]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
staging: Convert to bdops->check_events()
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
d07335e5 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
09e099d4
JM
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 73 if (!hd_struct_try_get(part)) {
09e099d4
JM
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
6c23a968 83 hd_struct_get(part);
09e099d4 84 }
074a7aca 85 part_round_stats(cpu, part);
316d315b 86 part_inc_in_flight(part, rw);
09e099d4 87 rq->part = part;
26b8256e 88 }
e71bf0d0 89
074a7aca 90 part_stat_unlock();
26b8256e
JA
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118{
119 struct backing_dev_info *ret = NULL;
165125e1 120 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125}
1da177e4
LT
126EXPORT_SYMBOL(blk_get_backing_dev_info);
127
2a4aa30c 128void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 129{
1afb20f3
FT
130 memset(rq, 0, sizeof(*rq));
131
1da177e4 132 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 133 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 134 rq->cpu = -1;
63a71386 135 rq->q = q;
a2dec7b3 136 rq->__sector = (sector_t) -1;
2e662b65
JA
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 139 rq->cmd = rq->__cmd;
e2494e1b 140 rq->cmd_len = BLK_MAX_CDB;
63a71386 141 rq->tag = -1;
1da177e4 142 rq->ref_count = 1;
b243ddcb 143 rq->start_time = jiffies;
9195291e 144 set_start_time_ns(rq);
09e099d4 145 rq->part = NULL;
1da177e4 146}
2a4aa30c 147EXPORT_SYMBOL(blk_rq_init);
1da177e4 148
5bb23a68
N
149static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
1da177e4 151{
143a87f4
TH
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
156
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
5bb23a68 161 }
143a87f4
TH
162
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
165
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
168
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
171
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
1da177e4 175}
1da177e4 176
1da177e4
LT
177void blk_dump_rq_flags(struct request *rq, char *msg)
178{
179 int bit;
180
6728cb0e 181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
1da177e4 184
83096ebf
TH
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 190
33659ebb 191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 192 printk(KERN_INFO " cdb: ");
d34c87e4 193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
196 }
197}
1da177e4
LT
198EXPORT_SYMBOL(blk_dump_rq_flags);
199
1da177e4
LT
200/*
201 * "plug" the device if there are no outstanding requests: this will
202 * force the transfer to start only after we have put all the requests
203 * on the list.
204 *
205 * This is called with interrupts off and no requests on the queue and
206 * with the queue lock held.
207 */
165125e1 208void blk_plug_device(struct request_queue *q)
1da177e4
LT
209{
210 WARN_ON(!irqs_disabled());
211
212 /*
213 * don't plug a stopped queue, it must be paired with blk_start_queue()
214 * which will restart the queueing
215 */
7daac490 216 if (blk_queue_stopped(q))
1da177e4
LT
217 return;
218
e48ec690 219 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 220 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 221 trace_block_plug(q);
2056a782 222 }
1da177e4 223}
1da177e4
LT
224EXPORT_SYMBOL(blk_plug_device);
225
6c5e0c4d
JA
226/**
227 * blk_plug_device_unlocked - plug a device without queue lock held
228 * @q: The &struct request_queue to plug
229 *
230 * Description:
231 * Like @blk_plug_device(), but grabs the queue lock and disables
232 * interrupts.
233 **/
234void blk_plug_device_unlocked(struct request_queue *q)
235{
236 unsigned long flags;
237
238 spin_lock_irqsave(q->queue_lock, flags);
239 blk_plug_device(q);
240 spin_unlock_irqrestore(q->queue_lock, flags);
241}
242EXPORT_SYMBOL(blk_plug_device_unlocked);
243
1da177e4
LT
244/*
245 * remove the queue from the plugged list, if present. called with
246 * queue lock held and interrupts disabled.
247 */
165125e1 248int blk_remove_plug(struct request_queue *q)
1da177e4
LT
249{
250 WARN_ON(!irqs_disabled());
251
e48ec690 252 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
253 return 0;
254
255 del_timer(&q->unplug_timer);
256 return 1;
257}
1da177e4
LT
258EXPORT_SYMBOL(blk_remove_plug);
259
260/*
261 * remove the plug and let it rip..
262 */
165125e1 263void __generic_unplug_device(struct request_queue *q)
1da177e4 264{
7daac490 265 if (unlikely(blk_queue_stopped(q)))
1da177e4 266 return;
a31a9738 267 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
268 return;
269
22e2c507 270 q->request_fn(q);
1da177e4 271}
1da177e4
LT
272
273/**
274 * generic_unplug_device - fire a request queue
165125e1 275 * @q: The &struct request_queue in question
1da177e4
LT
276 *
277 * Description:
278 * Linux uses plugging to build bigger requests queues before letting
279 * the device have at them. If a queue is plugged, the I/O scheduler
280 * is still adding and merging requests on the queue. Once the queue
281 * gets unplugged, the request_fn defined for the queue is invoked and
282 * transfers started.
283 **/
165125e1 284void generic_unplug_device(struct request_queue *q)
1da177e4 285{
dbaf2c00
JA
286 if (blk_queue_plugged(q)) {
287 spin_lock_irq(q->queue_lock);
288 __generic_unplug_device(q);
289 spin_unlock_irq(q->queue_lock);
290 }
1da177e4
LT
291}
292EXPORT_SYMBOL(generic_unplug_device);
293
294static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
295 struct page *page)
296{
165125e1 297 struct request_queue *q = bdi->unplug_io_data;
1da177e4 298
2ad8b1ef 299 blk_unplug(q);
1da177e4
LT
300}
301
86db1e29 302void blk_unplug_work(struct work_struct *work)
1da177e4 303{
165125e1
JA
304 struct request_queue *q =
305 container_of(work, struct request_queue, unplug_work);
1da177e4 306
5f3ea37c 307 trace_block_unplug_io(q);
1da177e4
LT
308 q->unplug_fn(q);
309}
310
86db1e29 311void blk_unplug_timeout(unsigned long data)
1da177e4 312{
165125e1 313 struct request_queue *q = (struct request_queue *)data;
1da177e4 314
5f3ea37c 315 trace_block_unplug_timer(q);
18887ad9 316 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
317}
318
2ad8b1ef
AB
319void blk_unplug(struct request_queue *q)
320{
321 /*
322 * devices don't necessarily have an ->unplug_fn defined
323 */
324 if (q->unplug_fn) {
5f3ea37c 325 trace_block_unplug_io(q);
2ad8b1ef
AB
326 q->unplug_fn(q);
327 }
328}
329EXPORT_SYMBOL(blk_unplug);
330
1da177e4
LT
331/**
332 * blk_start_queue - restart a previously stopped queue
165125e1 333 * @q: The &struct request_queue in question
1da177e4
LT
334 *
335 * Description:
336 * blk_start_queue() will clear the stop flag on the queue, and call
337 * the request_fn for the queue if it was in a stopped state when
338 * entered. Also see blk_stop_queue(). Queue lock must be held.
339 **/
165125e1 340void blk_start_queue(struct request_queue *q)
1da177e4 341{
a038e253
PBG
342 WARN_ON(!irqs_disabled());
343
75ad23bc 344 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
1654e741 345 __blk_run_queue(q, false);
1da177e4 346}
1da177e4
LT
347EXPORT_SYMBOL(blk_start_queue);
348
349/**
350 * blk_stop_queue - stop a queue
165125e1 351 * @q: The &struct request_queue in question
1da177e4
LT
352 *
353 * Description:
354 * The Linux block layer assumes that a block driver will consume all
355 * entries on the request queue when the request_fn strategy is called.
356 * Often this will not happen, because of hardware limitations (queue
357 * depth settings). If a device driver gets a 'queue full' response,
358 * or if it simply chooses not to queue more I/O at one point, it can
359 * call this function to prevent the request_fn from being called until
360 * the driver has signalled it's ready to go again. This happens by calling
361 * blk_start_queue() to restart queue operations. Queue lock must be held.
362 **/
165125e1 363void blk_stop_queue(struct request_queue *q)
1da177e4
LT
364{
365 blk_remove_plug(q);
75ad23bc 366 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
367}
368EXPORT_SYMBOL(blk_stop_queue);
369
370/**
371 * blk_sync_queue - cancel any pending callbacks on a queue
372 * @q: the queue
373 *
374 * Description:
375 * The block layer may perform asynchronous callback activity
376 * on a queue, such as calling the unplug function after a timeout.
377 * A block device may call blk_sync_queue to ensure that any
378 * such activity is cancelled, thus allowing it to release resources
59c51591 379 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
380 * that its ->make_request_fn will not re-add plugging prior to calling
381 * this function.
382 *
da527770
VG
383 * This function does not cancel any asynchronous activity arising
384 * out of elevator or throttling code. That would require elevaotor_exit()
385 * and blk_throtl_exit() to be called with queue lock initialized.
386 *
1da177e4
LT
387 */
388void blk_sync_queue(struct request_queue *q)
389{
390 del_timer_sync(&q->unplug_timer);
70ed28b9 391 del_timer_sync(&q->timeout);
64d01dc9 392 cancel_work_sync(&q->unplug_work);
1da177e4
LT
393}
394EXPORT_SYMBOL(blk_sync_queue);
395
396/**
80a4b58e 397 * __blk_run_queue - run a single device queue
1da177e4 398 * @q: The queue to run
1654e741 399 * @force_kblockd: Don't run @q->request_fn directly. Use kblockd.
80a4b58e
JA
400 *
401 * Description:
402 * See @blk_run_queue. This variant must be called with the queue lock
403 * held and interrupts disabled.
404 *
1da177e4 405 */
1654e741 406void __blk_run_queue(struct request_queue *q, bool force_kblockd)
1da177e4 407{
1da177e4 408 blk_remove_plug(q);
dac07ec1 409
a538cd03
TH
410 if (unlikely(blk_queue_stopped(q)))
411 return;
412
413 if (elv_queue_empty(q))
414 return;
415
dac07ec1
JA
416 /*
417 * Only recurse once to avoid overrunning the stack, let the unplug
418 * handling reinvoke the handler shortly if we already got there.
419 */
1654e741 420 if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
a538cd03
TH
421 q->request_fn(q);
422 queue_flag_clear(QUEUE_FLAG_REENTER, q);
423 } else {
424 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
425 kblockd_schedule_work(q, &q->unplug_work);
426 }
75ad23bc
NP
427}
428EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 429
75ad23bc
NP
430/**
431 * blk_run_queue - run a single device queue
432 * @q: The queue to run
80a4b58e
JA
433 *
434 * Description:
435 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 436 * May be used to restart queueing when a request has completed.
