]> git.proxmox.com Git - mirror_spl-debian.git/blob - module/spl/spl-tsd.c
4d0800e5a11f5d4b570c79d46dd33ccb3f3de1cf
[mirror_spl-debian.git] / module / spl / spl-tsd.c
1 /*
2 * Copyright (C) 2010 Lawrence Livermore National Security, LLC.
3 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
4 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
5 * UCRL-CODE-235197
6 *
7 * This file is part of the SPL, Solaris Porting Layer.
8 * For details, see <http://zfsonlinux.org/>.
9 *
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
22 *
23 *
24 * Solaris Porting Layer (SPL) Thread Specific Data Implementation.
25 *
26 * Thread specific data has implemented using a hash table, this avoids
27 * the need to add a member to the task structure and allows maximum
28 * portability between kernels. This implementation has been optimized
29 * to keep the tsd_set() and tsd_get() times as small as possible.
30 *
31 * The majority of the entries in the hash table are for specific tsd
32 * entries. These entries are hashed by the product of their key and
33 * pid because by design the key and pid are guaranteed to be unique.
34 * Their product also has the desirable properly that it will be uniformly
35 * distributed over the hash bins providing neither the pid nor key is zero.
36 * Under linux the zero pid is always the init process and thus won't be
37 * used, and this implementation is careful to never to assign a zero key.
38 * By default the hash table is sized to 512 bins which is expected to
39 * be sufficient for light to moderate usage of thread specific data.
40 *
41 * The hash table contains two additional type of entries. They first
42 * type is entry is called a 'key' entry and it is added to the hash during
43 * tsd_create(). It is used to store the address of the destructor function
44 * and it is used as an anchor point. All tsd entries which use the same
45 * key will be linked to this entry. This is used during tsd_destory() to
46 * quickly call the destructor function for all tsd associated with the key.
47 * The 'key' entry may be looked up with tsd_hash_search() by passing the
48 * key you wish to lookup and DTOR_PID constant as the pid.
49 *
50 * The second type of entry is called a 'pid' entry and it is added to the
51 * hash the first time a process set a key. The 'pid' entry is also used
52 * as an anchor and all tsd for the process will be linked to it. This
53 * list is using during tsd_exit() to ensure all registered destructors
54 * are run for the process. The 'pid' entry may be looked up with
55 * tsd_hash_search() by passing the PID_KEY constant as the key, and
56 * the process pid. Note that tsd_exit() is called by thread_exit()
57 * so if your using the Solaris thread API you should not need to call
58 * tsd_exit() directly.
59 *
60 */
61
62 #include <sys/kmem.h>
63 #include <sys/thread.h>
64 #include <sys/tsd.h>
65 #include <linux/hash.h>
66
67 typedef struct tsd_hash_bin {
68 spinlock_t hb_lock;
69 struct hlist_head hb_head;
70 } tsd_hash_bin_t;
71
72 typedef struct tsd_hash_table {
73 spinlock_t ht_lock;
74 uint_t ht_bits;
75 uint_t ht_key;
76 tsd_hash_bin_t *ht_bins;
77 } tsd_hash_table_t;
78
79 typedef struct tsd_hash_entry {
80 uint_t he_key;
81 pid_t he_pid;
82 dtor_func_t he_dtor;
83 void *he_value;
84 struct hlist_node he_list;
85 struct list_head he_key_list;
86 struct list_head he_pid_list;
87 } tsd_hash_entry_t;
88
89 static tsd_hash_table_t *tsd_hash_table = NULL;
90
91
92 /*
93 * tsd_hash_search - searches hash table for tsd_hash_entry
94 * @table: hash table
95 * @key: search key
96 * @pid: search pid
97 */
98 static tsd_hash_entry_t *
99 tsd_hash_search(tsd_hash_table_t *table, uint_t key, pid_t pid)
100 {
101 struct hlist_node *node;
102 tsd_hash_entry_t *entry;
103 tsd_hash_bin_t *bin;
104 ulong_t hash;
105
106 hash = hash_long((ulong_t)key * (ulong_t)pid, table->ht_bits);
107 bin = &table->ht_bins[hash];
108 spin_lock(&bin->hb_lock);
109 hlist_for_each(node, &bin->hb_head) {
110 entry = list_entry(node, tsd_hash_entry_t, he_list);
111 if ((entry->he_key == key) && (entry->he_pid == pid)) {
112 spin_unlock(&bin->hb_lock);
113 return (entry);
114 }
115 }
116
117 spin_unlock(&bin->hb_lock);
118 return (NULL);
119 }
120
121 /*
122 * tsd_hash_dtor - call the destructor and free all entries on the list
123 * @work: list of hash entries
124 *
125 * For a list of entries which have all already been removed from the
126 * hash call their registered destructor then free the associated memory.
