]> git.proxmox.com Git - mirror_spl.git/blame - module/spl/spl-kmem-cache.c
Reduce kmem cache deadlock threshold
[mirror_spl.git] / module / spl / spl-kmem-cache.c
CommitLineData
b34b9563 1/*
e5b9b344
BB
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
b34b9563 23 */
e5b9b344
BB
24
25#include <sys/kmem.h>
26#include <sys/kmem_cache.h>
27#include <sys/taskq.h>
28#include <sys/timer.h>
29#include <sys/vmem.h>
30#include <linux/slab.h>
31#include <linux/swap.h>
32#include <linux/mm_compat.h>
33#include <linux/wait_compat.h>
34
35/*
36 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37 * are removed to allow access to the real Linux slab allocator.
38 */
39#undef kmem_cache_destroy
40#undef kmem_cache_create
41#undef kmem_cache_alloc
42#undef kmem_cache_free
43
44
a988a35a
RY
45/*
46 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47 * with smp_mb__{before,after}_atomic() because they were redundant. This is
48 * only used inside our SLAB allocator, so we implement an internal wrapper
49 * here to give us smp_mb__{before,after}_atomic() on older kernels.
50 */
51#ifndef smp_mb__before_atomic
52#define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
53#endif
54
55#ifndef smp_mb__after_atomic
56#define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
57#endif
58
e5b9b344
BB
59/*
60 * Cache expiration was implemented because it was part of the default Solaris
61 * kmem_cache behavior. The idea is that per-cpu objects which haven't been
62 * accessed in several seconds should be returned to the cache. On the other
63 * hand Linux slabs never move objects back to the slabs unless there is
64 * memory pressure on the system. By default the Linux method is enabled
65 * because it has been shown to improve responsiveness on low memory systems.
66 * This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
67 */
68unsigned int spl_kmem_cache_expire = KMC_EXPIRE_MEM;
69EXPORT_SYMBOL(spl_kmem_cache_expire);
70module_param(spl_kmem_cache_expire, uint, 0644);
71MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");
72
1a204968
BB
73/*
74 * Cache magazines are an optimization designed to minimize the cost of
75 * allocating memory. They do this by keeping a per-cpu cache of recently
76 * freed objects, which can then be reallocated without taking a lock. This
77 * can improve performance on highly contended caches. However, because
78 * objects in magazines will prevent otherwise empty slabs from being
79 * immediately released this may not be ideal for low memory machines.
80 *
81 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
82 * magazine size. When this value is set to 0 the magazine size will be
83 * automatically determined based on the object size. Otherwise magazines
84 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
85 * may never be entirely disabled in this implementation.
86 */
87unsigned int spl_kmem_cache_magazine_size = 0;
88module_param(spl_kmem_cache_magazine_size, uint, 0444);
89MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
90 "Default magazine size (2-256), set automatically (0)\n");
91
e5b9b344
BB
92/*
93 * The default behavior is to report the number of objects remaining in the
94 * cache. This allows the Linux VM to repeatedly reclaim objects from the
95 * cache when memory is low satisfy other memory allocations. Alternately,
96 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
97 * is reclaimed. This may increase the likelihood of out of memory events.
98 */
99unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
100module_param(spl_kmem_cache_reclaim, uint, 0644);
101MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
102
103unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
104module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
105MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
106
107unsigned int spl_kmem_cache_obj_per_slab_min = SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN;
108module_param(spl_kmem_cache_obj_per_slab_min, uint, 0644);
109MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min,
b34b9563 110 "Minimal number of objects per slab");
e5b9b344
BB
111
112unsigned int spl_kmem_cache_max_size = 32;
113module_param(spl_kmem_cache_max_size, uint, 0644);
114MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
115
116/*
117 * For small objects the Linux slab allocator should be used to make the most
118 * efficient use of the memory. However, large objects are not supported by
119 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
120 * of 16K was determined to be optimal for architectures using 4K pages.
121 */
122#if PAGE_SIZE == 4096
123unsigned int spl_kmem_cache_slab_limit = 16384;
124#else
125unsigned int spl_kmem_cache_slab_limit = 0;
126#endif
127module_param(spl_kmem_cache_slab_limit, uint, 0644);
128MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
b34b9563 129 "Objects less than N bytes use the Linux slab");
e5b9b344
BB
130
131unsigned int spl_kmem_cache_kmem_limit = (PAGE_SIZE / 4);
132module_param(spl_kmem_cache_kmem_limit, uint, 0644);
133MODULE_PARM_DESC(spl_kmem_cache_kmem_limit,
b34b9563 134 "Objects less than N bytes use the kmalloc");
e5b9b344
BB
135
136/*
137 * Slab allocation interfaces
138 *
139 * While the Linux slab implementation was inspired by the Solaris
140 * implementation I cannot use it to emulate the Solaris APIs. I
141 * require two features which are not provided by the Linux slab.
142 *
143 * 1) Constructors AND destructors. Recent versions of the Linux
144 * kernel have removed support for destructors. This is a deal
145 * breaker for the SPL which contains particularly expensive
146 * initializers for mutex's, condition variables, etc. We also
147 * require a minimal level of cleanup for these data types unlike
b34b9563 148 * many Linux data types which do need to be explicitly destroyed.
e5b9b344
BB
149 *
150 * 2) Virtual address space backed slab. Callers of the Solaris slab
151 * expect it to work well for both small are very large allocations.
152 * Because of memory fragmentation the Linux slab which is backed
153 * by kmalloc'ed memory performs very badly when confronted with
154 * large numbers of large allocations. Basing the slab on the
155 * virtual address space removes the need for contiguous pages
156 * and greatly improve performance for large allocations.
157 *
158 * For these reasons, the SPL has its own slab implementation with
159 * the needed features. It is not as highly optimized as either the
160 * Solaris or Linux slabs, but it should get me most of what is
161 * needed until it can be optimized or obsoleted by another approach.
162 *
163 * One serious concern I do have about this method is the relatively
164 * small virtual address space on 32bit arches. This will seriously
165 * constrain the size of the slab caches and their performance.
e5b9b344
BB
166 */
167
168struct list_head spl_kmem_cache_list; /* List of caches */
169struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
b34b9563 170taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
e5b9b344
BB
171
172static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
173
174SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
175SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
176 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
177
178static void *
179kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
180{
c3eabc75 181 gfp_t lflags = kmem_flags_convert(flags);
e5b9b344
BB
182 void *ptr;
183
184 ASSERT(ISP2(size));
185
186 if (skc->skc_flags & KMC_KMEM)
c3eabc75 187 ptr = (void *)__get_free_pages(lflags, get_order(size));
e5b9b344 188 else
c2fa0945 189 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM, PAGE_KERNEL);
e5b9b344
BB
190
191 /* Resulting allocated memory will be page aligned */
192 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
193
b34b9563 194 return (ptr);
e5b9b344
BB
195}
196
197static void
198kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
199{
200 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
201 ASSERT(ISP2(size));
202
203 /*
204 * The Linux direct reclaim path uses this out of band value to
205 * determine if forward progress is being made. Normally this is
206 * incremented by kmem_freepages() which is part of the various
207 * Linux slab implementations. However, since we are using none
208 * of that infrastructure we are responsible for incrementing it.
209 */
210 if (current->reclaim_state)
211 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
212
213 if (skc->skc_flags & KMC_KMEM)
214 free_pages((unsigned long)ptr, get_order(size));
215 else
216 vfree(ptr);
217}
218
219/*
220 * Required space for each aligned sks.