75ad23bc
NP
437 */
438void blk_run_queue(struct request_queue *q)
439{
440 unsigned long flags;
441
442 spin_lock_irqsave(q->queue_lock, flags);
1654e741 443 __blk_run_queue(q, false);
1da177e4
LT
444 spin_unlock_irqrestore(q->queue_lock, flags);
445}
446EXPORT_SYMBOL(blk_run_queue);
447
165125e1 448void blk_put_queue(struct request_queue *q)
483f4afc
AV
449{
450 kobject_put(&q->kobj);
451}
483f4afc 452
c94a96ac
VG
453/*
454 * Note: If a driver supplied the queue lock, it should not zap that lock
455 * unexpectedly as some queue cleanup components like elevator_exit() and
456 * blk_throtl_exit() need queue lock.
457 */
6728cb0e 458void blk_cleanup_queue(struct request_queue *q)
483f4afc 459{
e3335de9
JA
460 /*
461 * We know we have process context here, so we can be a little
462 * cautious and ensure that pending block actions on this device
463 * are done before moving on. Going into this function, we should
464 * not have processes doing IO to this device.
465 */
466 blk_sync_queue(q);
467
31373d09 468 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 469 mutex_lock(&q->sysfs_lock);
75ad23bc 470 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
471 mutex_unlock(&q->sysfs_lock);
472
473 if (q->elevator)
474 elevator_exit(q->elevator);
475
da527770
VG
476 blk_throtl_exit(q);
477
483f4afc
AV
478 blk_put_queue(q);
479}
1da177e4
LT
480EXPORT_SYMBOL(blk_cleanup_queue);
481
165125e1 482static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
483{
484 struct request_list *rl = &q->rq;
485
1abec4fd
MS
486 if (unlikely(rl->rq_pool))
487 return 0;
488
1faa16d2
JA
489 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
490 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 491 rl->elvpriv = 0;
1faa16d2
JA
492 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
493 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 494
1946089a
CL
495 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
496 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
497
498 if (!rl->rq_pool)
499 return -ENOMEM;
500
501 return 0;
502}
503
165125e1 504struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 505{
1946089a
CL
506 return blk_alloc_queue_node(gfp_mask, -1);
507}
508EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 509
165125e1 510struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 511{
165125e1 512 struct request_queue *q;
e0bf68dd 513 int err;
1946089a 514
8324aa91 515 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 516 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
517 if (!q)
518 return NULL;
519
e0bf68dd
PZ
520 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
521 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
522 q->backing_dev_info.ra_pages =
523 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
524 q->backing_dev_info.state = 0;
525 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 526 q->backing_dev_info.name = "block";
0989a025 527
e0bf68dd
PZ
528 err = bdi_init(&q->backing_dev_info);
529 if (err) {
8324aa91 530 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
531 return NULL;
532 }
533
e43473b7
VG
534 if (blk_throtl_init(q)) {
535 kmem_cache_free(blk_requestq_cachep, q);
536 return NULL;
537 }
538
31373d09
MG
539 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
540 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 541 init_timer(&q->unplug_timer);
242f9dcb
JA
542 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
543 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
544 INIT_LIST_HEAD(&q->flush_queue[0]);
545 INIT_LIST_HEAD(&q->flush_queue[1]);
546 INIT_LIST_HEAD(&q->flush_data_in_flight);
713ada9b 547 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 548
8324aa91 549 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 550
483f4afc 551 mutex_init(&q->sysfs_lock);
e7e72bf6 552 spin_lock_init(&q->__queue_lock);
483f4afc 553
c94a96ac
VG
554 /*
555 * By default initialize queue_lock to internal lock and driver can
556 * override it later if need be.
557 */
558 q->queue_lock = &q->__queue_lock;
559
1da177e4
LT
560 return q;
561}
1946089a 562EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
563
564/**
565 * blk_init_queue - prepare a request queue for use with a block device
566 * @rfn: The function to be called to process requests that have been
567 * placed on the queue.
568 * @lock: Request queue spin lock
569 *
570 * Description:
571 * If a block device wishes to use the standard request handling procedures,
572 * which sorts requests and coalesces adjacent requests, then it must
573 * call blk_init_queue(). The function @rfn will be called when there
574 * are requests on the queue that need to be processed. If the device
575 * supports plugging, then @rfn may not be called immediately when requests
576 * are available on the queue, but may be called at some time later instead.
577 * Plugged queues are generally unplugged when a buffer belonging to one
578 * of the requests on the queue is needed, or due to memory pressure.
579 *
580 * @rfn is not required, or even expected, to remove all requests off the
581 * queue, but only as many as it can handle at a time. If it does leave
582 * requests on the queue, it is responsible for arranging that the requests
583 * get dealt with eventually.
584 *
585 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
586 * request queue; this lock will be taken also from interrupt context, so irq
587 * disabling is needed for it.
1da177e4 588 *
710027a4 589 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
590 * it didn't succeed.
591 *
592 * Note:
593 * blk_init_queue() must be paired with a blk_cleanup_queue() call
594 * when the block device is deactivated (such as at module unload).
595 **/
1946089a 596
165125e1 597struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 598{
1946089a
CL
599 return blk_init_queue_node(rfn, lock, -1);
600}
601EXPORT_SYMBOL(blk_init_queue);
602
165125e1 603struct request_queue *
1946089a
CL
604blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
605{
c86d1b8a 606 struct request_queue *uninit_q, *q;
1da177e4 607
c86d1b8a
MS
608 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
609 if (!uninit_q)
610 return NULL;
611
612 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
613 if (!q)
614 blk_cleanup_queue(uninit_q);
615
616 return q;
01effb0d
MS
617}
618EXPORT_SYMBOL(blk_init_queue_node);
619
620struct request_queue *
621blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
622 spinlock_t *lock)
623{
624 return blk_init_allocated_queue_node(q, rfn, lock, -1);
625}
626EXPORT_SYMBOL(blk_init_allocated_queue);
627
628struct request_queue *
629blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
630 spinlock_t *lock, int node_id)
631{
1da177e4
LT
632 if (!q)
633 return NULL;
634
1946089a 635 q->node = node_id;
c86d1b8a 636 if (blk_init_free_list(q))
8669aafd 637 return NULL;
1da177e4
LT
638
639 q->request_fn = rfn;
1da177e4 640 q->prep_rq_fn = NULL;
28018c24 641 q->unprep_rq_fn = NULL;
1da177e4 642 q->unplug_fn = generic_unplug_device;
bc58ba94 643 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
644
645 /* Override internal queue lock with supplied lock pointer */
646 if (lock)
647 q->queue_lock = lock;
1da177e4 648
f3b144aa
JA
649 /*
650 * This also sets hw/phys segments, boundary and size
651 */
1da177e4 652 blk_queue_make_request(q, __make_request);
1da177e4 653
44ec9542
AS
654 q->sg_reserved_size = INT_MAX;
655
1da177e4
LT
656 /*
657 * all done
658 */
659 if (!elevator_init(q, NULL)) {
660 blk_queue_congestion_threshold(q);
661 return q;
662 }
663
1da177e4
LT
664 return NULL;
665}
01effb0d 666EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 667
165125e1 668int blk_get_queue(struct request_queue *q)
1da177e4 669{
fde6ad22 670 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 671 kobject_get(&q->kobj);
1da177e4
LT
672 return 0;
673 }
674
675 return 1;
676}
1da177e4 677
165125e1 678static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 679{
4aff5e23 680 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 681 elv_put_request(q, rq);
1da177e4
LT
682 mempool_free(rq, q->rq.rq_pool);
683}
684
1ea25ecb 685static struct request *
42dad764 686blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
687{
688 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
689
690 if (!rq)
691 return NULL;
692
2a4aa30c 693 blk_rq_init(q, rq);
1afb20f3 694
42dad764 695 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 696
cb98fc8b 697 if (priv) {
cb78b285 698 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
699 mempool_free(rq, q->rq.rq_pool);
700 return NULL;
701 }
4aff5e23 702 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 703 }
1da177e4 704
cb98fc8b 705 return rq;
1da177e4
LT
706}
707
708/*
709 * ioc_batching returns true if the ioc is a valid batching request and
710 * should be given priority access to a request.
711 */
165125e1 712static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
713{
714 if (!ioc)
715 return 0;
716
717 /*
718 * Make sure the process is able to allocate at least 1 request
719 * even if the batch times out, otherwise we could theoretically
720 * lose wakeups.
721 */
722 return ioc->nr_batch_requests == q->nr_batching ||
723 (ioc->nr_batch_requests > 0
724 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
725}
726
727/*
728 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
729 * will cause the process to be a "batcher" on all queues in the system. This
730 * is the behaviour we want though - once it gets a wakeup it should be given
731 * a nice run.
732 */
165125e1 733static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
734{
735 if (!ioc || ioc_batching(q, ioc))
736 return;
737
738 ioc->nr_batch_requests = q->nr_batching;
739 ioc->last_waited = jiffies;
740}
741
1faa16d2 742static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
743{
744 struct request_list *rl = &q->rq;
745
1faa16d2
JA
746 if (rl->count[sync] < queue_congestion_off_threshold(q))
747 blk_clear_queue_congested(q, sync);
1da177e4 748
1faa16d2
JA
749 if (rl->count[sync] + 1 <= q->nr_requests) {
750 if (waitqueue_active(&rl->wait[sync]))
751 wake_up(&rl->wait[sync]);
1da177e4 752
1faa16d2 753 blk_clear_queue_full(q, sync);
1da177e4
LT
754 }
755}
756
757/*
758 * A request has just been released. Account for it, update the full and
759 * congestion status, wake up any waiters. Called under q->queue_lock.
760 */
1faa16d2 761static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
762{
763 struct request_list *rl = &q->rq;
764
1faa16d2 765 rl->count[sync]--;
cb98fc8b
TH
766 if (priv)
767 rl->elvpriv--;
1da177e4 768
1faa16d2 769 __freed_request(q, sync);
1da177e4 770
1faa16d2
JA
771 if (unlikely(rl->starved[sync ^ 1]))
772 __freed_request(q, sync ^ 1);
1da177e4
LT
773}
774
9d5a4e94
MS
775/*
776 * Determine if elevator data should be initialized when allocating the
777 * request associated with @bio.