127 */
128 static void
129 tsd_hash_dtor(struct hlist_head *work)
130 {
131 tsd_hash_entry_t *entry;
132
133 while (!hlist_empty(work)) {
134 entry = hlist_entry(work->first, tsd_hash_entry_t, he_list);
135 hlist_del(&entry->he_list);
136
137 if (entry->he_dtor && entry->he_pid != DTOR_PID)
138 entry->he_dtor(entry->he_value);
139
140 kmem_free(entry, sizeof (tsd_hash_entry_t));
141 }
142 }
143
144 /*
145 * tsd_hash_add - adds an entry to hash table
146 * @table: hash table
147 * @key: search key
148 * @pid: search pid
149 *
150 * The caller is responsible for ensuring the unique key/pid do not
151 * already exist in the hash table. This possible because all entries
152 * are thread specific thus a concurrent thread will never attempt to
153 * add this key/pid. Because multiple bins must be checked to add
154 * links to the dtor and pid entries the entire table is locked.
155 */
156 static int
157 tsd_hash_add(tsd_hash_table_t *table, uint_t key, pid_t pid, void *value)
158 {
159 tsd_hash_entry_t *entry, *dtor_entry, *pid_entry;
160 tsd_hash_bin_t *bin;
161 ulong_t hash;
162 int rc = 0;
163
164 ASSERT3P(tsd_hash_search(table, key, pid), ==, NULL);
165
166 /* New entry allocate structure, set value, and add to hash */
167 entry = kmem_alloc(sizeof (tsd_hash_entry_t), KM_PUSHPAGE);
168 if (entry == NULL)
169 return (ENOMEM);
170
171 entry->he_key = key;
172 entry->he_pid = pid;
173 entry->he_value = value;
174 INIT_HLIST_NODE(&entry->he_list);
175 INIT_LIST_HEAD(&entry->he_key_list);
176 INIT_LIST_HEAD(&entry->he_pid_list);
177
178 spin_lock(&table->ht_lock);
179
180 /* Destructor entry must exist for all valid keys */
181 dtor_entry = tsd_hash_search(table, entry->he_key, DTOR_PID);
182 ASSERT3P(dtor_entry, !=, NULL);
183 entry->he_dtor = dtor_entry->he_dtor;
184
185 /* Process entry must exist for all valid processes */
186 pid_entry = tsd_hash_search(table, PID_KEY, entry->he_pid);
187 ASSERT3P(pid_entry, !=, NULL);
188
189 hash = hash_long((ulong_t)key * (ulong_t)pid, table->ht_bits);
190 bin = &table->ht_bins[hash];
191 spin_lock(&bin->hb_lock);
192
193 /* Add to the hash, key, and pid lists */
194 hlist_add_head(&entry->he_list, &bin->hb_head);
195 list_add(&entry->he_key_list, &dtor_entry->he_key_list);
196 list_add(&entry->he_pid_list, &pid_entry->he_pid_list);
197
198 spin_unlock(&bin->hb_lock);
199 spin_unlock(&table->ht_lock);
200
201 return (rc);
202 }
203
204 /*
205 * tsd_hash_add_key - adds a destructor entry to the hash table
206 * @table: hash table
207 * @keyp: search key
208 * @dtor: key destructor
209 *
210 * For every unique key there is a single entry in the hash which is used
211 * as anchor. All other thread specific entries for this key are linked
212 * to this anchor via the 'he_key_list' list head. On return they keyp
213 * will be set to the next available key for the hash table.
