]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/buffer.c
mm, vmscan: make zone_reclaimable_pages more precise
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
630d9c47 32#include <linux/export.h>
bafc0dba 33#include <linux/backing-dev.h>
1da177e4
LT
34#include <linux/writeback.h>
35#include <linux/hash.h>
36#include <linux/suspend.h>
37#include <linux/buffer_head.h>
55e829af 38#include <linux/task_io_accounting_ops.h>
1da177e4
LT
39#include <linux/bio.h>
40#include <linux/notifier.h>
41#include <linux/cpu.h>
42#include <linux/bitops.h>
43#include <linux/mpage.h>
fb1c8f93 44#include <linux/bit_spinlock.h>
5305cb83 45#include <trace/events/block.h>
1da177e4
LT
46
47static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
b16b1deb
TH
48static int submit_bh_wbc(int rw, struct buffer_head *bh,
49 unsigned long bio_flags,
50 struct writeback_control *wbc);
1da177e4
LT
51
52#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
53
a3f3c29c 54void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
55{
56 bh->b_end_io = handler;
57 bh->b_private = private;
58}
1fe72eaa 59EXPORT_SYMBOL(init_buffer);
1da177e4 60
f0059afd
TH
61inline void touch_buffer(struct buffer_head *bh)
62{
5305cb83 63 trace_block_touch_buffer(bh);
f0059afd
TH
64 mark_page_accessed(bh->b_page);
65}
66EXPORT_SYMBOL(touch_buffer);
67
fc9b52cd 68void __lock_buffer(struct buffer_head *bh)
1da177e4 69{
74316201 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
71}
72EXPORT_SYMBOL(__lock_buffer);
73
fc9b52cd 74void unlock_buffer(struct buffer_head *bh)
1da177e4 75{
51b07fc3 76 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 77 smp_mb__after_atomic();
1da177e4
LT
78 wake_up_bit(&bh->b_state, BH_Lock);
79}
1fe72eaa 80EXPORT_SYMBOL(unlock_buffer);
1da177e4 81
b4597226
MG
82/*
83 * Returns if the page has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the PageDirty information is stale. If
85 * any of the pages are locked, it is assumed they are locked for IO.
86 */
87void buffer_check_dirty_writeback(struct page *page,
88 bool *dirty, bool *writeback)
89{
90 struct buffer_head *head, *bh;
91 *dirty = false;
92 *writeback = false;
93
94 BUG_ON(!PageLocked(page));
95
96 if (!page_has_buffers(page))
97 return;
98
99 if (PageWriteback(page))
100 *writeback = true;
101
102 head = page_buffers(page);
103 bh = head;
104 do {
105 if (buffer_locked(bh))
106 *writeback = true;
107
108 if (buffer_dirty(bh))
109 *dirty = true;
110
111 bh = bh->b_this_page;
112 } while (bh != head);
113}
114EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
1da177e4
LT
116/*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
74316201 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 124}
1fe72eaa 125EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
126
127static void
128__clear_page_buffers(struct page *page)
129{
130 ClearPagePrivate(page);
4c21e2f2 131 set_page_private(page, 0);
1da177e4
LT
132 page_cache_release(page);
133}
134
b744c2ac 135static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 136{
432f16e6
RE
137 if (!test_bit(BH_Quiet, &bh->b_state))
138 printk_ratelimited(KERN_ERR
a1c6f057
DM
139 "Buffer I/O error on dev %pg, logical block %llu%s\n",
140 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
141}
142
143/*
68671f35
DM
144 * End-of-IO handler helper function which does not touch the bh after
145 * unlocking it.
146 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
147 * a race there is benign: unlock_buffer() only use the bh's address for
148 * hashing after unlocking the buffer, so it doesn't actually touch the bh
149 * itself.
1da177e4 150 */
68671f35 151static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
152{
153 if (uptodate) {
154 set_buffer_uptodate(bh);
155 } else {
156 /* This happens, due to failed READA attempts. */
157 clear_buffer_uptodate(bh);
158 }
159 unlock_buffer(bh);
68671f35
DM
160}
161
162/*
163 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
164 * unlock the buffer. This is what ll_rw_block uses too.
165 */
166void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167{
168 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
169 put_bh(bh);
170}
1fe72eaa 171EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
172
173void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174{
1da177e4
LT
175 if (uptodate) {
176 set_buffer_uptodate(bh);
177 } else {
432f16e6 178 buffer_io_error(bh, ", lost sync page write");
1da177e4
LT
179 set_buffer_write_io_error(bh);
180 clear_buffer_uptodate(bh);
181 }
182 unlock_buffer(bh);
183 put_bh(bh);
184}
1fe72eaa 185EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 186
1da177e4
LT
187/*
188 * Various filesystems appear to want __find_get_block to be non-blocking.
189 * But it's the page lock which protects the buffers. To get around this,
190 * we get exclusion from try_to_free_buffers with the blockdev mapping's
191 * private_lock.
192 *
193 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
194 * may be quite high. This code could TryLock the page, and if that
195 * succeeds, there is no need to take private_lock. (But if
196 * private_lock is contended then so is mapping->tree_lock).
197 */
198static struct buffer_head *
385fd4c5 199__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
200{
201 struct inode *bd_inode = bdev->bd_inode;
202 struct address_space *bd_mapping = bd_inode->i_mapping;
203 struct buffer_head *ret = NULL;
204 pgoff_t index;
205 struct buffer_head *bh;
206 struct buffer_head *head;
207 struct page *page;
208 int all_mapped = 1;
209
210 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
2457aec6 211 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
212 if (!page)
213 goto out;
214
215 spin_lock(&bd_mapping->private_lock);
216 if (!page_has_buffers(page))
217 goto out_unlock;
218 head = page_buffers(page);
219 bh = head;
220 do {
97f76d3d
NK
221 if (!buffer_mapped(bh))
222 all_mapped = 0;
223 else if (bh->b_blocknr == block) {
1da177e4
LT
224 ret = bh;
225 get_bh(bh);
226 goto out_unlock;
227 }
1da177e4
LT
228 bh = bh->b_this_page;
229 } while (bh != head);
230
231 /* we might be here because some of the buffers on this page are
232 * not mapped. This is due to various races between
233 * file io on the block device and getblk. It gets dealt with
234 * elsewhere, don't buffer_error if we had some unmapped buffers
235 */
236 if (all_mapped) {
237 printk("__find_get_block_slow() failed. "
238 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
239 (unsigned long long)block,
240 (unsigned long long)bh->b_blocknr);
241 printk("b_state=0x%08lx, b_size=%zu\n",
242 bh->b_state, bh->b_size);
a1c6f057 243 printk("device %pg blocksize: %d\n", bdev,
72a2ebd8 244 1 << bd_inode->i_blkbits);
1da177e4
LT
245 }
246out_unlock:
247 spin_unlock(&bd_mapping->private_lock);
248 page_cache_release(page);
249out:
250 return ret;
251}
252
1da177e4 253/*
5b0830cb 254 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
255 */
256static void free_more_memory(void)
257{
19770b32 258 struct zone *zone;
0e88460d 259 int nid;
1da177e4 260
0e175a18 261 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
262 yield();
263
0e88460d 264 for_each_online_node(nid) {
19770b32
MG
265 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
266 gfp_zone(GFP_NOFS), NULL,
267 &zone);
268 if (zone)
54a6eb5c 269 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 270 GFP_NOFS, NULL);
1da177e4
LT
271 }
272}
273
274/*
275 * I/O completion handler for block_read_full_page() - pages
276 * which come unlocked at the end of I/O.
277 */
278static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
279{
1da177e4 280 unsigned long flags;
a3972203 281 struct buffer_head *first;
1da177e4
LT
282 struct buffer_head *tmp;
283 struct page *page;
284 int page_uptodate = 1;
285
286 BUG_ON(!buffer_async_read(bh));
287
288 page = bh->b_page;
289 if (uptodate) {
290 set_buffer_uptodate(bh);
291 } else {
292 clear_buffer_uptodate(bh);
432f16e6 293 buffer_io_error(bh, ", async page read");
1da177e4
LT
294 SetPageError(page);
295 }
296
297 /*
298 * Be _very_ careful from here on. Bad things can happen if
299 * two buffer heads end IO at almost the same time and both
300 * decide that the page is now completely done.