778 */
779static bool blk_rq_should_init_elevator(struct bio *bio)
780{
781 if (!bio)
782 return true;
783
784 /*
785 * Flush requests do not use the elevator so skip initialization.
786 * This allows a request to share the flush and elevator data.
787 */
788 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
789 return false;
790
791 return true;
792}
793
1da177e4 794/*
d6344532
NP
795 * Get a free request, queue_lock must be held.
796 * Returns NULL on failure, with queue_lock held.
797 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 798 */
165125e1 799static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 800 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
801{
802 struct request *rq = NULL;
803 struct request_list *rl = &q->rq;
88ee5ef1 804 struct io_context *ioc = NULL;
1faa16d2 805 const bool is_sync = rw_is_sync(rw_flags) != 0;
9d5a4e94 806 int may_queue, priv = 0;
88ee5ef1 807
7749a8d4 808 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
809 if (may_queue == ELV_MQUEUE_NO)
810 goto rq_starved;
811
1faa16d2
JA
812 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
813 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 814 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
815 /*
816 * The queue will fill after this allocation, so set
817 * it as full, and mark this process as "batching".
818 * This process will be allowed to complete a batch of
819 * requests, others will be blocked.
820 */
1faa16d2 821 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 822 ioc_set_batching(q, ioc);
1faa16d2 823 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
824 } else {
825 if (may_queue != ELV_MQUEUE_MUST
826 && !ioc_batching(q, ioc)) {
827 /*
828 * The queue is full and the allocating
829 * process is not a "batcher", and not
830 * exempted by the IO scheduler
831 */
832 goto out;
833 }
834 }
1da177e4 835 }
1faa16d2 836 blk_set_queue_congested(q, is_sync);
1da177e4
LT
837 }
838
082cf69e
JA
839 /*
840 * Only allow batching queuers to allocate up to 50% over the defined
841 * limit of requests, otherwise we could have thousands of requests
842 * allocated with any setting of ->nr_requests
843 */
1faa16d2 844 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 845 goto out;
fd782a4a 846
1faa16d2
JA
847 rl->count[is_sync]++;
848 rl->starved[is_sync] = 0;
cb98fc8b 849
9d5a4e94
MS
850 if (blk_rq_should_init_elevator(bio)) {
851 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
852 if (priv)
853 rl->elvpriv++;
854 }
cb98fc8b 855
f253b86b
JA
856 if (blk_queue_io_stat(q))
857 rw_flags |= REQ_IO_STAT;
1da177e4
LT
858 spin_unlock_irq(q->queue_lock);
859
7749a8d4 860 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 861 if (unlikely(!rq)) {
1da177e4
LT
862 /*
863 * Allocation failed presumably due to memory. Undo anything
864 * we might have messed up.
865 *
866 * Allocating task should really be put onto the front of the
867 * wait queue, but this is pretty rare.
868 */
869 spin_lock_irq(q->queue_lock);
1faa16d2 870 freed_request(q, is_sync, priv);
1da177e4
LT
871
872 /*
873 * in the very unlikely event that allocation failed and no
874 * requests for this direction was pending, mark us starved
875 * so that freeing of a request in the other direction will
876 * notice us. another possible fix would be to split the
877 * rq mempool into READ and WRITE
878 */
879rq_starved:
1faa16d2
JA
880 if (unlikely(rl->count[is_sync] == 0))
881 rl->starved[is_sync] = 1;
1da177e4 882
1da177e4
LT
883 goto out;
884 }
885
88ee5ef1
JA
886 /*
887 * ioc may be NULL here, and ioc_batching will be false. That's
888 * OK, if the queue is under the request limit then requests need
889 * not count toward the nr_batch_requests limit. There will always
890 * be some limit enforced by BLK_BATCH_TIME.
891 */
1da177e4
LT
892 if (ioc_batching(q, ioc))
893 ioc->nr_batch_requests--;
6728cb0e 894
1faa16d2 895 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 896out:
1da177e4
LT
897 return rq;
898}
899
900/*
901 * No available requests for this queue, unplug the device and wait for some
902 * requests to become available.
d6344532
NP
903 *
904 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 905 */
165125e1 906static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 907 struct bio *bio)
1da177e4 908{
1faa16d2 909 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
910 struct request *rq;
911
7749a8d4 912 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
913 while (!rq) {
914 DEFINE_WAIT(wait);
05caf8db 915 struct io_context *ioc;
1da177e4
LT
916 struct request_list *rl = &q->rq;
917
1faa16d2 918 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
919 TASK_UNINTERRUPTIBLE);
920
1faa16d2 921 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 922
05caf8db
ZY
923 __generic_unplug_device(q);
924 spin_unlock_irq(q->queue_lock);
925 io_schedule();
1da177e4 926
05caf8db
ZY
927 /*
928 * After sleeping, we become a "batching" process and
929 * will be able to allocate at least one request, and
930 * up to a big batch of them for a small period time.
931 * See ioc_batching, ioc_set_batching
932 */
933 ioc = current_io_context(GFP_NOIO, q->node);
934 ioc_set_batching(q, ioc);
d6344532 935
05caf8db 936 spin_lock_irq(q->queue_lock);
1faa16d2 937 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
938
939 rq = get_request(q, rw_flags, bio, GFP_NOIO);
940 };
1da177e4
LT
941
942 return rq;
943}
944
165125e1 945struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
946{
947 struct request *rq;
948
949 BUG_ON(rw != READ && rw != WRITE);
950
d6344532
NP
951 spin_lock_irq(q->queue_lock);
952 if (gfp_mask & __GFP_WAIT) {
22e2c507 953 rq = get_request_wait(q, rw, NULL);
d6344532 954 } else {
22e2c507 955 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
956 if (!rq)
957 spin_unlock_irq(q->queue_lock);
958 }
959 /* q->queue_lock is unlocked at this point */
1da177e4
LT
960
961 return rq;
962}
1da177e4
LT
963EXPORT_SYMBOL(blk_get_request);
964
dc72ef4a 965/**
79eb63e9 966 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 967 * @q: target request queue
79eb63e9
BH
968 * @bio: The bio describing the memory mappings that will be submitted for IO.
969 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 970 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 971 *
79eb63e9
BH
972 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
973 * type commands. Where the struct request needs to be farther initialized by
974 * the caller. It is passed a &struct bio, which describes the memory info of
975 * the I/O transfer.
dc72ef4a 976 *
79eb63e9
BH
977 * The caller of blk_make_request must make sure that bi_io_vec
978 * are set to describe the memory buffers. That bio_data_dir() will return
979 * the needed direction of the request. (And all bio's in the passed bio-chain
980 * are properly set accordingly)
981 *
982 * If called under none-sleepable conditions, mapped bio buffers must not
983 * need bouncing, by calling the appropriate masked or flagged allocator,
984 * suitable for the target device. Otherwise the call to blk_queue_bounce will
985 * BUG.
53674ac5
JA
986 *
987 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
988 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
989 * anything but the first bio in the chain. Otherwise you risk waiting for IO
990 * completion of a bio that hasn't been submitted yet, thus resulting in a
991 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
992 * of bio_alloc(), as that avoids the mempool deadlock.
993 * If possible a big IO should be split into smaller parts when allocation
994 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 995 */
79eb63e9
BH
996struct request *blk_make_request(struct request_queue *q, struct bio *bio,
997 gfp_t gfp_mask)
dc72ef4a 998{
79eb63e9
BH
999 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1000
1001 if (unlikely(!rq))
1002 return ERR_PTR(-ENOMEM);
1003
1004 for_each_bio(bio) {
1005 struct bio *bounce_bio = bio;
1006 int ret;
1007
1008 blk_queue_bounce(q, &bounce_bio);
1009 ret = blk_rq_append_bio(q, rq, bounce_bio);
1010 if (unlikely(ret)) {
1011 blk_put_request(rq);
1012 return ERR_PTR(ret);
1013 }
1014 }
1015
1016 return rq;
dc72ef4a 1017}
79eb63e9 1018EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1019
1da177e4
LT
1020/**
1021 * blk_requeue_request - put a request back on queue
1022 * @q: request queue where request should be inserted
1023 * @rq: request to be inserted
1024 *
1025 * Description:
1026 * Drivers often keep queueing requests until the hardware cannot accept
1027 * more, when that condition happens we need to put the request back
1028 * on the queue. Must be called with queue lock held.
1029 */
165125e1 1030void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1031{
242f9dcb
JA
1032 blk_delete_timer(rq);
1033 blk_clear_rq_complete(rq);
5f3ea37c 1034 trace_block_rq_requeue(q, rq);
2056a782 1035
1da177e4
LT
1036 if (blk_rq_tagged(rq))
1037 blk_queue_end_tag(q, rq);
1038
ba396a6c
JB
1039 BUG_ON(blk_queued_rq(rq));
1040
1da177e4
LT
1041 elv_requeue_request(q, rq);
1042}
1da177e4
LT
1043EXPORT_SYMBOL(blk_requeue_request);
1044
1045/**
710027a4 1046 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
1047 * @q: request queue where request should be inserted
1048 * @rq: request to be inserted
1049 * @at_head: insert request at head or tail of queue
1050 * @data: private data
1da177e4
LT
1051 *
1052 * Description:
1053 * Many block devices need to execute commands asynchronously, so they don't
1054 * block the whole kernel from preemption during request execution. This is
1055 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1056 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1057 * be scheduled for actual execution by the request queue.
1da177e4
LT
1058 *
1059 * We have the option of inserting the head or the tail of the queue.
1060 * Typically we use the tail for new ioctls and so forth. We use the head
1061 * of the queue for things like a QUEUE_FULL message from a device, or a
1062 * host that is unable to accept a particular command.
