]> git.proxmox.com Git - mirror_spl-debian.git/blob - module/splat/splat-kmem.c
789e75e5613bc756e119dc3ff477c6d39824bbd2
[mirror_spl-debian.git] / module / splat / splat-kmem.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting LAyer Tests (SPLAT) Kmem Tests.
25 \*****************************************************************************/
26
27 #include <sys/kmem.h>
28 #include <sys/thread.h>
29 #include "splat-internal.h"
30
31 #define SPLAT_KMEM_NAME "kmem"
32 #define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests"
33
34 #define SPLAT_KMEM_TEST1_ID 0x0101
35 #define SPLAT_KMEM_TEST1_NAME "kmem_alloc"
36 #define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)"
37
38 #define SPLAT_KMEM_TEST2_ID 0x0102
39 #define SPLAT_KMEM_TEST2_NAME "kmem_zalloc"
40 #define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)"
41
42 #define SPLAT_KMEM_TEST3_ID 0x0103
43 #define SPLAT_KMEM_TEST3_NAME "vmem_alloc"
44 #define SPLAT_KMEM_TEST3_DESC "Memory allocation test (vmem_alloc)"
45
46 #define SPLAT_KMEM_TEST4_ID 0x0104
47 #define SPLAT_KMEM_TEST4_NAME "vmem_zalloc"
48 #define SPLAT_KMEM_TEST4_DESC "Memory allocation test (vmem_zalloc)"
49
50 #define SPLAT_KMEM_TEST5_ID 0x0105
51 #define SPLAT_KMEM_TEST5_NAME "slab_small"
52 #define SPLAT_KMEM_TEST5_DESC "Slab ctor/dtor test (small)"
53
54 #define SPLAT_KMEM_TEST6_ID 0x0106
55 #define SPLAT_KMEM_TEST6_NAME "slab_large"
56 #define SPLAT_KMEM_TEST6_DESC "Slab ctor/dtor test (large)"
57
58 #define SPLAT_KMEM_TEST7_ID 0x0107
59 #define SPLAT_KMEM_TEST7_NAME "slab_align"
60 #define SPLAT_KMEM_TEST7_DESC "Slab alignment test"
61
62 #define SPLAT_KMEM_TEST8_ID 0x0108
63 #define SPLAT_KMEM_TEST8_NAME "slab_reap"
64 #define SPLAT_KMEM_TEST8_DESC "Slab reaping test"
65
66 #define SPLAT_KMEM_TEST9_ID 0x0109
67 #define SPLAT_KMEM_TEST9_NAME "slab_age"
68 #define SPLAT_KMEM_TEST9_DESC "Slab aging test"
69
70 #define SPLAT_KMEM_TEST10_ID 0x010a
71 #define SPLAT_KMEM_TEST10_NAME "slab_lock"
72 #define SPLAT_KMEM_TEST10_DESC "Slab locking test"
73
74 #if 0
75 #define SPLAT_KMEM_TEST11_ID 0x010b
76 #define SPLAT_KMEM_TEST11_NAME "slab_overcommit"
77 #define SPLAT_KMEM_TEST11_DESC "Slab memory overcommit test"
78 #endif
79
80 #define SPLAT_KMEM_TEST12_ID 0x010c
81 #define SPLAT_KMEM_TEST12_NAME "vmem_size"
82 #define SPLAT_KMEM_TEST12_DESC "Memory zone test"
83
84 #define SPLAT_KMEM_TEST13_ID 0x010d
85 #define SPLAT_KMEM_TEST13_NAME "slab_reclaim"
86 #define SPLAT_KMEM_TEST13_DESC "Slab direct memory reclaim test"
87
88 #define SPLAT_KMEM_ALLOC_COUNT 10
89 #define SPLAT_VMEM_ALLOC_COUNT 10
90
91
92 static int
93 splat_kmem_test1(struct file *file, void *arg)
94 {
95 void *ptr[SPLAT_KMEM_ALLOC_COUNT];
96 int size = PAGE_SIZE;
97 int i, count, rc = 0;
98
99 while ((!rc) && (size <= (PAGE_SIZE * 32))) {
100 count = 0;
101
102 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
103 ptr[i] = kmem_alloc(size, KM_SLEEP | KM_NODEBUG);
104 if (ptr[i])
105 count++;
106 }
107
108 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
109 if (ptr[i])
110 kmem_free(ptr[i], size);
111
112 splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
113 "%d byte allocations, %d/%d successful\n",
114 size, count, SPLAT_KMEM_ALLOC_COUNT);
115 if (count != SPLAT_KMEM_ALLOC_COUNT)
116 rc = -ENOMEM;
117
118 size *= 2;
119 }
120
121 return rc;
122 }
123
124 static int
125 splat_kmem_test2(struct file *file, void *arg)
126 {
127 void *ptr[SPLAT_KMEM_ALLOC_COUNT];
128 int size = PAGE_SIZE;
129 int i, j, count, rc = 0;
130
131 while ((!rc) && (size <= (PAGE_SIZE * 32))) {
132 count = 0;
133
134 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
135 ptr[i] = kmem_zalloc(size, KM_SLEEP | KM_NODEBUG);
136 if (ptr[i])
137 count++;
138 }
139
140 /* Ensure buffer has been zero filled */
141 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
142 for (j = 0; j < size; j++) {
143 if (((char *)ptr[i])[j] != '\0') {
144 splat_vprint(file,SPLAT_KMEM_TEST2_NAME,
145 "%d-byte allocation was "
146 "not zeroed\n", size);
147 rc = -EFAULT;
148 }
149 }
150 }
151
152 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
153 if (ptr[i])
154 kmem_free(ptr[i], size);
155
156 splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
157 "%d byte allocations, %d/%d successful\n",
158 size, count, SPLAT_KMEM_ALLOC_COUNT);
159 if (count != SPLAT_KMEM_ALLOC_COUNT)
160 rc = -ENOMEM;
161
162 size *= 2;
163 }
164
165 return rc;
166 }
167
168 static int
169 splat_kmem_test3(struct file *file, void *arg)
170 {
171 void *ptr[SPLAT_VMEM_ALLOC_COUNT];
172 int size = PAGE_SIZE;
173 int i, count, rc = 0;
174
175 while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
176 count = 0;
177
178 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
179 ptr[i] = vmem_alloc(size, KM_SLEEP);
180 if (ptr[i])
181 count++;
182 }
183
184 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