221 */
222static inline uint32_t
223spl_sks_size(spl_kmem_cache_t *skc)
224{
b34b9563
BB
225 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
226 skc->skc_obj_align, uint32_t));
e5b9b344
BB
227}
228
229/*
230 * Required space for each aligned object.
231 */
232static inline uint32_t
233spl_obj_size(spl_kmem_cache_t *skc)
234{
235 uint32_t align = skc->skc_obj_align;
236
b34b9563
BB
237 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
238 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
e5b9b344
BB
239}
240
241/*
242 * Lookup the spl_kmem_object_t for an object given that object.
243 */
244static inline spl_kmem_obj_t *
245spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
246{
b34b9563
BB
247 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
248 skc->skc_obj_align, uint32_t));
e5b9b344
BB
249}
250
251/*
252 * Required space for each offslab object taking in to account alignment
253 * restrictions and the power-of-two requirement of kv_alloc().
254 */
255static inline uint32_t
256spl_offslab_size(spl_kmem_cache_t *skc)
257{
b34b9563 258 return (1UL << (fls64(spl_obj_size(skc)) + 1));
e5b9b344
BB
259}
260
261/*
262 * It's important that we pack the spl_kmem_obj_t structure and the
263 * actual objects in to one large address space to minimize the number
264 * of calls to the allocator. It is far better to do a few large
265 * allocations and then subdivide it ourselves. Now which allocator
266 * we use requires balancing a few trade offs.
267 *
268 * For small objects we use kmem_alloc() because as long as you are
269 * only requesting a small number of pages (ideally just one) its cheap.
270 * However, when you start requesting multiple pages with kmem_alloc()
271 * it gets increasingly expensive since it requires contiguous pages.
272 * For this reason we shift to vmem_alloc() for slabs of large objects
273 * which removes the need for contiguous pages. We do not use
274 * vmem_alloc() in all cases because there is significant locking
275 * overhead in __get_vm_area_node(). This function takes a single
276 * global lock when acquiring an available virtual address range which
277 * serializes all vmem_alloc()'s for all slab caches. Using slightly
278 * different allocation functions for small and large objects should
279 * give us the best of both worlds.
280 *
281 * KMC_ONSLAB KMC_OFFSLAB
282 *
283 * +------------------------+ +-----------------+
284 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
285 * | skc_obj_size <-+ | | +-----------------+ | |
286 * | spl_kmem_obj_t | | | |
287 * | skc_obj_size <---+ | +-----------------+ | |
288 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
289 * | ... v | | spl_kmem_obj_t | |
290 * +------------------------+ +-----------------+ v
291 */
292static spl_kmem_slab_t *
293spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
294{
295 spl_kmem_slab_t *sks;
296 spl_kmem_obj_t *sko, *n;
297 void *base, *obj;
298 uint32_t obj_size, offslab_size = 0;
299 int i, rc = 0;
300
301 base = kv_alloc(skc, skc->skc_slab_size, flags);
302 if (base == NULL)
303 return (NULL);
304
305 sks = (spl_kmem_slab_t *)base;
306 sks->sks_magic = SKS_MAGIC;
307 sks->sks_objs = skc->skc_slab_objs;
308 sks->sks_age = jiffies;
309 sks->sks_cache = skc;
310 INIT_LIST_HEAD(&sks->sks_list);
311 INIT_LIST_HEAD(&sks->sks_free_list);
312 sks->sks_ref = 0;
313 obj_size = spl_obj_size(skc);
314
315 if (skc->skc_flags & KMC_OFFSLAB)
316 offslab_size = spl_offslab_size(skc);
317
318 for (i = 0; i < sks->sks_objs; i++) {
319 if (skc->skc_flags & KMC_OFFSLAB) {
320 obj = kv_alloc(skc, offslab_size, flags);
321 if (!obj) {
322 rc = -ENOMEM;
323 goto out;
324 }
325 } else {
326 obj = base + spl_sks_size(skc) + (i * obj_size);
327 }
328
329 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
330 sko = spl_sko_from_obj(skc, obj);
331 sko->sko_addr = obj;
332 sko->sko_magic = SKO_MAGIC;
333 sko->sko_slab = sks;
334 INIT_LIST_HEAD(&sko->sko_list);
335 list_add_tail(&sko->sko_list, &sks->sks_free_list);
336 }
337
338out:
339 if (rc) {
340 if (skc->skc_flags & KMC_OFFSLAB)
b34b9563
BB
341 list_for_each_entry_safe(sko,
342 n, &sks->sks_free_list, sko_list)
e5b9b344
BB
343 kv_free(skc, sko->sko_addr, offslab_size);
344
345 kv_free(skc, base, skc->skc_slab_size);
346 sks = NULL;
347 }
348
349 return (sks);
350}
351
352/*
353 * Remove a slab from complete or partial list, it must be called with
354 * the 'skc->skc_lock' held but the actual free must be performed
355 * outside the lock to prevent deadlocking on vmem addresses.
356 */
357static void
358spl_slab_free(spl_kmem_slab_t *sks,
b34b9563 359 struct list_head *sks_list, struct list_head *sko_list)
e5b9b344
BB
360{
361 spl_kmem_cache_t *skc;
362
363 ASSERT(sks->sks_magic == SKS_MAGIC);
364 ASSERT(sks->sks_ref == 0);
365
366 skc = sks->sks_cache;
367 ASSERT(skc->skc_magic == SKC_MAGIC);
368 ASSERT(spin_is_locked(&skc->skc_lock));
369
370 /*
371 * Update slab/objects counters in the cache, then remove the
372 * slab from the skc->skc_partial_list. Finally add the slab
373 * and all its objects in to the private work lists where the
374 * destructors will be called and the memory freed to the system.
375 */
376 skc->skc_obj_total -= sks->sks_objs;
377 skc->skc_slab_total--;
378 list_del(&sks->sks_list);
379 list_add(&sks->sks_list, sks_list);
380 list_splice_init(&sks->sks_free_list, sko_list);
381}
382
383/*
1a204968 384 * Reclaim empty slabs at the end of the partial list.
e5b9b344
BB
385 */
386static void
1a204968 387spl_slab_reclaim(spl_kmem_cache_t *skc)
e5b9b344
BB
388{
389 spl_kmem_slab_t *sks, *m;
390 spl_kmem_obj_t *sko, *n;
391 LIST_HEAD(sks_list);
392 LIST_HEAD(sko_list);
393 uint32_t size = 0;
e5b9b344
BB
394
395 /*
1a204968
BB
396 * Empty slabs and objects must be moved to a private list so they
397 * can be safely freed outside the spin lock. All empty slabs are
398 * at the end of skc->skc_partial_list, therefore once a non-empty
399 * slab is found we can stop scanning.
e5b9b344
BB
400 */
401 spin_lock(&skc->skc_lock);
b34b9563
BB
402 list_for_each_entry_safe_reverse(sks, m,
403 &skc->skc_partial_list, sks_list) {
1a204968
BB
404
405 if (sks->sks_ref > 0)
e5b9b344
BB
406 break;
407
1a204968 408 spl_slab_free(sks, &sks_list, &sko_list);
e5b9b344
BB
409 }
410 spin_unlock(&skc->skc_lock);
411
412 /*
413 * The following two loops ensure all the object destructors are
414 * run, any offslab objects are freed, and the slabs themselves
415 * are freed. This is all done outside the skc->skc_lock since
416 * this allows the destructor to sleep, and allows us to perform
417 * a conditional reschedule when a freeing a large number of
418 * objects and slabs back to the system.