1063 */
165125e1 1064void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1065 int at_head, void *data)
1da177e4 1066{
867d1191 1067 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1068 unsigned long flags;
1069
1070 /*
1071 * tell I/O scheduler that this isn't a regular read/write (ie it
1072 * must not attempt merges on this) and that it acts as a soft
1073 * barrier
1074 */
4aff5e23 1075 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1076
1077 rq->special = data;
1078
1079 spin_lock_irqsave(q->queue_lock, flags);
1080
1081 /*
1082 * If command is tagged, release the tag
1083 */
867d1191
TH
1084 if (blk_rq_tagged(rq))
1085 blk_queue_end_tag(q, rq);
1da177e4 1086
b238b3d4 1087 drive_stat_acct(rq, 1);
867d1191 1088 __elv_add_request(q, rq, where, 0);
1654e741 1089 __blk_run_queue(q, false);
1da177e4
LT
1090 spin_unlock_irqrestore(q->queue_lock, flags);
1091}
1da177e4
LT
1092EXPORT_SYMBOL(blk_insert_request);
1093
074a7aca
TH
1094static void part_round_stats_single(int cpu, struct hd_struct *part,
1095 unsigned long now)
1096{
1097 if (now == part->stamp)
1098 return;
1099
316d315b 1100 if (part_in_flight(part)) {
074a7aca 1101 __part_stat_add(cpu, part, time_in_queue,
316d315b 1102 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1103 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1104 }
1105 part->stamp = now;
1106}
1107
1108/**
496aa8a9
RD
1109 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1110 * @cpu: cpu number for stats access
1111 * @part: target partition
1da177e4
LT
1112 *
1113 * The average IO queue length and utilisation statistics are maintained
1114 * by observing the current state of the queue length and the amount of
1115 * time it has been in this state for.
1116 *
1117 * Normally, that accounting is done on IO completion, but that can result
1118 * in more than a second's worth of IO being accounted for within any one
1119 * second, leading to >100% utilisation. To deal with that, we call this
1120 * function to do a round-off before returning the results when reading
1121 * /proc/diskstats. This accounts immediately for all queue usage up to
1122 * the current jiffies and restarts the counters again.
1123 */
c9959059 1124void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1125{
1126 unsigned long now = jiffies;
1127
074a7aca
TH
1128 if (part->partno)
1129 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1130 part_round_stats_single(cpu, part, now);
6f2576af 1131}
074a7aca 1132EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1133
1da177e4
LT
1134/*
1135 * queue lock must be held
1136 */
165125e1 1137void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1138{
1da177e4
LT
1139 if (unlikely(!q))
1140 return;
1141 if (unlikely(--req->ref_count))
1142 return;
1143
8922e16c
TH
1144 elv_completed_request(q, req);
1145
1cd96c24
BH
1146 /* this is a bio leak */
1147 WARN_ON(req->bio != NULL);
1148
1da177e4
LT
1149 /*
1150 * Request may not have originated from ll_rw_blk. if not,
1151 * it didn't come out of our reserved rq pools
1152 */
49171e5c 1153 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1154 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1155 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1156
1da177e4 1157 BUG_ON(!list_empty(&req->queuelist));
9817064b 1158 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1159
1160 blk_free_request(q, req);
1faa16d2 1161 freed_request(q, is_sync, priv);
1da177e4
LT
1162 }
1163}
6e39b69e
MC
1164EXPORT_SYMBOL_GPL(__blk_put_request);
1165
1da177e4
LT
1166void blk_put_request(struct request *req)
1167{
8922e16c 1168 unsigned long flags;
165125e1 1169 struct request_queue *q = req->q;
8922e16c 1170
52a93ba8
FT
1171 spin_lock_irqsave(q->queue_lock, flags);
1172 __blk_put_request(q, req);
1173 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1174}
1da177e4
LT
1175EXPORT_SYMBOL(blk_put_request);
1176
66ac0280
CH
1177/**
1178 * blk_add_request_payload - add a payload to a request
1179 * @rq: request to update
1180 * @page: page backing the payload
1181 * @len: length of the payload.
1182 *
1183 * This allows to later add a payload to an already submitted request by
1184 * a block driver. The driver needs to take care of freeing the payload
1185 * itself.
1186 *
1187 * Note that this is a quite horrible hack and nothing but handling of
1188 * discard requests should ever use it.
1189 */
1190void blk_add_request_payload(struct request *rq, struct page *page,
1191 unsigned int len)
1192{
1193 struct bio *bio = rq->bio;
1194
1195 bio->bi_io_vec->bv_page = page;
1196 bio->bi_io_vec->bv_offset = 0;
1197 bio->bi_io_vec->bv_len = len;
1198
1199 bio->bi_size = len;
1200 bio->bi_vcnt = 1;
1201 bio->bi_phys_segments = 1;
1202
1203 rq->__data_len = rq->resid_len = len;
1204 rq->nr_phys_segments = 1;
1205 rq->buffer = bio_data(bio);
1206}
1207EXPORT_SYMBOL_GPL(blk_add_request_payload);
1208
86db1e29 1209void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1210{
c7c22e4d 1211 req->cpu = bio->bi_comp_cpu;
4aff5e23 1212 req->cmd_type = REQ_TYPE_FS;
52d9e675 1213
7b6d91da
CH
1214 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1215 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1216 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1217
52d9e675 1218 req->errors = 0;
a2dec7b3 1219 req->__sector = bio->bi_sector;
52d9e675 1220 req->ioprio = bio_prio(bio);
bc1c56fd 1221 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1222}
1223
644b2d99
JA
1224/*
1225 * Only disabling plugging for non-rotational devices if it does tagging
1226 * as well, otherwise we do need the proper merging
1227 */
1228static inline bool queue_should_plug(struct request_queue *q)
1229{
79da0644 1230 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1231}
1232
165125e1 1233static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1234{
450991bc 1235 struct request *req;
2e46e8b2
TH
1236 int el_ret;
1237 unsigned int bytes = bio->bi_size;
51da90fc 1238 const unsigned short prio = bio_prio(bio);
5e00d1b5
JS
1239 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1240 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1241 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
28e7d184 1242 int where = ELEVATOR_INSERT_SORT;
7749a8d4 1243 int rw_flags;
1da177e4 1244
1da177e4
LT
1245 /*
1246 * low level driver can indicate that it wants pages above a
1247 * certain limit bounced to low memory (ie for highmem, or even
1248 * ISA dma in theory)
1249 */
1250 blk_queue_bounce(q, &bio);
1251
1da177e4
LT
1252 spin_lock_irq(q->queue_lock);
1253
4fed947c 1254 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
ae1b1539 1255 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1256 goto get_rq;
1257 }
1258
1259 if (elv_queue_empty(q))
1da177e4
LT
1260 goto get_rq;
1261
1262 el_ret = elv_merge(q, &req, bio);
1263 switch (el_ret) {
6728cb0e
JA
1264 case ELEVATOR_BACK_MERGE:
1265 BUG_ON(!rq_mergeable(req));
1da177e4 1266
6728cb0e
JA
1267 if (!ll_back_merge_fn(q, req, bio))
1268 break;
1da177e4 1269
5f3ea37c 1270 trace_block_bio_backmerge(q, bio);
2056a782 1271
80a761fd
TH
1272 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1273 blk_rq_set_mixed_merge(req);
1274
6728cb0e
JA
1275 req->biotail->bi_next = bio;
1276 req->biotail = bio;
a2dec7b3 1277 req->__data_len += bytes;
6728cb0e 1278 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1279 if (!blk_rq_cpu_valid(req))
1280 req->cpu = bio->bi_comp_cpu;
6728cb0e 1281 drive_stat_acct(req, 0);
812d4026 1282 elv_bio_merged(q, req, bio);
6728cb0e
JA
1283 if (!attempt_back_merge(q, req))
1284 elv_merged_request(q, req, el_ret);
1285 goto out;
1da177e4 1286
6728cb0e
JA
1287 case ELEVATOR_FRONT_MERGE:
1288 BUG_ON(!rq_mergeable(req));
1da177e4 1289
6728cb0e
JA
1290 if (!ll_front_merge_fn(q, req, bio))
1291 break;
1da177e4 1292
5f3ea37c 1293 trace_block_bio_frontmerge(q, bio);
2056a782 1294
80a761fd
TH
1295 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1296 blk_rq_set_mixed_merge(req);
1297 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1298 req->cmd_flags |= ff;
1299 }
1300
6728cb0e
JA
1301 bio->bi_next = req->bio;
1302 req->bio = bio;
1da177e4 1303
6728cb0e
JA
1304 /*
1305 * may not be valid. if the low level driver said
1306 * it didn't need a bounce buffer then it better
1307 * not touch req->buffer either...
1308 */
1309 req->buffer = bio_data(bio);
a2dec7b3
TH
1310 req->__sector = bio->bi_sector;
1311 req->__data_len += bytes;
6728cb0e 1312 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1313 if (!blk_rq_cpu_valid(req))
1314 req->cpu = bio->bi_comp_cpu;
6728cb0e 1315 drive_stat_acct(req, 0);
812d4026 1316 elv_bio_merged(q, req, bio);
6728cb0e
JA
1317 if (!attempt_front_merge(q, req))
1318 elv_merged_request(q, req, el_ret);
1319 goto out;
1320
1321 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1322 default:
1323 ;
1da177e4
LT
1324 }
1325
450991bc 1326get_rq:
7749a8d4
JA
1327 /*
1328 * This sync check and mask will be re-done in init_request_from_bio(),
1329 * but we need to set it earlier to expose the sync flag to the
1330 * rq allocator and io schedulers.
1331 */
1332 rw_flags = bio_data_dir(bio);
1333 if (sync)
7b6d91da 1334 rw_flags |= REQ_SYNC;
7749a8d4 1335
1da177e4 1336 /*
450991bc 1337 * Grab a free request. This is might sleep but can not fail.
d6344532 1338 * Returns with the queue unlocked.
450991bc 1339 */
7749a8d4 1340 req = get_request_wait(q, rw_flags, bio);
d6344532 1341
450991bc
NP
1342 /*
1343 * After dropping the lock and possibly sleeping here, our request
1344 * may now be mergeable after it had proven unmergeable (above).
1345 * We don't worry about that case for efficiency. It won't happen
1346 * often, and the elevators are able to handle it.