185 if (ptr[i])
186 vmem_free(ptr[i], size);
187
188 splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
189 "%d byte allocations, %d/%d successful\n",
190 size, count, SPLAT_VMEM_ALLOC_COUNT);
191 if (count != SPLAT_VMEM_ALLOC_COUNT)
192 rc = -ENOMEM;
193
194 size *= 2;
195 }
196
197 return rc;
198 }
199
200 static int
201 splat_kmem_test4(struct file *file, void *arg)
202 {
203 void *ptr[SPLAT_VMEM_ALLOC_COUNT];
204 int size = PAGE_SIZE;
205 int i, j, count, rc = 0;
206
207 while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
208 count = 0;
209
210 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
211 ptr[i] = vmem_zalloc(size, KM_SLEEP);
212 if (ptr[i])
213 count++;
214 }
215
216 /* Ensure buffer has been zero filled */
217 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
218 for (j = 0; j < size; j++) {
219 if (((char *)ptr[i])[j] != '\0') {
220 splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
221 "%d-byte allocation was "
222 "not zeroed\n", size);
223 rc = -EFAULT;
224 }
225 }
226 }
227
228 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
229 if (ptr[i])
230 vmem_free(ptr[i], size);
231
232 splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
233 "%d byte allocations, %d/%d successful\n",
234 size, count, SPLAT_VMEM_ALLOC_COUNT);
235 if (count != SPLAT_VMEM_ALLOC_COUNT)
236 rc = -ENOMEM;
237
238 size *= 2;
239 }
240
241 return rc;
242 }
243
244 #define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL
245 #define SPLAT_KMEM_CACHE_NAME "kmem_test"
246 #define SPLAT_KMEM_OBJ_COUNT 1024
247 #define SPLAT_KMEM_OBJ_RECLAIM 1000 /* objects */
248 #define SPLAT_KMEM_THREADS 32
249
250 #define KCP_FLAG_READY 0x01
251
252 typedef struct kmem_cache_data {
253 unsigned long kcd_magic;
254 struct list_head kcd_node;
255 int kcd_flag;
256 char kcd_buf[0];
257 } kmem_cache_data_t;
258
259 typedef struct kmem_cache_thread {
260 spinlock_t kct_lock;
261 int kct_id;
262 struct list_head kct_list;
263 } kmem_cache_thread_t;
264
265 typedef struct kmem_cache_priv {
266 unsigned long kcp_magic;
267 struct file *kcp_file;
268 kmem_cache_t *kcp_cache;
269 spinlock_t kcp_lock;
270 wait_queue_head_t kcp_ctl_waitq;
271 wait_queue_head_t kcp_thr_waitq;
272 int kcp_flags;
273 int kcp_kct_count;
274 kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS];
275 int kcp_size;
276 int kcp_align;
277 int kcp_count;
278 int kcp_alloc;
279 int kcp_rc;
280 } kmem_cache_priv_t;
281
282 static kmem_cache_priv_t *
283 splat_kmem_cache_test_kcp_alloc(struct file *file, char *name,
284 int size, int align, int alloc)
285 {
286 kmem_cache_priv_t *kcp;
287
288 kcp = kmem_zalloc(sizeof(kmem_cache_priv_t), KM_SLEEP);
289 if (!kcp)
290 return NULL;
291
292 kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC;
293 kcp->kcp_file = file;
294 kcp->kcp_cache = NULL;
295 spin_lock_init(&kcp->kcp_lock);
296 init_waitqueue_head(&kcp->kcp_ctl_waitq);
297 init_waitqueue_head(&kcp->kcp_thr_waitq);
298 kcp->kcp_flags = 0;
299 kcp->kcp_kct_count = -1;
300 kcp->kcp_size = size;
301 kcp->kcp_align = align;
302 kcp->kcp_count = 0;
303 kcp->kcp_alloc = alloc;
304 kcp->kcp_rc = 0;
305
306 return kcp;
307 }
308
309 static void
310 splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp)
311 {
312 kmem_free(kcp, sizeof(kmem_cache_priv_t));
313 }
314
315 static kmem_cache_thread_t *
316 splat_kmem_cache_test_kct_alloc(kmem_cache_priv_t *kcp, int id)
317 {
318 kmem_cache_thread_t *kct;
319
320 ASSERTF(id < SPLAT_KMEM_THREADS, "id=%d\n", id);
321 ASSERT(kcp->kcp_kct[id] == NULL);
322
323 kct = kmem_zalloc(sizeof(kmem_cache_thread_t), KM_SLEEP);
324 if (!kct)
325 return NULL;
326
327 spin_lock_init(&kct->kct_lock);
328 kct->kct_id = id;
329 INIT_LIST_HEAD(&kct->kct_list);
330
331 spin_lock(&kcp->kcp_lock);
332 kcp->kcp_kct[id] = kct;
333 spin_unlock(&kcp->kcp_lock);
334
335 return kct;
336 }
337
338 static void
339 splat_kmem_cache_test_kct_free(kmem_cache_priv_t *kcp,
340 kmem_cache_thread_t *kct)
341 {
342 spin_lock(&kcp->kcp_lock);
343 kcp->kcp_kct[kct->kct_id] = NULL;
344 spin_unlock(&kcp->kcp_lock);
345
346 kmem_free(kct, sizeof(kmem_cache_thread_t));
347 }
348
349 static void
350 splat_kmem_cache_test_kcd_free(kmem_cache_priv_t *kcp,
351 kmem_cache_thread_t *kct)
352 {
353 kmem_cache_data_t *kcd;
354
355 spin_lock(&kct->kct_lock);
356 while (!list_empty(&kct->kct_list)) {
357 kcd = list_entry(kct->kct_list.next,
358 kmem_cache_data_t, kcd_node);
359 list_del(&kcd->kcd_node);
360 spin_unlock(&kct->kct_lock);
361
362 kmem_cache_free(kcp->kcp_cache, kcd);
363
364 spin_lock(&kct->kct_lock);
365 }
366 spin_unlock(&kct->kct_lock);
367 }
368
369 static int
370 splat_kmem_cache_test_kcd_alloc(kmem_cache_priv_t *kcp,
371 kmem_cache_thread_t *kct, int count)
372 {
373 kmem_cache_data_t *kcd;
374 int i;
375
376 for (i = 0; i < count; i++) {
377 kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
