]> git.proxmox.com Git - mirror_spl.git/blob - include/sys/kmem.h
5875dfff68867e601957a5ce7ab69463e58435bc
[mirror_spl.git] / include / sys / kmem.h
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 \*****************************************************************************/
24
25 #ifndef _SPL_KMEM_H
26 #define _SPL_KMEM_H
27
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/spinlock.h>
32 #include <linux/rwsem.h>
33 #include <linux/hash.h>
34 #include <linux/rbtree.h>
35 #include <linux/ctype.h>
36 #include <asm/atomic.h>
37 #include <sys/types.h>
38 #include <sys/vmsystm.h>
39 #include <sys/kstat.h>
40 #include <sys/taskq.h>
41
42 /*
43 * Memory allocation interfaces
44 */
45 #define KM_SLEEP GFP_KERNEL /* Can sleep, never fails */
46 #define KM_NOSLEEP GFP_ATOMIC /* Can not sleep, may fail */
47 #define KM_PUSHPAGE (GFP_NOIO | __GFP_HIGH) /* Use reserved memory */
48 #define KM_NODEBUG __GFP_NOWARN /* Suppress warnings */
49 #define KM_FLAGS __GFP_BITS_MASK
50 #define KM_VMFLAGS GFP_LEVEL_MASK
51
52 /*
53 * Used internally, the kernel does not need to support this flag
54 */
55 #ifndef __GFP_ZERO
56 # define __GFP_ZERO 0x8000
57 #endif
58
59 /*
60 * PF_NOFS is a per-process debug flag which is set in current->flags to
61 * detect when a process is performing an unsafe allocation. All tasks
62 * with PF_NOFS set must strictly use KM_PUSHPAGE for allocations because
63 * if they enter direct reclaim and initiate I/O the may deadlock.
64 *
65 * When debugging is disabled, any incorrect usage will be detected and
66 * a call stack with warning will be printed to the console. The flags
67 * will then be automatically corrected to allow for safe execution. If
68 * debugging is enabled this will be treated as a fatal condition.
69 *
70 * To avoid any risk of conflicting with the existing PF_ flags. The
71 * PF_NOFS bit shadows the rarely used PF_MUTEX_TESTER bit. Only when
72 * CONFIG_RT_MUTEX_TESTER is not set, and we know this bit is unused,
73 * will the PF_NOFS bit be valid. Happily, most existing distributions
74 * ship a kernel with CONFIG_RT_MUTEX_TESTER disabled.
75 */
76 #if !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER)
77 # define PF_NOFS PF_MUTEX_TESTER
78
79 static inline void
80 sanitize_flags(struct task_struct *p, gfp_t *flags)
81 {
82 if (unlikely((p->flags & PF_NOFS) && (*flags & (__GFP_IO|__GFP_FS)))) {
83 # ifdef NDEBUG
84 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "Fixing allocation for "
85 "task %s (%d) which used GFP flags 0x%x with PF_NOFS set\n",
86 p->comm, p->pid, flags);
87 spl_debug_dumpstack(p);
88 *flags &= ~(__GFP_IO|__GFP_FS);
89 # else
90 PANIC("FATAL allocation for task %s (%d) which used GFP "
91 "flags 0x%x with PF_NOFS set\n", p->comm, p->pid, flags);
92 # endif /* NDEBUG */
93 }
94 }
95 #else
96 # define PF_NOFS 0x00000000
97 # define sanitize_flags(p, fl) ((void)0)
98 #endif /* !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER) */
99
100 /*
101 * __GFP_NOFAIL looks like it will be removed from the kernel perhaps as
102 * early as 2.6.32. To avoid this issue when it occurs in upstream kernels
103 * we retry the allocation here as long as it is not __GFP_WAIT (GFP_ATOMIC).
104 * I would prefer the caller handle the failure case cleanly but we are
105 * trying to emulate Solaris and those are not the Solaris semantics.