1da177e4 1347 */
52d9e675 1348 init_request_from_bio(req, bio);
1da177e4 1349
450991bc 1350 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1351 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1352 bio_flagged(bio, BIO_CPU_AFFINE))
1353 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1354 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1355 blk_plug_device(q);
dd831006
TH
1356
1357 /* insert the request into the elevator */
1358 drive_stat_acct(req, 1);
28e7d184 1359 __elv_add_request(q, req, where, 0);
1da177e4 1360out:
644b2d99 1361 if (unplug || !queue_should_plug(q))
1da177e4 1362 __generic_unplug_device(q);
1da177e4
LT
1363 spin_unlock_irq(q->queue_lock);
1364 return 0;
1da177e4
LT
1365}
1366
1367/*
1368 * If bio->bi_dev is a partition, remap the location
1369 */
1370static inline void blk_partition_remap(struct bio *bio)
1371{
1372 struct block_device *bdev = bio->bi_bdev;
1373
bf2de6f5 1374 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1375 struct hd_struct *p = bdev->bd_part;
1376
1da177e4
LT
1377 bio->bi_sector += p->start_sect;
1378 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1379
d07335e5
MS
1380 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1381 bdev->bd_dev,
1382 bio->bi_sector - p->start_sect);
1da177e4
LT
1383 }
1384}
1385
1da177e4
LT
1386static void handle_bad_sector(struct bio *bio)
1387{
1388 char b[BDEVNAME_SIZE];
1389
1390 printk(KERN_INFO "attempt to access beyond end of device\n");
1391 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1392 bdevname(bio->bi_bdev, b),
1393 bio->bi_rw,
1394 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1395 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1396
1397 set_bit(BIO_EOF, &bio->bi_flags);
1398}
1399
c17bb495
AM
1400#ifdef CONFIG_FAIL_MAKE_REQUEST
1401
1402static DECLARE_FAULT_ATTR(fail_make_request);
1403
1404static int __init setup_fail_make_request(char *str)
1405{
1406 return setup_fault_attr(&fail_make_request, str);
1407}
1408__setup("fail_make_request=", setup_fail_make_request);
1409
1410static int should_fail_request(struct bio *bio)
1411{
eddb2e26
TH
1412 struct hd_struct *part = bio->bi_bdev->bd_part;
1413
1414 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1415 return should_fail(&fail_make_request, bio->bi_size);
1416
1417 return 0;
1418}
1419
1420static int __init fail_make_request_debugfs(void)
1421{
1422 return init_fault_attr_dentries(&fail_make_request,
1423 "fail_make_request");
1424}
1425
1426late_initcall(fail_make_request_debugfs);
1427
1428#else /* CONFIG_FAIL_MAKE_REQUEST */
1429
1430static inline int should_fail_request(struct bio *bio)
1431{
1432 return 0;
1433}
1434
1435#endif /* CONFIG_FAIL_MAKE_REQUEST */
1436
c07e2b41
JA
1437/*
1438 * Check whether this bio extends beyond the end of the device.
1439 */
1440static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1441{
1442 sector_t maxsector;
1443
1444 if (!nr_sectors)
1445 return 0;
1446
1447 /* Test device or partition size, when known. */
77304d2a 1448 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1449 if (maxsector) {
1450 sector_t sector = bio->bi_sector;
1451
1452 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1453 /*
1454 * This may well happen - the kernel calls bread()
1455 * without checking the size of the device, e.g., when
1456 * mounting a device.
1457 */
1458 handle_bad_sector(bio);
1459 return 1;
1460 }
1461 }
1462
1463 return 0;
1464}
1465
1da177e4 1466/**
710027a4 1467 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1468 * @bio: The bio describing the location in memory and on the device.
1469 *
1470 * generic_make_request() is used to make I/O requests of block
1471 * devices. It is passed a &struct bio, which describes the I/O that needs
1472 * to be done.
1473 *
1474 * generic_make_request() does not return any status. The
1475 * success/failure status of the request, along with notification of
1476 * completion, is delivered asynchronously through the bio->bi_end_io
1477 * function described (one day) else where.
1478 *
1479 * The caller of generic_make_request must make sure that bi_io_vec
1480 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1481 * set to describe the device address, and the
1482 * bi_end_io and optionally bi_private are set to describe how
1483 * completion notification should be signaled.
1484 *
1485 * generic_make_request and the drivers it calls may use bi_next if this
1486 * bio happens to be merged with someone else, and may change bi_dev and
1487 * bi_sector for remaps as it sees fit. So the values of these fields
1488 * should NOT be depended on after the call to generic_make_request.
1489 */
d89d8796 1490static inline void __generic_make_request(struct bio *bio)
1da177e4 1491{
165125e1 1492 struct request_queue *q;
5ddfe969 1493 sector_t old_sector;
1da177e4 1494 int ret, nr_sectors = bio_sectors(bio);
2056a782 1495 dev_t old_dev;
51fd77bd 1496 int err = -EIO;
1da177e4
LT
1497
1498 might_sleep();
1da177e4 1499
c07e2b41
JA
1500 if (bio_check_eod(bio, nr_sectors))
1501 goto end_io;
1da177e4
LT
1502
1503 /*
1504 * Resolve the mapping until finished. (drivers are
1505 * still free to implement/resolve their own stacking
1506 * by explicitly returning 0)
1507 *
1508 * NOTE: we don't repeat the blk_size check for each new device.
1509 * Stacking drivers are expected to know what they are doing.
1510 */
5ddfe969 1511 old_sector = -1;
2056a782 1512 old_dev = 0;
1da177e4
LT
1513 do {
1514 char b[BDEVNAME_SIZE];
1515
1516 q = bdev_get_queue(bio->bi_bdev);
a7384677 1517 if (unlikely(!q)) {
1da177e4
LT
1518 printk(KERN_ERR
1519 "generic_make_request: Trying to access "
1520 "nonexistent block-device %s (%Lu)\n",
1521 bdevname(bio->bi_bdev, b),
1522 (long long) bio->bi_sector);
a7384677 1523 goto end_io;
1da177e4
LT
1524 }
1525
7b6d91da 1526 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1527 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1528 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1529 bdevname(bio->bi_bdev, b),
1530 bio_sectors(bio),
1531 queue_max_hw_sectors(q));
1da177e4
LT
1532 goto end_io;
1533 }
1534
fde6ad22 1535 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1536 goto end_io;
1537
c17bb495
AM
1538 if (should_fail_request(bio))
1539 goto end_io;
1540
1da177e4
LT
1541 /*
1542 * If this device has partitions, remap block n
1543 * of partition p to block n+start(p) of the disk.
1544 */
1545 blk_partition_remap(bio);
1546
7ba1ba12
MP
1547 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1548 goto end_io;
1549
5ddfe969 1550 if (old_sector != -1)
d07335e5 1551 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1552
5ddfe969 1553 old_sector = bio->bi_sector;
2056a782
JA
1554 old_dev = bio->bi_bdev->bd_dev;
1555
c07e2b41
JA
1556 if (bio_check_eod(bio, nr_sectors))
1557 goto end_io;
a7384677 1558
1e87901e
TH
1559 /*
1560 * Filter flush bio's early so that make_request based
1561 * drivers without flush support don't have to worry
1562 * about them.
1563 */
1564 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1565 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1566 if (!nr_sectors) {
1567 err = 0;
1568 goto end_io;
1569 }
1570 }
1571
8d57a98c
AH
1572 if ((bio->bi_rw & REQ_DISCARD) &&
1573 (!blk_queue_discard(q) ||
1574 ((bio->bi_rw & REQ_SECURE) &&
1575 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1576 err = -EOPNOTSUPP;
1577 goto end_io;
1578 }
5ddfe969 1579
e43473b7
VG
1580 blk_throtl_bio(q, &bio);
1581
1582 /*
1583 * If bio = NULL, bio has been throttled and will be submitted
1584 * later.
1585 */
1586 if (!bio)
1587 break;
1588
01edede4
MK
1589 trace_block_bio_queue(q, bio);
1590
1da177e4
LT
1591 ret = q->make_request_fn(q, bio);
1592 } while (ret);
a7384677
TH
1593
1594 return;
1595
1596end_io:
1597 bio_endio(bio, err);
1da177e4
LT
1598}
1599
d89d8796
NB
1600/*
1601 * We only want one ->make_request_fn to be active at a time,
1602 * else stack usage with stacked devices could be a problem.
bddd87c7 1603 * So use current->bio_list to keep a list of requests
d89d8796 1604 * submited by a make_request_fn function.
bddd87c7 1605 * current->bio_list is also used as a flag to say if
d89d8796
NB
1606 * generic_make_request is currently active in this task or not.
1607 * If it is NULL, then no make_request is active. If it is non-NULL,
1608 * then a make_request is active, and new requests should be added
1609 * at the tail
1610 */
1611void generic_make_request(struct bio *bio)
1612{
bddd87c7
AM
1613 struct bio_list bio_list_on_stack;
1614
1615 if (current->bio_list) {
d89d8796 1616 /* make_request is active */
bddd87c7 1617 bio_list_add(current->bio_list, bio);
d89d8796
NB
1618 return;
1619 }
1620 /* following loop may be a bit non-obvious, and so deserves some
1621 * explanation.
1622 * Before entering the loop, bio->bi_next is NULL (as all callers
1623 * ensure that) so we have a list with a single bio.
1624 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1625 * we assign bio_list to a pointer to the bio_list_on_stack,
1626 * thus initialising the bio_list of new bios to be
d89d8796
NB
1627 * added. __generic_make_request may indeed add some more bios
1628 * through a recursive call to generic_make_request. If it
1629 * did, we find a non-NULL value in bio_list and re-enter the loop
1630 * from the top. In this case we really did just take the bio
bddd87c7
AM
1631 * of the top of the list (no pretending) and so remove it from
1632 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1633 *
1634 * The loop was structured like this to make only one call to
1635 * __generic_make_request (which is important as it is large and
1636 * inlined) and to keep the structure simple.
1637 */
1638 BUG_ON(bio->bi_next);
bddd87c7
AM
1639 bio_list_init(&bio_list_on_stack);
1640 current->bio_list = &bio_list_on_stack;
d89d8796 1641 do {
d89d8796 1642 __generic_make_request(bio);
bddd87c7 1643 bio = bio_list_pop(current->bio_list);
d89d8796 1644 } while (bio);
bddd87c7 1645 current->bio_list = NULL; /* deactivate */
d89d8796 1646}
1da177e4
LT
1647EXPORT_SYMBOL(generic_make_request);
1648
1649/**
710027a4 1650 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1651 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1652 * @bio: The &struct bio which describes the I/O
1653 *
1654 * submit_bio() is very similar in purpose to generic_make_request(), and
1655 * uses that function to do most of the work. Both are fairly rough
710027a4 1656 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1657 *
1658 */
1659void submit_bio(int rw, struct bio *bio)
1660{
1661 int count = bio_sectors(bio);
1662
22e2c507 1663 bio->bi_rw |= rw;
1da177e4 1664
bf2de6f5
JA
1665 /*
1666 * If it's a regular read/write or a barrier with data attached,
1667 * go through the normal accounting stuff before submission.