378 if (kcd == NULL) {
379 splat_kmem_cache_test_kcd_free(kcp, kct);
380 return -ENOMEM;
381 }
382
383 spin_lock(&kct->kct_lock);
384 list_add_tail(&kcd->kcd_node, &kct->kct_list);
385 spin_unlock(&kct->kct_lock);
386 }
387
388 return 0;
389 }
390
391 static void
392 splat_kmem_cache_test_debug(struct file *file, char *name,
393 kmem_cache_priv_t *kcp)
394 {
395 int j;
396
397 splat_vprint(file, name,
398 "%s cache objects %d, slabs %u/%u objs %u/%u mags ",
399 kcp->kcp_cache->skc_name, kcp->kcp_count,
400 (unsigned)kcp->kcp_cache->skc_slab_alloc,
401 (unsigned)kcp->kcp_cache->skc_slab_total,
402 (unsigned)kcp->kcp_cache->skc_obj_alloc,
403 (unsigned)kcp->kcp_cache->skc_obj_total);
404
405 for_each_online_cpu(j)
406 splat_print(file, "%u/%u ",
407 kcp->kcp_cache->skc_mag[j]->skm_avail,
408 kcp->kcp_cache->skc_mag[j]->skm_size);
409
410 splat_print(file, "%s\n", "");
411 }
412
413 static int
414 splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
415 {
416 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
417 kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
418
419 if (kcd && kcp) {
420 kcd->kcd_magic = kcp->kcp_magic;
421 INIT_LIST_HEAD(&kcd->kcd_node);
422 kcd->kcd_flag = 1;
423 memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
424 kcp->kcp_count++;
425 }
426
427 return 0;
428 }
429
430 static void
431 splat_kmem_cache_test_destructor(void *ptr, void *priv)
432 {
433 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
434 kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
435
436 if (kcd && kcp) {
437 kcd->kcd_magic = 0;
438 kcd->kcd_flag = 0;
439 memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
440 kcp->kcp_count--;
441 }
442
443 return;
444 }
445
446 /*
447 * Generic reclaim function which assumes that all objects may
448 * be reclaimed at any time. We free a small percentage of the
449 * objects linked off the kcp or kct[] every time we are called.
450 */
451 static void
452 splat_kmem_cache_test_reclaim(void *priv)
453 {
454 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
455 kmem_cache_thread_t *kct;
456 kmem_cache_data_t *kcd;
457 LIST_HEAD(reclaim);
458 int i, count;
459
460 ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
461
462 /* For each kct thread reclaim some objects */
463 spin_lock(&kcp->kcp_lock);
464 for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
465 kct = kcp->kcp_kct[i];
466 if (!kct)
467 continue;
468
469 spin_unlock(&kcp->kcp_lock);
470 spin_lock(&kct->kct_lock);
471
472 count = SPLAT_KMEM_OBJ_RECLAIM;
473 while (count > 0 && !list_empty(&kct->kct_list)) {
474 kcd = list_entry(kct->kct_list.next,
475 kmem_cache_data_t, kcd_node);
476 list_del(&kcd->kcd_node);
477 list_add(&kcd->kcd_node, &reclaim);
478 count--;
479 }
480
481 spin_unlock(&kct->kct_lock);
482 spin_lock(&kcp->kcp_lock);
483 }
484 spin_unlock(&kcp->kcp_lock);
485
486 /* Freed outside the spin lock */
487 while (!list_empty(&reclaim)) {
488 kcd = list_entry(reclaim.next, kmem_cache_data_t, kcd_node);
489 list_del(&kcd->kcd_node);
490 kmem_cache_free(kcp->kcp_cache, kcd);
491 }
492
493 return;
494 }
495
496 static int
497 splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads)
498 {
499 int rc;
500
501 spin_lock(&kcp->kcp_lock);
502 rc = (kcp->kcp_kct_count == threads);
503 spin_unlock(&kcp->kcp_lock);
504
505 return rc;
506 }
507
508 static int
509 splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags)
510 {
511 int rc;
512
513 spin_lock(&kcp->kcp_lock);
514 rc = (kcp->kcp_flags & flags);
515 spin_unlock(&kcp->kcp_lock);
516
517 return rc;
518 }
519
520 static void
521 splat_kmem_cache_test_thread(void *arg)
522 {
523 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
524 kmem_cache_thread_t *kct;
525 int rc = 0, id;
526
527 ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
528
529 /* Assign thread ids */
530 spin_lock(&kcp->kcp_lock);
531 if (kcp->kcp_kct_count == -1)
532 kcp->kcp_kct_count = 0;
533
534 id = kcp->kcp_kct_count;
535 kcp->kcp_kct_count++;
536 spin_unlock(&kcp->kcp_lock);
537
538 kct = splat_kmem_cache_test_kct_alloc(kcp, id);
539 if (!kct) {
540 rc = -ENOMEM;
541 goto out;
542 }
543
544 /* Wait for all threads to have started and report they are ready */
545 if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS)
546 wake_up(&kcp->kcp_ctl_waitq);
547
548 wait_event(kcp->kcp_thr_waitq,
549 splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY));
550
551 /* Create and destroy objects */
552 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, kcp->kcp_alloc);
553 splat_kmem_cache_test_kcd_free(kcp, kct);
554 out:
555 if (kct)
556 splat_kmem_cache_test_kct_free(kcp, kct);
557
558 spin_lock(&kcp->kcp_lock);
559 if (!kcp->kcp_rc)
560 kcp->kcp_rc = rc;
561
562 if ((--kcp->kcp_kct_count) == 0)
563 wake_up(&kcp->kcp_ctl_waitq);
564
565 spin_unlock(&kcp->kcp_lock);
566
567 thread_exit();
568 }