301 */
a3972203
NP
302 first = page_buffers(page);
303 local_irq_save(flags);
304 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
305 clear_buffer_async_read(bh);
306 unlock_buffer(bh);
307 tmp = bh;
308 do {
309 if (!buffer_uptodate(tmp))
310 page_uptodate = 0;
311 if (buffer_async_read(tmp)) {
312 BUG_ON(!buffer_locked(tmp));
313 goto still_busy;
314 }
315 tmp = tmp->b_this_page;
316 } while (tmp != bh);
a3972203
NP
317 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
318 local_irq_restore(flags);
1da177e4
LT
319
320 /*
321 * If none of the buffers had errors and they are all
322 * uptodate then we can set the page uptodate.
323 */
324 if (page_uptodate && !PageError(page))
325 SetPageUptodate(page);
326 unlock_page(page);
327 return;
328
329still_busy:
a3972203
NP
330 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
331 local_irq_restore(flags);
1da177e4
LT
332 return;
333}
334
335/*
336 * Completion handler for block_write_full_page() - pages which are unlocked
337 * during I/O, and which have PageWriteback cleared upon I/O completion.
338 */
35c80d5f 339void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 340{
1da177e4 341 unsigned long flags;
a3972203 342 struct buffer_head *first;
1da177e4
LT
343 struct buffer_head *tmp;
344 struct page *page;
345
346 BUG_ON(!buffer_async_write(bh));
347
348 page = bh->b_page;
349 if (uptodate) {
350 set_buffer_uptodate(bh);
351 } else {
432f16e6 352 buffer_io_error(bh, ", lost async page write");
1da177e4 353 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 354 set_buffer_write_io_error(bh);
1da177e4
LT
355 clear_buffer_uptodate(bh);
356 SetPageError(page);
357 }
358
a3972203
NP
359 first = page_buffers(page);
360 local_irq_save(flags);
361 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
362
1da177e4
LT
363 clear_buffer_async_write(bh);
364 unlock_buffer(bh);
365 tmp = bh->b_this_page;
366 while (tmp != bh) {
367 if (buffer_async_write(tmp)) {
368 BUG_ON(!buffer_locked(tmp));
369 goto still_busy;
370 }
371 tmp = tmp->b_this_page;
372 }
a3972203
NP
373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 local_irq_restore(flags);
1da177e4
LT
375 end_page_writeback(page);
376 return;
377
378still_busy:
a3972203
NP
379 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
380 local_irq_restore(flags);
1da177e4
LT
381 return;
382}
1fe72eaa 383EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
384
385/*
386 * If a page's buffers are under async readin (end_buffer_async_read
387 * completion) then there is a possibility that another thread of
388 * control could lock one of the buffers after it has completed
389 * but while some of the other buffers have not completed. This
390 * locked buffer would confuse end_buffer_async_read() into not unlocking
391 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
392 * that this buffer is not under async I/O.
393 *
394 * The page comes unlocked when it has no locked buffer_async buffers
395 * left.
396 *
397 * PageLocked prevents anyone starting new async I/O reads any of
398 * the buffers.
399 *
400 * PageWriteback is used to prevent simultaneous writeout of the same
401 * page.
402 *
403 * PageLocked prevents anyone from starting writeback of a page which is
404 * under read I/O (PageWriteback is only ever set against a locked page).
405 */
406static void mark_buffer_async_read(struct buffer_head *bh)
407{
408 bh->b_end_io = end_buffer_async_read;
409 set_buffer_async_read(bh);
410}
411
1fe72eaa
HS
412static void mark_buffer_async_write_endio(struct buffer_head *bh,
413 bh_end_io_t *handler)
1da177e4 414{
35c80d5f 415 bh->b_end_io = handler;
1da177e4
LT
416 set_buffer_async_write(bh);
417}
35c80d5f
CM
418
419void mark_buffer_async_write(struct buffer_head *bh)
420{
421 mark_buffer_async_write_endio(bh, end_buffer_async_write);
422}
1da177e4
LT
423EXPORT_SYMBOL(mark_buffer_async_write);
424
425
426/*
427 * fs/buffer.c contains helper functions for buffer-backed address space's
428 * fsync functions. A common requirement for buffer-based filesystems is
429 * that certain data from the backing blockdev needs to be written out for
430 * a successful fsync(). For example, ext2 indirect blocks need to be
431 * written back and waited upon before fsync() returns.
432 *
433 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435 * management of a list of dependent buffers at ->i_mapping->private_list.
436 *
437 * Locking is a little subtle: try_to_free_buffers() will remove buffers
438 * from their controlling inode's queue when they are being freed. But
439 * try_to_free_buffers() will be operating against the *blockdev* mapping
440 * at the time, not against the S_ISREG file which depends on those buffers.
441 * So the locking for private_list is via the private_lock in the address_space
442 * which backs the buffers. Which is different from the address_space
443 * against which the buffers are listed. So for a particular address_space,
444 * mapping->private_lock does *not* protect mapping->private_list! In fact,
445 * mapping->private_list will always be protected by the backing blockdev's
446 * ->private_lock.
447 *
448 * Which introduces a requirement: all buffers on an address_space's
449 * ->private_list must be from the same address_space: the blockdev's.
450 *
451 * address_spaces which do not place buffers at ->private_list via these
452 * utility functions are free to use private_lock and private_list for
453 * whatever they want. The only requirement is that list_empty(private_list)
454 * be true at clear_inode() time.
455 *
456 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
457 * filesystems should do that. invalidate_inode_buffers() should just go
458 * BUG_ON(!list_empty).
459 *
460 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
461 * take an address_space, not an inode. And it should be called
462 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463 * queued up.
464 *
465 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466 * list if it is already on a list. Because if the buffer is on a list,
467 * it *must* already be on the right one. If not, the filesystem is being
468 * silly. This will save a ton of locking. But first we have to ensure
469 * that buffers are taken *off* the old inode's list when they are freed
470 * (presumably in truncate). That requires careful auditing of all
471 * filesystems (do it inside bforget()). It could also be done by bringing
472 * b_inode back.
473 */
474
475/*
476 * The buffer's backing address_space's private_lock must be held
477 */
dbacefc9 478static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
479{
480 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
481 WARN_ON(!bh->b_assoc_map);
482 if (buffer_write_io_error(bh))
483 set_bit(AS_EIO, &bh->b_assoc_map->flags);
484 bh->b_assoc_map = NULL;
1da177e4
LT
485}
486
487int inode_has_buffers(struct inode *inode)
488{
489 return !list_empty(&inode->i_data.private_list);
490}
491
492/*
493 * osync is designed to support O_SYNC io. It waits synchronously for
494 * all already-submitted IO to complete, but does not queue any new
495 * writes to the disk.
496 *
497 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498 * you dirty the buffers, and then use osync_inode_buffers to wait for
499 * completion. Any other dirty buffers which are not yet queued for
500 * write will not be flushed to disk by the osync.
501 */
502static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503{
504 struct buffer_head *bh;
505 struct list_head *p;
506 int err = 0;
507
508 spin_lock(lock);
509repeat:
510 list_for_each_prev(p, list) {
511 bh = BH_ENTRY(p);
512 if (buffer_locked(bh)) {
513 get_bh(bh);
514 spin_unlock(lock);
515 wait_on_buffer(bh);
516 if (!buffer_uptodate(bh))
517 err = -EIO;
518 brelse(bh);
519 spin_lock(lock);
520 goto repeat;
521 }
522 }
523 spin_unlock(lock);
524 return err;
525}
526
01a05b33 527static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 528{
01a05b33 529 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 530 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 531}
c2d75438 532
01a05b33
AV
533static void do_thaw_all(struct work_struct *work)
534{
535 iterate_supers(do_thaw_one, NULL);
053c525f 536 kfree(work);
c2d75438
ES
537 printk(KERN_WARNING "Emergency Thaw complete\n");
538}
539
540/**
541 * emergency_thaw_all -- forcibly thaw every frozen filesystem
542 *
543 * Used for emergency unfreeze of all filesystems via SysRq
544 */
545void emergency_thaw_all(void)
546{
053c525f
JA
547 struct work_struct *work;
548
549 work = kmalloc(sizeof(*work), GFP_ATOMIC);
550 if (work) {
551 INIT_WORK(work, do_thaw_all);
552 schedule_work(work);
553 }
c2d75438
ES
554}
555
1da177e4 556/**
78a4a50a 557 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 558 * @mapping: the mapping which wants those buffers written
1da177e4
LT
559 *
560 * Starts I/O against the buffers at mapping->private_list, and waits upon
561 * that I/O.