1668 */
3ffb52e7 1669 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1670 if (rw & WRITE) {
1671 count_vm_events(PGPGOUT, count);
1672 } else {
1673 task_io_account_read(bio->bi_size);
1674 count_vm_events(PGPGIN, count);
1675 }
1676
1677 if (unlikely(block_dump)) {
1678 char b[BDEVNAME_SIZE];
8dcbdc74 1679 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1680 current->comm, task_pid_nr(current),
bf2de6f5
JA
1681 (rw & WRITE) ? "WRITE" : "READ",
1682 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1683 bdevname(bio->bi_bdev, b),
1684 count);
bf2de6f5 1685 }
1da177e4
LT
1686 }
1687
1688 generic_make_request(bio);
1689}
1da177e4
LT
1690EXPORT_SYMBOL(submit_bio);
1691
82124d60
KU
1692/**
1693 * blk_rq_check_limits - Helper function to check a request for the queue limit
1694 * @q: the queue
1695 * @rq: the request being checked
1696 *
1697 * Description:
1698 * @rq may have been made based on weaker limitations of upper-level queues
1699 * in request stacking drivers, and it may violate the limitation of @q.
1700 * Since the block layer and the underlying device driver trust @rq
1701 * after it is inserted to @q, it should be checked against @q before
1702 * the insertion using this generic function.
1703 *
1704 * This function should also be useful for request stacking drivers
eef35c2d 1705 * in some cases below, so export this function.
82124d60
KU
1706 * Request stacking drivers like request-based dm may change the queue
1707 * limits while requests are in the queue (e.g. dm's table swapping).
1708 * Such request stacking drivers should check those requests agaist
1709 * the new queue limits again when they dispatch those requests,
1710 * although such checkings are also done against the old queue limits
1711 * when submitting requests.
1712 */
1713int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1714{
3383977f
S
1715 if (rq->cmd_flags & REQ_DISCARD)
1716 return 0;
1717
ae03bf63
MP
1718 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1719 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1720 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1721 return -EIO;
1722 }
1723
1724 /*
1725 * queue's settings related to segment counting like q->bounce_pfn
1726 * may differ from that of other stacking queues.
1727 * Recalculate it to check the request correctly on this queue's
1728 * limitation.
1729 */
1730 blk_recalc_rq_segments(rq);
8a78362c 1731 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1732 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1733 return -EIO;
1734 }
1735
1736 return 0;
1737}
1738EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1739
1740/**
1741 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1742 * @q: the queue to submit the request
1743 * @rq: the request being queued
1744 */
1745int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1746{
1747 unsigned long flags;
1748
1749 if (blk_rq_check_limits(q, rq))
1750 return -EIO;
1751
1752#ifdef CONFIG_FAIL_MAKE_REQUEST
1753 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1754 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1755 return -EIO;
1756#endif
1757
1758 spin_lock_irqsave(q->queue_lock, flags);
1759
1760 /*
1761 * Submitting request must be dequeued before calling this function
1762 * because it will be linked to another request_queue
1763 */
1764 BUG_ON(blk_queued_rq(rq));
1765
1766 drive_stat_acct(rq, 1);
1767 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1768
1769 spin_unlock_irqrestore(q->queue_lock, flags);
1770
1771 return 0;
1772}
1773EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1774
80a761fd
TH
1775/**
1776 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1777 * @rq: request to examine
1778 *
1779 * Description:
1780 * A request could be merge of IOs which require different failure
1781 * handling. This function determines the number of bytes which
1782 * can be failed from the beginning of the request without
1783 * crossing into area which need to be retried further.
1784 *
1785 * Return:
1786 * The number of bytes to fail.
1787 *
1788 * Context:
1789 * queue_lock must be held.
1790 */
1791unsigned int blk_rq_err_bytes(const struct request *rq)
1792{
1793 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1794 unsigned int bytes = 0;
1795 struct bio *bio;
1796
1797 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1798 return blk_rq_bytes(rq);
1799
1800 /*
1801 * Currently the only 'mixing' which can happen is between
1802 * different fastfail types. We can safely fail portions
1803 * which have all the failfast bits that the first one has -
1804 * the ones which are at least as eager to fail as the first
1805 * one.
1806 */
1807 for (bio = rq->bio; bio; bio = bio->bi_next) {
1808 if ((bio->bi_rw & ff) != ff)
1809 break;
1810 bytes += bio->bi_size;
1811 }
1812
1813 /* this could lead to infinite loop */
1814 BUG_ON(blk_rq_bytes(rq) && !bytes);
1815 return bytes;
1816}
1817EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1818
bc58ba94
JA
1819static void blk_account_io_completion(struct request *req, unsigned int bytes)
1820{
c2553b58 1821 if (blk_do_io_stat(req)) {
bc58ba94
JA
1822 const int rw = rq_data_dir(req);
1823 struct hd_struct *part;
1824 int cpu;
1825
1826 cpu = part_stat_lock();
09e099d4 1827 part = req->part;
bc58ba94
JA
1828 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1829 part_stat_unlock();
1830 }
1831}
1832
1833static void blk_account_io_done(struct request *req)
1834{
bc58ba94 1835 /*
dd4c133f
TH
1836 * Account IO completion. flush_rq isn't accounted as a
1837 * normal IO on queueing nor completion. Accounting the
1838 * containing request is enough.
bc58ba94 1839 */
414b4ff5 1840 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1841 unsigned long duration = jiffies - req->start_time;
1842 const int rw = rq_data_dir(req);
1843 struct hd_struct *part;
1844 int cpu;
1845
1846 cpu = part_stat_lock();
09e099d4 1847 part = req->part;
bc58ba94
JA
1848
1849 part_stat_inc(cpu, part, ios[rw]);
1850 part_stat_add(cpu, part, ticks[rw], duration);
1851 part_round_stats(cpu, part);
316d315b 1852 part_dec_in_flight(part, rw);
bc58ba94 1853
6c23a968 1854 hd_struct_put(part);
bc58ba94
JA
1855 part_stat_unlock();
1856 }
1857}
1858
3bcddeac 1859/**
9934c8c0
TH
1860 * blk_peek_request - peek at the top of a request queue
1861 * @q: request queue to peek at
1862 *
1863 * Description:
1864 * Return the request at the top of @q. The returned request
1865 * should be started using blk_start_request() before LLD starts
1866 * processing it.
1867 *
1868 * Return:
1869 * Pointer to the request at the top of @q if available. Null
1870 * otherwise.
1871 *
1872 * Context:
1873 * queue_lock must be held.
1874 */
1875struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1876{
1877 struct request *rq;
1878 int ret;
1879
1880 while ((rq = __elv_next_request(q)) != NULL) {
1881 if (!(rq->cmd_flags & REQ_STARTED)) {
1882 /*
1883 * This is the first time the device driver
1884 * sees this request (possibly after
1885 * requeueing). Notify IO scheduler.
1886 */
33659ebb 1887 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1888 elv_activate_rq(q, rq);
1889
1890 /*
1891 * just mark as started even if we don't start
1892 * it, a request that has been delayed should
1893 * not be passed by new incoming requests
1894 */
1895 rq->cmd_flags |= REQ_STARTED;
1896 trace_block_rq_issue(q, rq);
1897 }
1898
1899 if (!q->boundary_rq || q->boundary_rq == rq) {
1900 q->end_sector = rq_end_sector(rq);
1901 q->boundary_rq = NULL;
1902 }
1903
1904 if (rq->cmd_flags & REQ_DONTPREP)
1905 break;
1906
2e46e8b2 1907 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1908 /*
1909 * make sure space for the drain appears we
1910 * know we can do this because max_hw_segments
1911 * has been adjusted to be one fewer than the
1912 * device can handle
1913 */
1914 rq->nr_phys_segments++;
1915 }
1916
1917 if (!q->prep_rq_fn)
1918 break;
1919
1920 ret = q->prep_rq_fn(q, rq);
1921 if (ret == BLKPREP_OK) {
1922 break;
1923 } else if (ret == BLKPREP_DEFER) {
1924 /*
1925 * the request may have been (partially) prepped.
1926 * we need to keep this request in the front to
1927 * avoid resource deadlock. REQ_STARTED will
1928 * prevent other fs requests from passing this one.
1929 */
2e46e8b2 1930 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1931 !(rq->cmd_flags & REQ_DONTPREP)) {
1932 /*
1933 * remove the space for the drain we added
1934 * so that we don't add it again
1935 */
1936 --rq->nr_phys_segments;
1937 }
1938
1939 rq = NULL;
1940 break;
1941 } else if (ret == BLKPREP_KILL) {
1942 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1943 /*
1944 * Mark this request as started so we don't trigger
1945 * any debug logic in the end I/O path.
1946 */
1947 blk_start_request(rq);
40cbbb78 1948 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1949 } else {
1950 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1951 break;
1952 }
1953 }
1954
1955 return rq;
1956}
9934c8c0 1957EXPORT_SYMBOL(blk_peek_request);
158dbda0 1958
9934c8c0 1959void blk_dequeue_request(struct request *rq)
158dbda0 1960{
9934c8c0
TH
1961 struct request_queue *q = rq->q;
1962
158dbda0
TH
1963 BUG_ON(list_empty(&rq->queuelist));
1964 BUG_ON(ELV_ON_HASH(rq));
1965
1966 list_del_init(&rq->queuelist);
1967
1968 /*
1969 * the time frame between a request being removed from the lists
1970 * and to it is freed is accounted as io that is in progress at
1971 * the driver side.
1972 */
9195291e 1973 if (blk_account_rq(rq)) {
0a7ae2ff 1974 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1975 set_io_start_time_ns(rq);
1976 }
158dbda0
TH
1977}
1978
9934c8c0
TH
1979/**
1980 * blk_start_request - start request processing on the driver
1981 * @req: request to dequeue
1982 *
1983 * Description:
1984 * Dequeue @req and start timeout timer on it. This hands off the
1985 * request to the driver.
1986 *
1987 * Block internal functions which don't want to start timer should
1988 * call blk_dequeue_request().
1989 *
1990 * Context:
1991 * queue_lock must be held.
1992 */
1993void blk_start_request(struct request *req)
1994{
1995 blk_dequeue_request(req);
1996
1997 /*
5f49f631
TH
1998 * We are now handing the request to the hardware, initialize
1999 * resid_len to full count and add the timeout handler.
9934c8c0 2000 */
5f49f631 2001 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2002 if (unlikely(blk_bidi_rq(req)))
2003 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2004
9934c8c0
TH
2005 blk_add_timer(req);
2006}
2007EXPORT_SYMBOL(blk_start_request);
2008
2009/**
2010 * blk_fetch_request - fetch a request from a request queue
2011 * @q: request queue to fetch a request from
2012 *
2013 * Description:
2014 * Return the request at the top of @q. The request is started on
2015 * return and LLD can start processing it immediately.