569
570 static int
571 splat_kmem_cache_test(struct file *file, void *arg, char *name,
572 int size, int align, int flags)
573 {
574 kmem_cache_priv_t *kcp;
575 kmem_cache_data_t *kcd = NULL;
576 int rc = 0, max;
577
578 kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0);
579 if (!kcp) {
580 splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
581 return -ENOMEM;
582 }
583
584 kcp->kcp_cache =
585 kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
586 kcp->kcp_size, kcp->kcp_align,
587 splat_kmem_cache_test_constructor,
588 splat_kmem_cache_test_destructor,
589 NULL, kcp, NULL, flags);
590 if (!kcp->kcp_cache) {
591 splat_vprint(file, name,
592 "Unable to create '%s'\n",
593 SPLAT_KMEM_CACHE_NAME);
594 rc = -ENOMEM;
595 goto out_free;
596 }
597
598 kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
599 if (!kcd) {
600 splat_vprint(file, name,
601 "Unable to allocate from '%s'\n",
602 SPLAT_KMEM_CACHE_NAME);
603 rc = -EINVAL;
604 goto out_free;
605 }
606
607 if (!kcd->kcd_flag) {
608 splat_vprint(file, name,
609 "Failed to run contructor for '%s'\n",
610 SPLAT_KMEM_CACHE_NAME);
611 rc = -EINVAL;
612 goto out_free;
613 }
614
615 if (kcd->kcd_magic != kcp->kcp_magic) {
616 splat_vprint(file, name,
617 "Failed to pass private data to constructor "
618 "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
619 rc = -EINVAL;
620 goto out_free;
621 }
622
623 max = kcp->kcp_count;
624 kmem_cache_free(kcp->kcp_cache, kcd);
625
626 /* Destroy the entire cache which will force destructors to
627 * run and we can verify one was called for every object */
628 kmem_cache_destroy(kcp->kcp_cache);
629 if (kcp->kcp_count) {
630 splat_vprint(file, name,
631 "Failed to run destructor on all slab objects "
632 "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
633 rc = -EINVAL;
634 }
635
636 splat_kmem_cache_test_kcp_free(kcp);
637 splat_vprint(file, name,
638 "Successfully ran ctors/dtors for %d elements in '%s'\n",
639 max, SPLAT_KMEM_CACHE_NAME);
640
641 return rc;
642
643 out_free:
644 if (kcd)
645 kmem_cache_free(kcp->kcp_cache, kcd);
646
647 if (kcp->kcp_cache)
648 kmem_cache_destroy(kcp->kcp_cache);
649
650 splat_kmem_cache_test_kcp_free(kcp);
651
652 return rc;
653 }
654
655 static int
656 splat_kmem_cache_thread_test(struct file *file, void *arg, char *name,
657 int size, int alloc, int max_time)
658 {
659 kmem_cache_priv_t *kcp;
660 kthread_t *thr;
661 struct timespec start, stop, delta;
662 char cache_name[32];
663 int i, rc = 0;
664
665 kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc);
666 if (!kcp) {
667 splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
668 return -ENOMEM;
669 }
670
671 (void)snprintf(cache_name, 32, "%s-%d-%d",
672 SPLAT_KMEM_CACHE_NAME, size, alloc);
673 kcp->kcp_cache =
674 kmem_cache_create(cache_name, kcp->kcp_size, 0,
675 splat_kmem_cache_test_constructor,
676 splat_kmem_cache_test_destructor,
677 splat_kmem_cache_test_reclaim,
678 kcp, NULL, 0);
679 if (!kcp->kcp_cache) {
680 splat_vprint(file, name, "Unable to create '%s'\n", cache_name);
681 rc = -ENOMEM;
682 goto out_kcp;
683 }
684
685 start = current_kernel_time();
686
687 for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
688 thr = thread_create(NULL, 0,
689 splat_kmem_cache_test_thread,
690 kcp, 0, &p0, TS_RUN, minclsyspri);
691 if (thr == NULL) {
692 rc = -ESRCH;
693 goto out_cache;
694 }
695 }
696
697 /* Sleep until all threads have started, then set the ready
698 * flag and wake them all up for maximum concurrency. */
699 wait_event(kcp->kcp_ctl_waitq,
700 splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS));
701
702 spin_lock(&kcp->kcp_lock);
703 kcp->kcp_flags |= KCP_FLAG_READY;
704 spin_unlock(&kcp->kcp_lock);
705 wake_up_all(&kcp->kcp_thr_waitq);
706
707 /* Sleep until all thread have finished */
708 wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0));
709
710 stop = current_kernel_time();
711 delta = timespec_sub(stop, start);
712
713 splat_vprint(file, name,
714 "%-22s %2ld.%09ld\t"
715 "%lu/%lu/%lu\t%lu/%lu/%lu\n",
716 kcp->kcp_cache->skc_name,
717 delta.tv_sec, delta.tv_nsec,
718 (unsigned long)kcp->kcp_cache->skc_slab_total,
719 (unsigned long)kcp->kcp_cache->skc_slab_max,
720 (unsigned long)(kcp->kcp_alloc *
721 SPLAT_KMEM_THREADS /
722 SPL_KMEM_CACHE_OBJ_PER_SLAB),
723 (unsigned long)kcp->kcp_cache->skc_obj_total,
724 (unsigned long)kcp->kcp_cache->skc_obj_max,
725 (unsigned long)(kcp->kcp_alloc *
726 SPLAT_KMEM_THREADS));
727
728 if (delta.tv_sec >= max_time)
729 rc = -ETIME;
730
731 if (!rc && kcp->kcp_rc)
732 rc = kcp->kcp_rc;
733
734 out_cache:
735 kmem_cache_destroy(kcp->kcp_cache);
736 out_kcp:
737 splat_kmem_cache_test_kcp_free(kcp);
738 return rc;
739 }
740
741 /* Validate small object cache behavior for dynamic/kmem/vmem caches */
742 static int
743 splat_kmem_test5(struct file *file, void *arg)
744 {