419 */
420 if (skc->skc_flags & KMC_OFFSLAB)
421 size = spl_offslab_size(skc);
422
423 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
424 ASSERT(sko->sko_magic == SKO_MAGIC);
425
426 if (skc->skc_flags & KMC_OFFSLAB)
427 kv_free(skc, sko->sko_addr, size);
428 }
429
430 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
431 ASSERT(sks->sks_magic == SKS_MAGIC);
432 kv_free(skc, sks, skc->skc_slab_size);
433 }
434}
435
436static spl_kmem_emergency_t *
437spl_emergency_search(struct rb_root *root, void *obj)
438{
439 struct rb_node *node = root->rb_node;
440 spl_kmem_emergency_t *ske;
441 unsigned long address = (unsigned long)obj;
442
443 while (node) {
444 ske = container_of(node, spl_kmem_emergency_t, ske_node);
445
446 if (address < (unsigned long)ske->ske_obj)
447 node = node->rb_left;
448 else if (address > (unsigned long)ske->ske_obj)
449 node = node->rb_right;
450 else
b34b9563 451 return (ske);
e5b9b344
BB
452 }
453
b34b9563 454 return (NULL);
e5b9b344
BB
455}
456
457static int
458spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
459{
460 struct rb_node **new = &(root->rb_node), *parent = NULL;
461 spl_kmem_emergency_t *ske_tmp;
462 unsigned long address = (unsigned long)ske->ske_obj;
463
464 while (*new) {
465 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
466
467 parent = *new;
468 if (address < (unsigned long)ske_tmp->ske_obj)
469 new = &((*new)->rb_left);
470 else if (address > (unsigned long)ske_tmp->ske_obj)
471 new = &((*new)->rb_right);
472 else
b34b9563 473 return (0);
e5b9b344
BB
474 }
475
476 rb_link_node(&ske->ske_node, parent, new);
477 rb_insert_color(&ske->ske_node, root);
478
b34b9563 479 return (1);
e5b9b344
BB
480}
481
482/*
483 * Allocate a single emergency object and track it in a red black tree.
484 */
485static int
486spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
487{
c3eabc75 488 gfp_t lflags = kmem_flags_convert(flags);
e5b9b344
BB
489 spl_kmem_emergency_t *ske;
490 int empty;
491
492 /* Last chance use a partial slab if one now exists */
493 spin_lock(&skc->skc_lock);
494 empty = list_empty(&skc->skc_partial_list);
495 spin_unlock(&skc->skc_lock);
496 if (!empty)
497 return (-EEXIST);
498
c3eabc75 499 ske = kmalloc(sizeof (*ske), lflags);
e5b9b344
BB
500 if (ske == NULL)
501 return (-ENOMEM);
502
c3eabc75 503 ske->ske_obj = kmalloc(skc->skc_obj_size, lflags);
e5b9b344
BB
504 if (ske->ske_obj == NULL) {
505 kfree(ske);
506 return (-ENOMEM);
507 }
508
509 spin_lock(&skc->skc_lock);
510 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
511 if (likely(empty)) {
512 skc->skc_obj_total++;
513 skc->skc_obj_emergency++;
514 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
515 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
516 }
517 spin_unlock(&skc->skc_lock);
518
519 if (unlikely(!empty)) {
520 kfree(ske->ske_obj);
521 kfree(ske);
522 return (-EINVAL);
523 }
524
525 *obj = ske->ske_obj;
526
527 return (0);
528}
529
530/*
531 * Locate the passed object in the red black tree and free it.
532 */
533static int
534spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
535{
536 spl_kmem_emergency_t *ske;
537
538 spin_lock(&skc->skc_lock);
539 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
540 if (likely(ske)) {
541 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
542 skc->skc_obj_emergency--;
543 skc->skc_obj_total--;
544 }
545 spin_unlock(&skc->skc_lock);
546
547 if (unlikely(ske == NULL))
548 return (-ENOENT);
549
550 kfree(ske->ske_obj);
551 kfree(ske);
552
553 return (0);
554}
555
556/*
557 * Release objects from the per-cpu magazine back to their slab. The flush
558 * argument contains the max number of entries to remove from the magazine.
559 */
560static void
561__spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
562{
563 int i, count = MIN(flush, skm->skm_avail);
564
565 ASSERT(skc->skc_magic == SKC_MAGIC);
566 ASSERT(skm->skm_magic == SKM_MAGIC);
567 ASSERT(spin_is_locked(&skc->skc_lock));
568
569 for (i = 0; i < count; i++)
570 spl_cache_shrink(skc, skm->skm_objs[i]);
571
572 skm->skm_avail -= count;
573 memmove(skm->skm_objs, &(skm->skm_objs[count]),
b34b9563 574 sizeof (void *) * skm->skm_avail);
e5b9b344
BB
575}
576
577static void
578spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
579{
580 spin_lock(&skc->skc_lock);
581 __spl_cache_flush(skc, skm, flush);
582 spin_unlock(&skc->skc_lock);
583}
584
585static void
586spl_magazine_age(void *data)
587{
588 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
589 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
590
591 ASSERT(skm->skm_magic == SKM_MAGIC);
592 ASSERT(skm->skm_cpu == smp_processor_id());
593 ASSERT(irqs_disabled());
594
595 /* There are no available objects or they are too young to age out */
596 if ((skm->skm_avail == 0) ||
597 time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
598 return;
599
600 /*
601 * Because we're executing in interrupt context we may have
602 * interrupted the holder of this lock. To avoid a potential
603 * deadlock return if the lock is contended.
604 */
605 if (!spin_trylock(&skc->skc_lock))
606 return;
607
608 __spl_cache_flush(skc, skm, skm->skm_refill);
609 spin_unlock(&skc->skc_lock);
610}
611
612/*
613 * Called regularly to keep a downward pressure on the cache.
614 *
615 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
616 * be returned to the caches. This is done to prevent idle magazines from
617 * holding memory which could be better used elsewhere. The delay is
618 * present to prevent thrashing the magazine.
619 *
620 * The newly released objects may result in empty partial slabs. Those
621 * slabs should be released to the system. Otherwise moving the objects
622 * out of the magazines is just wasted work.
623 */
624static void
625spl_cache_age(void *data)
626{
627 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
628 taskqid_t id = 0;
629
630 ASSERT(skc->skc_magic == SKC_MAGIC);
631
632 /* Dynamically disabled at run time */
633 if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
634 return;
635
636 atomic_inc(&skc->skc_ref);
637
638 if (!(skc->skc_flags & KMC_NOMAGAZINE))
639 on_each_cpu(spl_magazine_age, skc, 1);
640
1a204968 641 spl_slab_reclaim(skc);
e5b9b344
BB
642
643 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
644 id = taskq_dispatch_delay(
645 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
646 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
647
648 /* Destroy issued after dispatch immediately cancel it */
649 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
650 taskq_cancel_id(spl_kmem_cache_taskq, id);
651 }
652
653 spin_lock(&skc->skc_lock);
654 skc->skc_taskqid = id;
655 spin_unlock(&skc->skc_lock);
656
657 atomic_dec(&skc->skc_ref);
658}
659
660/*
661 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
662 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
663 * for very small objects we may end up with more than this so as not
664 * to waste space in the minimal allocation of a single page. Also for
665 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
666 * lower than this and we will fail.