2016 *
2017 * Return:
2018 * Pointer to the request at the top of @q if available. Null
2019 * otherwise.
2020 *
2021 * Context:
2022 * queue_lock must be held.
2023 */
2024struct request *blk_fetch_request(struct request_queue *q)
2025{
2026 struct request *rq;
2027
2028 rq = blk_peek_request(q);
2029 if (rq)
2030 blk_start_request(rq);
2031 return rq;
2032}
2033EXPORT_SYMBOL(blk_fetch_request);
2034
3bcddeac 2035/**
2e60e022 2036 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2037 * @req: the request being processed
710027a4 2038 * @error: %0 for success, < %0 for error
8ebf9756 2039 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2040 *
2041 * Description:
8ebf9756
RD
2042 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2043 * the request structure even if @req doesn't have leftover.
2044 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2045 *
2046 * This special helper function is only for request stacking drivers
2047 * (e.g. request-based dm) so that they can handle partial completion.
2048 * Actual device drivers should use blk_end_request instead.
2049 *
2050 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2051 * %false return from this function.
3bcddeac
KU
2052 *
2053 * Return:
2e60e022
TH
2054 * %false - this request doesn't have any more data
2055 * %true - this request has more data
3bcddeac 2056 **/
2e60e022 2057bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2058{
5450d3e1 2059 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2060 struct bio *bio;
2061
2e60e022
TH
2062 if (!req->bio)
2063 return false;
2064
5f3ea37c 2065 trace_block_rq_complete(req->q, req);
2056a782 2066
1da177e4 2067 /*
6f41469c
TH
2068 * For fs requests, rq is just carrier of independent bio's
2069 * and each partial completion should be handled separately.
2070 * Reset per-request error on each partial completion.
2071 *
2072 * TODO: tj: This is too subtle. It would be better to let
2073 * low level drivers do what they see fit.
1da177e4 2074 */
33659ebb 2075 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2076 req->errors = 0;
2077
33659ebb
CH
2078 if (error && req->cmd_type == REQ_TYPE_FS &&
2079 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2080 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2081 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2082 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2083 }
2084
bc58ba94 2085 blk_account_io_completion(req, nr_bytes);
d72d904a 2086
1da177e4
LT
2087 total_bytes = bio_nbytes = 0;
2088 while ((bio = req->bio) != NULL) {
2089 int nbytes;
2090
2091 if (nr_bytes >= bio->bi_size) {
2092 req->bio = bio->bi_next;
2093 nbytes = bio->bi_size;
5bb23a68 2094 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2095 next_idx = 0;
2096 bio_nbytes = 0;
2097 } else {
2098 int idx = bio->bi_idx + next_idx;
2099
af498d7f 2100 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2101 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2102 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2103 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2104 break;
2105 }
2106
2107 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2108 BIO_BUG_ON(nbytes > bio->bi_size);
2109
2110 /*
2111 * not a complete bvec done
2112 */
2113 if (unlikely(nbytes > nr_bytes)) {
2114 bio_nbytes += nr_bytes;
2115 total_bytes += nr_bytes;
2116 break;
2117 }
2118
2119 /*
2120 * advance to the next vector
2121 */
2122 next_idx++;
2123 bio_nbytes += nbytes;
2124 }
2125
2126 total_bytes += nbytes;
2127 nr_bytes -= nbytes;
2128
6728cb0e
JA
2129 bio = req->bio;
2130 if (bio) {
1da177e4
LT
2131 /*
2132 * end more in this run, or just return 'not-done'
2133 */
2134 if (unlikely(nr_bytes <= 0))
2135 break;
2136 }
2137 }
2138
2139 /*
2140 * completely done
2141 */
2e60e022
TH
2142 if (!req->bio) {
2143 /*
2144 * Reset counters so that the request stacking driver
2145 * can find how many bytes remain in the request
2146 * later.
2147 */
a2dec7b3 2148 req->__data_len = 0;
2e60e022
TH
2149 return false;
2150 }
1da177e4
LT
2151
2152 /*
2153 * if the request wasn't completed, update state
2154 */
2155 if (bio_nbytes) {
5bb23a68 2156 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2157 bio->bi_idx += next_idx;
2158 bio_iovec(bio)->bv_offset += nr_bytes;
2159 bio_iovec(bio)->bv_len -= nr_bytes;
2160 }
2161
a2dec7b3 2162 req->__data_len -= total_bytes;
2e46e8b2
TH
2163 req->buffer = bio_data(req->bio);
2164
2165 /* update sector only for requests with clear definition of sector */
33659ebb 2166 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2167 req->__sector += total_bytes >> 9;
2e46e8b2 2168
80a761fd
TH
2169 /* mixed attributes always follow the first bio */
2170 if (req->cmd_flags & REQ_MIXED_MERGE) {
2171 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2172 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2173 }
2174
2e46e8b2
TH
2175 /*
2176 * If total number of sectors is less than the first segment
2177 * size, something has gone terribly wrong.
2178 */
2179 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2180 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2181 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2182 }
2183
2184 /* recalculate the number of segments */
1da177e4 2185 blk_recalc_rq_segments(req);
2e46e8b2 2186
2e60e022 2187 return true;
1da177e4 2188}
2e60e022 2189EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2190
2e60e022
TH
2191static bool blk_update_bidi_request(struct request *rq, int error,
2192 unsigned int nr_bytes,
2193 unsigned int bidi_bytes)
5efccd17 2194{
2e60e022
TH
2195 if (blk_update_request(rq, error, nr_bytes))
2196 return true;
5efccd17 2197
2e60e022
TH
2198 /* Bidi request must be completed as a whole */
2199 if (unlikely(blk_bidi_rq(rq)) &&
2200 blk_update_request(rq->next_rq, error, bidi_bytes))
2201 return true;
5efccd17 2202
e2e1a148
JA
2203 if (blk_queue_add_random(rq->q))
2204 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2205
2206 return false;
1da177e4
LT
2207}
2208
28018c24
JB
2209/**
2210 * blk_unprep_request - unprepare a request
2211 * @req: the request
2212 *
2213 * This function makes a request ready for complete resubmission (or
2214 * completion). It happens only after all error handling is complete,
2215 * so represents the appropriate moment to deallocate any resources
2216 * that were allocated to the request in the prep_rq_fn. The queue
2217 * lock is held when calling this.
2218 */
2219void blk_unprep_request(struct request *req)
2220{
2221 struct request_queue *q = req->q;
2222
2223 req->cmd_flags &= ~REQ_DONTPREP;
2224 if (q->unprep_rq_fn)
2225 q->unprep_rq_fn(q, req);
2226}
2227EXPORT_SYMBOL_GPL(blk_unprep_request);
2228
1da177e4
LT
2229/*
2230 * queue lock must be held
2231 */
2e60e022 2232static void blk_finish_request(struct request *req, int error)
1da177e4 2233{
b8286239
KU
2234 if (blk_rq_tagged(req))
2235 blk_queue_end_tag(req->q, req);
2236
ba396a6c 2237 BUG_ON(blk_queued_rq(req));
1da177e4 2238
33659ebb 2239 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2240 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2241
e78042e5
MA
2242 blk_delete_timer(req);
2243
28018c24
JB
2244 if (req->cmd_flags & REQ_DONTPREP)
2245 blk_unprep_request(req);
2246
2247
bc58ba94 2248 blk_account_io_done(req);
b8286239 2249
1da177e4 2250 if (req->end_io)
8ffdc655 2251 req->end_io(req, error);
b8286239
KU
2252 else {
2253 if (blk_bidi_rq(req))
2254 __blk_put_request(req->next_rq->q, req->next_rq);
2255
1da177e4 2256 __blk_put_request(req->q, req);
b8286239 2257 }
1da177e4
LT
2258}
2259
3b11313a 2260/**
2e60e022
TH
2261 * blk_end_bidi_request - Complete a bidi request
2262 * @rq: the request to complete
2263 * @error: %0 for success, < %0 for error
2264 * @nr_bytes: number of bytes to complete @rq
2265 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2266 *
2267 * Description:
e3a04fe3 2268 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2269 * Drivers that supports bidi can safely call this member for any
2270 * type of request, bidi or uni. In the later case @bidi_bytes is
2271 * just ignored.
336cdb40
KU
2272 *
2273 * Return:
2e60e022
TH
2274 * %false - we are done with this request
2275 * %true - still buffers pending for this request
a0cd1285 2276 **/
b1f74493 2277static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2278 unsigned int nr_bytes, unsigned int bidi_bytes)
2279{
336cdb40 2280 struct request_queue *q = rq->q;
2e60e022 2281 unsigned long flags;
32fab448 2282
2e60e022
TH
2283 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2284 return true;
32fab448 2285
336cdb40 2286 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2287 blk_finish_request(rq, error);
336cdb40
KU
2288 spin_unlock_irqrestore(q->queue_lock, flags);
2289
2e60e022 2290 return false;
32fab448
KU
2291}
2292
336cdb40 2293/**
2e60e022
TH
2294 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2295 * @rq: the request to complete
710027a4 2296 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2297 * @nr_bytes: number of bytes to complete @rq
2298 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2299 *
2300 * Description:
2e60e022
TH
2301 * Identical to blk_end_bidi_request() except that queue lock is
2302 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2303 *
2304 * Return:
2e60e022
TH
2305 * %false - we are done with this request
2306 * %true - still buffers pending for this request
336cdb40 2307 **/
b1f74493
FT
2308static bool __blk_end_bidi_request(struct request *rq, int error,
2309 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2310{
2e60e022
TH
2311 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2312 return true;
336cdb40 2313
2e60e022 2314 blk_finish_request(rq, error);
336cdb40 2315
2e60e022 2316 return false;
336cdb40 2317}
e19a3ab0
KU
2318
2319/**
2320 * blk_end_request - Helper function for drivers to complete the request.
2321 * @rq: the request being processed
710027a4 2322 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2323 * @nr_bytes: number of bytes to complete
2324 *
2325 * Description:
2326 * Ends I/O on a number of bytes attached to @rq.
2327 * If @rq has leftover, sets it up for the next range of segments.
2328 *
2329 * Return:
b1f74493
FT
2330 * %false - we are done with this request
2331 * %true - still buffers pending for this request
e19a3ab0 2332 **/
b1f74493 2333bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2334{
b1f74493 2335 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2336}
56ad1740 2337EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2338
2339/**
b1f74493
FT
2340 * blk_end_request_all - Helper function for drives to finish the request.