745 char *name = SPLAT_KMEM_TEST5_NAME;
746 int rc;
747
748 rc = splat_kmem_cache_test(file, arg, name, 128, 0, 0);
749 if (rc)
750 return rc;
751
752 rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_KMEM);
753 if (rc)
754 return rc;
755
756 return splat_kmem_cache_test(file, arg, name, 128, 0, KMC_VMEM);
757 }
758
759 /*
760 * Validate large object cache behavior for dynamic/kmem/vmem caches
761 */
762 static int
763 splat_kmem_test6(struct file *file, void *arg)
764 {
765 char *name = SPLAT_KMEM_TEST6_NAME;
766 int rc;
767
768 rc = splat_kmem_cache_test(file, arg, name, 256*1024, 0, 0);
769 if (rc)
770 return rc;
771
772 rc = splat_kmem_cache_test(file, arg, name, 64*1024, 0, KMC_KMEM);
773 if (rc)
774 return rc;
775
776 return splat_kmem_cache_test(file, arg, name, 1024*1024, 0, KMC_VMEM);
777 }
778
779 /*
780 * Validate object alignment cache behavior for caches
781 */
782 static int
783 splat_kmem_test7(struct file *file, void *arg)
784 {
785 char *name = SPLAT_KMEM_TEST7_NAME;
786 int i, rc;
787
788 for (i = SPL_KMEM_CACHE_ALIGN; i <= PAGE_SIZE; i *= 2) {
789 rc = splat_kmem_cache_test(file, arg, name, 157, i, 0);
790 if (rc)
791 return rc;
792 }
793
794 return rc;
795 }
796
797 /*
798 * Validate kmem_cache_reap() by requesting the slab cache free any objects
799 * it can. For a few reasons this may not immediately result in more free
800 * memory even if objects are freed. First off, due to fragmentation we
801 * may not be able to reclaim any slabs. Secondly, even if we do we fully
802 * clear some slabs we will not want to immediately reclaim all of them
803 * because we may contend with cache allocations and thrash. What we want
804 * to see is the slab size decrease more gradually as it becomes clear they
805 * will not be needed. This should be achievable in less than a minute.
806 * If it takes longer than this something has gone wrong.
807 */
808 static int
809 splat_kmem_test8(struct file *file, void *arg)
810 {
811 kmem_cache_priv_t *kcp;
812 kmem_cache_thread_t *kct;
813 unsigned int spl_kmem_cache_expire_old;
814 int i, rc = 0;
815
816 /* Enable cache aging just for this test if it is disabled */
817 spl_kmem_cache_expire_old = spl_kmem_cache_expire;
818 spl_kmem_cache_expire = KMC_EXPIRE_AGE;
819
820 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME,
821 256, 0, 0);
822 if (!kcp) {
823 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
824 "Unable to create '%s'\n", "kcp");
825 rc = -ENOMEM;
826 goto out;
827 }
828
829 kcp->kcp_cache =
830 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
831 splat_kmem_cache_test_constructor,
832 splat_kmem_cache_test_destructor,
833 splat_kmem_cache_test_reclaim,
834 kcp, NULL, 0);
835 if (!kcp->kcp_cache) {
836 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
837 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
838 rc = -ENOMEM;
839 goto out_kcp;
840 }
841
842 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
843 if (!kct) {
844 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
845 "Unable to create '%s'\n", "kct");
846 rc = -ENOMEM;
847 goto out_cache;
848 }
849
850 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, SPLAT_KMEM_OBJ_COUNT);
851 if (rc) {
852 splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to "
853 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
854 goto out_kct;
855 }
856
857 for (i = 0; i < 60; i++) {
858 kmem_cache_reap_now(kcp->kcp_cache);
859 splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST8_NAME, kcp);
860
861 if (kcp->kcp_cache->skc_obj_total == 0)
862 break;
863
864 set_current_state(TASK_INTERRUPTIBLE);
865 schedule_timeout(HZ);
866 }
867
868 if (kcp->kcp_cache->skc_obj_total == 0) {
869 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
870 "Successfully created %d objects "
871 "in cache %s and reclaimed them\n",
872 SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
873 } else {
874 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
875 "Failed to reclaim %u/%d objects from cache %s\n",
876 (unsigned)kcp->kcp_cache->skc_obj_total,
877 SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
878 rc = -ENOMEM;
879 }
880
881 /* Cleanup our mess (for failure case of time expiring) */
882 splat_kmem_cache_test_kcd_free(kcp, kct);
883 out_kct:
884 splat_kmem_cache_test_kct_free(kcp, kct);
885 out_cache:
886 kmem_cache_destroy(kcp->kcp_cache);
887 out_kcp:
888 splat_kmem_cache_test_kcp_free(kcp);
889 out:
890 spl_kmem_cache_expire = spl_kmem_cache_expire_old;
891
892 return rc;
893 }
894
895 /* Test cache aging, we have allocated a large number of objects thus
896 * creating a large number of slabs and then free'd them all. However,
897 * since there should be little memory pressure at the moment those
898 * slabs have not been freed. What we want to see is the slab size
899 * decrease gradually as it becomes clear they will not be be needed.