106 */
107 static inline void *
108 kmalloc_nofail(size_t size, gfp_t flags)
109 {
110 void *ptr;
111
112 sanitize_flags(current, &flags);
113
114 do {
115 ptr = kmalloc(size, flags);
116 } while (ptr == NULL && (flags & __GFP_WAIT));
117
118 return ptr;
119 }
120
121 static inline void *
122 kzalloc_nofail(size_t size, gfp_t flags)
123 {
124 void *ptr;
125
126 sanitize_flags(current, &flags);
127
128 do {
129 ptr = kzalloc(size, flags);
130 } while (ptr == NULL && (flags & __GFP_WAIT));
131
132 return ptr;
133 }
134
135 static inline void *
136 kmalloc_node_nofail(size_t size, gfp_t flags, int node)
137 {
138 void *ptr;
139
140 sanitize_flags(current, &flags);
141
142 do {
143 ptr = kmalloc_node(size, flags, node);
144 } while (ptr == NULL && (flags & __GFP_WAIT));
145
146 return ptr;
147 }
148
149 static inline void *
150 vmalloc_nofail(size_t size, gfp_t flags)
151 {
152 void *ptr;
153
154 sanitize_flags(current, &flags);
155
156 /*
157 * Retry failed __vmalloc() allocations once every second. The
158 * rational for the delay is that the likely failure modes are:
159 *
160 * 1) The system has completely exhausted memory, in which case
161 * delaying 1 second for the memory reclaim to run is reasonable
162 * to avoid thrashing the system.
163 * 2) The system has memory but has exhausted the small virtual
164 * address space available on 32-bit systems. Retrying the
165 * allocation immediately will only result in spinning on the
166 * virtual address space lock. It is better delay a second and
167 * hope that another process will free some of the address space.
168 * But the bottom line is there is not much we can actually do
169 * since we can never safely return a failure and honor the
170 * Solaris semantics.
171 */
172 while (1) {
173 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
174 if (unlikely((ptr == NULL) && (flags & __GFP_WAIT))) {
175 set_current_state(TASK_INTERRUPTIBLE);
176 schedule_timeout(HZ);
177 } else {
178 break;
179 }
180 }
181
182 return ptr;
183 }
184
185 static inline void *
186 vzalloc_nofail(size_t size, gfp_t flags)
187 {
188 void *ptr;
189
190 ptr = vmalloc_nofail(size, flags);
191 if (ptr)
192 memset(ptr, 0, (size));
193
194 return ptr;
195 }
196
197 #ifdef DEBUG_KMEM
198
199 /*
200 * Memory accounting functions to be used only when DEBUG_KMEM is set.
201 */
202 # ifdef HAVE_ATOMIC64_T
203
204 # define kmem_alloc_used_add(size) atomic64_add(size, &kmem_alloc_used)
205 # define kmem_alloc_used_sub(size) atomic64_sub(size, &kmem_alloc_used)
206 # define kmem_alloc_used_read() atomic64_read(&kmem_alloc_used)
207 # define kmem_alloc_used_set(size) atomic64_set(&kmem_alloc_used, size)
208 # define vmem_alloc_used_add(size) atomic64_add(size, &vmem_alloc_used)
209 # define vmem_alloc_used_sub(size) atomic64_sub(size, &vmem_alloc_used)
210 # define vmem_alloc_used_read() atomic64_read(&vmem_alloc_used)
211 # define vmem_alloc_used_set(size) atomic64_set(&vmem_alloc_used, size)
212
213 extern atomic64_t kmem_alloc_used;
214 extern unsigned long long kmem_alloc_max;
215 extern atomic64_t vmem_alloc_used;
216 extern unsigned long long vmem_alloc_max;
217
218 # else /* HAVE_ATOMIC64_T */
219
220 # define kmem_alloc_used_add(size) atomic_add(size, &kmem_alloc_used)
221 # define kmem_alloc_used_sub(size) atomic_sub(size, &kmem_alloc_used)
222 # define kmem_alloc_used_read() atomic_read(&kmem_alloc_used)
223 # define kmem_alloc_used_set(size) atomic_set(&kmem_alloc_used, size)
224 # define vmem_alloc_used_add(size) atomic_add(size, &vmem_alloc_used)
225 # define vmem_alloc_used_sub(size) atomic_sub(size, &vmem_alloc_used)
226 # define vmem_alloc_used_read() atomic_read(&vmem_alloc_used)
227 # define vmem_alloc_used_set(size) atomic_set(&vmem_alloc_used, size)
228
229 extern atomic_t kmem_alloc_used;
230 extern unsigned long long kmem_alloc_max;
231 extern atomic_t vmem_alloc_used;
232 extern unsigned long long vmem_alloc_max;
233
234 # endif /* HAVE_ATOMIC64_T */
235
236 # ifdef DEBUG_KMEM_TRACKING
237 /*
238 * DEBUG_KMEM && DEBUG_KMEM_TRACKING
239 *
240 * The maximum level of memory debugging. All memory will be accounted
241 * for and each allocation will be explicitly tracked. Any allocation
242 * which is leaked will be reported on module unload and the exact location
243 * where that memory was allocation will be reported. This level of memory
244 * tracking will have a significant impact on performance and should only
245 * be enabled for debugging. This feature may be enabled by passing
246 * --enable-debug-kmem-tracking to configure.
