]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
blk-mq-tag: remove redundant check for 'data->hctx' being non-NULL
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
cf43e6be 33#include "blk-stat.h"
87760e5e 34#include "blk-wbt.h"
bd166ef1 35#include "blk-mq-sched.h"
320ae51f
JA
36
37static DEFINE_MUTEX(all_q_mutex);
38static LIST_HEAD(all_q_list);
39
320ae51f
JA
40/*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44{
bd166ef1
JA
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
1429d7c9
JA
48}
49
320ae51f
JA
50/*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55{
88459642
OS
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
58}
59
60static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62{
88459642 63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
64}
65
b4c6a028 66void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 67{
4ecd4fef 68 int freeze_depth;
cddd5d17 69
4ecd4fef
CH
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
3ef28e83 72 percpu_ref_kill(&q->q_usage_counter);
b94ec296 73 blk_mq_run_hw_queues(q, false);
cddd5d17 74 }
f3af020b 75}
b4c6a028 76EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
77
78static void blk_mq_freeze_queue_wait(struct request_queue *q)
79{
3ef28e83 80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
81}
82
f3af020b
TH
83/*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
3ef28e83 87void blk_freeze_queue(struct request_queue *q)
f3af020b 88{
3ef28e83
DW
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
f3af020b
TH
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98}
3ef28e83
DW
99
100void blk_mq_freeze_queue(struct request_queue *q)
101{
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107}
c761d96b 108EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 109
b4c6a028 110void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 111{
4ecd4fef 112 int freeze_depth;
320ae51f 113
4ecd4fef
CH
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
3ef28e83 117 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 118 wake_up_all(&q->mq_freeze_wq);
add703fd 119 }
320ae51f 120}
b4c6a028 121EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 122
6a83e74d
BVA
123/**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131void blk_mq_quiesce_queue(struct request_queue *q)
132{
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147}
148EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
aed3ea94
JA
150void blk_mq_wake_waiters(struct request_queue *q)
151{
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
165}
166
320ae51f
JA
167bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168{
169 return blk_mq_has_free_tags(hctx->tags);
170}
171EXPORT_SYMBOL(blk_mq_can_queue);
172
2c3ad667
JA
173void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
320ae51f 175{
af76e555
CH
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
320ae51f 179 rq->mq_ctx = ctx;
ef295ecf 180 rq->cmd_flags = op;
e8064021
CH
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
af76e555
CH
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
187 rq->rq_disk = NULL;
188 rq->part = NULL;
3ee32372 189 rq->start_time = jiffies;
af76e555
CH
190#ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
0fec08b4 192 set_start_time_ns(rq);
af76e555
CH
193 rq->io_start_time_ns = 0;
194#endif
195 rq->nr_phys_segments = 0;
196#if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198#endif
af76e555
CH
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
af76e555 202
6f4a1626
TB
203 rq->cmd = rq->__cmd;
204
af76e555
CH
205 rq->extra_len = 0;
206 rq->sense_len = 0;
207 rq->resid_len = 0;
208 rq->sense = NULL;
209
af76e555 210 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
211 rq->timeout = 0;
212
af76e555
CH
213 rq->end_io = NULL;
214 rq->end_io_data = NULL;
215 rq->next_rq = NULL;
216
ef295ecf 217 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 218}
2c3ad667 219EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 220
2c3ad667
JA
221struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222 unsigned int op)
5dee8577
CH
223{
224 struct request *rq;
225 unsigned int tag;
226
cb96a42c 227 tag = blk_mq_get_tag(data);
5dee8577 228 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230
231 rq = tags->static_rqs[tag];
5dee8577 232
cb96a42c 233 if (blk_mq_tag_busy(data->hctx)) {
e8064021 234 rq->rq_flags = RQF_MQ_INFLIGHT;
cb96a42c 235 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
236 }
237
bd166ef1
JA
238 if (data->flags & BLK_MQ_REQ_INTERNAL) {
239 rq->tag = -1;
240 rq->internal_tag = tag;
241 } else {
242 rq->tag = tag;
243 rq->internal_tag = -1;
244 }
245
ef295ecf 246 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
247 return rq;
248 }
249
250 return NULL;
251}
2c3ad667 252EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 253
6f3b0e8b
CH
254struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
255 unsigned int flags)
320ae51f 256{
cb96a42c 257 struct blk_mq_alloc_data alloc_data;
bd166ef1 258 struct request *rq;
a492f075 259 int ret;
320ae51f 260
6f3b0e8b 261 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
262 if (ret)
263 return ERR_PTR(ret);
320ae51f 264
bd166ef1 265 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 266
bd166ef1
JA
267 blk_mq_put_ctx(alloc_data.ctx);
268 blk_queue_exit(q);
269
270 if (!rq)
a492f075 271 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
272
273 rq->__data_len = 0;
274 rq->__sector = (sector_t) -1;
275 rq->bio = rq->biotail = NULL;
320ae51f
JA
276 return rq;
277}
4bb659b1 278EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 279
1f5bd336
ML
280struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
281 unsigned int flags, unsigned int hctx_idx)
282{
283 struct blk_mq_hw_ctx *hctx;
284 struct blk_mq_ctx *ctx;
285 struct request *rq;
286 struct blk_mq_alloc_data alloc_data;
287 int ret;
288
289 /*
290 * If the tag allocator sleeps we could get an allocation for a
291 * different hardware context. No need to complicate the low level
292 * allocator for this for the rare use case of a command tied to
293 * a specific queue.
294 */
295 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
296 return ERR_PTR(-EINVAL);
297
298 if (hctx_idx >= q->nr_hw_queues)
299 return ERR_PTR(-EIO);
300
301 ret = blk_queue_enter(q, true);
302 if (ret)
303 return ERR_PTR(ret);
304
c8712c6a
CH
305 /*
306 * Check if the hardware context is actually mapped to anything.
307 * If not tell the caller that it should skip this queue.
308 */
1f5bd336 309 hctx = q->queue_hw_ctx[hctx_idx];
c8712c6a
CH
310 if (!blk_mq_hw_queue_mapped(hctx)) {
311 ret = -EXDEV;
312 goto out_queue_exit;
313 }
1f5bd336
ML
314 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
315
316 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 317 rq = __blk_mq_alloc_request(&alloc_data, rw);
1f5bd336 318 if (!rq) {
c8712c6a
CH
319 ret = -EWOULDBLOCK;
320 goto out_queue_exit;
1f5bd336
ML
321 }
322
323 return rq;
c8712c6a
CH
324
325out_queue_exit:
326 blk_queue_exit(q);
327 return ERR_PTR(ret);
1f5bd336
ML
328}
329EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
330
bd166ef1
JA
331void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
332 struct request *rq)
320ae51f 333{
bd166ef1 334 const int sched_tag = rq->internal_tag;
320ae51f
JA
335 struct request_queue *q = rq->q;
336
e8064021 337 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 338 atomic_dec(&hctx->nr_active);
87760e5e
JA
339
340 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 341 rq->rq_flags = 0;
0d2602ca 342
af76e555 343 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 344 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
345 if (rq->tag != -1)
346 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
347 if (sched_tag != -1)
348 blk_mq_sched_completed_request(hctx, rq);
3ef28e83 349 blk_queue_exit(q);
320ae51f
JA
350}
351
bd166ef1 352static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 353 struct request *rq)
320ae51f
JA
354{
355 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
356
357 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
358 __blk_mq_finish_request(hctx, ctx, rq);
359}
360
361void blk_mq_finish_request(struct request *rq)
362{
363 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 364}
7c7f2f2b
JA
365
366void blk_mq_free_request(struct request *rq)
367{
bd166ef1 368 blk_mq_sched_put_request(rq);
320ae51f 369}
1a3b595a 370EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 371
c8a446ad 372inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 373{
0d11e6ac
ML
374 blk_account_io_done(rq);
375
91b63639 376 if (rq->end_io) {
87760e5e 377 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 378 rq->end_io(rq, error);
91b63639
CH
379 } else {
380 if (unlikely(blk_bidi_rq(rq)))
381 blk_mq_free_request(rq->next_rq);
320ae51f 382 blk_mq_free_request(rq);
91b63639 383 }
320ae51f 384}
c8a446ad 385EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 386
c8a446ad 387void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
388{
389 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
390 BUG();
c8a446ad 391 __blk_mq_end_request(rq, error);
63151a44 392}
c8a446ad 393EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 394
30a91cb4 395static void __blk_mq_complete_request_remote(void *data)
320ae51f 396{
3d6efbf6 397 struct request *rq = data;
320ae51f 398
30a91cb4 399 rq->q->softirq_done_fn(rq);
320ae51f 400}
320ae51f 401
ed851860 402static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
403{
404 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 405 bool shared = false;
320ae51f
JA
406 int cpu;
407
38535201 408 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
409 rq->q->softirq_done_fn(rq);
410 return;
411 }
320ae51f
JA
412
413 cpu = get_cpu();
38535201
CH
414 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
415 shared = cpus_share_cache(cpu, ctx->cpu);
416
417 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 418 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
419 rq->csd.info = rq;
420 rq->csd.flags = 0;
c46fff2a 421 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 422 } else {
30a91cb4 423 rq->q->softirq_done_fn(rq);
3d6efbf6 424 }
320ae51f
JA
425 put_cpu();
426}
30a91cb4 427
cf43e6be
JA
428static void blk_mq_stat_add(struct request *rq)
429{
430 if (rq->rq_flags & RQF_STATS) {
431 /*
432 * We could rq->mq_ctx here, but there's less of a risk
433 * of races if we have the completion event add the stats
434 * to the local software queue.
