab_total; /* Slab total current */
478 uint64_t skc_slab_alloc; /* Slab alloc current */
479 uint64_t skc_slab_max; /* Slab max historic */
480 uint64_t skc_obj_total; /* Obj total current */
481 uint64_t skc_obj_alloc; /* Obj alloc current */
482 uint64_t skc_obj_max; /* Obj max historic */
483 uint64_t skc_obj_deadlock; /* Obj emergency deadlocks */
484 uint64_t skc_obj_emergency; /* Obj emergency current */
485 uint64_t skc_obj_emergency_max; /* Obj emergency max */
486 } spl_kmem_cache_t;
487 #define kmem_cache_t spl_kmem_cache_t
488
489 extern spl_kmem_cache_t *spl_kmem_cache_create(char *name, size_t size,
490 size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor,
491 spl_kmem_reclaim_t reclaim, void *priv, void *vmp, int flags);
492 extern void spl_kmem_cache_set_move(spl_kmem_cache_t *,
493 kmem_cbrc_t (*)(void *, void *, size_t, void *));
494 extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc);
495 extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags);
496 extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj);
497 extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count);
498 extern void spl_kmem_reap(void);
499
500 int spl_kmem_init_kallsyms_lookup(void);
501 int spl_kmem_init(void);
502 void spl_kmem_fini(void);
503
504 #define kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) \
505 spl_kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags)
506 #define kmem_cache_set_move(skc, move) spl_kmem_cache_set_move(skc, move)
507 #define kmem_cache_destroy(skc) spl_kmem_cache_destroy(skc)
508 #define kmem_cache_alloc(skc, flags) spl_kmem_cache_alloc(skc, flags)
509 #define kmem_cache_free(skc, obj) spl_kmem_cache_free(skc, obj)
510 #define kmem_cache_reap_now(skc) \
511 spl_kmem_cache_reap_now(skc, skc->skc_reap)
512 #define kmem_reap() spl_kmem_reap()
513 #define kmem_virt(ptr) (((ptr) >= (void *)VMALLOC_START) && \
514 ((ptr) < (void *)VMALLOC_END))
515
516 #endif /* _SPL_KMEM_H */