247 */
248 # define kmem_alloc(sz, fl) kmem_alloc_track((sz), (fl), \
249 __FUNCTION__, __LINE__, 0, 0)
250 # define kmem_zalloc(sz, fl) kmem_alloc_track((sz), (fl)|__GFP_ZERO,\
251 __FUNCTION__, __LINE__, 0, 0)
252 # define kmem_alloc_node(sz, fl, nd) kmem_alloc_track((sz), (fl), \
253 __FUNCTION__, __LINE__, 1, nd)
254 # define kmem_free(ptr, sz) kmem_free_track((ptr), (sz))
255
256 # define vmem_alloc(sz, fl) vmem_alloc_track((sz), (fl), \
257 __FUNCTION__, __LINE__)
258 # define vmem_zalloc(sz, fl) vmem_alloc_track((sz), (fl)|__GFP_ZERO,\
259 __FUNCTION__, __LINE__)
260 # define vmem_free(ptr, sz) vmem_free_track((ptr), (sz))
261
262 extern void *kmem_alloc_track(size_t, int, const char *, int, int, int);
263 extern void kmem_free_track(const void *, size_t);
264 extern void *vmem_alloc_track(size_t, int, const char *, int);
265 extern void vmem_free_track(const void *, size_t);
266
267 # else /* DEBUG_KMEM_TRACKING */
268 /*
269 * DEBUG_KMEM && !DEBUG_KMEM_TRACKING
270 *
271 * The default build will set DEBUG_KEM. This provides basic memory
272 * accounting with little to no impact on performance. When the module
273 * is unloaded in any memory was leaked the total number of leaked bytes
274 * will be reported on the console. To disable this basic accounting
275 * pass the --disable-debug-kmem option to configure.
276 */
277 # define kmem_alloc(sz, fl) kmem_alloc_debug((sz), (fl), \
278 __FUNCTION__, __LINE__, 0, 0)
279 # define kmem_zalloc(sz, fl) kmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
280 __FUNCTION__, __LINE__, 0, 0)
281 # define kmem_alloc_node(sz, fl, nd) kmem_alloc_debug((sz), (fl), \
282 __FUNCTION__, __LINE__, 1, nd)
283 # define kmem_free(ptr, sz) kmem_free_debug((ptr), (sz))
284
285 # define vmem_alloc(sz, fl) vmem_alloc_debug((sz), (fl), \
286 __FUNCTION__, __LINE__)
287 # define vmem_zalloc(sz, fl) vmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
288 __FUNCTION__, __LINE__)
289 # define vmem_free(ptr, sz) vmem_free_debug((ptr), (sz))
290
291 extern void *kmem_alloc_debug(size_t, int, const char *, int, int, int);
292 extern void kmem_free_debug(const void *, size_t);
293 extern void *vmem_alloc_debug(size_t, int, const char *, int);
294 extern void vmem_free_debug(const void *, size_t);
295
296 # endif /* DEBUG_KMEM_TRACKING */
297 #else /* DEBUG_KMEM */
298 /*
299 * !DEBUG_KMEM && !DEBUG_KMEM_TRACKING
300 *
301 * All debugging is disabled. There will be no overhead even for
302 * minimal memory accounting. To enable basic accounting pass the
303 * --enable-debug-kmem option to configure.