435 */
436 struct blk_mq_ctx *ctx;
437
438 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
439 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
440 }
441}
442
1fa8cc52 443static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
444{
445 struct request_queue *q = rq->q;
446
cf43e6be
JA
447 blk_mq_stat_add(rq);
448
ed851860 449 if (!q->softirq_done_fn)
c8a446ad 450 blk_mq_end_request(rq, rq->errors);
ed851860
JA
451 else
452 blk_mq_ipi_complete_request(rq);
453}
454
30a91cb4
CH
455/**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
f4829a9b 463void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 464{
95f09684
JA
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 468 return;
f4829a9b
CH
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
ed851860 471 __blk_mq_complete_request(rq);
f4829a9b 472 }
30a91cb4
CH
473}
474EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 475
973c0191
KB
476int blk_mq_request_started(struct request *rq)
477{
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479}
480EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
e2490073 482void blk_mq_start_request(struct request *rq)
320ae51f
JA
483{
484 struct request_queue *q = rq->q;
485
bd166ef1
JA
486 blk_mq_sched_started_request(rq);
487
320ae51f
JA
488 trace_block_rq_issue(q, rq);
489
742ee69b 490 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
491 if (unlikely(blk_bidi_rq(rq)))
492 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 493
cf43e6be
JA
494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 blk_stat_set_issue_time(&rq->issue_stat);
496 rq->rq_flags |= RQF_STATS;
87760e5e 497 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
498 }
499
2b8393b4 500 blk_add_timer(rq);
87ee7b11 501
538b7534
JA
502 /*
503 * Ensure that ->deadline is visible before set the started
504 * flag and clear the completed flag.
505 */
506 smp_mb__before_atomic();
507
87ee7b11
JA
508 /*
509 * Mark us as started and clear complete. Complete might have been
510 * set if requeue raced with timeout, which then marked it as
511 * complete. So be sure to clear complete again when we start
512 * the request, otherwise we'll ignore the completion event.
513 */
4b570521
JA
514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
518
519 if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 /*
521 * Make sure space for the drain appears. We know we can do
522 * this because max_hw_segments has been adjusted to be one
523 * fewer than the device can handle.
524 */
525 rq->nr_phys_segments++;
526 }
320ae51f 527}
e2490073 528EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 529
ed0791b2 530static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
531{
532 struct request_queue *q = rq->q;
533
534 trace_block_rq_requeue(q, rq);
87760e5e 535 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 536 blk_mq_sched_requeue_request(rq);
49f5baa5 537
e2490073
CH
538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 if (q->dma_drain_size && blk_rq_bytes(rq))
540 rq->nr_phys_segments--;
541 }
320ae51f
JA
542}
543
2b053aca 544void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 545{
ed0791b2 546 __blk_mq_requeue_request(rq);
ed0791b2 547
ed0791b2 548 BUG_ON(blk_queued_rq(rq));
2b053aca 549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
550}
551EXPORT_SYMBOL(blk_mq_requeue_request);
552
6fca6a61
CH
553static void blk_mq_requeue_work(struct work_struct *work)
554{
555 struct request_queue *q =
2849450a 556 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
557 LIST_HEAD(rq_list);
558 struct request *rq, *next;
559 unsigned long flags;
560
561 spin_lock_irqsave(&q->requeue_lock, flags);
562 list_splice_init(&q->requeue_list, &rq_list);
563 spin_unlock_irqrestore(&q->requeue_lock, flags);
564
565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 566 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
567 continue;
568
e8064021 569 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 570 list_del_init(&rq->queuelist);
bd166ef1 571 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
572 }
573
574 while (!list_empty(&rq_list)) {
575 rq = list_entry(rq_list.next, struct request, queuelist);
576 list_del_init(&rq->queuelist);
bd166ef1 577 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
578 }
579
52d7f1b5 580 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
581}
582
2b053aca
BVA
583void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 bool kick_requeue_list)
6fca6a61
CH
585{
586 struct request_queue *q = rq->q;
587 unsigned long flags;
588
589 /*
590 * We abuse this flag that is otherwise used by the I/O scheduler to
591 * request head insertation from the workqueue.
592 */
e8064021 593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
594
595 spin_lock_irqsave(&q->requeue_lock, flags);
596 if (at_head) {
e8064021 597 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
598 list_add(&rq->queuelist, &q->requeue_list);
599 } else {
600 list_add_tail(&rq->queuelist, &q->requeue_list);
601 }
602 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
603
604 if (kick_requeue_list)
605 blk_mq_kick_requeue_list(q);
6fca6a61
CH
606}
607EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608
609void blk_mq_kick_requeue_list(struct request_queue *q)
610{
2849450a 611 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
612}
613EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614
2849450a
MS
615void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 unsigned long msecs)
617{
618 kblockd_schedule_delayed_work(&q->requeue_work,
619 msecs_to_jiffies(msecs));
620}
621EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622
1885b24d
JA
623void blk_mq_abort_requeue_list(struct request_queue *q)
624{
625 unsigned long flags;
626 LIST_HEAD(rq_list);
627
628 spin_lock_irqsave(&q->requeue_lock, flags);
629 list_splice_init(&q->requeue_list, &rq_list);
630 spin_unlock_irqrestore(&q->requeue_lock, flags);
631
632 while (!list_empty(&rq_list)) {
633 struct request *rq;
634
635 rq = list_first_entry(&rq_list, struct request, queuelist);
636 list_del_init(&rq->queuelist);
637 rq->errors = -EIO;
638 blk_mq_end_request(rq, rq->errors);
639 }
640}
641EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642
0e62f51f
JA
643struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644{
88c7b2b7
JA
645 if (tag < tags->nr_tags) {
646 prefetch(tags->rqs[tag]);
4ee86bab 647 return tags->rqs[tag];
88c7b2b7 648 }
4ee86bab
HR
649
650 return NULL;
24d2f903
CH
651}
652EXPORT_SYMBOL(blk_mq_tag_to_rq);
653
320ae51f 654struct blk_mq_timeout_data {
46f92d42
CH
655 unsigned long next;
656 unsigned int next_set;
320ae51f
JA
657};
658
90415837 659void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 660{
f8a5b122 661 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
663
664 /*
665 * We know that complete is set at this point. If STARTED isn't set
666 * anymore, then the request isn't active and the "timeout" should
667 * just be ignored. This can happen due to the bitflag ordering.
668 * Timeout first checks if STARTED is set, and if it is, assumes
669 * the request is active. But if we race with completion, then
670 * we both flags will get cleared. So check here again, and ignore
671 * a timeout event with a request that isn't active.
672 */
46f92d42
CH
673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 return;
87ee7b11 675
46f92d42 676 if (ops->timeout)
0152fb6b 677 ret = ops->timeout(req, reserved);
46f92d42
CH
678
679 switch (ret) {
680 case BLK_EH_HANDLED:
681 __blk_mq_complete_request(req);
682 break;
683 case BLK_EH_RESET_TIMER:
684 blk_add_timer(req);
685 blk_clear_rq_complete(req);
686 break;
687 case BLK_EH_NOT_HANDLED:
688 break;
689 default:
690 printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 break;
692 }
87ee7b11 693}
5b3f25fc 694
81481eb4
CH
695static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 struct request *rq, void *priv, bool reserved)
697{
698 struct blk_mq_timeout_data *data = priv;
87ee7b11 699
eb130dbf
KB
700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 /*
702 * If a request wasn't started before the queue was
703 * marked dying, kill it here or it'll go unnoticed.
704 */
a59e0f57
KB
705 if (unlikely(blk_queue_dying(rq->q))) {
706 rq->errors = -EIO;
707 blk_mq_end_request(rq, rq->errors);
708 }
46f92d42 709 return;
eb130dbf 710 }
87ee7b11 711
46f92d42
CH
712 if (time_after_eq(jiffies, rq->deadline)) {
713 if (!blk_mark_rq_complete(rq))
0152fb6b 714 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
715 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 data->next = rq->deadline;
717 data->next_set = 1;
718 }
87ee7b11
JA
719}
720
287922eb 721static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 722{
287922eb
CH
723 struct request_queue *q =
724 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
725 struct blk_mq_timeout_data data = {
726 .next = 0,
727 .next_set = 0,
728 };
81481eb4 729 int i;
320ae51f 730
71f79fb3
GKB
731 /* A deadlock might occur if a request is stuck requiring a
732 * timeout at the same time a queue freeze is waiting
733 * completion, since the timeout code would not be able to
734 * acquire the queue reference here.
735 *
736 * That's why we don't use blk_queue_enter here; instead, we use
737 * percpu_ref_tryget directly, because we need to be able to
738 * obtain a reference even in the short window between the queue
739 * starting to freeze, by dropping the first reference in
740 * blk_mq_freeze_queue_start, and the moment the last request is
741 * consumed, marked by the instant q_usage_counter reaches
742 * zero.
743 */
744 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
745 return;
746
0bf6cd5b 747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 748
81481eb4
CH
749 if (data.next_set) {
750 data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 mod_timer(&q->timeout, data.next);
0d2602ca 752 } else {
0bf6cd5b
CH
753 struct blk_mq_hw_ctx *hctx;
754
f054b56c
ML
755 queue_for_each_hw_ctx(q, hctx, i) {
756 /* the hctx may be unmapped, so check it here */
757 if (blk_mq_hw_queue_mapped(hctx))
758 blk_mq_tag_idle(hctx);
759 }
0d2602ca 760 }
287922eb 761 blk_queue_exit(q);
320ae51f
JA
762}
763
764/*
765 * Reverse check our software queue for entries that we could potentially
766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767 * too much time checking for merges.