562 *
67be2dd1
MW
563 * Basically, this is a convenience function for fsync().
564 * @mapping is a file or directory which needs those buffers to be written for
565 * a successful fsync().
1da177e4
LT
566 */
567int sync_mapping_buffers(struct address_space *mapping)
568{
252aa6f5 569 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
570
571 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572 return 0;
573
574 return fsync_buffers_list(&buffer_mapping->private_lock,
575 &mapping->private_list);
576}
577EXPORT_SYMBOL(sync_mapping_buffers);
578
579/*
580 * Called when we've recently written block `bblock', and it is known that
581 * `bblock' was for a buffer_boundary() buffer. This means that the block at
582 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
583 * dirty, schedule it for IO. So that indirects merge nicely with their data.
584 */
585void write_boundary_block(struct block_device *bdev,
586 sector_t bblock, unsigned blocksize)
587{
588 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589 if (bh) {
590 if (buffer_dirty(bh))
591 ll_rw_block(WRITE, 1, &bh);
592 put_bh(bh);
593 }
594}
595
596void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597{
598 struct address_space *mapping = inode->i_mapping;
599 struct address_space *buffer_mapping = bh->b_page->mapping;
600
601 mark_buffer_dirty(bh);
252aa6f5
RA
602 if (!mapping->private_data) {
603 mapping->private_data = buffer_mapping;
1da177e4 604 } else {
252aa6f5 605 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 606 }
535ee2fb 607 if (!bh->b_assoc_map) {
1da177e4
LT
608 spin_lock(&buffer_mapping->private_lock);
609 list_move_tail(&bh->b_assoc_buffers,
610 &mapping->private_list);
58ff407b 611 bh->b_assoc_map = mapping;
1da177e4
LT
612 spin_unlock(&buffer_mapping->private_lock);
613 }
614}
615EXPORT_SYMBOL(mark_buffer_dirty_inode);
616
787d2214
NP
617/*
618 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619 * dirty.
620 *
621 * If warn is true, then emit a warning if the page is not uptodate and has
622 * not been truncated.
c4843a75
GT
623 *
624 * The caller must hold mem_cgroup_begin_page_stat() lock.
787d2214 625 */
c4843a75
GT
626static void __set_page_dirty(struct page *page, struct address_space *mapping,
627 struct mem_cgroup *memcg, int warn)
787d2214 628{
227d53b3
KM
629 unsigned long flags;
630
631 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
632 if (page->mapping) { /* Race with truncate? */
633 WARN_ON_ONCE(warn && !PageUptodate(page));
c4843a75 634 account_page_dirtied(page, mapping, memcg);
787d2214
NP
635 radix_tree_tag_set(&mapping->page_tree,
636 page_index(page), PAGECACHE_TAG_DIRTY);
637 }
227d53b3 638 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214
NP
639}
640
1da177e4
LT
641/*
642 * Add a page to the dirty page list.
643 *
644 * It is a sad fact of life that this function is called from several places
645 * deeply under spinlocking. It may not sleep.
646 *
647 * If the page has buffers, the uptodate buffers are set dirty, to preserve
648 * dirty-state coherency between the page and the buffers. It the page does
649 * not have buffers then when they are later attached they will all be set
650 * dirty.
651 *
652 * The buffers are dirtied before the page is dirtied. There's a small race
653 * window in which a writepage caller may see the page cleanness but not the
654 * buffer dirtiness. That's fine. If this code were to set the page dirty
655 * before the buffers, a concurrent writepage caller could clear the page dirty
656 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657 * page on the dirty page list.
658 *
659 * We use private_lock to lock against try_to_free_buffers while using the
660 * page's buffer list. Also use this to protect against clean buffers being
661 * added to the page after it was set dirty.
662 *
663 * FIXME: may need to call ->reservepage here as well. That's rather up to the
664 * address_space though.
665 */
666int __set_page_dirty_buffers(struct page *page)
667{
a8e7d49a 668 int newly_dirty;
c4843a75 669 struct mem_cgroup *memcg;
787d2214 670 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
671
672 if (unlikely(!mapping))
673 return !TestSetPageDirty(page);
1da177e4
LT
674
675 spin_lock(&mapping->private_lock);
676 if (page_has_buffers(page)) {
677 struct buffer_head *head = page_buffers(page);
678 struct buffer_head *bh = head;
679
680 do {
681 set_buffer_dirty(bh);
682 bh = bh->b_this_page;
683 } while (bh != head);
684 }
c4843a75
GT
685 /*
686 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
687 * per-memcg dirty page counters.
688 */
689 memcg = mem_cgroup_begin_page_stat(page);
a8e7d49a 690 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
691 spin_unlock(&mapping->private_lock);
692
a8e7d49a 693 if (newly_dirty)
c4843a75
GT
694 __set_page_dirty(page, mapping, memcg, 1);
695
696 mem_cgroup_end_page_stat(memcg);
697
698 if (newly_dirty)
699 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
700
a8e7d49a 701 return newly_dirty;
1da177e4
LT
702}
703EXPORT_SYMBOL(__set_page_dirty_buffers);
704
705/*
706 * Write out and wait upon a list of buffers.
707 *
708 * We have conflicting pressures: we want to make sure that all
709 * initially dirty buffers get waited on, but that any subsequently
710 * dirtied buffers don't. After all, we don't want fsync to last
711 * forever if somebody is actively writing to the file.
712 *
713 * Do this in two main stages: first we copy dirty buffers to a
714 * temporary inode list, queueing the writes as we go. Then we clean
715 * up, waiting for those writes to complete.
716 *
717 * During this second stage, any subsequent updates to the file may end
718 * up refiling the buffer on the original inode's dirty list again, so
719 * there is a chance we will end up with a buffer queued for write but
720 * not yet completed on that list. So, as a final cleanup we go through
721 * the osync code to catch these locked, dirty buffers without requeuing
722 * any newly dirty buffers for write.
723 */
724static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
725{
726 struct buffer_head *bh;
727 struct list_head tmp;
7eaceacc 728 struct address_space *mapping;
1da177e4 729 int err = 0, err2;
4ee2491e 730 struct blk_plug plug;
1da177e4
LT
731
732 INIT_LIST_HEAD(&tmp);
4ee2491e 733 blk_start_plug(&plug);
1da177e4
LT
734
735 spin_lock(lock);
736 while (!list_empty(list)) {
737 bh = BH_ENTRY(list->next);
535ee2fb 738 mapping = bh->b_assoc_map;
58ff407b 739 __remove_assoc_queue(bh);
535ee2fb
JK
740 /* Avoid race with mark_buffer_dirty_inode() which does
741 * a lockless check and we rely on seeing the dirty bit */
742 smp_mb();
1da177e4
LT
743 if (buffer_dirty(bh) || buffer_locked(bh)) {
744 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 745 bh->b_assoc_map = mapping;
1da177e4
LT
746 if (buffer_dirty(bh)) {
747 get_bh(bh);
748 spin_unlock(lock);
749 /*
750 * Ensure any pending I/O completes so that
9cb569d6
CH
751 * write_dirty_buffer() actually writes the
752 * current contents - it is a noop if I/O is
753 * still in flight on potentially older
754 * contents.
1da177e4 755 */
721a9602 756 write_dirty_buffer(bh, WRITE_SYNC);
9cf6b720
JA
757
758 /*
759 * Kick off IO for the previous mapping. Note
760 * that we will not run the very last mapping,
761 * wait_on_buffer() will do that for us
762 * through sync_buffer().