667 */
668static int
669spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
670{
671 uint32_t sks_size, obj_size, max_size;
672
673 if (skc->skc_flags & KMC_OFFSLAB) {
674 *objs = spl_kmem_cache_obj_per_slab;
b34b9563 675 *size = P2ROUNDUP(sizeof (spl_kmem_slab_t), PAGE_SIZE);
e5b9b344
BB
676 return (0);
677 } else {
678 sks_size = spl_sks_size(skc);
679 obj_size = spl_obj_size(skc);
680
681 if (skc->skc_flags & KMC_KMEM)
682 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
683 else
684 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
685
686 /* Power of two sized slab */
687 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
688 *objs = (*size - sks_size) / obj_size;
689 if (*objs >= spl_kmem_cache_obj_per_slab)
690 return (0);
691 }
692
693 /*
694 * Unable to satisfy target objects per slab, fall back to
695 * allocating a maximally sized slab and assuming it can
696 * contain the minimum objects count use it. If not fail.
697 */
698 *size = max_size;
699 *objs = (*size - sks_size) / obj_size;
700 if (*objs >= (spl_kmem_cache_obj_per_slab_min))
701 return (0);
702 }
703
704 return (-ENOSPC);
705}
706
707/*
708 * Make a guess at reasonable per-cpu magazine size based on the size of
709 * each object and the cost of caching N of them in each magazine. Long
710 * term this should really adapt based on an observed usage heuristic.
711 */
712static int
713spl_magazine_size(spl_kmem_cache_t *skc)
714{
715 uint32_t obj_size = spl_obj_size(skc);
716 int size;
717
1a204968
BB
718 if (spl_kmem_cache_magazine_size > 0)
719 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
720
e5b9b344
BB
721 /* Per-magazine sizes below assume a 4Kib page size */
722 if (obj_size > (PAGE_SIZE * 256))
723 size = 4; /* Minimum 4Mib per-magazine */
724 else if (obj_size > (PAGE_SIZE * 32))
725 size = 16; /* Minimum 2Mib per-magazine */
726 else if (obj_size > (PAGE_SIZE))
727 size = 64; /* Minimum 256Kib per-magazine */
728 else if (obj_size > (PAGE_SIZE / 4))
729 size = 128; /* Minimum 128Kib per-magazine */
730 else
731 size = 256;
732
733 return (size);
734}
735
736/*
737 * Allocate a per-cpu magazine to associate with a specific core.
738 */
739static spl_kmem_magazine_t *
740spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
741{
742 spl_kmem_magazine_t *skm;
b34b9563
BB
743 int size = sizeof (spl_kmem_magazine_t) +
744 sizeof (void *) * skc->skc_mag_size;
e5b9b344 745
c3eabc75 746 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
e5b9b344
BB
747 if (skm) {
748 skm->skm_magic = SKM_MAGIC;
749 skm->skm_avail = 0;
750 skm->skm_size = skc->skc_mag_size;
751 skm->skm_refill = skc->skc_mag_refill;
752 skm->skm_cache = skc;
753 skm->skm_age = jiffies;
754 skm->skm_cpu = cpu;
755 }
756
757 return (skm);
758}
759
760/*
761 * Free a per-cpu magazine associated with a specific core.
762 */
763static void
764spl_magazine_free(spl_kmem_magazine_t *skm)
765{
e5b9b344
BB
766 ASSERT(skm->skm_magic == SKM_MAGIC);
767 ASSERT(skm->skm_avail == 0);
c3eabc75 768 kfree(skm);
e5b9b344
BB
769}
770
771/*
772 * Create all pre-cpu magazines of reasonable sizes.
773 */
774static int
775spl_magazine_create(spl_kmem_cache_t *skc)
776{
777 int i;
778
779 if (skc->skc_flags & KMC_NOMAGAZINE)
780 return (0);
781
782 skc->skc_mag_size = spl_magazine_size(skc);
783 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
784
785 for_each_online_cpu(i) {
786 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
787 if (!skc->skc_mag[i]) {
788 for (i--; i >= 0; i--)
789 spl_magazine_free(skc->skc_mag[i]);
790
791 return (-ENOMEM);
792 }
793 }
794
795 return (0);
796}
797
798/*
799 * Destroy all pre-cpu magazines.
800 */
801static void
802spl_magazine_destroy(spl_kmem_cache_t *skc)
803{
804 spl_kmem_magazine_t *skm;
805 int i;
806
807 if (skc->skc_flags & KMC_NOMAGAZINE)
808 return;
809
b34b9563 810 for_each_online_cpu(i) {
e5b9b344
BB
811 skm = skc->skc_mag[i];
812 spl_cache_flush(skc, skm, skm->skm_avail);
813 spl_magazine_free(skm);
b34b9563 814 }
e5b9b344
BB
815}
816
817/*
818 * Create a object cache based on the following arguments:
819 * name cache name
820 * size cache object size
821 * align cache object alignment
822 * ctor cache object constructor
823 * dtor cache object destructor
824 * reclaim cache object reclaim
825 * priv cache private data for ctor/dtor/reclaim
826 * vmp unused must be NULL
827 * flags
828 * KMC_NOTOUCH Disable cache object aging (unsupported)
829 * KMC_NODEBUG Disable debugging (unsupported)
830 * KMC_NOHASH Disable hashing (unsupported)
831 * KMC_QCACHE Disable qcache (unsupported)
832 * KMC_NOMAGAZINE Enabled for kmem/vmem, Disabled for Linux slab
833 * KMC_KMEM Force kmem backed cache
834 * KMC_VMEM Force vmem backed cache
835 * KMC_SLAB Force Linux slab backed cache
836 * KMC_OFFSLAB Locate objects off the slab
837 */
838spl_kmem_cache_t *
839spl_kmem_cache_create(char *name, size_t size, size_t align,
b34b9563
BB
840 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim,
841 void *priv, void *vmp, int flags)
e5b9b344 842{
c3eabc75 843 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
b34b9563 844 spl_kmem_cache_t *skc;
e5b9b344
BB
845 int rc;
846
847 /*
848 * Unsupported flags
849 */
850 ASSERT0(flags & KMC_NOMAGAZINE);
851 ASSERT0(flags & KMC_NOHASH);
852 ASSERT0(flags & KMC_QCACHE);
853 ASSERT(vmp == NULL);
854
855 might_sleep();
856
857 /*
b34b9563 858 * Allocate memory for a new cache and initialize it. Unfortunately,
e5b9b344
BB
859 * this usually ends up being a large allocation of ~32k because
860 * we need to allocate enough memory for the worst case number of
c3eabc75 861 * cpus in the magazine, skc_mag[NR_CPUS].