768 */
769static bool blk_mq_attempt_merge(struct request_queue *q,
770 struct blk_mq_ctx *ctx, struct bio *bio)
771{
772 struct request *rq;
773 int checked = 8;
774
775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776 int el_ret;
777
778 if (!checked--)
779 break;
780
781 if (!blk_rq_merge_ok(rq, bio))
782 continue;
783
784 el_ret = blk_try_merge(rq, bio);
bd166ef1
JA
785 if (el_ret == ELEVATOR_NO_MERGE)
786 continue;
787
788 if (!blk_mq_sched_allow_merge(q, rq, bio))
789 break;
790
320ae51f
JA
791 if (el_ret == ELEVATOR_BACK_MERGE) {
792 if (bio_attempt_back_merge(q, rq, bio)) {
793 ctx->rq_merged++;
794 return true;
795 }
796 break;
797 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
798 if (bio_attempt_front_merge(q, rq, bio)) {
799 ctx->rq_merged++;
800 return true;
801 }
802 break;
803 }
804 }
805
806 return false;
807}
808
88459642
OS
809struct flush_busy_ctx_data {
810 struct blk_mq_hw_ctx *hctx;
811 struct list_head *list;
812};
813
814static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
815{
816 struct flush_busy_ctx_data *flush_data = data;
817 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
818 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
819
820 sbitmap_clear_bit(sb, bitnr);
821 spin_lock(&ctx->lock);
822 list_splice_tail_init(&ctx->rq_list, flush_data->list);
823 spin_unlock(&ctx->lock);
824 return true;
825}
826
1429d7c9
JA
827/*
828 * Process software queues that have been marked busy, splicing them
829 * to the for-dispatch
830 */
2c3ad667 831void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 832{
88459642
OS
833 struct flush_busy_ctx_data data = {
834 .hctx = hctx,
835 .list = list,
836 };
1429d7c9 837
88459642 838 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 839}
2c3ad667 840EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 841
703fd1c0
JA
842static inline unsigned int queued_to_index(unsigned int queued)
843{
844 if (!queued)
845 return 0;
1429d7c9 846
703fd1c0 847 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
848}
849
bd166ef1
JA
850static bool blk_mq_get_driver_tag(struct request *rq,
851 struct blk_mq_hw_ctx **hctx, bool wait)
852{
853 struct blk_mq_alloc_data data = {
854 .q = rq->q,
855 .ctx = rq->mq_ctx,
856 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
857 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
858 };
859
860 if (blk_mq_hctx_stopped(data.hctx))
861 return false;
862
863 if (rq->tag != -1) {
864done:
865 if (hctx)
866 *hctx = data.hctx;
867 return true;
868 }
869
870 rq->tag = blk_mq_get_tag(&data);
871 if (rq->tag >= 0) {
872 data.hctx->tags->rqs[rq->tag] = rq;
873 goto done;
874 }
875
876 return false;
877}
878
879/*
880 * If we fail getting a driver tag because all the driver tags are already
881 * assigned and on the dispatch list, BUT the first entry does not have a
882 * tag, then we could deadlock. For that case, move entries with assigned
883 * driver tags to the front, leaving the set of tagged requests in the
884 * same order, and the untagged set in the same order.
885 */
886static bool reorder_tags_to_front(struct list_head *list)
887{
888 struct request *rq, *tmp, *first = NULL;
889
890 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
891 if (rq == first)
892 break;
893 if (rq->tag != -1) {
894 list_move(&rq->queuelist, list);
895 if (!first)
896 first = rq;
897 }
898 }
899
900 return first != NULL;
901}
902
f04c3df3 903bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
904{
905 struct request_queue *q = hctx->queue;
320ae51f 906 struct request *rq;
74c45052
JA
907 LIST_HEAD(driver_list);
908 struct list_head *dptr;
f04c3df3 909 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 910
74c45052
JA
911 /*
912 * Start off with dptr being NULL, so we start the first request
913 * immediately, even if we have more pending.
914 */
915 dptr = NULL;
916
320ae51f
JA
917 /*
918 * Now process all the entries, sending them to the driver.
919 */
1429d7c9 920 queued = 0;
f04c3df3 921 while (!list_empty(list)) {
74c45052 922 struct blk_mq_queue_data bd;
320ae51f 923
f04c3df3 924 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
925 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
926 if (!queued && reorder_tags_to_front(list))
927 continue;
928 blk_mq_sched_mark_restart(hctx);
929 break;
930 }
320ae51f 931 list_del_init(&rq->queuelist);
320ae51f 932
74c45052
JA
933 bd.rq = rq;
934 bd.list = dptr;
f04c3df3 935 bd.last = list_empty(list);
74c45052
JA
936
937 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
938 switch (ret) {
939 case BLK_MQ_RQ_QUEUE_OK:
940 queued++;
52b9c330 941 break;
320ae51f 942 case BLK_MQ_RQ_QUEUE_BUSY:
f04c3df3 943 list_add(&rq->queuelist, list);
ed0791b2 944 __blk_mq_requeue_request(rq);
320ae51f
JA
945 break;
946 default:
947 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 948 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 949 rq->errors = -EIO;
c8a446ad 950 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
951 break;
952 }
953
954 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
955 break;
74c45052
JA
956
957 /*
958 * We've done the first request. If we have more than 1
959 * left in the list, set dptr to defer issue.
960 */
f04c3df3 961 if (!dptr && list->next != list->prev)
74c45052 962 dptr = &driver_list;
320ae51f
JA
963 }
964
703fd1c0 965 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
966
967 /*
968 * Any items that need requeuing? Stuff them into hctx->dispatch,
969 * that is where we will continue on next queue run.
970 */
f04c3df3 971 if (!list_empty(list)) {
320ae51f 972 spin_lock(&hctx->lock);
f04c3df3 973 list_splice(list, &hctx->dispatch);
320ae51f 974 spin_unlock(&hctx->lock);
f04c3df3 975
9ba52e58
SL
976 /*
977 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
978 * it's possible the queue is stopped and restarted again
979 * before this. Queue restart will dispatch requests. And since
980 * requests in rq_list aren't added into hctx->dispatch yet,
981 * the requests in rq_list might get lost.
982 *
983 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1
JA
984 *
985 * If RESTART is set, then let completion restart the queue
986 * instead of potentially looping here.
987 */
988 if (!blk_mq_sched_needs_restart(hctx))
989 blk_mq_run_hw_queue(hctx, true);
320ae51f 990 }
f04c3df3
JA
991
992 return ret != BLK_MQ_RQ_QUEUE_BUSY;
993}
994
6a83e74d
BVA
995static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
996{
997 int srcu_idx;
998
999 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1000 cpu_online(hctx->next_cpu));
1001
1002 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1003 rcu_read_lock();
bd166ef1 1004 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1005 rcu_read_unlock();
1006 } else {
1007 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1008 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1009 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1010 }
1011}
1012
506e931f
JA
1013/*
1014 * It'd be great if the workqueue API had a way to pass
1015 * in a mask and had some smarts for more clever placement.
1016 * For now we just round-robin here, switching for every
1017 * BLK_MQ_CPU_WORK_BATCH queued items.
1018 */
1019static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1020{
b657d7e6
CH
1021 if (hctx->queue->nr_hw_queues == 1)
1022 return WORK_CPU_UNBOUND;
506e931f
JA
1023
1024 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1025 int next_cpu;
506e931f
JA
1026
1027 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1028 if (next_cpu >= nr_cpu_ids)
1029 next_cpu = cpumask_first(hctx->cpumask);
1030
1031 hctx->next_cpu = next_cpu;
1032 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1033 }
1034
b657d7e6 1035 return hctx->next_cpu;
506e931f
JA
1036}
1037
320ae51f
JA
1038void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1039{
5d1b25c1
BVA
1040 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1041 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1042 return;
1043
1b792f2f 1044 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1045 int cpu = get_cpu();
1046 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1047 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1048 put_cpu();
398205b8
PB
1049 return;
1050 }
e4043dcf 1051
2a90d4aa 1052 put_cpu();
e4043dcf 1053 }
398205b8 1054
27489a3c 1055 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1056}
1057
b94ec296 1058void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1059{
1060 struct blk_mq_hw_ctx *hctx;
1061 int i;
1062
1063 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1064 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1065 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1066 continue;
1067
b94ec296 1068 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1069 }
1070}
b94ec296 1071EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1072
fd001443
BVA
1073/**
1074 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1075 * @q: request queue.
1076 *
1077 * The caller is responsible for serializing this function against
1078 * blk_mq_{start,stop}_hw_queue().
1079 */
1080bool blk_mq_queue_stopped(struct request_queue *q)
1081{
1082 struct blk_mq_hw_ctx *hctx;
1083 int i;
1084
1085 queue_for_each_hw_ctx(q, hctx, i)
1086 if (blk_mq_hctx_stopped(hctx))
1087 return true;
1088
1089 return false;
1090}
1091EXPORT_SYMBOL(blk_mq_queue_stopped);
1092
320ae51f
JA
1093void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1094{
27489a3c 1095 cancel_work(&hctx->run_work);
70f4db63 1096 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1097 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1098}
1099EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1100
280d45f6
CH
1101void blk_mq_stop_hw_queues(struct request_queue *q)
1102{
1103 struct blk_mq_hw_ctx *hctx;
1104 int i;
1105
1106 queue_for_each_hw_ctx(q, hctx, i)
1107 blk_mq_stop_hw_queue(hctx);
1108}
1109EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1110
320ae51f
JA
1111void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1112{
1113 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1114
0ffbce80 1115 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1116}
1117EXPORT_SYMBOL(blk_mq_start_hw_queue);
1118
2f268556
CH
1119void blk_mq_start_hw_queues(struct request_queue *q)
1120{
1121 struct blk_mq_hw_ctx *hctx;
1122 int i;
1123
1124 queue_for_each_hw_ctx(q, hctx, i)
1125 blk_mq_start_hw_queue(hctx);
1126}
1127EXPORT_SYMBOL(blk_mq_start_hw_queues);
1128
ae911c5e
JA
1129void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1130{
1131 if (!blk_mq_hctx_stopped(hctx))
1132 return;
1133
1134 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1135 blk_mq_run_hw_queue(hctx, async);
1136}
1137EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1138
1b4a3258 1139void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1140{
1141 struct blk_mq_hw_ctx *hctx;
1142 int i;
1143
ae911c5e
JA
1144 queue_for_each_hw_ctx(q, hctx, i)
1145 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1146}
1147EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1148
70f4db63 1149static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1150{
1151 struct blk_mq_hw_ctx *hctx;
1152
27489a3c 1153 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1154
320ae51f
JA
1155 __blk_mq_run_hw_queue(hctx);
1156}
1157
70f4db63
CH
1158static void blk_mq_delay_work_fn(struct work_struct *work)
1159{
1160 struct blk_mq_hw_ctx *hctx;
1161
1162 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1163
1164 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1165 __blk_mq_run_hw_queue(hctx);
1166}
1167
1168void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1169{
19c66e59
ML
1170 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1171 return;
70f4db63 1172
b657d7e6
CH
1173 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1174 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1175}
1176EXPORT_SYMBOL(blk_mq_delay_queue);
1177
cfd0c552 1178static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1179 struct request *rq,
1180 bool at_head)
320ae51f 1181{
e57690fe
JA
1182 struct blk_mq_ctx *ctx = rq->mq_ctx;
1183
01b983c9
JA
1184 trace_block_rq_insert(hctx->queue, rq);
1185
72a0a36e
CH
1186 if (at_head)
1187 list_add(&rq->queuelist, &ctx->rq_list);
1188 else
1189 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1190}
4bb659b1 1191
2c3ad667
JA
1192void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1193 bool at_head)
cfd0c552
ML
1194{
1195 struct blk_mq_ctx *ctx = rq->mq_ctx;
1196
e57690fe 1197 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1198 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1199}
1200
bd166ef1
JA
1201void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1202 struct list_head *list)
320ae51f
JA
1203
1204{
320ae51f
JA
1205 /*
1206 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1207 * offline now
1208 */
1209 spin_lock(&ctx->lock);
1210 while (!list_empty(list)) {
1211 struct request *rq;
1212
1213 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1214 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1215 list_del_init(&rq->queuelist);
e57690fe 1216 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1217 }
cfd0c552 1218 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1219 spin_unlock(&ctx->lock);
320ae51f
JA
1220}
1221
1222static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1223{
1224 struct request *rqa = container_of(a, struct request, queuelist);
1225 struct request *rqb = container_of(b, struct request, queuelist);
1226
1227 return !(rqa->mq_ctx < rqb->mq_ctx ||
1228 (rqa->mq_ctx == rqb->mq_ctx &&
1229 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1230}
1231
1232void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1233{
1234 struct blk_mq_ctx *this_ctx;
1235 struct request_queue *this_q;
1236 struct request *rq;
1237 LIST_HEAD(list);
1238 LIST_HEAD(ctx_list);
1239 unsigned int depth;
1240
1241 list_splice_init(&plug->mq_list, &list);
1242
1243 list_sort(NULL, &list, plug_ctx_cmp);
1244
1245 this_q = NULL;
1246 this_ctx = NULL;
1247 depth = 0;
1248
1249 while (!list_empty(&list)) {
1250 rq = list_entry_rq(list.next);
1251 list_del_init(&rq->queuelist);
1252 BUG_ON(!rq->q);
1253 if (rq->mq_ctx != this_ctx) {
1254 if (this_ctx) {
bd166ef1
JA
1255 trace_block_unplug(this_q, depth, from_schedule);
1256 blk_mq_sched_insert_requests(this_q, this_ctx,
1257 &ctx_list,
1258 from_schedule);
320ae51f
JA
1259 }
1260
1261 this_ctx = rq->mq_ctx;
1262 this_q = rq->q;
1263 depth = 0;
1264 }
1265
1266 depth++;
1267 list_add_tail(&rq->queuelist, &ctx_list);
1268 }
1269
1270 /*
1271 * If 'this_ctx' is set, we know we have entries to complete
1272 * on 'ctx_list'. Do those.