304 */
305 # define kmem_alloc(sz, fl) kmalloc_nofail((sz), (fl))
306 # define kmem_zalloc(sz, fl) kzalloc_nofail((sz), (fl))
307 # define kmem_alloc_node(sz, fl, nd) kmalloc_node_nofail((sz), (fl), (nd))
308 # define kmem_free(ptr, sz) ((void)(sz), kfree(ptr))
309
310 # define vmem_alloc(sz, fl) vmalloc_nofail((sz), (fl))
311 # define vmem_zalloc(sz, fl) vzalloc_nofail((sz), (fl))
312 # define vmem_free(ptr, sz) ((void)(sz), vfree(ptr))
313
314 #endif /* DEBUG_KMEM */
315
316 extern int kmem_debugging(void);
317 extern char *kmem_vasprintf(const char *fmt, va_list ap);
318 extern char *kmem_asprintf(const char *fmt, ...);
319 extern char *strdup(const char *str);
320 extern void strfree(char *str);
321
322
323 /*
324 * Slab allocation interfaces. The SPL slab differs from the standard
325 * Linux SLAB or SLUB primarily in that each cache may be backed by slabs
326 * allocated from the physical or virtal memory address space. The virtual
327 * slabs allow for good behavior when allocation large objects of identical
328 * size. This slab implementation also supports both constructors and
329 * destructions which the Linux slab does not.
330 */
331 enum {
332 KMC_BIT_NOTOUCH = 0, /* Don't update ages */
333 KMC_BIT_NODEBUG = 1, /* Default behavior */
334 KMC_BIT_NOMAGAZINE = 2, /* XXX: Unsupported */
335 KMC_BIT_NOHASH = 3, /* XXX: Unsupported */
336 KMC_BIT_QCACHE = 4, /* XXX: Unsupported */
337 KMC_BIT_KMEM = 5, /* Use kmem cache */
338 KMC_BIT_VMEM = 6, /* Use vmem cache */
339 KMC_BIT_SLAB = 7, /* Use Linux slab cache */
340 KMC_BIT_OFFSLAB = 8, /* Objects not on slab */
341 KMC_BIT_NOEMERGENCY = 9, /* Disable emergency objects */
342 KMC_BIT_DEADLOCKED = 14, /* Deadlock detected */
343 KMC_BIT_GROWING = 15, /* Growing in progress */
344 KMC_BIT_REAPING = 16, /* Reaping in progress */
345 KMC_BIT_DESTROY = 17, /* Destroy in progress */
346 KMC_BIT_TOTAL = 18, /* Proc handler helper bit */
347 KMC_BIT_ALLOC = 19, /* Proc handler helper bit */
348 KMC_BIT_MAX = 20, /* Proc handler helper bit */
349 };
350
351 /* kmem move callback return values */
352 typedef enum kmem_cbrc {
353 KMEM_CBRC_YES = 0, /* Object moved */
354 KMEM_CBRC_NO = 1, /* Object not moved */
355 KMEM_CBRC_LATER = 2, /* Object not moved, try again later */
356 KMEM_CBRC_DONT_NEED = 3, /* Neither object is needed */
357 KMEM_CBRC_DONT_KNOW = 4, /* Object unknown */
358 } kmem_cbrc_t;
359
360 #define KMC_NOTOUCH (1 << KMC_BIT_NOTOUCH)
361 #define KMC_NODEBUG (1 << KMC_BIT_NODEBUG)
362 #define KMC_NOMAGAZINE (1 << KMC_BIT_NOMAGAZINE)
363 #define KMC_NOHASH (1 << KMC_BIT_NOHASH)
364 #define KMC_QCACHE (1 << KMC_BIT_QCACHE)
365 #define KMC_KMEM (1 << KMC_BIT_KMEM)
366 #define KMC_VMEM (1 << KMC_BIT_VMEM)
367 #define KMC_SLAB (1 << KMC_BIT_SLAB)
368 #define KMC_OFFSLAB (1 << KMC_BIT_OFFSLAB)
369 #define KMC_NOEMERGENCY (1 << KMC_BIT_NOEMERGENCY)
370 #define KMC_DEADLOCKED (1 << KMC_BIT_DEADLOCKED)
371 #define KMC_GROWING (1 << KMC_BIT_GROWING)
372 #define KMC_REAPING (1 << KMC_BIT_REAPING)
373 #define KMC_DESTROY (1 << KMC_BIT_DESTROY)
374 #define KMC_TOTAL (1 << KMC_BIT_TOTAL)
375 #define KMC_ALLOC (1 << KMC_BIT_ALLOC)
376 #define KMC_MAX (1 << KMC_BIT_MAX)
377
378 #define KMC_REAP_CHUNK INT_MAX
379 #define KMC_DEFAULT_SEEKS 1
380
381 #define KMC_EXPIRE_AGE 0x1 /* Due to age */
382 #define KMC_EXPIRE_MEM 0x2 /* Due to low memory */
383