214 */
215 static int
216 tsd_hash_add_key(tsd_hash_table_t *table, uint_t *keyp, dtor_func_t dtor)
217 {
218 tsd_hash_entry_t *tmp_entry, *entry;
219 tsd_hash_bin_t *bin;
220 ulong_t hash;
221 int keys_checked = 0;
222
223 ASSERT3P(table, !=, NULL);
224
225 /* Allocate entry to be used as a destructor for this key */
226 entry = kmem_alloc(sizeof (tsd_hash_entry_t), KM_PUSHPAGE);
227 if (entry == NULL)
228 return (ENOMEM);
229
230 /* Determine next available key value */
231 spin_lock(&table->ht_lock);
232 do {
233 /* Limited to TSD_KEYS_MAX concurrent unique keys */
234 if (table->ht_key++ > TSD_KEYS_MAX)
235 table->ht_key = 1;
236
237 /* Ensure failure when all TSD_KEYS_MAX keys are in use */
238 if (keys_checked++ >= TSD_KEYS_MAX) {
239 spin_unlock(&table->ht_lock);
240 return (ENOENT);
241 }
242
243 tmp_entry = tsd_hash_search(table, table->ht_key, DTOR_PID);
244 } while (tmp_entry);
245
246 /* Add destructor entry in to hash table */
247 entry->he_key = *keyp = table->ht_key;
248 entry->he_pid = DTOR_PID;
249 entry->he_dtor = dtor;
250 entry->he_value = NULL;
251 INIT_HLIST_NODE(&entry->he_list);
252 INIT_LIST_HEAD(&entry->he_key_list);
253 INIT_LIST_HEAD(&entry->he_pid_list);
254
255 hash = hash_long((ulong_t)*keyp * (ulong_t)DTOR_PID, table->ht_bits);
256 bin = &table->ht_bins[hash];
257 spin_lock(&bin->hb_lock);
258
259 hlist_add_head(&entry->he_list, &bin->hb_head);
260
261 spin_unlock(&bin->hb_lock);
262 spin_unlock(&table->ht_lock);
263
264 return (0);
265 }
266
267 /*
268 * tsd_hash_add_pid - adds a process entry to the hash table
269 * @table: hash table
270 * @pid: search pid
271 *
272 * For every process these is a single entry in the hash which is used
273 * as anchor. All other thread specific entries for this process are
274 * linked to this anchor via the 'he_pid_list' list head.
275 */
276 static int
277 tsd_hash_add_pid(tsd_hash_table_t *table, pid_t pid)
278 {
279 tsd_hash_entry_t *entry;
280 tsd_hash_bin_t *bin;
281 ulong_t hash;
282
283 /* Allocate entry to be used as the process reference */
284 entry = kmem_alloc(sizeof (tsd_hash_entry_t), KM_PUSHPAGE);
285 if (entry == NULL)
286 return (ENOMEM);
287
288 spin_lock(&table->ht_lock);
289 entry->he_key = PID_KEY;
290 entry->he_pid = pid;
291 entry->he_dtor = NULL;
292 entry->he_value = NULL;
293 INIT_HLIST_NODE(&entry->he_list);
294 INIT_LIST_HEAD(&entry->he_key_list);
295 INIT_LIST_HEAD(&entry->he_pid_list);
296
297 hash = hash_long((ulong_t)PID_KEY * (ulong_t)pid, table->ht_bits);
298 bin = &table->ht_bins[hash];
299 spin_lock(&bin->hb_lock);
300
301 hlist_add_head(&entry->he_list, &bin->hb_head);
302
303 spin_unlock(&bin->hb_lock);
304 spin_unlock(&table->ht_lock);
305
306 return (0);
307 }
308
309 /*
310 * tsd_hash_del - delete an entry from hash table, key, and pid lists
311 * @table: hash table
312 * @key: search key
313 * @pid: search pid
314 */
315 static void
316 tsd_hash_del(tsd_hash_table_t *table, tsd_hash_entry_t *entry)
317 {
318 ASSERT(spin_is_locked(&table->ht_lock));
319 hlist_del(&entry->he_list);
320 list_del_init(&entry->he_key_list);
321 list_del_init(&entry->he_pid_list);
322 }
323
324 /*
325 * tsd_hash_table_init - allocate a hash table
326 * @bits: hash table size
327 *
328 * A hash table with 2^bits bins will be created, it may not be resized
329 * after the fact and must be free'd with tsd_hash_table_fini().