1273 */
1274 if (this_ctx) {
bd166ef1
JA
1275 trace_block_unplug(this_q, depth, from_schedule);
1276 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1277 from_schedule);
320ae51f
JA
1278 }
1279}
1280
1281static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1282{
1283 init_request_from_bio(rq, bio);
4b570521 1284
6e85eaf3 1285 blk_account_io_start(rq, true);
320ae51f
JA
1286}
1287
274a5843
JA
1288static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1289{
1290 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1291 !blk_queue_nomerges(hctx->queue);
1292}
1293
07068d5b
JA
1294static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1295 struct blk_mq_ctx *ctx,
1296 struct request *rq, struct bio *bio)
320ae51f 1297{
e18378a6 1298 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1299 blk_mq_bio_to_request(rq, bio);
1300 spin_lock(&ctx->lock);
1301insert_rq:
1302 __blk_mq_insert_request(hctx, rq, false);
1303 spin_unlock(&ctx->lock);
1304 return false;
1305 } else {
274a5843
JA
1306 struct request_queue *q = hctx->queue;
1307
07068d5b
JA
1308 spin_lock(&ctx->lock);
1309 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1310 blk_mq_bio_to_request(rq, bio);
1311 goto insert_rq;
1312 }
320ae51f 1313
07068d5b 1314 spin_unlock(&ctx->lock);
bd166ef1 1315 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1316 return true;
14ec77f3 1317 }
07068d5b 1318}
14ec77f3 1319
fd2d3326
JA
1320static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1321{
bd166ef1
JA
1322 if (rq->tag != -1)
1323 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1324
1325 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1326}
1327
066a4a73 1328static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
f984df1f 1329{
f984df1f 1330 struct request_queue *q = rq->q;
f984df1f
SL
1331 struct blk_mq_queue_data bd = {
1332 .rq = rq,
1333 .list = NULL,
1334 .last = 1
1335 };
bd166ef1
JA
1336 struct blk_mq_hw_ctx *hctx;
1337 blk_qc_t new_cookie;
1338 int ret;
f984df1f 1339
bd166ef1 1340 if (q->elevator)
2253efc8
BVA
1341 goto insert;
1342
bd166ef1
JA
1343 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1344 goto insert;
1345
1346 new_cookie = request_to_qc_t(hctx, rq);
1347
f984df1f
SL
1348 /*
1349 * For OK queue, we are done. For error, kill it. Any other
1350 * error (busy), just add it to our list as we previously
1351 * would have done
1352 */
1353 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1354 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1355 *cookie = new_cookie;
2253efc8 1356 return;
7b371636 1357 }
f984df1f 1358
7b371636
JA
1359 __blk_mq_requeue_request(rq);
1360
1361 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1362 *cookie = BLK_QC_T_NONE;
1363 rq->errors = -EIO;
1364 blk_mq_end_request(rq, rq->errors);
2253efc8 1365 return;
f984df1f 1366 }
7b371636 1367
2253efc8 1368insert:
bd166ef1 1369 blk_mq_sched_insert_request(rq, false, true, true);
f984df1f
SL
1370}
1371
07068d5b
JA
1372/*
1373 * Multiple hardware queue variant. This will not use per-process plugs,
1374 * but will attempt to bypass the hctx queueing if we can go straight to
1375 * hardware for SYNC IO.
1376 */
dece1635 1377static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1378{
ef295ecf 1379 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1380 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
2552e3f8 1381 struct blk_mq_alloc_data data;
07068d5b 1382 struct request *rq;
6a83e74d 1383 unsigned int request_count = 0, srcu_idx;
f984df1f 1384 struct blk_plug *plug;
5b3f341f 1385 struct request *same_queue_rq = NULL;
7b371636 1386 blk_qc_t cookie;
87760e5e 1387 unsigned int wb_acct;
07068d5b
JA
1388
1389 blk_queue_bounce(q, &bio);
1390
1391 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1392 bio_io_error(bio);
dece1635 1393 return BLK_QC_T_NONE;
07068d5b
JA
1394 }
1395
54efd50b
KO
1396 blk_queue_split(q, &bio, q->bio_split);
1397
87c279e6
OS
1398 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1399 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1400 return BLK_QC_T_NONE;
f984df1f 1401
bd166ef1
JA
1402 if (blk_mq_sched_bio_merge(q, bio))
1403 return BLK_QC_T_NONE;
1404
87760e5e
JA
1405 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1406
bd166ef1
JA
1407 trace_block_getrq(q, bio, bio->bi_opf);
1408
1409 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1410 if (unlikely(!rq)) {
1411 __wbt_done(q->rq_wb, wb_acct);
dece1635 1412 return BLK_QC_T_NONE;
87760e5e
JA
1413 }
1414
1415 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1416
fd2d3326 1417 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1418
1419 if (unlikely(is_flush_fua)) {
1420 blk_mq_bio_to_request(rq, bio);
bd166ef1 1421 blk_mq_get_driver_tag(rq, NULL, true);
07068d5b
JA
1422 blk_insert_flush(rq);
1423 goto run_queue;
1424 }
1425
f984df1f 1426 plug = current->plug;
e167dfb5
JA
1427 /*
1428 * If the driver supports defer issued based on 'last', then
1429 * queue it up like normal since we can potentially save some
1430 * CPU this way.
1431 */
f984df1f
SL
1432 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1433 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1434 struct request *old_rq = NULL;
07068d5b
JA
1435
1436 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1437
1438 /*
6a83e74d 1439 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1440 * Otherwise the existing request in the plug list will be
1441 * issued. So the plug list will have one request at most
07068d5b 1442 */
f984df1f 1443 if (plug) {
5b3f341f
SL
1444 /*
1445 * The plug list might get flushed before this. If that
b094f89c
JA
1446 * happens, same_queue_rq is invalid and plug list is
1447 * empty
1448 */
5b3f341f
SL
1449 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1450 old_rq = same_queue_rq;
f984df1f 1451 list_del_init(&old_rq->queuelist);
07068d5b 1452 }
f984df1f
SL
1453 list_add_tail(&rq->queuelist, &plug->mq_list);
1454 } else /* is_sync */
1455 old_rq = rq;
1456 blk_mq_put_ctx(data.ctx);
1457 if (!old_rq)
7b371636 1458 goto done;
6a83e74d
BVA
1459
1460 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1461 rcu_read_lock();
066a4a73 1462 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1463 rcu_read_unlock();
1464 } else {
1465 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
066a4a73 1466 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1467 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1468 }
7b371636 1469 goto done;
07068d5b
JA
1470 }
1471
bd166ef1
JA
1472 if (q->elevator) {
1473 blk_mq_put_ctx(data.ctx);
1474 blk_mq_bio_to_request(rq, bio);
1475 blk_mq_sched_insert_request(rq, false, true, true);
1476 goto done;
1477 }
07068d5b
JA
1478 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1479 /*
1480 * For a SYNC request, send it to the hardware immediately. For
1481 * an ASYNC request, just ensure that we run it later on. The
1482 * latter allows for merging opportunities and more efficient
1483 * dispatching.
1484 */
1485run_queue:
1486 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1487 }
07068d5b 1488 blk_mq_put_ctx(data.ctx);
7b371636
JA
1489done:
1490 return cookie;
07068d5b
JA
1491}
1492
1493/*
1494 * Single hardware queue variant. This will attempt to use any per-process
1495 * plug for merging and IO deferral.