e5b9b344 862 */
c3eabc75 863 skc = kzalloc(sizeof (*skc), lflags);
e5b9b344
BB
864 if (skc == NULL)
865 return (NULL);
866
867 skc->skc_magic = SKC_MAGIC;
868 skc->skc_name_size = strlen(name) + 1;
c3eabc75 869 skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
e5b9b344 870 if (skc->skc_name == NULL) {
c3eabc75 871 kfree(skc);
e5b9b344
BB
872 return (NULL);
873 }
874 strncpy(skc->skc_name, name, skc->skc_name_size);
875
876 skc->skc_ctor = ctor;
877 skc->skc_dtor = dtor;
878 skc->skc_reclaim = reclaim;
879 skc->skc_private = priv;
880 skc->skc_vmp = vmp;
881 skc->skc_linux_cache = NULL;
882 skc->skc_flags = flags;
883 skc->skc_obj_size = size;
884 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
885 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
886 skc->skc_reap = SPL_KMEM_CACHE_REAP;
887 atomic_set(&skc->skc_ref, 0);
888
889 INIT_LIST_HEAD(&skc->skc_list);
890 INIT_LIST_HEAD(&skc->skc_complete_list);
891 INIT_LIST_HEAD(&skc->skc_partial_list);
892 skc->skc_emergency_tree = RB_ROOT;
893 spin_lock_init(&skc->skc_lock);
894 init_waitqueue_head(&skc->skc_waitq);
895 skc->skc_slab_fail = 0;
896 skc->skc_slab_create = 0;
897 skc->skc_slab_destroy = 0;
898 skc->skc_slab_total = 0;
899 skc->skc_slab_alloc = 0;
900 skc->skc_slab_max = 0;
901 skc->skc_obj_total = 0;
902 skc->skc_obj_alloc = 0;
903 skc->skc_obj_max = 0;
904 skc->skc_obj_deadlock = 0;
905 skc->skc_obj_emergency = 0;
906 skc->skc_obj_emergency_max = 0;
907
908 /*
909 * Verify the requested alignment restriction is sane.
910 */
911 if (align) {
912 VERIFY(ISP2(align));
913 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
914 VERIFY3U(align, <=, PAGE_SIZE);
915 skc->skc_obj_align = align;
916 }
917
918 /*
919 * When no specific type of slab is requested (kmem, vmem, or
920 * linuxslab) then select a cache type based on the object size
921 * and default tunables.
922 */
923 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB))) {
924
925 /*
926 * Objects smaller than spl_kmem_cache_slab_limit can
927 * use the Linux slab for better space-efficiency. By
928 * default this functionality is disabled until its
b34b9563 929 * performance characteristics are fully understood.
e5b9b344
BB
930 */
931 if (spl_kmem_cache_slab_limit &&
932 size <= (size_t)spl_kmem_cache_slab_limit)
933 skc->skc_flags |= KMC_SLAB;
934
935 /*
936 * Small objects, less than spl_kmem_cache_kmem_limit per
937 * object should use kmem because their slabs are small.
938 */
939 else if (spl_obj_size(skc) <= spl_kmem_cache_kmem_limit)
940 skc->skc_flags |= KMC_KMEM;
941
942 /*
943 * All other objects are considered large and are placed
944 * on vmem backed slabs.
945 */
946 else
947 skc->skc_flags |= KMC_VMEM;
948 }
949
950 /*
951 * Given the type of slab allocate the required resources.
952 */
953 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
954 rc = spl_slab_size(skc,
955 &skc->skc_slab_objs, &skc->skc_slab_size);
956 if (rc)
957 goto out;
958
959 rc = spl_magazine_create(skc);
960 if (rc)
961 goto out;
962 } else {
963 skc->skc_linux_cache = kmem_cache_create(
964 skc->skc_name, size, align, 0, NULL);
965 if (skc->skc_linux_cache == NULL) {
966 rc = ENOMEM;
967 goto out;
968 }
969
c3eabc75
BB
970#if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
971 skc->skc_linux_cache->allocflags |= __GFP_COMP;
972#elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
973 skc->skc_linux_cache->gfpflags |= __GFP_COMP;
974#endif
e5b9b344
BB
975 skc->skc_flags |= KMC_NOMAGAZINE;
976 }
977
978 if (spl_kmem_cache_expire & KMC_EXPIRE_AGE)
979 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
980 spl_cache_age, skc, TQ_SLEEP,
981 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
982
983 down_write(&spl_kmem_cache_sem);
984 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
985 up_write(&spl_kmem_cache_sem);
986
987 return (skc);
988out:
c3eabc75
BB
989 kfree(skc->skc_name);
990 kfree(skc);
e5b9b344
BB
991 return (NULL);
992}
993EXPORT_SYMBOL(spl_kmem_cache_create);
994
995/*
b34b9563 996 * Register a move callback for cache defragmentation.
e5b9b344
BB
997 * XXX: Unimplemented but harmless to stub out for now.
998 */
999void
1000spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
1001 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1002{
b34b9563 1003 ASSERT(move != NULL);
e5b9b344
BB
1004}
1005EXPORT_SYMBOL(spl_kmem_cache_set_move);
1006
1007/*
1008 * Destroy a cache and all objects associated with the cache.
1009 */
1010void
1011spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1012{
1013 DECLARE_WAIT_QUEUE_HEAD(wq);
1014 taskqid_t id;
1015
1016 ASSERT(skc->skc_magic == SKC_MAGIC);
1017 ASSERT(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB));
1018
1019 down_write(&spl_kmem_cache_sem);
1020 list_del_init(&skc->skc_list);
1021 up_write(&spl_kmem_cache_sem);
1022
1023 /* Cancel any and wait for any pending delayed tasks */
1024 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1025
1026 spin_lock(&skc->skc_lock);
1027 id = skc->skc_taskqid;
1028 spin_unlock(&skc->skc_lock);
1029
1030 taskq_cancel_id(spl_kmem_cache_taskq, id);
1031
b34b9563
BB
1032 /*
1033 * Wait until all current callers complete, this is mainly
e5b9b344 1034 * to catch the case where a low memory situation triggers a
b34b9563
BB
1035 * cache reaping action which races with this destroy.
1036 */
e5b9b344
BB
1037 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1038
1039 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
1040 spl_magazine_destroy(skc);
1a204968 1041 spl_slab_reclaim(skc);
e5b9b344
BB
1042 } else {
1043 ASSERT(skc->skc_flags & KMC_SLAB);
1044 kmem_cache_destroy(skc->skc_linux_cache);
1045 }
1046
1047 spin_lock(&skc->skc_lock);
1048
b34b9563
BB
1049 /*
1050 * Validate there are no objects in use and free all the
1051 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
1052 */
e5b9b344
BB
1053 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1054 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1055 ASSERT3U(skc->skc_slab_total, ==, 0);
1056 ASSERT3U(skc->skc_obj_total, ==, 0);
1057 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1058 ASSERT(list_empty(&skc->skc_complete_list));
1059
e5b9b344
BB
1060 spin_unlock(&skc->skc_lock);
1061
c3eabc75
BB
1062 kfree(skc->skc_name);
1063 kfree(skc);
e5b9b344
BB
1064}
1065EXPORT_SYMBOL(spl_kmem_cache_destroy);
1066
1067/*
1068 * Allocate an object from a slab attached to the cache. This is used to
1069 * repopulate the per-cpu magazine caches in batches when they run low.