900 * This should be achievable in less than minute. If it takes longer
901 * than this something has gone wrong.
902 */
903 static int
904 splat_kmem_test9(struct file *file, void *arg)
905 {
906 kmem_cache_priv_t *kcp;
907 kmem_cache_thread_t *kct;
908 unsigned int spl_kmem_cache_expire_old;
909 int i, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128;
910
911 /* Enable cache aging just for this test if it is disabled */
912 spl_kmem_cache_expire_old = spl_kmem_cache_expire;
913 spl_kmem_cache_expire = KMC_EXPIRE_AGE;
914
915 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME,
916 256, 0, 0);
917 if (!kcp) {
918 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
919 "Unable to create '%s'\n", "kcp");
920 rc = -ENOMEM;
921 goto out;
922 }
923
924 kcp->kcp_cache =
925 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
926 splat_kmem_cache_test_constructor,
927 splat_kmem_cache_test_destructor,
928 NULL, kcp, NULL, 0);
929 if (!kcp->kcp_cache) {
930 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
931 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
932 rc = -ENOMEM;
933 goto out_kcp;
934 }
935
936 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
937 if (!kct) {
938 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
939 "Unable to create '%s'\n", "kct");
940 rc = -ENOMEM;
941 goto out_cache;
942 }
943
944 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
945 if (rc) {
946 splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to "
947 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
948 goto out_kct;
949 }
950
951 splat_kmem_cache_test_kcd_free(kcp, kct);
952
953 for (i = 0; i < 60; i++) {
954 splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST9_NAME, kcp);
955
956 if (kcp->kcp_cache->skc_obj_total == 0)
957 break;
958
959 set_current_state(TASK_INTERRUPTIBLE);
960 schedule_timeout(HZ);
961 }
962
963 if (kcp->kcp_cache->skc_obj_total == 0) {
964 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
965 "Successfully created %d objects "
966 "in cache %s and reclaimed them\n",
967 count, SPLAT_KMEM_CACHE_NAME);
968 } else {
969 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
970 "Failed to reclaim %u/%d objects from cache %s\n",
971 (unsigned)kcp->kcp_cache->skc_obj_total, count,
972 SPLAT_KMEM_CACHE_NAME);
973 rc = -ENOMEM;
974 }
975
976 out_kct:
977 splat_kmem_cache_test_kct_free(kcp, kct);
978 out_cache:
979 kmem_cache_destroy(kcp->kcp_cache);
980 out_kcp:
981 splat_kmem_cache_test_kcp_free(kcp);
982 out:
983 spl_kmem_cache_expire = spl_kmem_cache_expire_old;
984
985 return rc;
986 }
987
988 /*
989 * This test creates N threads with a shared kmem cache. They then all
990 * concurrently allocate and free from the cache to stress the locking and
991 * concurrent cache performance. If any one test takes longer than 5
992 * seconds to complete it is treated as a failure and may indicate a
993 * performance regression. On my test system no one test takes more
994 * than 1 second to complete so a 5x slowdown likely a problem.
995 */
996 static int
997 splat_kmem_test10(struct file *file, void *arg)
998 {
999 uint64_t size, alloc, rc = 0;
1000
1001 for (size = 32; size <= 1024*1024; size *= 2) {
1002
1003 splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "name",
1004 "time (sec)\tslabs \tobjs \thash\n");
1005 splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "",
1006 " \ttot/max/calc\ttot/max/calc\n");
1007
1008 for (alloc = 1; alloc <= 1024; alloc *= 2) {
1009
1010 /* Skip tests which exceed available memory. We
1011 * leverage availrmem here for some extra testing */
1012 if (size * alloc * SPLAT_KMEM_THREADS > availrmem / 2)
1013 continue;
1014
1015 rc = splat_kmem_cache_thread_test(file, arg,
1016 SPLAT_KMEM_TEST10_NAME, size, alloc, 5);
1017 if (rc)
1018 break;
1019 }
1020 }
1021
1022 return rc;
1023 }
1024
1025 #if 0
1026 /*
1027 * This test creates N threads with a shared kmem cache which overcommits
1028 * memory by 4x. This makes it impossible for the slab to satify the
1029 * thread requirements without having its reclaim hook run which will
1030 * free objects back for use. This behavior is triggered by the linum VM
1031 * detecting a low memory condition on the node and invoking the shrinkers.