330 */
331 static tsd_hash_table_t *
332 tsd_hash_table_init(uint_t bits)
333 {
334 tsd_hash_table_t *table;
335 int hash, size = (1 << bits);
336
337 table = kmem_zalloc(sizeof (tsd_hash_table_t), KM_SLEEP);
338 if (table == NULL)
339 return (NULL);
340
341 table->ht_bins = kmem_zalloc(sizeof (tsd_hash_bin_t) * size, KM_SLEEP);
342 if (table->ht_bins == NULL) {
343 kmem_free(table, sizeof (tsd_hash_table_t));
344 return (NULL);
345 }
346
347 for (hash = 0; hash < size; hash++) {
348 spin_lock_init(&table->ht_bins[hash].hb_lock);
349 INIT_HLIST_HEAD(&table->ht_bins[hash].hb_head);
350 }
351
352 spin_lock_init(&table->ht_lock);
353 table->ht_bits = bits;
354 table->ht_key = 1;
355
356 return (table);
357 }
358
359 /*
360 * tsd_hash_table_fini - free a hash table
361 * @table: hash table
362 *
363 * Free a hash table allocated by tsd_hash_table_init(). If the hash
364 * table is not empty this function will call the proper destructor for
365 * all remaining entries before freeing the memory used by those entries.
366 */
367 static void
368 tsd_hash_table_fini(tsd_hash_table_t *table)
369 {
370 HLIST_HEAD(work);
371 tsd_hash_bin_t *bin;
372 tsd_hash_entry_t *entry;
373 int size, i;
374
375 ASSERT3P(table, !=, NULL);
376 spin_lock(&table->ht_lock);
377 for (i = 0, size = (1 << table->ht_bits); i < size; i++) {
378 bin = &table->ht_bins[i];
379 spin_lock(&bin->hb_lock);
380 while (!hlist_empty(&bin->hb_head)) {
381 entry = hlist_entry(bin->hb_head.first,
382 tsd_hash_entry_t, he_list);
383 tsd_hash_del(table, entry);
384 hlist_add_head(&entry->he_list, &work);
385 }
386 spin_unlock(&bin->hb_lock);
387 }
388 spin_unlock(&table->ht_lock);
389
390 tsd_hash_dtor(&work);
391 kmem_free(table->ht_bins, sizeof (tsd_hash_bin_t)*(1<<table->ht_bits));
392 kmem_free(table, sizeof (tsd_hash_table_t));
393 }
394
395 /*
396 * tsd_remove_entry - remove a tsd entry for this thread
397 * @entry: entry to remove
398 *
399 * Remove the thread specific data @entry for this thread.
400 * If this is the last entry for this thread, also remove the PID entry.
401 */
402 static void
403 tsd_remove_entry(tsd_hash_entry_t *entry)
404 {
405 HLIST_HEAD(work);
406 tsd_hash_table_t *table;
407 tsd_hash_entry_t *pid_entry;
408 tsd_hash_bin_t *pid_entry_bin, *entry_bin;
409 ulong_t hash;
410
411 table = tsd_hash_table;
412 ASSERT3P(table, !=, NULL);
413 ASSERT3P(entry, !=, NULL);
414
415 spin_lock(&table->ht_lock);
416
417 hash = hash_long((ulong_t)entry->he_key *
418 (ulong_t)entry->he_pid, table->ht_bits);
419 entry_bin = &table->ht_bins[hash];
420
421 /* save the possible pid_entry */
422 pid_entry = list_entry(entry->he_pid_list.next, tsd_hash_entry_t,
423 he_pid_list);
424
425 /* remove entry */
426 spin_lock(&entry_bin->hb_lock);
427 tsd_hash_del(table, entry);
428 hlist_add_head(&entry->he_list, &work);
429 spin_unlock(&entry_bin->hb_lock);
430
431 /* if pid_entry is indeed pid_entry, then remove it if it's empty */
432 if (pid_entry->he_key == PID_KEY &&
433 list_empty(&pid_entry->he_pid_list)) {
434 hash = hash_long((ulong_t)pid_entry->he_key *
435 (ulong_t)pid_entry->he_pid, table->ht_bits);
436 pid_entry_bin = &table->ht_bins[hash];
437
438 spin_lock(&pid_entry_bin->hb_lock);
439 tsd_hash_del(table, pid_entry);
440 hlist_add_head(&pid_entry->he_list, &work);
441 spin_unlock(&pid_entry_bin->hb_lock);
442 }
443
444 spin_unlock(&table->ht_lock);
445
446 tsd_hash_dtor(&work);
447 }
448
449 /*
450 * tsd_set - set thread specific data
451 * @key: lookup key
452 * @value: value to set
453 *
454 * Caller must prevent racing tsd_create() or tsd_destroy(), protected
455 * from racing tsd_get() or tsd_set() because it is thread specific.