1070 */
1071static void *
1072spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1073{
1074 spl_kmem_obj_t *sko;
1075
1076 ASSERT(skc->skc_magic == SKC_MAGIC);
1077 ASSERT(sks->sks_magic == SKS_MAGIC);
1078 ASSERT(spin_is_locked(&skc->skc_lock));
1079
1080 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1081 ASSERT(sko->sko_magic == SKO_MAGIC);
1082 ASSERT(sko->sko_addr != NULL);
1083
1084 /* Remove from sks_free_list */
1085 list_del_init(&sko->sko_list);
1086
1087 sks->sks_age = jiffies;
1088 sks->sks_ref++;
1089 skc->skc_obj_alloc++;
1090
1091 /* Track max obj usage statistics */
1092 if (skc->skc_obj_alloc > skc->skc_obj_max)
1093 skc->skc_obj_max = skc->skc_obj_alloc;
1094
1095 /* Track max slab usage statistics */
1096 if (sks->sks_ref == 1) {
1097 skc->skc_slab_alloc++;
1098
1099 if (skc->skc_slab_alloc > skc->skc_slab_max)
1100 skc->skc_slab_max = skc->skc_slab_alloc;
1101 }
1102
b34b9563 1103 return (sko->sko_addr);
e5b9b344
BB
1104}
1105
1106/*
1107 * Generic slab allocation function to run by the global work queues.
1108 * It is responsible for allocating a new slab, linking it in to the list
1109 * of partial slabs, and then waking any waiters.
1110 */
1111static void
1112spl_cache_grow_work(void *data)
1113{
1114 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
1115 spl_kmem_cache_t *skc = ska->ska_cache;
1116 spl_kmem_slab_t *sks;
1117
c3eabc75
BB
1118#if defined(PF_MEMALLOC_NOIO)
1119 unsigned noio_flag = memalloc_noio_save();
1120 sks = spl_slab_alloc(skc, ska->ska_flags);
1121 memalloc_noio_restore(noio_flag);
1122#else
c2fa0945 1123 fstrans_cookie_t cookie = spl_fstrans_mark();
c3eabc75 1124 sks = spl_slab_alloc(skc, ska->ska_flags);
c2fa0945 1125 spl_fstrans_unmark(cookie);
c3eabc75 1126#endif
e5b9b344
BB
1127 spin_lock(&skc->skc_lock);
1128 if (sks) {
1129 skc->skc_slab_total++;
1130 skc->skc_obj_total += sks->sks_objs;
1131 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1132 }
1133
1134 atomic_dec(&skc->skc_ref);
a988a35a 1135 smp_mb__before_atomic();
e5b9b344
BB
1136 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1137 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
a988a35a 1138 smp_mb__after_atomic();
e5b9b344
BB
1139 wake_up_all(&skc->skc_waitq);
1140 spin_unlock(&skc->skc_lock);
1141
1142 kfree(ska);
1143}
1144
1145/*
1146 * Returns non-zero when a new slab should be available.
1147 */
1148static int
1149spl_cache_grow_wait(spl_kmem_cache_t *skc)
1150{
b34b9563 1151 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
e5b9b344
BB
1152}
1153
1154/*
1155 * No available objects on any slabs, create a new slab. Note that this
1156 * functionality is disabled for KMC_SLAB caches which are backed by the
1157 * Linux slab.
1158 */
1159static int
1160spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1161{
c3eabc75 1162 int remaining, rc = 0;
e5b9b344 1163
c3eabc75 1164 ASSERT0(flags & ~KM_PUBLIC_MASK);
e5b9b344
BB
1165 ASSERT(skc->skc_magic == SKC_MAGIC);
1166 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1167 might_sleep();
1168 *obj = NULL;
1169
1170 /*
1171 * Before allocating a new slab wait for any reaping to complete and
1172 * then return so the local magazine can be rechecked for new objects.
1173 */
1174 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1175 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1176 TASK_UNINTERRUPTIBLE);
1177 return (rc ? rc : -EAGAIN);
1178 }
1179
1180 /*
1181 * This is handled by dispatching a work request to the global work
1182 * queue. This allows us to asynchronously allocate a new slab while
1183 * retaining the ability to safely fall back to a smaller synchronous
1184 * allocations to ensure forward progress is always maintained.
1185 */
1186 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1187 spl_kmem_alloc_t *ska;
1188
c3eabc75 1189 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
e5b9b344 1190 if (ska == NULL) {
a988a35a
RY
1191 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1192 smp_mb__after_atomic();
e5b9b344
BB
1193 wake_up_all(&skc->skc_waitq);
1194 return (-ENOMEM);
1195 }
1196
1197 atomic_inc(&skc->skc_ref);
1198 ska->ska_cache = skc;
c3eabc75 1199 ska->ska_flags = flags;
e5b9b344
BB
1200 taskq_init_ent(&ska->ska_tqe);
1201 taskq_dispatch_ent(spl_kmem_cache_taskq,
1202 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1203 }
1204
1205 /*
1206 * The goal here is to only detect the rare case where a virtual slab
1207 * allocation has deadlocked. We must be careful to minimize the use
1208 * of emergency objects which are more expensive to track. Therefore,
1209 * we set a very long timeout for the asynchronous allocation and if
1210 * the timeout is reached the cache is flagged as deadlocked. From
1211 * this point only new emergency objects will be allocated until the
1212 * asynchronous allocation completes and clears the deadlocked flag.
1213 */
1214 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1215 rc = spl_emergency_alloc(skc, flags, obj);
1216 } else {
1217 remaining = wait_event_timeout(skc->skc_waitq,
e50e6cc9 1218 spl_cache_grow_wait(skc), HZ / 10);
e5b9b344
BB
1219
1220 if (!remaining && test_bit(KMC_BIT_VMEM, &skc->skc_flags)) {
1221 spin_lock(&skc->skc_lock);
1222 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1223 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1224 skc->skc_obj_deadlock++;
1225 }
1226 spin_unlock(&skc->skc_lock);
1227 }
1228
1229 rc = -ENOMEM;
1230 }
1231
1232 return (rc);
1233}
1234
1235/*
1236 * Refill a per-cpu magazine with objects from the slabs for this cache.
1237 * Ideally the magazine can be repopulated using existing objects which have
1238 * been released, however if we are unable to locate enough free objects new
1239 * slabs of objects will be created. On success NULL is returned, otherwise
1240 * the address of a single emergency object is returned for use by the caller.
1241 */
1242static void *
1243spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1244{
1245 spl_kmem_slab_t *sks;
1246 int count = 0, rc, refill;
1247 void *obj = NULL;
1248
1249 ASSERT(skc->skc_magic == SKC_MAGIC);
1250 ASSERT(skm->skm_magic == SKM_MAGIC);
1251
1252 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1253 spin_lock(&skc->skc_lock);
1254
1255 while (refill > 0) {
1256 /* No slabs available we may need to grow the cache */
1257 if (list_empty(&skc->skc_partial_list)) {
1258 spin_unlock(&skc->skc_lock);
1259
1260 local_irq_enable();
1261 rc = spl_cache_grow(skc, flags, &obj);
1262 local_irq_disable();
1263
1264 /* Emergency object for immediate use by caller */
1265 if (rc == 0 && obj != NULL)
1266 return (obj);
1267
1268 if (rc)
1269 goto out;
1270
1271 /* Rescheduled to different CPU skm is not local */
1272 if (skm != skc->skc_mag[smp_processor_id()])
1273 goto out;
1274
b34b9563
BB
1275 /*
1276 * Potentially rescheduled to the same CPU but
e5b9b344 1277 * allocations may have occurred from this CPU while
b34b9563
BB
1278 * we were sleeping so recalculate max refill.