1032 * This should allow all the threads to complete while avoiding deadlock
1033 * and for the most part out of memory events. This is very tough on the
1034 * system so it is possible the test app may get oom'ed. This particular
1035 * test has proven troublesome on 32-bit archs with limited virtual
1036 * address space so it only run on 64-bit systems.
1037 */
1038 static int
1039 splat_kmem_test11(struct file *file, void *arg)
1040 {
1041 uint64_t size, alloc, rc;
1042
1043 size = 8 * 1024;
1044 alloc = ((4 * physmem * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS;
1045
1046 splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "name",
1047 "time (sec)\tslabs \tobjs \thash\n");
1048 splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "",
1049 " \ttot/max/calc\ttot/max/calc\n");
1050
1051 rc = splat_kmem_cache_thread_test(file, arg,
1052 SPLAT_KMEM_TEST11_NAME, size, alloc, 60);
1053
1054 return rc;
1055 }
1056 #endif
1057
1058 /*
1059 * Check vmem_size() behavior by acquiring the alloc/free/total vmem
1060 * space, then allocate a known buffer size from vmem space. We can
1061 * then check that vmem_size() values were updated properly with in
1062 * a fairly small tolerence. The tolerance is important because we
1063 * are not the only vmem consumer on the system. Other unrelated
1064 * allocations might occur during the small test window. The vmem
1065 * allocation itself may also add in a little extra private space to
1066 * the buffer. Finally, verify total space always remains unchanged.
1067 */
1068 static int
1069 splat_kmem_test12(struct file *file, void *arg)
1070 {
1071 size_t alloc1, free1, total1;
1072 size_t alloc2, free2, total2;
1073 int size = 8*1024*1024;
1074 void *ptr;
1075
1076 alloc1 = vmem_size(NULL, VMEM_ALLOC);
1077 free1 = vmem_size(NULL, VMEM_FREE);
1078 total1 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
1079 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
1080 "free=%lu total=%lu\n", (unsigned long)alloc1,
1081 (unsigned long)free1, (unsigned long)total1);
1082
1083 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Alloc %d bytes\n", size);
1084 ptr = vmem_alloc(size, KM_SLEEP);
1085 if (!ptr) {
1086 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
1087 "Failed to alloc %d bytes\n", size);
1088 return -ENOMEM;
1089 }
1090
1091 alloc2 = vmem_size(NULL, VMEM_ALLOC);
1092 free2 = vmem_size(NULL, VMEM_FREE);
1093 total2 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
1094 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
1095 "free=%lu total=%lu\n", (unsigned long)alloc2,
1096 (unsigned long)free2, (unsigned long)total2);
1097
1098 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Free %d bytes\n", size);
1099 vmem_free(ptr, size);
1100 if (alloc2 < (alloc1 + size - (size / 100)) ||
1101 alloc2 > (alloc1 + size + (size / 100))) {
1102 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1103 "VMEM_ALLOC size: %lu != %lu+%d (+/- 1%%)\n",
1104 (unsigned long)alloc2,(unsigned long)alloc1,size);
1105 return -ERANGE;
1106 }
1107
1108 if (free2 < (free1 - size - (size / 100)) ||
1109 free2 > (free1 - size + (size / 100))) {
1110 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1111 "VMEM_FREE size: %lu != %lu-%d (+/- 1%%)\n",
1112 (unsigned long)free2, (unsigned long)free1, size);
1113 return -ERANGE;
1114 }
1115
1116 if (total1 != total2) {
1117 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1118 "VMEM_ALLOC | VMEM_FREE not constant: "
1119 "%lu != %lu\n", (unsigned long)total2,
1120 (unsigned long)total1);
1121 return -ERANGE;
1122 }
1123
1124 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
1125 "VMEM_ALLOC within tolerance: ~%ld%% (%ld/%d)\n",
1126 (long)abs(alloc1 + (long)size - alloc2) * 100 / (long)size,
1127 (long)abs(alloc1 + (long)size - alloc2), size);
1128 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
1129 "VMEM_FREE within tolerance: ~%ld%% (%ld/%d)\n",
1130 (long)abs((free1 - (long)size) - free2) * 100 / (long)size,
1131 (long)abs((free1 - (long)size) - free2), size);
1132
1133 return 0;
1134 }
1135
1136 typedef struct dummy_page {
1137 struct list_head dp_list;
1138 char dp_pad[PAGE_SIZE - sizeof(struct list_head)];
1139 } dummy_page_t;
1140
1141 /*
1142 * This test is designed to verify that direct reclaim is functioning as
1143 * expected. We allocate a large number of objects thus creating a large
1144 * number of slabs. We then apply memory pressure and expect that the
1145 * direct reclaim path can easily recover those slabs. The registered
1146 * reclaim function will free the objects and the slab shrinker will call
1147 * it repeatedly until at least a single slab can be freed.
1148 *
1149 * Note it may not be possible to reclaim every last slab via direct reclaim
1150 * without a failure because the shrinker_rwsem may be contended. For this
1151 * reason, quickly reclaiming 3/4 of the slabs is considered a success.
1152 *
1153 * This should all be possible within 10 seconds. For reference, on a
1154 * system with 2G of memory this test takes roughly 0.2 seconds to run.
1155 * It may take longer on larger memory systems but should still easily
1156 * complete in the alloted 10 seconds.