763 */
1da177e4
LT
764 brelse(bh);
765 spin_lock(lock);
766 }
767 }
768 }
769
4ee2491e
JA
770 spin_unlock(lock);
771 blk_finish_plug(&plug);
772 spin_lock(lock);
773
1da177e4
LT
774 while (!list_empty(&tmp)) {
775 bh = BH_ENTRY(tmp.prev);
1da177e4 776 get_bh(bh);
535ee2fb
JK
777 mapping = bh->b_assoc_map;
778 __remove_assoc_queue(bh);
779 /* Avoid race with mark_buffer_dirty_inode() which does
780 * a lockless check and we rely on seeing the dirty bit */
781 smp_mb();
782 if (buffer_dirty(bh)) {
783 list_add(&bh->b_assoc_buffers,
e3892296 784 &mapping->private_list);
535ee2fb
JK
785 bh->b_assoc_map = mapping;
786 }
1da177e4
LT
787 spin_unlock(lock);
788 wait_on_buffer(bh);
789 if (!buffer_uptodate(bh))
790 err = -EIO;
791 brelse(bh);
792 spin_lock(lock);
793 }
794
795 spin_unlock(lock);
796 err2 = osync_buffers_list(lock, list);
797 if (err)
798 return err;
799 else
800 return err2;
801}
802
803/*
804 * Invalidate any and all dirty buffers on a given inode. We are
805 * probably unmounting the fs, but that doesn't mean we have already
806 * done a sync(). Just drop the buffers from the inode list.
807 *
808 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
809 * assumes that all the buffers are against the blockdev. Not true
810 * for reiserfs.
811 */
812void invalidate_inode_buffers(struct inode *inode)
813{
814 if (inode_has_buffers(inode)) {
815 struct address_space *mapping = &inode->i_data;
816 struct list_head *list = &mapping->private_list;
252aa6f5 817 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
818
819 spin_lock(&buffer_mapping->private_lock);
820 while (!list_empty(list))
821 __remove_assoc_queue(BH_ENTRY(list->next));
822 spin_unlock(&buffer_mapping->private_lock);
823 }
824}
52b19ac9 825EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
826
827/*
828 * Remove any clean buffers from the inode's buffer list. This is called
829 * when we're trying to free the inode itself. Those buffers can pin it.
830 *
831 * Returns true if all buffers were removed.
832 */
833int remove_inode_buffers(struct inode *inode)
834{
835 int ret = 1;
836
837 if (inode_has_buffers(inode)) {
838 struct address_space *mapping = &inode->i_data;
839 struct list_head *list = &mapping->private_list;
252aa6f5 840 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
841
842 spin_lock(&buffer_mapping->private_lock);
843 while (!list_empty(list)) {
844 struct buffer_head *bh = BH_ENTRY(list->next);
845 if (buffer_dirty(bh)) {
846 ret = 0;
847 break;
848 }
849 __remove_assoc_queue(bh);
850 }
851 spin_unlock(&buffer_mapping->private_lock);
852 }
853 return ret;
854}
855
856/*
857 * Create the appropriate buffers when given a page for data area and
858 * the size of each buffer.. Use the bh->b_this_page linked list to
859 * follow the buffers created. Return NULL if unable to create more
860 * buffers.
861 *
862 * The retry flag is used to differentiate async IO (paging, swapping)
863 * which may not fail from ordinary buffer allocations.
864 */
865struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
866 int retry)
867{
868 struct buffer_head *bh, *head;
869 long offset;
870
871try_again:
872 head = NULL;
873 offset = PAGE_SIZE;
874 while ((offset -= size) >= 0) {
875 bh = alloc_buffer_head(GFP_NOFS);
876 if (!bh)
877 goto no_grow;
878
1da177e4
LT
879 bh->b_this_page = head;
880 bh->b_blocknr = -1;
881 head = bh;
882
1da177e4
LT
883 bh->b_size = size;
884
885 /* Link the buffer to its page */
886 set_bh_page(bh, page, offset);
1da177e4
LT
887 }
888 return head;
889/*
890 * In case anything failed, we just free everything we got.
891 */
892no_grow:
893 if (head) {
894 do {
895 bh = head;
896 head = head->b_this_page;
897 free_buffer_head(bh);
898 } while (head);
899 }
900
901 /*
902 * Return failure for non-async IO requests. Async IO requests
903 * are not allowed to fail, so we have to wait until buffer heads
904 * become available. But we don't want tasks sleeping with
905 * partially complete buffers, so all were released above.
906 */
907 if (!retry)
908 return NULL;
909
910 /* We're _really_ low on memory. Now we just
911 * wait for old buffer heads to become free due to
912 * finishing IO. Since this is an async request and
913 * the reserve list is empty, we're sure there are
914 * async buffer heads in use.
915 */
916 free_more_memory();
917 goto try_again;
918}
919EXPORT_SYMBOL_GPL(alloc_page_buffers);
920
921static inline void
922link_dev_buffers(struct page *page, struct buffer_head *head)
923{
924 struct buffer_head *bh, *tail;
925
926 bh = head;
927 do {
928 tail = bh;
929 bh = bh->b_this_page;
930 } while (bh);
931 tail->b_this_page = head;
932 attach_page_buffers(page, head);
933}
934
bbec0270
LT
935static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
936{
937 sector_t retval = ~((sector_t)0);
938 loff_t sz = i_size_read(bdev->bd_inode);
939
940 if (sz) {
941 unsigned int sizebits = blksize_bits(size);
942 retval = (sz >> sizebits);
943 }
944 return retval;
945}
946
1da177e4
LT
947/*
948 * Initialise the state of a blockdev page's buffers.
949 */
676ce6d5 950static sector_t
1da177e4
LT
951init_page_buffers(struct page *page, struct block_device *bdev,
952 sector_t block, int size)
953{
954 struct buffer_head *head = page_buffers(page);
955 struct buffer_head *bh = head;
956 int uptodate = PageUptodate(page);
bbec0270 957 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
958
959 do {
960 if (!buffer_mapped(bh)) {
961 init_buffer(bh, NULL, NULL);
962 bh->b_bdev = bdev;
963 bh->b_blocknr = block;
964 if (uptodate)
965 set_buffer_uptodate(bh);
080399aa
JM
966 if (block < end_block)
967 set_buffer_mapped(bh);
1da177e4
LT
968 }
969 block++;
970 bh = bh->b_this_page;
971 } while (bh != head);
676ce6d5
HD
972
973 /*
974 * Caller needs to validate requested block against end of device.
975 */
976 return end_block;
1da177e4
LT
977}
978
979/*
980 * Create the page-cache page that contains the requested block.
981 *
676ce6d5 982 * This is used purely for blockdev mappings.
1da177e4 983 */
676ce6d5 984static int
1da177e4 985grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 986 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
987{
988 struct inode *inode = bdev->bd_inode;
989 struct page *page;
990 struct buffer_head *bh;
676ce6d5
HD
991 sector_t end_block;
992 int ret = 0; /* Will call free_more_memory() */
84235de3 993 gfp_t gfp_mask;
1da177e4 994
c62d2555 995 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 996
84235de3
JW
997 /*
998 * XXX: __getblk_slow() can not really deal with failure and
999 * will endlessly loop on improvised global reclaim. Prefer
1000 * looping in the allocator rather than here, at least that
1001 * code knows what it's doing.
1002 */
1003 gfp_mask |= __GFP_NOFAIL;
1004
1005 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 1006 if (!page)
676ce6d5 1007 return ret;
1da177e4 1008
e827f923 1009 BUG_ON(!PageLocked(page));
1da177e4
LT
1010
1011 if (page_has_buffers(page)) {
1012 bh = page_buffers(page);
1013 if (bh->b_size == size) {
676ce6d5 1014 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
1015 (sector_t)index << sizebits,
1016 size);
676ce6d5 1017 goto done;
1da177e4
LT
1018 }
1019 if (!try_to_free_buffers(page))
1020 goto failed;
1021 }
1022
1023 /*
1024 * Allocate some buffers for this page
1025 */
1026 bh = alloc_page_buffers(page, size, 0);
1027 if (!bh)
1028 goto failed;
1029
1030 /*
1031 * Link the page to the buffers and initialise them. Take the
1032 * lock to be atomic wrt __find_get_block(), which does not
1033 * run under the page lock.