456 * This function has been optimized to be fast for the update case.
457 * When setting the tsd initially it will be slower due to additional
458 * required locking and potential memory allocations.
459 */
460 int
461 tsd_set(uint_t key, void *value)
462 {
463 tsd_hash_table_t *table;
464 tsd_hash_entry_t *entry;
465 pid_t pid;
466 int rc;
467 /* mark remove if value is NULL */
468 boolean_t remove = (value == NULL);
469
470 table = tsd_hash_table;
471 pid = curthread->pid;
472 ASSERT3P(table, !=, NULL);
473
474 if ((key == 0) || (key > TSD_KEYS_MAX))
475 return (EINVAL);
476
477 /* Entry already exists in hash table update value */
478 entry = tsd_hash_search(table, key, pid);
479 if (entry) {
480 entry->he_value = value;
481 /* remove the entry */
482 if (remove)
483 tsd_remove_entry(entry);
484 return (0);
485 }
486
487 /* don't create entry if value is NULL */
488 if (remove)
489 return (0);
490
491 /* Add a process entry to the hash if not yet exists */
492 entry = tsd_hash_search(table, PID_KEY, pid);
493 if (entry == NULL) {
494 rc = tsd_hash_add_pid(table, pid);
495 if (rc)
496 return (rc);
497 }
498
499 rc = tsd_hash_add(table, key, pid, value);
500 return (rc);
501 }
502 EXPORT_SYMBOL(tsd_set);
503
504 /*
505 * tsd_get - get thread specific data
506 * @key: lookup key
507 *
508 * Caller must prevent racing tsd_create() or tsd_destroy(). This
509 * implementation is designed to be fast and scalable, it does not
510 * lock the entire table only a single hash bin.
511 */
512 void *
513 tsd_get(uint_t key)
514 {
515 tsd_hash_entry_t *entry;
516
517 ASSERT3P(tsd_hash_table, !=, NULL);
518
519 if ((key == 0) || (key > TSD_KEYS_MAX))
520 return (NULL);
521
522 entry = tsd_hash_search(tsd_hash_table, key, curthread->pid);
523 if (entry == NULL)
524 return (NULL);
525
526 return (entry->he_value);
527 }
528 EXPORT_SYMBOL(tsd_get);
529
530 /*
531 * tsd_create - create thread specific data key
532 * @keyp: lookup key address
533 * @dtor: destructor called during tsd_destroy() or tsd_exit()
534 *
535 * Provided key must be set to 0 or it assumed to be already in use.
536 * The dtor is allowed to be NULL in which case no additional cleanup
537 * for the data is performed during tsd_destroy() or tsd_exit().
538 *
539 * Caller must prevent racing tsd_set() or tsd_get(), this function is
540 * safe from racing tsd_create(), tsd_destroy(), and tsd_exit().
541 */
542 void
543 tsd_create(uint_t *keyp, dtor_func_t dtor)
544 {
545 ASSERT3P(keyp, !=, NULL);
546 if (*keyp)
547 return;
548
549 (void) tsd_hash_add_key(tsd_hash_table, keyp, dtor);
550 }
551 EXPORT_SYMBOL(tsd_create);
552
553 /*
554 * tsd_destroy - destroy thread specific data
555 * @keyp: lookup key address
556 *
557 * Destroys the thread specific data on all threads which use this key.
558 *
559 * Caller must prevent racing tsd_set() or tsd_get(), this function is
560 * safe from racing tsd_create(), tsd_destroy(), and tsd_exit().
561 */
562 void
563 tsd_destroy(uint_t *keyp)
564 {
565 HLIST_HEAD(work);
566 tsd_hash_table_t *table;
567 tsd_hash_entry_t *dtor_entry, *entry;
568 tsd_hash_bin_t *dtor_entry_bin, *entry_bin;
569 ulong_t hash;
570
571 table = tsd_hash_table;
572 ASSERT3P(table, !=, NULL);
573
574 spin_lock(&table->ht_lock);
575 dtor_entry = tsd_hash_search(table, *keyp, DTOR_PID);
576 if (dtor_entry == NULL) {
577 spin_unlock(&table->ht_lock);
578 return;
579 }
580
581 /*
582 * All threads which use this key must be linked off of the
583 * DTOR_PID entry. They are removed from the hash table and
584 * linked in to a private working list to be destroyed.