2341 * @rq: the request to finish
8ebf9756 2342 * @error: %0 for success, < %0 for error
336cdb40
KU
2343 *
2344 * Description:
b1f74493
FT
2345 * Completely finish @rq.
2346 */
2347void blk_end_request_all(struct request *rq, int error)
336cdb40 2348{
b1f74493
FT
2349 bool pending;
2350 unsigned int bidi_bytes = 0;
336cdb40 2351
b1f74493
FT
2352 if (unlikely(blk_bidi_rq(rq)))
2353 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2354
b1f74493
FT
2355 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2356 BUG_ON(pending);
2357}
56ad1740 2358EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2359
b1f74493
FT
2360/**
2361 * blk_end_request_cur - Helper function to finish the current request chunk.
2362 * @rq: the request to finish the current chunk for
8ebf9756 2363 * @error: %0 for success, < %0 for error
b1f74493
FT
2364 *
2365 * Description:
2366 * Complete the current consecutively mapped chunk from @rq.
2367 *
2368 * Return:
2369 * %false - we are done with this request
2370 * %true - still buffers pending for this request
2371 */
2372bool blk_end_request_cur(struct request *rq, int error)
2373{
2374 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2375}
56ad1740 2376EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2377
80a761fd
TH
2378/**
2379 * blk_end_request_err - Finish a request till the next failure boundary.
2380 * @rq: the request to finish till the next failure boundary for
2381 * @error: must be negative errno
2382 *
2383 * Description:
2384 * Complete @rq till the next failure boundary.
2385 *
2386 * Return:
2387 * %false - we are done with this request
2388 * %true - still buffers pending for this request
2389 */
2390bool blk_end_request_err(struct request *rq, int error)
2391{
2392 WARN_ON(error >= 0);
2393 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2394}
2395EXPORT_SYMBOL_GPL(blk_end_request_err);
2396
e3a04fe3 2397/**
b1f74493
FT
2398 * __blk_end_request - Helper function for drivers to complete the request.
2399 * @rq: the request being processed
2400 * @error: %0 for success, < %0 for error
2401 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2402 *
2403 * Description:
b1f74493 2404 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2405 *
2406 * Return:
b1f74493
FT
2407 * %false - we are done with this request
2408 * %true - still buffers pending for this request
e3a04fe3 2409 **/
b1f74493 2410bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2411{
b1f74493 2412 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2413}
56ad1740 2414EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2415
32fab448 2416/**
b1f74493
FT
2417 * __blk_end_request_all - Helper function for drives to finish the request.
2418 * @rq: the request to finish
8ebf9756 2419 * @error: %0 for success, < %0 for error
32fab448
KU
2420 *
2421 * Description:
b1f74493 2422 * Completely finish @rq. Must be called with queue lock held.
32fab448 2423 */
b1f74493 2424void __blk_end_request_all(struct request *rq, int error)
32fab448 2425{
b1f74493
FT
2426 bool pending;
2427 unsigned int bidi_bytes = 0;
2428
2429 if (unlikely(blk_bidi_rq(rq)))
2430 bidi_bytes = blk_rq_bytes(rq->next_rq);
2431
2432 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2433 BUG_ON(pending);
32fab448 2434}
56ad1740 2435EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2436
e19a3ab0 2437/**
b1f74493
FT
2438 * __blk_end_request_cur - Helper function to finish the current request chunk.
2439 * @rq: the request to finish the current chunk for
8ebf9756 2440 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2441 *
2442 * Description:
b1f74493
FT
2443 * Complete the current consecutively mapped chunk from @rq. Must
2444 * be called with queue lock held.
e19a3ab0
KU
2445 *
2446 * Return:
b1f74493
FT
2447 * %false - we are done with this request
2448 * %true - still buffers pending for this request
2449 */
2450bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2451{
b1f74493 2452 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2453}
56ad1740 2454EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2455
80a761fd
TH
2456/**
2457 * __blk_end_request_err - Finish a request till the next failure boundary.
2458 * @rq: the request to finish till the next failure boundary for
2459 * @error: must be negative errno
2460 *
2461 * Description:
2462 * Complete @rq till the next failure boundary. Must be called
2463 * with queue lock held.
2464 *
2465 * Return:
2466 * %false - we are done with this request
2467 * %true - still buffers pending for this request
2468 */
2469bool __blk_end_request_err(struct request *rq, int error)
2470{
2471 WARN_ON(error >= 0);
2472 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2473}
2474EXPORT_SYMBOL_GPL(__blk_end_request_err);
2475
86db1e29
JA
2476void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2477 struct bio *bio)
1da177e4 2478{
a82afdfc 2479 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2480 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2481
fb2dce86
DW
2482 if (bio_has_data(bio)) {
2483 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2484 rq->buffer = bio_data(bio);
2485 }
a2dec7b3 2486 rq->__data_len = bio->bi_size;
1da177e4 2487 rq->bio = rq->biotail = bio;
1da177e4 2488
66846572
N
2489 if (bio->bi_bdev)
2490 rq->rq_disk = bio->bi_bdev->bd_disk;
2491}
1da177e4 2492
2d4dc890
IL
2493#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2494/**
2495 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2496 * @rq: the request to be flushed
2497 *
2498 * Description:
2499 * Flush all pages in @rq.
2500 */
2501void rq_flush_dcache_pages(struct request *rq)
2502{
2503 struct req_iterator iter;
2504 struct bio_vec *bvec;
2505
2506 rq_for_each_segment(bvec, rq, iter)
2507 flush_dcache_page(bvec->bv_page);
2508}
2509EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2510#endif
2511
ef9e3fac
KU
2512/**
2513 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2514 * @q : the queue of the device being checked
2515 *
2516 * Description:
2517 * Check if underlying low-level drivers of a device are busy.
2518 * If the drivers want to export their busy state, they must set own
2519 * exporting function using blk_queue_lld_busy() first.
2520 *
2521 * Basically, this function is used only by request stacking drivers
2522 * to stop dispatching requests to underlying devices when underlying
2523 * devices are busy. This behavior helps more I/O merging on the queue
2524 * of the request stacking driver and prevents I/O throughput regression
2525 * on burst I/O load.
2526 *
2527 * Return:
2528 * 0 - Not busy (The request stacking driver should dispatch request)
2529 * 1 - Busy (The request stacking driver should stop dispatching request)
2530 */
2531int blk_lld_busy(struct request_queue *q)
2532{
2533 if (q->lld_busy_fn)
2534 return q->lld_busy_fn(q);
2535
2536 return 0;
2537}
2538EXPORT_SYMBOL_GPL(blk_lld_busy);
2539
b0fd271d
KU
2540/**
2541 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2542 * @rq: the clone request to be cleaned up
2543 *
2544 * Description:
2545 * Free all bios in @rq for a cloned request.
2546 */
2547void blk_rq_unprep_clone(struct request *rq)
2548{
2549 struct bio *bio;
2550
2551 while ((bio = rq->bio) != NULL) {
2552 rq->bio = bio->bi_next;
2553
2554 bio_put(bio);
2555 }
2556}
2557EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2558
2559/*
2560 * Copy attributes of the original request to the clone request.
2561 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2562 */
2563static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2564{
2565 dst->cpu = src->cpu;
3a2edd0d 2566 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2567 dst->cmd_type = src->cmd_type;
2568 dst->__sector = blk_rq_pos(src);
2569 dst->__data_len = blk_rq_bytes(src);
2570 dst->nr_phys_segments = src->nr_phys_segments;
2571 dst->ioprio = src->ioprio;
2572 dst->extra_len = src->extra_len;
2573}
2574
2575/**
2576 * blk_rq_prep_clone - Helper function to setup clone request
2577 * @rq: the request to be setup
2578 * @rq_src: original request to be cloned
2579 * @bs: bio_set that bios for clone are allocated from
2580 * @gfp_mask: memory allocation mask for bio
2581 * @bio_ctr: setup function to be called for each clone bio.
2582 * Returns %0 for success, non %0 for failure.
2583 * @data: private data to be passed to @bio_ctr
2584 *
2585 * Description:
2586 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2587 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2588 * are not copied, and copying such parts is the caller's responsibility.
2589 * Also, pages which the original bios are pointing to are not copied
2590 * and the cloned bios just point same pages.
2591 * So cloned bios must be completed before original bios, which means
2592 * the caller must complete @rq before @rq_src.
2593 */
2594int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2595 struct bio_set *bs, gfp_t gfp_mask,
2596 int (*bio_ctr)(struct bio *, struct bio *, void *),
2597 void *data)
2598{
2599 struct bio *bio, *bio_src;
2600
2601 if (!bs)
2602 bs = fs_bio_set;
2603
2604 blk_rq_init(NULL, rq);
2605
2606 __rq_for_each_bio(bio_src, rq_src) {
2607 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2608 if (!bio)
2609 goto free_and_out;
2610
2611 __bio_clone(bio, bio_src);
2612
2613 if (bio_integrity(bio_src) &&
7878cba9 2614 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2615 goto free_and_out;
2616
2617 if (bio_ctr && bio_ctr(bio, bio_src, data))
2618 goto free_and_out;
2619
2620 if (rq->bio) {
2621 rq->biotail->bi_next = bio;
2622 rq->biotail = bio;
2623 } else
2624 rq->bio = rq->biotail = bio;
2625 }
2626
2627 __blk_rq_prep_clone(rq, rq_src);
2628
2629 return 0;
2630
2631free_and_out:
2632 if (bio)
2633 bio_free(bio, bs);
2634 blk_rq_unprep_clone(rq);
2635
2636 return -ENOMEM;
2637}
2638EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2639
18887ad9 2640int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2641{
2642 return queue_work(kblockd_workqueue, work);
2643}
1da177e4
LT
2644EXPORT_SYMBOL(kblockd_schedule_work);
2645
1da177e4
LT
2646int __init blk_dev_init(void)
2647{
9eb55b03
NK
2648 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2649 sizeof(((struct request *)0)->cmd_flags));
2650
89b90be2
TH
2651 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2652 kblockd_workqueue = alloc_workqueue("kblockd",
2653 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2654 if (!kblockd_workqueue)
2655 panic("Failed to create kblockd\n");
2656
2657 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2658 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2659
8324aa91 2660 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2661 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2662
d38ecf93 2663 return 0;
1da177e4 2664}