1279 */
e5b9b344
BB
1280 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1281
1282 spin_lock(&skc->skc_lock);
1283 continue;
1284 }
1285
1286 /* Grab the next available slab */
1287 sks = list_entry((&skc->skc_partial_list)->next,
b34b9563 1288 spl_kmem_slab_t, sks_list);
e5b9b344
BB
1289 ASSERT(sks->sks_magic == SKS_MAGIC);
1290 ASSERT(sks->sks_ref < sks->sks_objs);
1291 ASSERT(!list_empty(&sks->sks_free_list));
1292
b34b9563
BB
1293 /*
1294 * Consume as many objects as needed to refill the requested
1295 * cache. We must also be careful not to overfill it.
1296 */
1297 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1298 ++count) {
e5b9b344
BB
1299 ASSERT(skm->skm_avail < skm->skm_size);
1300 ASSERT(count < skm->skm_size);
b34b9563
BB
1301 skm->skm_objs[skm->skm_avail++] =
1302 spl_cache_obj(skc, sks);
e5b9b344
BB
1303 }
1304
1305 /* Move slab to skc_complete_list when full */
1306 if (sks->sks_ref == sks->sks_objs) {
1307 list_del(&sks->sks_list);
1308 list_add(&sks->sks_list, &skc->skc_complete_list);
1309 }
1310 }
1311
1312 spin_unlock(&skc->skc_lock);
1313out:
1314 return (NULL);
1315}
1316
1317/*
1318 * Release an object back to the slab from which it came.
1319 */
1320static void
1321spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1322{
1323 spl_kmem_slab_t *sks = NULL;
1324 spl_kmem_obj_t *sko = NULL;
1325
1326 ASSERT(skc->skc_magic == SKC_MAGIC);
1327 ASSERT(spin_is_locked(&skc->skc_lock));
1328
1329 sko = spl_sko_from_obj(skc, obj);
1330 ASSERT(sko->sko_magic == SKO_MAGIC);
1331 sks = sko->sko_slab;
1332 ASSERT(sks->sks_magic == SKS_MAGIC);
1333 ASSERT(sks->sks_cache == skc);
1334 list_add(&sko->sko_list, &sks->sks_free_list);
1335
1336 sks->sks_age = jiffies;
1337 sks->sks_ref--;
1338 skc->skc_obj_alloc--;
1339
b34b9563
BB
1340 /*
1341 * Move slab to skc_partial_list when no longer full. Slabs
e5b9b344 1342 * are added to the head to keep the partial list is quasi-full
b34b9563
BB
1343 * sorted order. Fuller at the head, emptier at the tail.
1344 */
e5b9b344
BB
1345 if (sks->sks_ref == (sks->sks_objs - 1)) {
1346 list_del(&sks->sks_list);
1347 list_add(&sks->sks_list, &skc->skc_partial_list);
1348 }
1349
b34b9563
BB
1350 /*
1351 * Move empty slabs to the end of the partial list so
1352 * they can be easily found and freed during reclamation.
1353 */
e5b9b344
BB
1354 if (sks->sks_ref == 0) {
1355 list_del(&sks->sks_list);
1356 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1357 skc->skc_slab_alloc--;
1358 }
1359}
1360
1361/*
1362 * Allocate an object from the per-cpu magazine, or if the magazine
1363 * is empty directly allocate from a slab and repopulate the magazine.
1364 */
1365void *
1366spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1367{
1368 spl_kmem_magazine_t *skm;
1369 void *obj = NULL;
1370
c3eabc75 1371 ASSERT0(flags & ~KM_PUBLIC_MASK);
e5b9b344
BB
1372 ASSERT(skc->skc_magic == SKC_MAGIC);
1373 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
e5b9b344
BB
1374
1375 atomic_inc(&skc->skc_ref);
1376
1377 /*
1378 * Allocate directly from a Linux slab. All optimizations are left
1379 * to the underlying cache we only need to guarantee that KM_SLEEP
1380 * callers will never fail.
1381 */
1382 if (skc->skc_flags & KMC_SLAB) {
1383 struct kmem_cache *slc = skc->skc_linux_cache;
e5b9b344 1384 do {
c3eabc75 1385 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
e5b9b344
BB
1386 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1387
1388 goto ret;
1389 }
1390
1391 local_irq_disable();
1392
1393restart:
b34b9563
BB
1394 /*
1395 * Safe to update per-cpu structure without lock, but
e5b9b344
BB
1396 * in the restart case we must be careful to reacquire
1397 * the local magazine since this may have changed
b34b9563
BB
1398 * when we need to grow the cache.
1399 */
e5b9b344
BB
1400 skm = skc->skc_mag[smp_processor_id()];
1401 ASSERT(skm->skm_magic == SKM_MAGIC);
1402
1403 if (likely(skm->skm_avail)) {
1404 /* Object available in CPU cache, use it */
1405 obj = skm->skm_objs[--skm->skm_avail];
1406 skm->skm_age = jiffies;
1407 } else {
1408 obj = spl_cache_refill(skc, skm, flags);
1409 if (obj == NULL)
1410 goto restart;
1411 }
1412
1413 local_irq_enable();
1414 ASSERT(obj);
1415 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1416
1417ret:
1418 /* Pre-emptively migrate object to CPU L1 cache */
1419 if (obj) {
1420 if (obj && skc->skc_ctor)
1421 skc->skc_ctor(obj, skc->skc_private, flags);
1422 else
1423 prefetchw(obj);
1424 }
1425
1426 atomic_dec(&skc->skc_ref);
1427
1428 return (obj);
1429}
1430
1431EXPORT_SYMBOL(spl_kmem_cache_alloc);
1432
1433/*
1434 * Free an object back to the local per-cpu magazine, there is no
1435 * guarantee that this is the same magazine the object was originally
1436 * allocated from. We may need to flush entire from the magazine
1437 * back to the slabs to make space.
1438 */
1439void
1440spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1441{
1442 spl_kmem_magazine_t *skm;
1443 unsigned long flags;
1a204968 1444 int do_reclaim = 0;
e5b9b344
BB
1445
1446 ASSERT(skc->skc_magic == SKC_MAGIC);
1447 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1448 atomic_inc(&skc->skc_ref);
1449
1450 /*
1451 * Run the destructor
1452 */
1453 if (skc->skc_dtor)
1454 skc->skc_dtor(obj, skc->skc_private);
1455
1456 /*
1457 * Free the object from the Linux underlying Linux slab.
1458 */
1459 if (skc->skc_flags & KMC_SLAB) {
1460 kmem_cache_free(skc->skc_linux_cache, obj);
1461 goto out;
1462 }
1463
1464 /*
1465 * Only virtual slabs may have emergency objects and these objects
1466 * are guaranteed to have physical addresses. They must be removed
1467 * from the tree of emergency objects and the freed.
1468 */
c3eabc75 1469 if ((skc->skc_flags & KMC_VMEM) && !is_vmalloc_addr(obj)) {
e5b9b344
BB
1470 spl_emergency_free(skc, obj);
1471 goto out;
1472 }
1473
1474 local_irq_save(flags);
1475
b34b9563
BB
1476 /*
1477 * Safe to update per-cpu structure without lock, but
e5b9b344
BB
1478 * no remote memory allocation tracking is being performed
1479 * it is entirely possible to allocate an object from one
b34b9563
BB
1480 * CPU cache and return it to another.
1481 */
e5b9b344
BB
1482 skm = skc->skc_mag[smp_processor_id()];
1483 ASSERT(skm->skm_magic == SKM_MAGIC);
1484
1a204968
BB
1485 /*
1486 * Per-CPU cache full, flush it to make space for this object,
1487 * this may result in an empty slab which can be reclaimed once
1488 * interrupts are re-enabled.