1496 */
dece1635 1497static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1498{
ef295ecf 1499 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1500 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
e6c4438b
JM
1501 struct blk_plug *plug;
1502 unsigned int request_count = 0;
2552e3f8 1503 struct blk_mq_alloc_data data;
07068d5b 1504 struct request *rq;
7b371636 1505 blk_qc_t cookie;
87760e5e 1506 unsigned int wb_acct;
07068d5b 1507
07068d5b
JA
1508 blk_queue_bounce(q, &bio);
1509
1510 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1511 bio_io_error(bio);
dece1635 1512 return BLK_QC_T_NONE;
07068d5b
JA
1513 }
1514
54efd50b
KO
1515 blk_queue_split(q, &bio, q->bio_split);
1516
87c279e6
OS
1517 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1518 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1519 return BLK_QC_T_NONE;
1520 } else
1521 request_count = blk_plug_queued_count(q);
07068d5b 1522
bd166ef1
JA
1523 if (blk_mq_sched_bio_merge(q, bio))
1524 return BLK_QC_T_NONE;
1525
87760e5e
JA
1526 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1527
bd166ef1
JA
1528 trace_block_getrq(q, bio, bio->bi_opf);
1529
1530 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1531 if (unlikely(!rq)) {
1532 __wbt_done(q->rq_wb, wb_acct);
dece1635 1533 return BLK_QC_T_NONE;
87760e5e
JA
1534 }
1535
1536 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1537
fd2d3326 1538 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1539
1540 if (unlikely(is_flush_fua)) {
1541 blk_mq_bio_to_request(rq, bio);
bd166ef1 1542 blk_mq_get_driver_tag(rq, NULL, true);
320ae51f
JA
1543 blk_insert_flush(rq);
1544 goto run_queue;
1545 }
1546
1547 /*
1548 * A task plug currently exists. Since this is completely lockless,
1549 * utilize that to temporarily store requests until the task is
1550 * either done or scheduled away.
1551 */
e6c4438b
JM
1552 plug = current->plug;
1553 if (plug) {
600271d9
SL
1554 struct request *last = NULL;
1555
e6c4438b 1556 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1557
1558 /*
1559 * @request_count may become stale because of schedule
1560 * out, so check the list again.
1561 */
1562 if (list_empty(&plug->mq_list))
1563 request_count = 0;
676d0607 1564 if (!request_count)
e6c4438b 1565 trace_block_plug(q);
600271d9
SL
1566 else
1567 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1568
1569 blk_mq_put_ctx(data.ctx);
1570
600271d9
SL
1571 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1572 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1573 blk_flush_plug_list(plug, false);
1574 trace_block_plug(q);
320ae51f 1575 }
b094f89c 1576
e6c4438b 1577 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1578 return cookie;
320ae51f
JA
1579 }
1580
bd166ef1
JA
1581 if (q->elevator) {
1582 blk_mq_put_ctx(data.ctx);
1583 blk_mq_bio_to_request(rq, bio);
1584 blk_mq_sched_insert_request(rq, false, true, true);
1585 goto done;
1586 }
07068d5b
JA
1587 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1588 /*
1589 * For a SYNC request, send it to the hardware immediately. For
1590 * an ASYNC request, just ensure that we run it later on. The
1591 * latter allows for merging opportunities and more efficient
1592 * dispatching.
1593 */
1594run_queue:
1595 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1596 }
1597
07068d5b 1598 blk_mq_put_ctx(data.ctx);
bd166ef1 1599done:
7b371636 1600 return cookie;
320ae51f
JA
1601}
1602
cc71a6f4
JA
1603void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1604 unsigned int hctx_idx)
95363efd 1605{
e9b267d9 1606 struct page *page;
320ae51f 1607
24d2f903 1608 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1609 int i;
320ae51f 1610
24d2f903 1611 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1612 struct request *rq = tags->static_rqs[i];
1613
1614 if (!rq)
e9b267d9 1615 continue;
2af8cbe3 1616 set->ops->exit_request(set->driver_data, rq,
24d2f903 1617 hctx_idx, i);
2af8cbe3 1618 tags->static_rqs[i] = NULL;
e9b267d9 1619 }
320ae51f 1620 }
320ae51f 1621
24d2f903
CH
1622 while (!list_empty(&tags->page_list)) {
1623 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1624 list_del_init(&page->lru);
f75782e4
CM
1625 /*
1626 * Remove kmemleak object previously allocated in
1627 * blk_mq_init_rq_map().
1628 */
1629 kmemleak_free(page_address(page));
320ae51f
JA
1630 __free_pages(page, page->private);
1631 }
cc71a6f4 1632}
320ae51f 1633
cc71a6f4
JA
1634void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1635{
24d2f903 1636 kfree(tags->rqs);
cc71a6f4 1637 tags->rqs = NULL;
2af8cbe3
JA
1638 kfree(tags->static_rqs);
1639 tags->static_rqs = NULL;
320ae51f 1640
24d2f903 1641 blk_mq_free_tags(tags);
320ae51f
JA
1642}
1643
cc71a6f4
JA
1644struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1645 unsigned int hctx_idx,
1646 unsigned int nr_tags,
1647 unsigned int reserved_tags)
320ae51f 1648{
24d2f903 1649 struct blk_mq_tags *tags;
320ae51f 1650
cc71a6f4 1651 tags = blk_mq_init_tags(nr_tags, reserved_tags,
24391c0d
SL
1652 set->numa_node,
1653 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1654 if (!tags)
1655 return NULL;
320ae51f 1656
cc71a6f4 1657 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1658 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
a5164405 1659 set->numa_node);
24d2f903
CH
1660 if (!tags->rqs) {
1661 blk_mq_free_tags(tags);
1662 return NULL;
1663 }
320ae51f 1664
2af8cbe3
JA
1665 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1666 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1667 set->numa_node);
1668 if (!tags->static_rqs) {
1669 kfree(tags->rqs);
1670 blk_mq_free_tags(tags);
1671 return NULL;
1672 }
1673
cc71a6f4
JA
1674 return tags;
1675}
1676
1677static size_t order_to_size(unsigned int order)
1678{
1679 return (size_t)PAGE_SIZE << order;
1680}
1681
1682int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1683 unsigned int hctx_idx, unsigned int depth)
1684{
1685 unsigned int i, j, entries_per_page, max_order = 4;
1686 size_t rq_size, left;
1687
1688 INIT_LIST_HEAD(&tags->page_list);
1689
320ae51f
JA
1690 /*
1691 * rq_size is the size of the request plus driver payload, rounded
1692 * to the cacheline size
1693 */
24d2f903 1694 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1695 cache_line_size());
cc71a6f4 1696 left = rq_size * depth;
320ae51f 1697
cc71a6f4 1698 for (i = 0; i < depth; ) {
320ae51f
JA
1699 int this_order = max_order;
1700 struct page *page;
1701 int to_do;
1702 void *p;
1703
b3a834b1 1704 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1705 this_order--;
1706
1707 do {
a5164405 1708 page = alloc_pages_node(set->numa_node,
36e1f3d1 1709 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1710 this_order);
320ae51f
JA
1711 if (page)
1712 break;
1713 if (!this_order--)
1714 break;
1715 if (order_to_size(this_order) < rq_size)
1716 break;
1717 } while (1);
1718
1719 if (!page)
24d2f903 1720 goto fail;
320ae51f
JA
1721
1722 page->private = this_order;
24d2f903 1723 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1724
1725 p = page_address(page);
f75782e4
CM
1726 /*
1727 * Allow kmemleak to scan these pages as they contain pointers
1728 * to additional allocations like via ops->init_request().
1729 */
36e1f3d1 1730 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1731 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1732 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1733 left -= to_do * rq_size;
1734 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1735 struct request *rq = p;
1736
1737 tags->static_rqs[i] = rq;
24d2f903
CH
1738 if (set->ops->init_request) {
1739 if (set->ops->init_request(set->driver_data,
2af8cbe3 1740 rq, hctx_idx, i,
a5164405 1741 set->numa_node)) {
2af8cbe3 1742 tags->static_rqs[i] = NULL;
24d2f903 1743 goto fail;
a5164405 1744 }
e9b267d9
CH
1745 }
1746
320ae51f
JA
1747 p += rq_size;
1748 i++;
1749 }
1750 }
cc71a6f4 1751 return 0;
320ae51f 1752
24d2f903 1753fail:
cc71a6f4
JA
1754 blk_mq_free_rqs(set, tags, hctx_idx);
1755 return -ENOMEM;
320ae51f
JA
1756}
1757
e57690fe
JA
1758/*
1759 * 'cpu' is going away. splice any existing rq_list entries from this
1760 * software queue to the hw queue dispatch list, and ensure that it
1761 * gets run.