1157 */
1158 static int
1159 splat_kmem_test13(struct file *file, void *arg)
1160 {
1161 kmem_cache_priv_t *kcp;
1162 kmem_cache_thread_t *kct;
1163 dummy_page_t *dp;
1164 struct list_head list;
1165 struct timespec start, delta = { 0, 0 };
1166 int size, count, slabs, fails = 0;
1167 int i, rc = 0, max_time = 10;
1168
1169 size = 128 * 1024;
1170 count = ((physmem * PAGE_SIZE) / 4 / size);
1171
1172 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST13_NAME,
1173 size, 0, 0);
1174 if (!kcp) {
1175 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1176 "Unable to create '%s'\n", "kcp");
1177 rc = -ENOMEM;
1178 goto out;
1179 }
1180
1181 kcp->kcp_cache =
1182 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
1183 splat_kmem_cache_test_constructor,
1184 splat_kmem_cache_test_destructor,
1185 splat_kmem_cache_test_reclaim,
1186 kcp, NULL, 0);
1187 if (!kcp->kcp_cache) {
1188 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1189 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
1190 rc = -ENOMEM;
1191 goto out_kcp;
1192 }
1193
1194 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
1195 if (!kct) {
1196 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1197 "Unable to create '%s'\n", "kct");
1198 rc = -ENOMEM;
1199 goto out_cache;
1200 }
1201
1202 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
1203 if (rc) {
1204 splat_vprint(file, SPLAT_KMEM_TEST13_NAME, "Unable to "
1205 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
1206 goto out_kct;
1207 }
1208
1209 i = 0;
1210 slabs = kcp->kcp_cache->skc_slab_total;
1211 INIT_LIST_HEAD(&list);
1212 start = current_kernel_time();
1213
1214 /* Apply memory pressure */
1215 while (kcp->kcp_cache->skc_slab_total > (slabs >> 2)) {
1216
1217 if ((i % 10000) == 0)
1218 splat_kmem_cache_test_debug(
1219 file, SPLAT_KMEM_TEST13_NAME, kcp);
1220
1221 delta = timespec_sub(current_kernel_time(), start);
1222 if (delta.tv_sec >= max_time) {
1223 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1224 "Failed to reclaim 3/4 of cache in %ds, "
1225 "%u/%u slabs remain\n", max_time,
1226 (unsigned)kcp->kcp_cache->skc_slab_total,
1227 slabs);
1228 rc = -ETIME;
1229 break;
1230 }
1231
1232 dp = (dummy_page_t *)__get_free_page(GFP_KERNEL | __GFP_NORETRY);
1233 if (!dp) {
1234 fails++;
1235 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1236 "Failed (%d) to allocate page with %u "
1237 "slabs still in the cache\n", fails,
1238 (unsigned)kcp->kcp_cache->skc_slab_total);
1239 continue;
1240 }
1241
1242 list_add(&dp->dp_list, &list);
1243 i++;
1244 }
1245
1246 if (rc == 0)
1247 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1248 "Successfully created %u slabs and with %d alloc "
1249 "failures reclaimed 3/4 of them in %d.%03ds\n",
1250 slabs, fails,
1251 (int)delta.tv_sec, (int)delta.tv_nsec / 1000000);
1252
1253 /* Release memory pressure pages */
1254 while (!list_empty(&list)) {
1255 dp = list_entry(list.next, dummy_page_t, dp_list);
1256 list_del_init(&dp->dp_list);
1257 free_page((unsigned long)dp);
1258 }
1259
1260 /* Release remaining kmem cache objects */
1261 splat_kmem_cache_test_kcd_free(kcp, kct);
1262 out_kct:
1263 splat_kmem_cache_test_kct_free(kcp, kct);
1264 out_cache:
1265 kmem_cache_destroy(kcp->kcp_cache);
1266 out_kcp:
1267 splat_kmem_cache_test_kcp_free(kcp);
1268 out:
1269 return rc;
1270 }
1271
1272 splat_subsystem_t *
1273 splat_kmem_init(void)
1274 {
1275 splat_subsystem_t *sub;
1276
1277 sub = kmalloc(sizeof(*sub), GFP_KERNEL);
1278 if (sub == NULL)
1279 return NULL;
1280
1281 memset(sub, 0, sizeof(*sub));
1282 strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
1283 strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
1284 INIT_LIST_HEAD(&sub->subsystem_list);
1285 INIT_LIST_HEAD(&sub->test_list);
1286 spin_lock_init(&sub->test_lock);
1287 sub->desc.id = SPLAT_SUBSYSTEM_KMEM;
1288
1289 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
1290 SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
1291 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
1292 SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
1293 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
1294 SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
1295 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
1296 SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
1297 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
1298 SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
1299 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
1300 SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
1301 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
1302 SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
1303 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
1304 SPLAT_KMEM_TEST8_ID, splat_kmem_test8);
1305 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC,
1306 SPLAT_KMEM_TEST9_ID, splat_kmem_test9);
1307 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC,
1308 SPLAT_KMEM_TEST10_ID, splat_kmem_test10);
1309 #if 0
1310 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC,
1311 SPLAT_KMEM_TEST11_ID, splat_kmem_test11);
1312 #endif
1313 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST12_NAME, SPLAT_KMEM_TEST12_DESC,
1314 SPLAT_KMEM_TEST12_ID, splat_kmem_test12);
1315 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST13_NAME, SPLAT_KMEM_TEST13_DESC,
1316 SPLAT_KMEM_TEST13_ID, splat_kmem_test13);
1317
1318 return sub;
1319 }
1320
1321 void
1322 splat_kmem_fini(splat_subsystem_t *sub)
1323 {
1324 ASSERT(sub);
1325 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST13_ID);
1326 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST12_ID);
1327 #if 0
1328 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID);
1329 #endif
1330 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID);
1331 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID);
1332 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
1333 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
1334 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
1335 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
1336 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
1337 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
1338 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
1339 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);
1340
1341 kfree(sub);
1342 }
1343
1344 int
1345 splat_kmem_id(void) {
1346 return SPLAT_SUBSYSTEM_KMEM;
1347 }