384 #define KMC_RECLAIM_ONCE 0x1 /* Force a single shrinker pass */
385
386 extern unsigned int spl_kmem_cache_expire;
387 extern struct list_head spl_kmem_cache_list;
388 extern struct rw_semaphore spl_kmem_cache_sem;
389
390 #define SKM_MAGIC 0x2e2e2e2e
391 #define SKO_MAGIC 0x20202020
392 #define SKS_MAGIC 0x22222222
393 #define SKC_MAGIC 0x2c2c2c2c
394
395 #define SPL_KMEM_CACHE_DELAY 15 /* Minimum slab release age */
396 #define SPL_KMEM_CACHE_REAP 0 /* Default reap everything */
397 #define SPL_KMEM_CACHE_OBJ_PER_SLAB 16 /* Target objects per slab */
398 #define SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN 1 /* Minimum objects per slab */
399 #define SPL_KMEM_CACHE_ALIGN 8 /* Default object alignment */
400
401 #define POINTER_IS_VALID(p) 0 /* Unimplemented */
402 #define POINTER_INVALIDATE(pp) /* Unimplemented */
403
404 typedef int (*spl_kmem_ctor_t)(void *, void *, int);
405 typedef void (*spl_kmem_dtor_t)(void *, void *);
406 typedef void (*spl_kmem_reclaim_t)(void *);
407
408 typedef struct spl_kmem_magazine {
409 uint32_t skm_magic; /* Sanity magic */
410 uint32_t skm_avail; /* Available objects */
411 uint32_t skm_size; /* Magazine size */
412 uint32_t skm_refill; /* Batch refill size */
413 struct spl_kmem_cache *skm_cache; /* Owned by cache */
414 unsigned long skm_age; /* Last cache access */
415 unsigned int skm_cpu; /* Owned by cpu */
416 void *skm_objs[0]; /* Object pointers */
417 } spl_kmem_magazine_t;
418
419 typedef struct spl_kmem_obj {
420 uint32_t sko_magic; /* Sanity magic */
421 void *sko_addr; /* Buffer address */
422 struct spl_kmem_slab *sko_slab; /* Owned by slab */
423 struct list_head sko_list; /* Free object list linkage */
424 } spl_kmem_obj_t;
425
426 typedef struct spl_kmem_slab {
427 uint32_t sks_magic; /* Sanity magic */
428 uint32_t sks_objs; /* Objects per slab */
429 struct spl_kmem_cache *sks_cache; /* Owned by cache */
430 struct list_head sks_list; /* Slab list linkage */
431 struct list_head sks_free_list; /* Free object list */
432 unsigned long sks_age; /* Last modify jiffie */
433 uint32_t sks_ref; /* Ref count used objects */
434 } spl_kmem_slab_t;
435
436 typedef struct spl_kmem_alloc {
437 struct spl_kmem_cache *ska_cache; /* Owned by cache */
438 int ska_flags; /* Allocation flags */
439 taskq_ent_t ska_tqe; /* Task queue entry */
440 } spl_kmem_alloc_t;
441
442 typedef struct spl_kmem_emergency {
443 struct rb_node ske_node; /* Emergency tree linkage */
444 void *ske_obj; /* Buffer address */
445 } spl_kmem_emergency_t;
446
447 typedef struct spl_kmem_cache {
448 uint32_t skc_magic; /* Sanity magic */
449 uint32_t skc_name_size; /* Name length */
450 char *skc_name; /* Name string */
451 spl_kmem_magazine_t *skc_mag[NR_CPUS]; /* Per-CPU warm cache */
452 uint32_t skc_mag_size; /* Magazine size */
453 uint32_t skc_mag_refill; /* Magazine refill count */
454 spl_kmem_ctor_t skc_ctor; /* Constructor */
455 spl_kmem_dtor_t skc_dtor; /* Destructor */
456 spl_kmem_reclaim_t skc_reclaim; /* Reclaimator */
457 void *skc_private; /* Private data */
458 void *skc_vmp; /* Unused */
459 struct kmem_cache *skc_linux_cache; /* Linux slab cache if used */
460 unsigned long skc_flags; /* Flags */
461 uint32_t skc_obj_size; /* Object size */
462 uint32_t skc_obj_align; /* Object alignment */
463 uint32_t skc_slab_objs; /* Objects per slab */
464 uint32_t skc_slab_size; /* Slab size */