1762 */
9467f859 1763static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1764{
9467f859 1765 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1766 struct blk_mq_ctx *ctx;
1767 LIST_HEAD(tmp);
1768
9467f859 1769 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1770 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1771
1772 spin_lock(&ctx->lock);
1773 if (!list_empty(&ctx->rq_list)) {
1774 list_splice_init(&ctx->rq_list, &tmp);
1775 blk_mq_hctx_clear_pending(hctx, ctx);
1776 }
1777 spin_unlock(&ctx->lock);
1778
1779 if (list_empty(&tmp))
9467f859 1780 return 0;
484b4061 1781
e57690fe
JA
1782 spin_lock(&hctx->lock);
1783 list_splice_tail_init(&tmp, &hctx->dispatch);
1784 spin_unlock(&hctx->lock);
484b4061
JA
1785
1786 blk_mq_run_hw_queue(hctx, true);
9467f859 1787 return 0;
484b4061
JA
1788}
1789
9467f859 1790static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1791{
9467f859
TG
1792 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1793 &hctx->cpuhp_dead);
484b4061
JA
1794}
1795
c3b4afca 1796/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1797static void blk_mq_exit_hctx(struct request_queue *q,
1798 struct blk_mq_tag_set *set,
1799 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1800{
f70ced09
ML
1801 unsigned flush_start_tag = set->queue_depth;
1802
08e98fc6
ML
1803 blk_mq_tag_idle(hctx);
1804
f70ced09
ML
1805 if (set->ops->exit_request)
1806 set->ops->exit_request(set->driver_data,
1807 hctx->fq->flush_rq, hctx_idx,
1808 flush_start_tag + hctx_idx);
1809
08e98fc6
ML
1810 if (set->ops->exit_hctx)
1811 set->ops->exit_hctx(hctx, hctx_idx);
1812
6a83e74d
BVA
1813 if (hctx->flags & BLK_MQ_F_BLOCKING)
1814 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1815
9467f859 1816 blk_mq_remove_cpuhp(hctx);
f70ced09 1817 blk_free_flush_queue(hctx->fq);
88459642 1818 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1819}
1820
624dbe47
ML
1821static void blk_mq_exit_hw_queues(struct request_queue *q,
1822 struct blk_mq_tag_set *set, int nr_queue)
1823{
1824 struct blk_mq_hw_ctx *hctx;
1825 unsigned int i;
1826
1827 queue_for_each_hw_ctx(q, hctx, i) {
1828 if (i == nr_queue)
1829 break;
08e98fc6 1830 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1831 }
624dbe47
ML
1832}
1833
1834static void blk_mq_free_hw_queues(struct request_queue *q,
1835 struct blk_mq_tag_set *set)
1836{
1837 struct blk_mq_hw_ctx *hctx;
1838 unsigned int i;
1839
e09aae7e 1840 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1841 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1842}
1843
08e98fc6
ML
1844static int blk_mq_init_hctx(struct request_queue *q,
1845 struct blk_mq_tag_set *set,
1846 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1847{
08e98fc6 1848 int node;
f70ced09 1849 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1850
1851 node = hctx->numa_node;
1852 if (node == NUMA_NO_NODE)
1853 node = hctx->numa_node = set->numa_node;
1854
27489a3c 1855 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1856 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1857 spin_lock_init(&hctx->lock);
1858 INIT_LIST_HEAD(&hctx->dispatch);
1859 hctx->queue = q;
1860 hctx->queue_num = hctx_idx;
2404e607 1861 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1862
9467f859 1863 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1864
1865 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1866
1867 /*
08e98fc6
ML
1868 * Allocate space for all possible cpus to avoid allocation at
1869 * runtime
320ae51f 1870 */
08e98fc6
ML
1871 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1872 GFP_KERNEL, node);
1873 if (!hctx->ctxs)
1874 goto unregister_cpu_notifier;
320ae51f 1875
88459642
OS
1876 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1877 node))
08e98fc6 1878 goto free_ctxs;
320ae51f 1879
08e98fc6 1880 hctx->nr_ctx = 0;
320ae51f 1881
08e98fc6
ML
1882 if (set->ops->init_hctx &&
1883 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1884 goto free_bitmap;
320ae51f 1885
f70ced09
ML
1886 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1887 if (!hctx->fq)
1888 goto exit_hctx;
320ae51f 1889
f70ced09
ML
1890 if (set->ops->init_request &&
1891 set->ops->init_request(set->driver_data,
1892 hctx->fq->flush_rq, hctx_idx,
1893 flush_start_tag + hctx_idx, node))
1894 goto free_fq;
320ae51f 1895
6a83e74d
BVA
1896 if (hctx->flags & BLK_MQ_F_BLOCKING)
1897 init_srcu_struct(&hctx->queue_rq_srcu);
1898
08e98fc6 1899 return 0;
320ae51f 1900
f70ced09
ML
1901 free_fq:
1902 kfree(hctx->fq);
1903 exit_hctx:
1904 if (set->ops->exit_hctx)
1905 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1906 free_bitmap:
88459642 1907 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1908 free_ctxs:
1909 kfree(hctx->ctxs);
1910 unregister_cpu_notifier:
9467f859 1911 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1912 return -1;
1913}
320ae51f 1914
320ae51f
JA
1915static void blk_mq_init_cpu_queues(struct request_queue *q,
1916 unsigned int nr_hw_queues)
1917{
1918 unsigned int i;
1919
1920 for_each_possible_cpu(i) {
1921 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1922 struct blk_mq_hw_ctx *hctx;
1923
1924 memset(__ctx, 0, sizeof(*__ctx));
1925 __ctx->cpu = i;
1926 spin_lock_init(&__ctx->lock);
1927 INIT_LIST_HEAD(&__ctx->rq_list);
1928 __ctx->queue = q;
cf43e6be
JA
1929 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1930 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
1931
1932 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1933 if (!cpu_online(i))
1934 continue;
1935
7d7e0f90 1936 hctx = blk_mq_map_queue(q, i);
e4043dcf 1937
320ae51f
JA
1938 /*
1939 * Set local node, IFF we have more than one hw queue. If
1940 * not, we remain on the home node of the device
1941 */
1942 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1943 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1944 }
1945}
1946
cc71a6f4
JA
1947static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1948{
1949 int ret = 0;
1950
1951 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1952 set->queue_depth, set->reserved_tags);
1953 if (!set->tags[hctx_idx])
1954 return false;
1955
1956 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1957 set->queue_depth);
1958 if (!ret)
1959 return true;
1960
1961 blk_mq_free_rq_map(set->tags[hctx_idx]);
1962 set->tags[hctx_idx] = NULL;
1963 return false;
1964}
1965
1966static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1967 unsigned int hctx_idx)
1968{
bd166ef1
JA
1969 if (set->tags[hctx_idx]) {
1970 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1971 blk_mq_free_rq_map(set->tags[hctx_idx]);
1972 set->tags[hctx_idx] = NULL;
1973 }
cc71a6f4
JA
1974}
1975
5778322e
AM
1976static void blk_mq_map_swqueue(struct request_queue *q,
1977 const struct cpumask *online_mask)
320ae51f 1978{
d1b1cea1 1979 unsigned int i, hctx_idx;
320ae51f
JA
1980 struct blk_mq_hw_ctx *hctx;
1981 struct blk_mq_ctx *ctx;
2a34c087 1982 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1983
60de074b
AM
1984 /*
1985 * Avoid others reading imcomplete hctx->cpumask through sysfs
1986 */
1987 mutex_lock(&q->sysfs_lock);
1988
320ae51f 1989 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1990 cpumask_clear(hctx->cpumask);
320ae51f
JA
1991 hctx->nr_ctx = 0;
1992 }
1993
1994 /*
1995 * Map software to hardware queues
1996 */
897bb0c7 1997 for_each_possible_cpu(i) {
320ae51f 1998 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 1999 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2000 continue;
2001
d1b1cea1
GKB
2002 hctx_idx = q->mq_map[i];
2003 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2004 if (!set->tags[hctx_idx] &&
2005 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2006 /*
2007 * If tags initialization fail for some hctx,
2008 * that hctx won't be brought online. In this
2009 * case, remap the current ctx to hctx[0] which
2010 * is guaranteed to always have tags allocated
2011 */
cc71a6f4 2012 q->mq_map[i] = 0;
d1b1cea1
GKB
2013 }
2014
897bb0c7 2015 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2016 hctx = blk_mq_map_queue(q, i);
868f2f0b 2017
e4043dcf 2018 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2019 ctx->index_hw = hctx->nr_ctx;
2020 hctx->ctxs[hctx->nr_ctx++] = ctx;
2021 }
506e931f 2022
60de074b
AM
2023 mutex_unlock(&q->sysfs_lock);
2024
506e931f 2025 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2026 /*
a68aafa5
JA
2027 * If no software queues are mapped to this hardware queue,
2028 * disable it and free the request entries.
484b4061
JA
2029 */
2030 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2031 /* Never unmap queue 0. We need it as a
2032 * fallback in case of a new remap fails
2033 * allocation
2034 */
cc71a6f4
JA
2035 if (i && set->tags[i])
2036 blk_mq_free_map_and_requests(set, i);
2037
2a34c087 2038 hctx->tags = NULL;
484b4061
JA
2039 continue;
2040 }
2041
2a34c087
ML
2042 hctx->tags = set->tags[i];
2043 WARN_ON(!hctx->tags);
2044
889fa31f
CY
2045 /*
2046 * Set the map size to the number of mapped software queues.
2047 * This is more accurate and more efficient than looping
2048 * over all possibly mapped software queues.
2049 */
88459642 2050 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2051
484b4061
JA
2052 /*
2053 * Initialize batch roundrobin counts
2054 */
506e931f
JA
2055 hctx->next_cpu = cpumask_first(hctx->cpumask);
2056 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2057 }
320ae51f
JA
2058}
2059
2404e607 2060static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2061{
2062 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2063 int i;
2064
2404e607
JM
2065 queue_for_each_hw_ctx(q, hctx, i) {
2066 if (shared)
2067 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2068 else
2069 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2070 }
2071}
2072
2073static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2074{
2075 struct request_queue *q;
0d2602ca
JA
2076
2077 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2078 blk_mq_freeze_queue(q);
2404e607 2079 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2080 blk_mq_unfreeze_queue(q);
2081 }
2082}
2083
2084static void blk_mq_del_queue_tag_set(struct request_queue *q)
2085{
2086 struct blk_mq_tag_set *set = q->tag_set;
2087
0d2602ca
JA
2088 mutex_lock(&set->tag_list_lock);
2089 list_del_init(&q->tag_set_list);
2404e607
JM
2090 if (list_is_singular(&set->tag_list)) {
2091 /* just transitioned to unshared */
2092 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2093 /* update existing queue */
2094 blk_mq_update_tag_set_depth(set, false);
2095 }
0d2602ca 2096 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2097}
2098
2099static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2100 struct request_queue *q)
2101{
2102 q->tag_set = set;
2103
2104 mutex_lock(&set->tag_list_lock);
2404e607
JM
2105
2106 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2107 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2108 set->flags |= BLK_MQ_F_TAG_SHARED;
2109 /* update existing queue */
2110 blk_mq_update_tag_set_depth(set, true);
2111 }
2112 if (set->flags & BLK_MQ_F_TAG_SHARED)
2113 queue_set_hctx_shared(q, true);
0d2602ca 2114 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2115
0d2602ca
JA
2116 mutex_unlock(&set->tag_list_lock);
2117}
2118
e09aae7e
ML
2119/*
2120 * It is the actual release handler for mq, but we do it from
2121 * request queue's release handler for avoiding use-after-free
2122 * and headache because q->mq_kobj shouldn't have been introduced,
2123 * but we can't group ctx/kctx kobj without it.