1489 */
1490 if (unlikely(skm->skm_avail >= skm->skm_size)) {
e5b9b344 1491 spl_cache_flush(skc, skm, skm->skm_refill);
1a204968
BB
1492 do_reclaim = 1;
1493 }
e5b9b344
BB
1494
1495 /* Available space in cache, use it */
1496 skm->skm_objs[skm->skm_avail++] = obj;
1497
1498 local_irq_restore(flags);
1a204968
BB
1499
1500 if (do_reclaim)
1501 spl_slab_reclaim(skc);
e5b9b344
BB
1502out:
1503 atomic_dec(&skc->skc_ref);
1504}
1505EXPORT_SYMBOL(spl_kmem_cache_free);
1506
1507/*
1508 * The generic shrinker function for all caches. Under Linux a shrinker
1509 * may not be tightly coupled with a slab cache. In fact Linux always
1510 * systematically tries calling all registered shrinker callbacks which
1511 * report that they contain unused objects. Because of this we only
1512 * register one shrinker function in the shim layer for all slab caches.
1513 * We always attempt to shrink all caches when this generic shrinker
1514 * is called.
1515 *
1516 * If sc->nr_to_scan is zero, the caller is requesting a query of the
1517 * number of objects which can potentially be freed. If it is nonzero,
1518 * the request is to free that many objects.
1519 *
1520 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
1521 * in struct shrinker and also require the shrinker to return the number
1522 * of objects freed.
1523 *
1524 * Older kernels require the shrinker to return the number of freeable
1525 * objects following the freeing of nr_to_free.
1526 *
1527 * Linux semantics differ from those under Solaris, which are to
1528 * free all available objects which may (and probably will) be more
1529 * objects than the requested nr_to_scan.
1530 */
1531static spl_shrinker_t
1532__spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1533 struct shrink_control *sc)
1534{
1535 spl_kmem_cache_t *skc;
1536 int alloc = 0;
1537
1538 down_read(&spl_kmem_cache_sem);
1539 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1540 if (sc->nr_to_scan) {
1541#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
1542 uint64_t oldalloc = skc->skc_obj_alloc;
1543 spl_kmem_cache_reap_now(skc,
b34b9563 1544 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
e5b9b344
BB
1545 if (oldalloc > skc->skc_obj_alloc)
1546 alloc += oldalloc - skc->skc_obj_alloc;
1547#else
1548 spl_kmem_cache_reap_now(skc,
b34b9563 1549 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
e5b9b344
BB
1550 alloc += skc->skc_obj_alloc;
1551#endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
1552 } else {
1553 /* Request to query number of freeable objects */
1554 alloc += skc->skc_obj_alloc;
1555 }
1556 }
1557 up_read(&spl_kmem_cache_sem);
1558
1559 /*
1560 * When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
1561 * This functionality only exists to work around a rare issue where
1562 * shrink_slabs() is repeatedly invoked by many cores causing the
1563 * system to thrash.
1564 */
1565 if ((spl_kmem_cache_reclaim & KMC_RECLAIM_ONCE) && sc->nr_to_scan)
1566 return (SHRINK_STOP);
1567
1568 return (MAX(alloc, 0));
1569}
1570
1571SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1572
1573/*
1574 * Call the registered reclaim function for a cache. Depending on how
1575 * many and which objects are released it may simply repopulate the
1576 * local magazine which will then need to age-out. Objects which cannot
1577 * fit in the magazine we will be released back to their slabs which will
1578 * also need to age out before being release. This is all just best
1579 * effort and we do not want to thrash creating and destroying slabs.
1580 */
1581void
1582spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
1583{
1584 ASSERT(skc->skc_magic == SKC_MAGIC);
1585 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1586
1587 atomic_inc(&skc->skc_ref);
1588
1589 /*
1590 * Execute the registered reclaim callback if it exists. The
1591 * per-cpu caches will be drained when is set KMC_EXPIRE_MEM.
1592 */
1593 if (skc->skc_flags & KMC_SLAB) {
1594 if (skc->skc_reclaim)
1595 skc->skc_reclaim(skc->skc_private);
1596
1597 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM)
1598 kmem_cache_shrink(skc->skc_linux_cache);
1599
1600 goto out;
1601 }
1602
1603 /*
1604 * Prevent concurrent cache reaping when contended.
1605 */
1606 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1607 goto out;
1608
1609 /*
1610 * When a reclaim function is available it may be invoked repeatedly
1611 * until at least a single slab can be freed. This ensures that we
1612 * do free memory back to the system. This helps minimize the chance
1613 * of an OOM event when the bulk of memory is used by the slab.
1614 *
1615 * When free slabs are already available the reclaim callback will be
1616 * skipped. Additionally, if no forward progress is detected despite
1617 * a reclaim function the cache will be skipped to avoid deadlock.
1618 *
1619 * Longer term this would be the correct place to add the code which
1620 * repacks the slabs in order minimize fragmentation.
1621 */
1622 if (skc->skc_reclaim) {
1623 uint64_t objects = UINT64_MAX;
1624 int do_reclaim;
1625
1626 do {
1627 spin_lock(&skc->skc_lock);
1628 do_reclaim =
1629 (skc->skc_slab_total > 0) &&
b34b9563 1630 ((skc->skc_slab_total-skc->skc_slab_alloc) == 0) &&
e5b9b344
BB
1631 (skc->skc_obj_alloc < objects);
1632
1633 objects = skc->skc_obj_alloc;
1634 spin_unlock(&skc->skc_lock);
1635
1636 if (do_reclaim)
1637 skc->skc_reclaim(skc->skc_private);
1638
1639 } while (do_reclaim);
1640 }
1641
1a204968 1642 /* Reclaim from the magazine and free all now empty slabs. */
e5b9b344
BB
1643 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
1644 spl_kmem_magazine_t *skm;
1645 unsigned long irq_flags;
1646
1647 local_irq_save(irq_flags);
1648 skm = skc->skc_mag[smp_processor_id()];
1649 spl_cache_flush(skc, skm, skm->skm_avail);
1650 local_irq_restore(irq_flags);
1651 }
1652
1a204968 1653 spl_slab_reclaim(skc);
a988a35a
RY
1654 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1655 smp_mb__after_atomic();
e5b9b344
BB
1656 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1657out:
1658 atomic_dec(&skc->skc_ref);
1659}
1660EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1661
1662/*
1663 * Reap all free slabs from all registered caches.
1664 */
1665void
1666spl_kmem_reap(void)
1667{
1668 struct shrink_control sc;
1669
1670 sc.nr_to_scan = KMC_REAP_CHUNK;
1671 sc.gfp_mask = GFP_KERNEL;
1672
1673 (void) __spl_kmem_cache_generic_shrinker(NULL, &sc);
1674}
1675EXPORT_SYMBOL(spl_kmem_reap);
1676
1677int
1678spl_kmem_cache_init(void)
1679{
1680 init_rwsem(&spl_kmem_cache_sem);
1681 INIT_LIST_HEAD(&spl_kmem_cache_list);
1682 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1683 1, maxclsyspri, 1, 32, TASKQ_PREPOPULATE);
1684 spl_register_shrinker(&spl_kmem_cache_shrinker);
1685
1686 return (0);
1687}
1688
1689void
1690spl_kmem_cache_fini(void)
1691{
1692 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
1693 taskq_destroy(spl_kmem_cache_taskq);
1694}