465 uint32_t skc_delay; /* Slab reclaim interval */
466 uint32_t skc_reap; /* Slab reclaim count */
467 atomic_t skc_ref; /* Ref count callers */
468 taskqid_t skc_taskqid; /* Slab reclaim task */
469 struct list_head skc_list; /* List of caches linkage */
470 struct list_head skc_complete_list;/* Completely alloc'ed */
471 struct list_head skc_partial_list; /* Partially alloc'ed */
472 struct rb_root skc_emergency_tree; /* Min sized objects */
473 spinlock_t skc_lock; /* Cache lock */
474 wait_queue_head_t skc_waitq; /* Allocation waiters */
475 uint64_t skc_slab_fail; /* Slab alloc failures */
476 uint64_t skc_slab_create;/* Slab creates */
477 uint64_t skc_slab_destroy;/* Slab destroys */
478 uint64_t skc_slab_total; /* Slab total current */
479 uint64_t skc_slab_alloc; /* Slab alloc current */
480 uint64_t skc_slab_max; /* Slab max historic */
481 uint64_t skc_obj_total; /* Obj total current */
482 uint64_t skc_obj_alloc; /* Obj alloc current */
483 uint64_t skc_obj_max; /* Obj max historic */
484 uint64_t skc_obj_deadlock; /* Obj emergency deadlocks */
485 uint64_t skc_obj_emergency; /* Obj emergency current */
486 uint64_t skc_obj_emergency_max; /* Obj emergency max */
487 } spl_kmem_cache_t;
488 #define kmem_cache_t spl_kmem_cache_t
489
490 extern spl_kmem_cache_t *spl_kmem_cache_create(char *name, size_t size,
491 size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor,
492 spl_kmem_reclaim_t reclaim, void *priv, void *vmp, int flags);
493 extern void spl_kmem_cache_set_move(spl_kmem_cache_t *,
494 kmem_cbrc_t (*)(void *, void *, size_t, void *));
495 extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc);
496 extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags);
497 extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj);
498 extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count);
499 extern void spl_kmem_reap(void);
500
501 int spl_kmem_init(void);
502 void spl_kmem_fini(void);
503
504 #define kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) \
505 spl_kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags)
506 #define kmem_cache_set_move(skc, move) spl_kmem_cache_set_move(skc, move)
507 #define kmem_cache_destroy(skc) spl_kmem_cache_destroy(skc)
508 #define kmem_cache_alloc(skc, flags) spl_kmem_cache_alloc(skc, flags)
509 #define kmem_cache_free(skc, obj) spl_kmem_cache_free(skc, obj)
510 #define kmem_cache_reap_now(skc) \
511 spl_kmem_cache_reap_now(skc, skc->skc_reap)
512 #define kmem_reap() spl_kmem_reap()
513 #define kmem_virt(ptr) (((ptr) >= (void *)VMALLOC_START) && \
514 ((ptr) < (void *)VMALLOC_END))
515
516 /*
517 * Allow custom slab allocation flags to be set for KMC_SLAB based caches.
518 * One use for this function is to ensure the __GFP_COMP flag is part of
519 * the default allocation mask which ensures higher order allocations are
520 * properly refcounted. This flag was added to the default ->allocflags
521 * as of Linux 3.11.
522 */
523 static inline void
524 kmem_cache_set_allocflags(spl_kmem_cache_t *skc, gfp_t flags)
525 {
526 if (skc->skc_linux_cache == NULL)
527 return;
528
529 #if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
530 skc->skc_linux_cache->allocflags |= flags;
531 #elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
532 skc->skc_linux_cache->gfpflags |= flags;
533 #endif
534 }
535
536 #endif /* _SPL_KMEM_H */