1034 */
1035 spin_lock(&inode->i_mapping->private_lock);
1036 link_dev_buffers(page, bh);
f2d5a944
AA
1037 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1038 size);
1da177e4 1039 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1040done:
1041 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1042failed:
1da177e4
LT
1043 unlock_page(page);
1044 page_cache_release(page);
676ce6d5 1045 return ret;
1da177e4
LT
1046}
1047
1048/*
1049 * Create buffers for the specified block device block's page. If
1050 * that page was dirty, the buffers are set dirty also.
1da177e4 1051 */
858119e1 1052static int
3b5e6454 1053grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1054{
1da177e4
LT
1055 pgoff_t index;
1056 int sizebits;
1057
1058 sizebits = -1;
1059 do {
1060 sizebits++;
1061 } while ((size << sizebits) < PAGE_SIZE);
1062
1063 index = block >> sizebits;
1da177e4 1064
e5657933
AM
1065 /*
1066 * Check for a block which wants to lie outside our maximum possible
1067 * pagecache index. (this comparison is done using sector_t types).
1068 */
1069 if (unlikely(index != block >> sizebits)) {
e5657933 1070 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1071 "device %pg\n",
8e24eea7 1072 __func__, (unsigned long long)block,
a1c6f057 1073 bdev);
e5657933
AM
1074 return -EIO;
1075 }
676ce6d5 1076
1da177e4 1077 /* Create a page with the proper size buffers.. */
3b5e6454 1078 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1079}
1080
3b5e6454
GK
1081struct buffer_head *
1082__getblk_slow(struct block_device *bdev, sector_t block,
1083 unsigned size, gfp_t gfp)
1da177e4
LT
1084{
1085 /* Size must be multiple of hard sectorsize */
e1defc4f 1086 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1087 (size < 512 || size > PAGE_SIZE))) {
1088 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089 size);
e1defc4f
MP
1090 printk(KERN_ERR "logical block size: %d\n",
1091 bdev_logical_block_size(bdev));
1da177e4
LT
1092
1093 dump_stack();
1094 return NULL;
1095 }
1096
676ce6d5
HD
1097 for (;;) {
1098 struct buffer_head *bh;
1099 int ret;
1da177e4
LT
1100
1101 bh = __find_get_block(bdev, block, size);
1102 if (bh)
1103 return bh;
676ce6d5 1104
3b5e6454 1105 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1106 if (ret < 0)
1107 return NULL;
1108 if (ret == 0)
1109 free_more_memory();
1da177e4
LT
1110 }
1111}
3b5e6454 1112EXPORT_SYMBOL(__getblk_slow);
1da177e4
LT
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1139 * @bh: the buffer_head to mark dirty
1da177e4
LT
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1147 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1148 */
fc9b52cd 1149void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1150{
787d2214 1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1152
5305cb83
TH
1153 trace_block_dirty_buffer(bh);
1154
1be62dc1
LT
1155 /*
1156 * Very *carefully* optimize the it-is-already-dirty case.
1157 *
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1160 */
1161 if (buffer_dirty(bh)) {
1162 smp_mb();
1163 if (buffer_dirty(bh))
1164 return;
1165 }
1166
a8e7d49a
LT
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
c4843a75
GT
1169 struct address_space *mapping = NULL;
1170 struct mem_cgroup *memcg;
1171
1172 memcg = mem_cgroup_begin_page_stat(page);
8e9d78ed 1173 if (!TestSetPageDirty(page)) {
c4843a75 1174 mapping = page_mapping(page);
8e9d78ed 1175 if (mapping)
c4843a75 1176 __set_page_dirty(page, mapping, memcg, 0);
8e9d78ed 1177 }
c4843a75
GT
1178 mem_cgroup_end_page_stat(memcg);
1179 if (mapping)
1180 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1181 }
1da177e4 1182}
1fe72eaa 1183EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1184
1185/*
1186 * Decrement a buffer_head's reference count. If all buffers against a page
1187 * have zero reference count, are clean and unlocked, and if the page is clean
1188 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190 * a page but it ends up not being freed, and buffers may later be reattached).
1191 */
1192void __brelse(struct buffer_head * buf)
1193{
1194 if (atomic_read(&buf->b_count)) {
1195 put_bh(buf);
1196 return;
1197 }
5c752ad9 1198 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1199}
1fe72eaa 1200EXPORT_SYMBOL(__brelse);
1da177e4
LT
1201
1202/*
1203 * bforget() is like brelse(), except it discards any
1204 * potentially dirty data.
1205 */
1206void __bforget(struct buffer_head *bh)
1207{
1208 clear_buffer_dirty(bh);
535ee2fb 1209 if (bh->b_assoc_map) {
1da177e4
LT
1210 struct address_space *buffer_mapping = bh->b_page->mapping;
1211
1212 spin_lock(&buffer_mapping->private_lock);
1213 list_del_init(&bh->b_assoc_buffers);
58ff407b 1214 bh->b_assoc_map = NULL;
1da177e4
LT
1215 spin_unlock(&buffer_mapping->private_lock);
1216 }
1217 __brelse(bh);
1218}
1fe72eaa 1219EXPORT_SYMBOL(__bforget);
1da177e4
LT
1220
1221static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222{
1223 lock_buffer(bh);
1224 if (buffer_uptodate(bh)) {
1225 unlock_buffer(bh);
1226 return bh;
1227 } else {
1228 get_bh(bh);
1229 bh->b_end_io = end_buffer_read_sync;
1230 submit_bh(READ, bh);
1231 wait_on_buffer(bh);
1232 if (buffer_uptodate(bh))
1233 return bh;
1234 }
1235 brelse(bh);
1236 return NULL;
1237}
1238
1239/*
1240 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1241 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1242 * refcount elevated by one when they're in an LRU. A buffer can only appear
1243 * once in a particular CPU's LRU. A single buffer can be present in multiple
1244 * CPU's LRUs at the same time.
1245 *
1246 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247 * sb_find_get_block().
1248 *
1249 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1250 * a local interrupt disable for that.
1251 */
1252
86cf78d7 1253#define BH_LRU_SIZE 16
1da177e4
LT
1254
1255struct bh_lru {
1256 struct buffer_head *bhs[BH_LRU_SIZE];
1257};
1258
1259static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260
1261#ifdef CONFIG_SMP
1262#define bh_lru_lock() local_irq_disable()
1263#define bh_lru_unlock() local_irq_enable()
1264#else
1265#define bh_lru_lock() preempt_disable()
1266#define bh_lru_unlock() preempt_enable()
1267#endif
1268
1269static inline void check_irqs_on(void)
1270{
1271#ifdef irqs_disabled
1272 BUG_ON(irqs_disabled());
1273#endif
1274}
1275
1276/*
1277 * The LRU management algorithm is dopey-but-simple. Sorry.