585 */
586 while (!list_empty(&dtor_entry->he_key_list)) {
587 entry = list_entry(dtor_entry->he_key_list.next,
588 tsd_hash_entry_t, he_key_list);
589 ASSERT3U(dtor_entry->he_key, ==, entry->he_key);
590 ASSERT3P(dtor_entry->he_dtor, ==, entry->he_dtor);
591
592 hash = hash_long((ulong_t)entry->he_key *
593 (ulong_t)entry->he_pid, table->ht_bits);
594 entry_bin = &table->ht_bins[hash];
595
596 spin_lock(&entry_bin->hb_lock);
597 tsd_hash_del(table, entry);
598 hlist_add_head(&entry->he_list, &work);
599 spin_unlock(&entry_bin->hb_lock);
600 }
601
602 hash = hash_long((ulong_t)dtor_entry->he_key *
603 (ulong_t)dtor_entry->he_pid, table->ht_bits);
604 dtor_entry_bin = &table->ht_bins[hash];
605
606 spin_lock(&dtor_entry_bin->hb_lock);
607 tsd_hash_del(table, dtor_entry);
608 hlist_add_head(&dtor_entry->he_list, &work);
609 spin_unlock(&dtor_entry_bin->hb_lock);
610 spin_unlock(&table->ht_lock);
611
612 tsd_hash_dtor(&work);
613 *keyp = 0;
614 }
615 EXPORT_SYMBOL(tsd_destroy);
616
617 /*
618 * tsd_exit - destroys all thread specific data for this thread
619 *
620 * Destroys all the thread specific data for this thread.
621 *
622 * Caller must prevent racing tsd_set() or tsd_get(), this function is
623 * safe from racing tsd_create(), tsd_destroy(), and tsd_exit().
624 */
625 void
626 tsd_exit(void)
627 {
628 HLIST_HEAD(work);
629 tsd_hash_table_t *table;
630 tsd_hash_entry_t *pid_entry, *entry;
631 tsd_hash_bin_t *pid_entry_bin, *entry_bin;
632 ulong_t hash;
633
634 table = tsd_hash_table;
635 ASSERT3P(table, !=, NULL);
636
637 spin_lock(&table->ht_lock);
638 pid_entry = tsd_hash_search(table, PID_KEY, curthread->pid);
639 if (pid_entry == NULL) {
640 spin_unlock(&table->ht_lock);
641 return;
642 }
643
644 /*
645 * All keys associated with this pid must be linked off of the
646 * PID_KEY entry. They are removed from the hash table and
647 * linked in to a private working list to be destroyed.
648 */
649
650 while (!list_empty(&pid_entry->he_pid_list)) {
651 entry = list_entry(pid_entry->he_pid_list.next,
652 tsd_hash_entry_t, he_pid_list);
653 ASSERT3U(pid_entry->he_pid, ==, entry->he_pid);
654
655 hash = hash_long((ulong_t)entry->he_key *
656 (ulong_t)entry->he_pid, table->ht_bits);
657 entry_bin = &table->ht_bins[hash];
658
659 spin_lock(&entry_bin->hb_lock);
660 tsd_hash_del(table, entry);
661 hlist_add_head(&entry->he_list, &work);
662 spin_unlock(&entry_bin->hb_lock);
663 }
664
665 hash = hash_long((ulong_t)pid_entry->he_key *
666 (ulong_t)pid_entry->he_pid, table->ht_bits);
667 pid_entry_bin = &table->ht_bins[hash];
668
669 spin_lock(&pid_entry_bin->hb_lock);
670 tsd_hash_del(table, pid_entry);
671 hlist_add_head(&pid_entry->he_list, &work);
672 spin_unlock(&pid_entry_bin->hb_lock);
673 spin_unlock(&table->ht_lock);
674
675 tsd_hash_dtor(&work);
676 }
677 EXPORT_SYMBOL(tsd_exit);
678
679 int
680 spl_tsd_init(void)
681 {
682 tsd_hash_table = tsd_hash_table_init(TSD_HASH_TABLE_BITS_DEFAULT);
683 if (tsd_hash_table == NULL)
684 return (1);
685
686 return (0);
687 }
688
689 void
690 spl_tsd_fini(void)
691 {
692 tsd_hash_table_fini(tsd_hash_table);
693 tsd_hash_table = NULL;
694 }