2124 */
2125void blk_mq_release(struct request_queue *q)
2126{
2127 struct blk_mq_hw_ctx *hctx;
2128 unsigned int i;
2129
bd166ef1
JA
2130 blk_mq_sched_teardown(q);
2131
e09aae7e 2132 /* hctx kobj stays in hctx */
c3b4afca
ML
2133 queue_for_each_hw_ctx(q, hctx, i) {
2134 if (!hctx)
2135 continue;
2136 kfree(hctx->ctxs);
e09aae7e 2137 kfree(hctx);
c3b4afca 2138 }
e09aae7e 2139
a723bab3
AM
2140 q->mq_map = NULL;
2141
e09aae7e
ML
2142 kfree(q->queue_hw_ctx);
2143
2144 /* ctx kobj stays in queue_ctx */
2145 free_percpu(q->queue_ctx);
2146}
2147
24d2f903 2148struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2149{
2150 struct request_queue *uninit_q, *q;
2151
2152 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2153 if (!uninit_q)
2154 return ERR_PTR(-ENOMEM);
2155
2156 q = blk_mq_init_allocated_queue(set, uninit_q);
2157 if (IS_ERR(q))
2158 blk_cleanup_queue(uninit_q);
2159
2160 return q;
2161}
2162EXPORT_SYMBOL(blk_mq_init_queue);
2163
868f2f0b
KB
2164static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2165 struct request_queue *q)
320ae51f 2166{
868f2f0b
KB
2167 int i, j;
2168 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2169
868f2f0b 2170 blk_mq_sysfs_unregister(q);
24d2f903 2171 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2172 int node;
f14bbe77 2173
868f2f0b
KB
2174 if (hctxs[i])
2175 continue;
2176
2177 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2178 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2179 GFP_KERNEL, node);
320ae51f 2180 if (!hctxs[i])
868f2f0b 2181 break;
320ae51f 2182
a86073e4 2183 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2184 node)) {
2185 kfree(hctxs[i]);
2186 hctxs[i] = NULL;
2187 break;
2188 }
e4043dcf 2189
0d2602ca 2190 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2191 hctxs[i]->numa_node = node;
320ae51f 2192 hctxs[i]->queue_num = i;
868f2f0b
KB
2193
2194 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2195 free_cpumask_var(hctxs[i]->cpumask);
2196 kfree(hctxs[i]);
2197 hctxs[i] = NULL;
2198 break;
2199 }
2200 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2201 }
868f2f0b
KB
2202 for (j = i; j < q->nr_hw_queues; j++) {
2203 struct blk_mq_hw_ctx *hctx = hctxs[j];
2204
2205 if (hctx) {
cc71a6f4
JA
2206 if (hctx->tags)
2207 blk_mq_free_map_and_requests(set, j);
868f2f0b
KB
2208 blk_mq_exit_hctx(q, set, hctx, j);
2209 free_cpumask_var(hctx->cpumask);
2210 kobject_put(&hctx->kobj);
2211 kfree(hctx->ctxs);
2212 kfree(hctx);
2213 hctxs[j] = NULL;
2214
2215 }
2216 }
2217 q->nr_hw_queues = i;
2218 blk_mq_sysfs_register(q);
2219}
2220
2221struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2222 struct request_queue *q)
2223{
66841672
ML
2224 /* mark the queue as mq asap */
2225 q->mq_ops = set->ops;
2226
868f2f0b
KB
2227 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2228 if (!q->queue_ctx)
c7de5726 2229 goto err_exit;
868f2f0b
KB
2230
2231 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2232 GFP_KERNEL, set->numa_node);
2233 if (!q->queue_hw_ctx)
2234 goto err_percpu;
2235
bdd17e75 2236 q->mq_map = set->mq_map;
868f2f0b
KB
2237
2238 blk_mq_realloc_hw_ctxs(set, q);
2239 if (!q->nr_hw_queues)
2240 goto err_hctxs;
320ae51f 2241
287922eb 2242 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2243 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2244
2245 q->nr_queues = nr_cpu_ids;
320ae51f 2246
94eddfbe 2247 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2248
05f1dd53
JA
2249 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2250 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2251
1be036e9
CH
2252 q->sg_reserved_size = INT_MAX;
2253
2849450a 2254 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2255 INIT_LIST_HEAD(&q->requeue_list);
2256 spin_lock_init(&q->requeue_lock);
2257
07068d5b
JA
2258 if (q->nr_hw_queues > 1)
2259 blk_queue_make_request(q, blk_mq_make_request);
2260 else
2261 blk_queue_make_request(q, blk_sq_make_request);
2262
eba71768
JA
2263 /*
2264 * Do this after blk_queue_make_request() overrides it...
2265 */
2266 q->nr_requests = set->queue_depth;
2267
64f1c21e
JA
2268 /*
2269 * Default to classic polling
2270 */
2271 q->poll_nsec = -1;
2272
24d2f903
CH
2273 if (set->ops->complete)
2274 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2275
24d2f903 2276 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2277
5778322e 2278 get_online_cpus();
320ae51f 2279 mutex_lock(&all_q_mutex);
320ae51f 2280
4593fdbe 2281 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2282 blk_mq_add_queue_tag_set(set, q);
5778322e 2283 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2284
4593fdbe 2285 mutex_unlock(&all_q_mutex);
5778322e 2286 put_online_cpus();
4593fdbe 2287
d3484991
JA
2288 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2289 int ret;
2290
2291 ret = blk_mq_sched_init(q);
2292 if (ret)
2293 return ERR_PTR(ret);
2294 }
2295
320ae51f 2296 return q;
18741986 2297
320ae51f 2298err_hctxs:
868f2f0b 2299 kfree(q->queue_hw_ctx);
320ae51f 2300err_percpu:
868f2f0b 2301 free_percpu(q->queue_ctx);
c7de5726
ML
2302err_exit:
2303 q->mq_ops = NULL;
320ae51f
JA
2304 return ERR_PTR(-ENOMEM);
2305}
b62c21b7 2306EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2307
2308void blk_mq_free_queue(struct request_queue *q)
2309{
624dbe47 2310 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2311
0e626368
AM
2312 mutex_lock(&all_q_mutex);
2313 list_del_init(&q->all_q_node);
2314 mutex_unlock(&all_q_mutex);
2315
87760e5e
JA
2316 wbt_exit(q);
2317
0d2602ca
JA
2318 blk_mq_del_queue_tag_set(q);
2319
624dbe47
ML
2320 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2321 blk_mq_free_hw_queues(q, set);
320ae51f 2322}
320ae51f
JA
2323
2324/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2325static void blk_mq_queue_reinit(struct request_queue *q,
2326 const struct cpumask *online_mask)
320ae51f 2327{
4ecd4fef 2328 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2329
67aec14c
JA
2330 blk_mq_sysfs_unregister(q);
2331
320ae51f
JA
2332 /*
2333 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2334 * we should change hctx numa_node according to new topology (this
2335 * involves free and re-allocate memory, worthy doing?)
2336 */
2337
5778322e 2338 blk_mq_map_swqueue(q, online_mask);
320ae51f 2339
67aec14c 2340 blk_mq_sysfs_register(q);
320ae51f
JA
2341}
2342
65d5291e
SAS
2343/*
2344 * New online cpumask which is going to be set in this hotplug event.
2345 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2346 * one-by-one and dynamically allocating this could result in a failure.
2347 */
2348static struct cpumask cpuhp_online_new;
2349
2350static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2351{
2352 struct request_queue *q;
320ae51f
JA
2353
2354 mutex_lock(&all_q_mutex);
f3af020b
TH
2355 /*
2356 * We need to freeze and reinit all existing queues. Freezing
2357 * involves synchronous wait for an RCU grace period and doing it
2358 * one by one may take a long time. Start freezing all queues in
2359 * one swoop and then wait for the completions so that freezing can
2360 * take place in parallel.
2361 */
2362 list_for_each_entry(q, &all_q_list, all_q_node)
2363 blk_mq_freeze_queue_start(q);
415d3dab 2364 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2365 blk_mq_freeze_queue_wait(q);
2366
320ae51f 2367 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2368 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2369
2370 list_for_each_entry(q, &all_q_list, all_q_node)
2371 blk_mq_unfreeze_queue(q);
2372
320ae51f 2373 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2374}
2375
2376static int blk_mq_queue_reinit_dead(unsigned int cpu)
2377{
97a32864 2378 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2379 blk_mq_queue_reinit_work();
2380 return 0;
2381}
2382
2383/*
2384 * Before hotadded cpu starts handling requests, new mappings must be
2385 * established. Otherwise, these requests in hw queue might never be
2386 * dispatched.
2387 *
2388 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2389 * for CPU0, and ctx1 for CPU1).
2390 *
2391 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2392 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2393 *
2c3ad667
JA
2394 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2395 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2396 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2397 * ignored.
65d5291e
SAS
2398 */
2399static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2400{
2401 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2402 cpumask_set_cpu(cpu, &cpuhp_online_new);
2403 blk_mq_queue_reinit_work();
2404 return 0;
320ae51f
JA
2405}
2406
a5164405
JA
2407static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2408{
2409 int i;
2410
cc71a6f4
JA
2411 for (i = 0; i < set->nr_hw_queues; i++)
2412 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2413 goto out_unwind;
a5164405
JA
2414
2415 return 0;
2416
2417out_unwind:
2418 while (--i >= 0)
cc71a6f4 2419 blk_mq_free_rq_map(set->tags[i]);
a5164405 2420
a5164405
JA
2421 return -ENOMEM;
2422}
2423
2424/*
2425 * Allocate the request maps associated with this tag_set. Note that this
2426 * may reduce the depth asked for, if memory is tight. set->queue_depth
2427 * will be updated to reflect the allocated depth.
2428 */
2429static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2430{
2431 unsigned int depth;
2432 int err;
2433
2434 depth = set->queue_depth;
2435 do {
2436 err = __blk_mq_alloc_rq_maps(set);
2437 if (!err)
2438 break;
2439
2440 set->queue_depth >>= 1;
2441 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2442 err = -ENOMEM;
2443 break;
2444 }
2445 } while (set->queue_depth);
2446
2447 if (!set->queue_depth || err) {
2448 pr_err("blk-mq: failed to allocate request map\n");
2449 return -ENOMEM;
2450 }
2451
2452 if (depth != set->queue_depth)
2453 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2454 depth, set->queue_depth);
2455
2456 return 0;
2457}
2458
a4391c64
JA
2459/*
2460 * Alloc a tag set to be associated with one or more request queues.
2461 * May fail with EINVAL for various error conditions. May adjust the
2462 * requested depth down, if if it too large. In that case, the set
2463 * value will be stored in set->queue_depth.