1278 */
1279static void bh_lru_install(struct buffer_head *bh)
1280{
1281 struct buffer_head *evictee = NULL;
1da177e4
LT
1282
1283 check_irqs_on();
1284 bh_lru_lock();
c7b92516 1285 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1286 struct buffer_head *bhs[BH_LRU_SIZE];
1287 int in;
1288 int out = 0;
1289
1290 get_bh(bh);
1291 bhs[out++] = bh;
1292 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1293 struct buffer_head *bh2 =
1294 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1295
1296 if (bh2 == bh) {
1297 __brelse(bh2);
1298 } else {
1299 if (out >= BH_LRU_SIZE) {
1300 BUG_ON(evictee != NULL);
1301 evictee = bh2;
1302 } else {
1303 bhs[out++] = bh2;
1304 }
1305 }
1306 }
1307 while (out < BH_LRU_SIZE)
1308 bhs[out++] = NULL;
ca6673b0 1309 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1310 }
1311 bh_lru_unlock();
1312
1313 if (evictee)
1314 __brelse(evictee);
1315}
1316
1317/*
1318 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1319 */
858119e1 1320static struct buffer_head *
3991d3bd 1321lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1322{
1323 struct buffer_head *ret = NULL;
3991d3bd 1324 unsigned int i;
1da177e4
LT
1325
1326 check_irqs_on();
1327 bh_lru_lock();
1da177e4 1328 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1329 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1330
9470dd5d
ZB
1331 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1332 bh->b_size == size) {
1da177e4
LT
1333 if (i) {
1334 while (i) {
c7b92516
CL
1335 __this_cpu_write(bh_lrus.bhs[i],
1336 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1337 i--;
1338 }
c7b92516 1339 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1340 }
1341 get_bh(bh);
1342 ret = bh;
1343 break;
1344 }
1345 }
1346 bh_lru_unlock();
1347 return ret;
1348}
1349
1350/*
1351 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1352 * it in the LRU and mark it as accessed. If it is not present then return
1353 * NULL
1354 */
1355struct buffer_head *
3991d3bd 1356__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1357{
1358 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1359
1360 if (bh == NULL) {
2457aec6 1361 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1362 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1363 if (bh)
1364 bh_lru_install(bh);
2457aec6 1365 } else
1da177e4 1366 touch_buffer(bh);
2457aec6 1367
1da177e4
LT
1368 return bh;
1369}
1370EXPORT_SYMBOL(__find_get_block);
1371
1372/*
3b5e6454 1373 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1374 * which corresponds to the passed block_device, block and size. The
1375 * returned buffer has its reference count incremented.
1376 *
3b5e6454
GK
1377 * __getblk_gfp() will lock up the machine if grow_dev_page's
1378 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1379 */
1380struct buffer_head *
3b5e6454
GK
1381__getblk_gfp(struct block_device *bdev, sector_t block,
1382 unsigned size, gfp_t gfp)
1da177e4
LT
1383{
1384 struct buffer_head *bh = __find_get_block(bdev, block, size);
1385
1386 might_sleep();
1387 if (bh == NULL)
3b5e6454 1388 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1389 return bh;
1390}
3b5e6454 1391EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1392
1393/*
1394 * Do async read-ahead on a buffer..
1395 */
3991d3bd 1396void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1397{
1398 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1399 if (likely(bh)) {
1400 ll_rw_block(READA, 1, &bh);
1401 brelse(bh);
1402 }
1da177e4
LT
1403}
1404EXPORT_SYMBOL(__breadahead);
1405
1406/**
3b5e6454 1407 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1408 * @bdev: the block_device to read from
1da177e4
LT
1409 * @block: number of block
1410 * @size: size (in bytes) to read
3b5e6454
GK
1411 * @gfp: page allocation flag
1412 *
1da177e4 1413 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1414 * The page cache can be allocated from non-movable area
1415 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1416 * It returns NULL if the block was unreadable.
1417 */
1418struct buffer_head *
3b5e6454
GK
1419__bread_gfp(struct block_device *bdev, sector_t block,
1420 unsigned size, gfp_t gfp)
1da177e4 1421{
3b5e6454 1422 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1423
a3e713b5 1424 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1425 bh = __bread_slow(bh);
1426 return bh;
1427}
3b5e6454 1428EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1429
1430/*
1431 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1432 * This doesn't race because it runs in each cpu either in irq
1433 * or with preempt disabled.
1434 */
1435static void invalidate_bh_lru(void *arg)
1436{
1437 struct bh_lru *b = &get_cpu_var(bh_lrus);
1438 int i;
1439
1440 for (i = 0; i < BH_LRU_SIZE; i++) {
1441 brelse(b->bhs[i]);
1442 b->bhs[i] = NULL;
1443 }
1444 put_cpu_var(bh_lrus);
1445}
42be35d0
GBY
1446
1447static bool has_bh_in_lru(int cpu, void *dummy)
1448{
1449 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450 int i;
1da177e4 1451
42be35d0
GBY
1452 for (i = 0; i < BH_LRU_SIZE; i++) {
1453 if (b->bhs[i])
1454 return 1;
1455 }
1456
1457 return 0;
1458}
1459
f9a14399 1460void invalidate_bh_lrus(void)
1da177e4 1461{
42be35d0 1462 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1463}
9db5579b 1464EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1465
1466void set_bh_page(struct buffer_head *bh,
1467 struct page *page, unsigned long offset)
1468{
1469 bh->b_page = page;
e827f923 1470 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1471 if (PageHighMem(page))
1472 /*
1473 * This catches illegal uses and preserves the offset:
1474 */
1475 bh->b_data = (char *)(0 + offset);
1476 else
1477 bh->b_data = page_address(page) + offset;
1478}
1479EXPORT_SYMBOL(set_bh_page);
1480
1481/*
1482 * Called when truncating a buffer on a page completely.
1483 */
e7470ee8
MG
1484
1485/* Bits that are cleared during an invalidate */
1486#define BUFFER_FLAGS_DISCARD \
1487 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1488 1 << BH_Delay | 1 << BH_Unwritten)
1489
858119e1 1490static void discard_buffer(struct buffer_head * bh)
1da177e4 1491{
e7470ee8
MG
1492 unsigned long b_state, b_state_old;
1493
1da177e4
LT
1494 lock_buffer(bh);
1495 clear_buffer_dirty(bh);
1496 bh->b_bdev = NULL;
e7470ee8
MG
1497 b_state = bh->b_state;
1498 for (;;) {
1499 b_state_old = cmpxchg(&bh->b_state, b_state,
1500 (b_state & ~BUFFER_FLAGS_DISCARD));
1501 if (b_state_old == b_state)
1502 break;
1503 b_state = b_state_old;
1504 }
1da177e4
LT
1505 unlock_buffer(bh);
1506}
1507
1da177e4 1508/**
814e1d25 1509 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1510 *
1511 * @page: the page which is affected
d47992f8
LC
1512 * @offset: start of the range to invalidate
1513 * @length: length of the range to invalidate
1da177e4
LT
1514 *
1515 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1516 * invalidated by a truncate operation.
1da177e4
LT
1517 *
1518 * block_invalidatepage() does not have to release all buffers, but it must
1519 * ensure that no dirty buffer is left outside @offset and that no I/O
1520 * is underway against any of the blocks which are outside the truncation
1521 * point. Because the caller is about to free (and possibly reuse) those
1522 * blocks on-disk.
1523 */
d47992f8
LC
1524void block_invalidatepage(struct page *page, unsigned int offset,
1525 unsigned int length)
1da177e4
LT
1526{
1527 struct buffer_head *head, *bh, *next;
1528 unsigned int curr_off = 0;
d47992f8 1529 unsigned int stop = length + offset;
1da177e4
LT
1530
1531 BUG_ON(!PageLocked(page));
1532 if (!page_has_buffers(page))
1533 goto out;
1534
d47992f8
LC
1535 /*
1536 * Check for overflow
1537 */
1538 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1539
1da177e4
LT
1540 head = page_buffers(page);
1541 bh = head;
1542 do {
1543 unsigned int next_off = curr_off + bh->b_size;
1544 next = bh->b_this_page;
1545
d47992f8
LC
1546 /*
1547 * Are we still fully in range ?
1548 */
1549 if (next_off > stop)
1550 goto out;
1551
1da177e4
LT
1552 /*
1553 * is this block fully invalidated?
1554 */
1555 if (offset <= curr_off)
1556 discard_buffer(bh);
1557 curr_off = next_off;
1558 bh = next;
1559 } while (bh != head);
1560
1561 /*
1562 * We release buffers only if the entire page is being invalidated.
1563 * The get_block cached value has been unconditionally invalidated,
1564 * so real IO is not possible anymore.
1565 */
1566 if (offset == 0)
2ff28e22 1567 try_to_release_page(page, 0);
1da177e4 1568out:
2ff28e22 1569 return;
1da177e4
LT
1570}
1571EXPORT_SYMBOL(block_invalidatepage);
1572
d47992f8 1573
1da177e4
LT
1574/*
1575 * We attach and possibly dirty the buffers atomically wrt
1576 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1577 * is already excluded via the page lock.
1578 */
1579void create_empty_buffers(struct page *page,
1580 unsigned long blocksize, unsigned long b_state)
1581{
1582 struct buffer_head *bh, *head, *tail;
1583
1584 head = alloc_page_buffers(page, blocksize, 1);
1585 bh = head;
1586 do {
1587 bh->b_state |= b_state;
1588 tail = bh;
1589 bh = bh->b_this_page;
1590 } while (bh);
1591 tail->b_this_page = head;
1592
1593 spin_lock(&page->mapping->private_lock);
1594 if (PageUptodate(page) || PageDirty(page)) {
1595 bh = head;
1596 do {
1597 if (PageDirty(page))
1598 set_buffer_dirty(bh);
1599 if (PageUptodate(page))
1600 set_buffer_uptodate(bh);
1601 bh = bh->b_this_page;
1602 } while (bh != head);
1603 }
1604 attach_page_buffers(page, head);
1605 spin_unlock(&page->mapping->private_lock);
1606}
1607EXPORT_SYMBOL(create_empty_buffers);
1608
1609/*
1610 * We are taking a block for data and we don't want any output from any
1611 * buffer-cache aliases starting from return from that function and
1612 * until the moment when something will explicitly mark the buffer
1613 * dirty (hopefully that will not happen until we will free that block ;-)
1614 * We don't even need to mark it not-uptodate - nobody can expect
1615 * anything from a newly allocated buffer anyway. We used to used
1616 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1617 * don't want to mark the alias unmapped, for example - it would confuse
1618 * anyone who might pick it with bread() afterwards...
1619 *
1620 * Also.. Note that bforget() doesn't lock the buffer. So there can
1621 * be writeout I/O going on against recently-freed buffers. We don't
1622 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1623 * only if we really need to. That happens here.
1624 */
1625void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1626{
1627 struct buffer_head *old_bh;
1628
1629 might_sleep();
1630
385fd4c5 1631 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1632 if (old_bh) {
1633 clear_buffer_dirty(old_bh);
1634 wait_on_buffer(old_bh);
1635 clear_buffer_req(old_bh);
1636 __brelse(old_bh);
1637 }
1638}
1639EXPORT_SYMBOL(unmap_underlying_metadata);
1640
45bce8f3
LT
1641/*
1642 * Size is a power-of-two in the range 512..PAGE_SIZE,
1643 * and the case we care about most is PAGE_SIZE.
1644 *
1645 * So this *could* possibly be written with those
1646 * constraints in mind (relevant mostly if some
1647 * architecture has a slow bit-scan instruction)
1648 */
1649static inline int block_size_bits(unsigned int blocksize)
1650{
1651 return ilog2(blocksize);
1652}
1653
1654static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1655{
1656 BUG_ON(!PageLocked(page));
1657
1658 if (!page_has_buffers(page))
1659 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1660 return page_buffers(page);
1661}
1662
1da177e4
LT
1663/*
1664 * NOTE! All mapped/uptodate combinations are valid:
1665 *
1666 * Mapped Uptodate Meaning
1667 *
1668 * No No "unknown" - must do get_block()
1669 * No Yes "hole" - zero-filled
1670 * Yes No "allocated" - allocated on disk, not read in
1671 * Yes Yes "valid" - allocated and up-to-date in memory.
1672 *
1673 * "Dirty" is valid only with the last case (mapped+uptodate).
1674 */
1675
1676/*
1677 * While block_write_full_page is writing back the dirty buffers under
1678 * the page lock, whoever dirtied the buffers may decide to clean them
1679 * again at any time. We handle that by only looking at the buffer
1680 * state inside lock_buffer().
1681 *
1682 * If block_write_full_page() is called for regular writeback
1683 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1684 * locked buffer. This only can happen if someone has written the buffer
1685 * directly, with submit_bh(). At the address_space level PageWriteback
1686 * prevents this contention from occurring.
6e34eedd
TT
1687 *
1688 * If block_write_full_page() is called with wbc->sync_mode ==
721a9602
JA
1689 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1690 * causes the writes to be flagged as synchronous writes.
1da177e4
LT
1691 */
1692static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1693 get_block_t *get_block, struct writeback_control *wbc,
1694 bh_end_io_t *handler)
1da177e4
LT
1695{
1696 int err;
1697 sector_t block;
1698 sector_t last_block;
f0fbd5fc 1699 struct buffer_head *bh, *head;
45bce8f3 1700 unsigned int blocksize, bbits;
1da177e4 1701 int nr_underway = 0;
bafc0dba 1702 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1da177e4 1703
45bce8f3 1704 head = create_page_buffers(page, inode,
1da177e4 1705 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1706
1707 /*
1708 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1709 * here, and the (potentially unmapped) buffers may become dirty at
1710 * any time. If a buffer becomes dirty here after we've inspected it
1711 * then we just miss that fact, and the page stays dirty.
1712 *
1713 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1714 * handle that here by just cleaning them.
1715 */
1716
1da177e4 1717 bh = head;
45bce8f3
LT
1718 blocksize = bh->b_size;
1719 bbits = block_size_bits(blocksize);
1720
1721 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1722 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1723
1724 /*
1725 * Get all the dirty buffers mapped to disk addresses and
1726 * handle any aliases from the underlying blockdev's mapping.
1727 */
1728 do {
1729 if (block > last_block) {
1730 /*
1731 * mapped buffers outside i_size will occur, because
1732 * this page can be outside i_size when there is a
1733 * truncate in progress.
1734 */
1735 /*
1736 * The buffer was zeroed by block_write_full_page()
1737 */
1738 clear_buffer_dirty(bh);
1739 set_buffer_uptodate(bh);
29a814d2
AT
1740 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1741 buffer_dirty(bh)) {
b0cf2321 1742 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1743 err = get_block(inode, block, bh, 1);
1744 if (err)
1745 goto recover;
29a814d2 1746 clear_buffer_delay(bh);
1da177e4
LT
1747 if (buffer_new(bh)) {
1748 /* blockdev mappings never come here */
1749 clear_buffer_new(bh);
1750 unmap_underlying_metadata(bh->b_bdev,
1751 bh->b_blocknr);
1752 }
1753 }
1754 bh = bh->b_this_page;
1755 block++;
1756 } while (bh != head);
1757
1758 do {
1da177e4
LT
1759 if (!buffer_mapped(bh))
1760 continue;
1761 /*
1762 * If it's a fully non-blocking write attempt and we cannot
1763 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1764 * potentially cause a busy-wait loop from writeback threads
1765 * and kswapd activity, but those code paths have their own
1766 * higher-level throttling.
1da177e4 1767 */
1b430bee 1768 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1769 lock_buffer(bh);
ca5de404 1770 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1771 redirty_page_for_writepage(wbc, page);
1772 continue;
1773 }
1774 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1775 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1776 } else {
1777 unlock_buffer(bh);
1778 }
1779 } while ((bh = bh->b_this_page) != head);
1780
1781 /*
1782 * The page and its buffers are protected by PageWriteback(), so we can
1783 * drop the bh refcounts early.
1784 */
1785 BUG_ON(PageWriteback(page));
1786 set_page_writeback(page);
1da177e4
LT
1787
1788 do {
1789 struct buffer_head *next = bh->b_this_page;
1790 if (buffer_async_write(bh)) {
b16b1deb 1791 submit_bh_wbc(write_op, bh, 0, wbc);
1da177e4
LT
1792 nr_underway++;
1793 }
1da177e4
LT
1794 bh = next;
1795 } while (bh != head);
05937baa 1796 unlock_page(page);
1da177e4
LT
1797
1798 err = 0;
1799done:
1800 if (nr_underway == 0) {
1801 /*
1802 * The page was marked dirty, but the buffers were
1803 * clean. Someone wrote them back by hand with
1804 * ll_rw_block/submit_bh. A rare case.
1805 */
1da177e4 1806 end_page_writeback(page);
3d67f2d7 1807
1da177e4
LT
1808 /*
1809 * The page and buffer_heads can be released at any time from
1810 * here on.
1811 */
1da177e4
LT
1812 }
1813 return err;
1814
1815recover:
1816 /*
1817 * ENOSPC, or some other error. We may already have added some
1818 * blocks to the file, so we need to write these out to avoid
1819 * exposing stale data.