2464 */
24d2f903
CH
2465int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2466{
da695ba2
CH
2467 int ret;
2468
205fb5f5
BVA
2469 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2470
24d2f903
CH
2471 if (!set->nr_hw_queues)
2472 return -EINVAL;
a4391c64 2473 if (!set->queue_depth)
24d2f903
CH
2474 return -EINVAL;
2475 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2476 return -EINVAL;
2477
7d7e0f90 2478 if (!set->ops->queue_rq)
24d2f903
CH
2479 return -EINVAL;
2480
a4391c64
JA
2481 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2482 pr_info("blk-mq: reduced tag depth to %u\n",
2483 BLK_MQ_MAX_DEPTH);
2484 set->queue_depth = BLK_MQ_MAX_DEPTH;
2485 }
24d2f903 2486
6637fadf
SL
2487 /*
2488 * If a crashdump is active, then we are potentially in a very
2489 * memory constrained environment. Limit us to 1 queue and
2490 * 64 tags to prevent using too much memory.
2491 */
2492 if (is_kdump_kernel()) {
2493 set->nr_hw_queues = 1;
2494 set->queue_depth = min(64U, set->queue_depth);
2495 }
868f2f0b
KB
2496 /*
2497 * There is no use for more h/w queues than cpus.
2498 */
2499 if (set->nr_hw_queues > nr_cpu_ids)
2500 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2501
868f2f0b 2502 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2503 GFP_KERNEL, set->numa_node);
2504 if (!set->tags)
a5164405 2505 return -ENOMEM;
24d2f903 2506
da695ba2
CH
2507 ret = -ENOMEM;
2508 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2509 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2510 if (!set->mq_map)
2511 goto out_free_tags;
2512
da695ba2
CH
2513 if (set->ops->map_queues)
2514 ret = set->ops->map_queues(set);
2515 else
2516 ret = blk_mq_map_queues(set);
2517 if (ret)
2518 goto out_free_mq_map;
2519
2520 ret = blk_mq_alloc_rq_maps(set);
2521 if (ret)
bdd17e75 2522 goto out_free_mq_map;
24d2f903 2523
0d2602ca
JA
2524 mutex_init(&set->tag_list_lock);
2525 INIT_LIST_HEAD(&set->tag_list);
2526
24d2f903 2527 return 0;
bdd17e75
CH
2528
2529out_free_mq_map:
2530 kfree(set->mq_map);
2531 set->mq_map = NULL;
2532out_free_tags:
5676e7b6
RE
2533 kfree(set->tags);
2534 set->tags = NULL;
da695ba2 2535 return ret;
24d2f903
CH
2536}
2537EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2538
2539void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2540{
2541 int i;
2542
cc71a6f4
JA
2543 for (i = 0; i < nr_cpu_ids; i++)
2544 blk_mq_free_map_and_requests(set, i);
484b4061 2545
bdd17e75
CH
2546 kfree(set->mq_map);
2547 set->mq_map = NULL;
2548
981bd189 2549 kfree(set->tags);
5676e7b6 2550 set->tags = NULL;
24d2f903
CH
2551}
2552EXPORT_SYMBOL(blk_mq_free_tag_set);
2553
e3a2b3f9
JA
2554int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2555{
2556 struct blk_mq_tag_set *set = q->tag_set;
2557 struct blk_mq_hw_ctx *hctx;
2558 int i, ret;
2559
bd166ef1 2560 if (!set)
e3a2b3f9
JA
2561 return -EINVAL;
2562
2563 ret = 0;
2564 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2565 if (!hctx->tags)
2566 continue;
bd166ef1
JA
2567 /*
2568 * If we're using an MQ scheduler, just update the scheduler
2569 * queue depth. This is similar to what the old code would do.
2570 */
2571 if (!hctx->sched_tags)
2572 ret = blk_mq_tag_update_depth(hctx->tags,
2573 min(nr, set->queue_depth));
2574 else
2575 ret = blk_mq_tag_update_depth(hctx->sched_tags, nr);
e3a2b3f9
JA
2576 if (ret)
2577 break;
2578 }
2579
2580 if (!ret)
2581 q->nr_requests = nr;
2582
2583 return ret;
2584}
2585
868f2f0b
KB
2586void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2587{
2588 struct request_queue *q;
2589
2590 if (nr_hw_queues > nr_cpu_ids)
2591 nr_hw_queues = nr_cpu_ids;
2592 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2593 return;
2594
2595 list_for_each_entry(q, &set->tag_list, tag_set_list)
2596 blk_mq_freeze_queue(q);
2597
2598 set->nr_hw_queues = nr_hw_queues;
2599 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2600 blk_mq_realloc_hw_ctxs(set, q);
2601
2602 if (q->nr_hw_queues > 1)
2603 blk_queue_make_request(q, blk_mq_make_request);
2604 else
2605 blk_queue_make_request(q, blk_sq_make_request);
2606
2607 blk_mq_queue_reinit(q, cpu_online_mask);
2608 }
2609
2610 list_for_each_entry(q, &set->tag_list, tag_set_list)
2611 blk_mq_unfreeze_queue(q);
2612}
2613EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2614
64f1c21e
JA
2615static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2616 struct blk_mq_hw_ctx *hctx,
2617 struct request *rq)
2618{
2619 struct blk_rq_stat stat[2];
2620 unsigned long ret = 0;
2621
2622 /*
2623 * If stats collection isn't on, don't sleep but turn it on for
2624 * future users
2625 */
2626 if (!blk_stat_enable(q))
2627 return 0;
2628
2629 /*
2630 * We don't have to do this once per IO, should optimize this
2631 * to just use the current window of stats until it changes
2632 */
2633 memset(&stat, 0, sizeof(stat));
2634 blk_hctx_stat_get(hctx, stat);
2635
2636 /*
2637 * As an optimistic guess, use half of the mean service time
2638 * for this type of request. We can (and should) make this smarter.
2639 * For instance, if the completion latencies are tight, we can
2640 * get closer than just half the mean. This is especially
2641 * important on devices where the completion latencies are longer
2642 * than ~10 usec.
2643 */
2644 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2645 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2646 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2647 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2648
2649 return ret;
2650}
2651
06426adf 2652static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2653 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2654 struct request *rq)
2655{
2656 struct hrtimer_sleeper hs;
2657 enum hrtimer_mode mode;
64f1c21e 2658 unsigned int nsecs;
06426adf
JA
2659 ktime_t kt;
2660
64f1c21e
JA
2661 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2662 return false;
2663
2664 /*
2665 * poll_nsec can be:
2666 *
2667 * -1: don't ever hybrid sleep
2668 * 0: use half of prev avg
2669 * >0: use this specific value
2670 */
2671 if (q->poll_nsec == -1)
2672 return false;
2673 else if (q->poll_nsec > 0)
2674 nsecs = q->poll_nsec;
2675 else
2676 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2677
2678 if (!nsecs)
06426adf
JA
2679 return false;
2680
2681 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2682
2683 /*
2684 * This will be replaced with the stats tracking code, using
2685 * 'avg_completion_time / 2' as the pre-sleep target.
2686 */
8b0e1953 2687 kt = nsecs;
06426adf
JA
2688
2689 mode = HRTIMER_MODE_REL;
2690 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2691 hrtimer_set_expires(&hs.timer, kt);
2692
2693 hrtimer_init_sleeper(&hs, current);
2694 do {
2695 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2696 break;
2697 set_current_state(TASK_UNINTERRUPTIBLE);
2698 hrtimer_start_expires(&hs.timer, mode);
2699 if (hs.task)
2700 io_schedule();
2701 hrtimer_cancel(&hs.timer);
2702 mode = HRTIMER_MODE_ABS;
2703 } while (hs.task && !signal_pending(current));
2704
2705 __set_current_state(TASK_RUNNING);
2706 destroy_hrtimer_on_stack(&hs.timer);
2707 return true;
2708}
2709
bbd7bb70
JA
2710static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2711{
2712 struct request_queue *q = hctx->queue;
2713 long state;
2714
06426adf
JA
2715 /*
2716 * If we sleep, have the caller restart the poll loop to reset
2717 * the state. Like for the other success return cases, the
2718 * caller is responsible for checking if the IO completed. If
2719 * the IO isn't complete, we'll get called again and will go
2720 * straight to the busy poll loop.
2721 */
64f1c21e 2722 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2723 return true;
2724
bbd7bb70
JA
2725 hctx->poll_considered++;
2726
2727 state = current->state;
2728 while (!need_resched()) {
2729 int ret;
2730
2731 hctx->poll_invoked++;
2732
2733 ret = q->mq_ops->poll(hctx, rq->tag);
2734 if (ret > 0) {
2735 hctx->poll_success++;
2736 set_current_state(TASK_RUNNING);
2737 return true;
2738 }
2739
2740 if (signal_pending_state(state, current))
2741 set_current_state(TASK_RUNNING);
2742
2743 if (current->state == TASK_RUNNING)
2744 return true;
2745 if (ret < 0)
2746 break;
2747 cpu_relax();
2748 }
2749
2750 return false;
2751}
2752
2753bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2754{
2755 struct blk_mq_hw_ctx *hctx;
2756 struct blk_plug *plug;
2757 struct request *rq;
2758
2759 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2760 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2761 return false;
2762
2763 plug = current->plug;
2764 if (plug)
2765 blk_flush_plug_list(plug, false);
2766
2767 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2768 if (!blk_qc_t_is_internal(cookie))
2769 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2770 else
2771 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2772
2773 return __blk_mq_poll(hctx, rq);
2774}
2775EXPORT_SYMBOL_GPL(blk_mq_poll);
2776
676141e4
JA
2777void blk_mq_disable_hotplug(void)
2778{
2779 mutex_lock(&all_q_mutex);
2780}
2781
2782void blk_mq_enable_hotplug(void)
2783{
2784 mutex_unlock(&all_q_mutex);
2785}
2786
320ae51f
JA
2787static int __init blk_mq_init(void)
2788{
9467f859
TG
2789 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2790 blk_mq_hctx_notify_dead);
320ae51f 2791
65d5291e
SAS
2792 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2793 blk_mq_queue_reinit_prepare,
2794 blk_mq_queue_reinit_dead);
320ae51f
JA
2795 return 0;
2796}
2797subsys_initcall(blk_mq_init);