1820 * The page is currently locked and not marked for writeback
1821 */
1822 bh = head;
1823 /* Recovery: lock and submit the mapped buffers */
1824 do {
29a814d2
AT
1825 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1826 !buffer_delay(bh)) {
1da177e4 1827 lock_buffer(bh);
35c80d5f 1828 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1829 } else {
1830 /*
1831 * The buffer may have been set dirty during
1832 * attachment to a dirty page.
1833 */
1834 clear_buffer_dirty(bh);
1835 }
1836 } while ((bh = bh->b_this_page) != head);
1837 SetPageError(page);
1838 BUG_ON(PageWriteback(page));
7e4c3690 1839 mapping_set_error(page->mapping, err);
1da177e4 1840 set_page_writeback(page);
1da177e4
LT
1841 do {
1842 struct buffer_head *next = bh->b_this_page;
1843 if (buffer_async_write(bh)) {
1844 clear_buffer_dirty(bh);
b16b1deb 1845 submit_bh_wbc(write_op, bh, 0, wbc);
1da177e4
LT
1846 nr_underway++;
1847 }
1da177e4
LT
1848 bh = next;
1849 } while (bh != head);
ffda9d30 1850 unlock_page(page);
1da177e4
LT
1851 goto done;
1852}
1853
afddba49
NP
1854/*
1855 * If a page has any new buffers, zero them out here, and mark them uptodate
1856 * and dirty so they'll be written out (in order to prevent uninitialised
1857 * block data from leaking). And clear the new bit.
1858 */
1859void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1860{
1861 unsigned int block_start, block_end;
1862 struct buffer_head *head, *bh;
1863
1864 BUG_ON(!PageLocked(page));
1865 if (!page_has_buffers(page))
1866 return;
1867
1868 bh = head = page_buffers(page);
1869 block_start = 0;
1870 do {
1871 block_end = block_start + bh->b_size;
1872
1873 if (buffer_new(bh)) {
1874 if (block_end > from && block_start < to) {
1875 if (!PageUptodate(page)) {
1876 unsigned start, size;
1877
1878 start = max(from, block_start);
1879 size = min(to, block_end) - start;
1880
eebd2aa3 1881 zero_user(page, start, size);
afddba49
NP
1882 set_buffer_uptodate(bh);
1883 }
1884
1885 clear_buffer_new(bh);
1886 mark_buffer_dirty(bh);
1887 }
1888 }
1889
1890 block_start = block_end;
1891 bh = bh->b_this_page;
1892 } while (bh != head);
1893}
1894EXPORT_SYMBOL(page_zero_new_buffers);
1895
ebdec241 1896int __block_write_begin(struct page *page, loff_t pos, unsigned len,
6e1db88d 1897 get_block_t *get_block)
1da177e4 1898{
ebdec241
CH
1899 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1900 unsigned to = from + len;
6e1db88d 1901 struct inode *inode = page->mapping->host;
1da177e4
LT
1902 unsigned block_start, block_end;
1903 sector_t block;
1904 int err = 0;
1905 unsigned blocksize, bbits;
1906 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1907
1908 BUG_ON(!PageLocked(page));
1909 BUG_ON(from > PAGE_CACHE_SIZE);
1910 BUG_ON(to > PAGE_CACHE_SIZE);
1911 BUG_ON(from > to);
1912
45bce8f3
LT
1913 head = create_page_buffers(page, inode, 0);
1914 blocksize = head->b_size;
1915 bbits = block_size_bits(blocksize);
1da177e4 1916
1da177e4
LT
1917 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1918
1919 for(bh = head, block_start = 0; bh != head || !block_start;
1920 block++, block_start=block_end, bh = bh->b_this_page) {
1921 block_end = block_start + blocksize;
1922 if (block_end <= from || block_start >= to) {
1923 if (PageUptodate(page)) {
1924 if (!buffer_uptodate(bh))
1925 set_buffer_uptodate(bh);
1926 }
1927 continue;
1928 }
1929 if (buffer_new(bh))
1930 clear_buffer_new(bh);
1931 if (!buffer_mapped(bh)) {
b0cf2321 1932 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1933 err = get_block(inode, block, bh, 1);
1934 if (err)
f3ddbdc6 1935 break;
1da177e4 1936 if (buffer_new(bh)) {
1da177e4
LT
1937 unmap_underlying_metadata(bh->b_bdev,
1938 bh->b_blocknr);
1939 if (PageUptodate(page)) {
637aff46 1940 clear_buffer_new(bh);
1da177e4 1941 set_buffer_uptodate(bh);
637aff46 1942 mark_buffer_dirty(bh);
1da177e4
LT
1943 continue;
1944 }
eebd2aa3
CL
1945 if (block_end > to || block_start < from)
1946 zero_user_segments(page,
1947 to, block_end,
1948 block_start, from);
1da177e4
LT
1949 continue;
1950 }
1951 }
1952 if (PageUptodate(page)) {
1953 if (!buffer_uptodate(bh))
1954 set_buffer_uptodate(bh);
1955 continue;
1956 }
1957 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1958 !buffer_unwritten(bh) &&
1da177e4
LT
1959 (block_start < from || block_end > to)) {
1960 ll_rw_block(READ, 1, &bh);
1961 *wait_bh++=bh;
1962 }
1963 }
1964 /*
1965 * If we issued read requests - let them complete.
1966 */
1967 while(wait_bh > wait) {
1968 wait_on_buffer(*--wait_bh);
1969 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1970 err = -EIO;
1da177e4 1971 }
f9f07b6c 1972 if (unlikely(err))
afddba49 1973 page_zero_new_buffers(page, from, to);
1da177e4
LT
1974 return err;
1975}
ebdec241 1976EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
1977
1978static int __block_commit_write(struct inode *inode, struct page *page,
1979 unsigned from, unsigned to)
1980{
1981 unsigned block_start, block_end;
1982 int partial = 0;
1983 unsigned blocksize;
1984 struct buffer_head *bh, *head;
1985
45bce8f3
LT
1986 bh = head = page_buffers(page);
1987 blocksize = bh->b_size;
1da177e4 1988
45bce8f3
LT
1989 block_start = 0;
1990 do {
1da177e4
LT
1991 block_end = block_start + blocksize;
1992 if (block_end <= from || block_start >= to) {
1993 if (!buffer_uptodate(bh))
1994 partial = 1;
1995 } else {
1996 set_buffer_uptodate(bh);
1997 mark_buffer_dirty(bh);
1998 }
afddba49 1999 clear_buffer_new(bh);
45bce8f3
LT
2000
2001 block_start = block_end;
2002 bh = bh->b_this_page;
2003 } while (bh != head);
1da177e4
LT
2004
2005 /*
2006 * If this is a partial write which happened to make all buffers
2007 * uptodate then we can optimize away a bogus readpage() for
2008 * the next read(). Here we 'discover' whether the page went
2009 * uptodate as a result of this (potentially partial) write.
2010 */
2011 if (!partial)
2012 SetPageUptodate(page);
2013 return 0;
2014}
2015
afddba49 2016/*
155130a4
CH
2017 * block_write_begin takes care of the basic task of block allocation and
2018 * bringing partial write blocks uptodate first.
2019 *
7bb46a67 2020 * The filesystem needs to handle block truncation upon failure.
afddba49 2021 */
155130a4
CH
2022int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2023 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2024{
6e1db88d 2025 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 2026 struct page *page;
6e1db88d 2027 int status;
afddba49 2028
6e1db88d
CH
2029 page = grab_cache_page_write_begin(mapping, index, flags);
2030 if (!page)
2031 return -ENOMEM;
afddba49 2032
6e1db88d 2033 status = __block_write_begin(page, pos, len, get_block);
afddba49 2034 if (unlikely(status)) {
6e1db88d
CH
2035 unlock_page(page);
2036 page_cache_release(page);
2037 page = NULL;
afddba49
NP
2038 }
2039
6e1db88d 2040 *pagep = page;
afddba49
NP
2041 return status;
2042}
2043EXPORT_SYMBOL(block_write_begin);
2044
2045int block_write_end(struct file *file, struct address_space *mapping,
2046 loff_t pos, unsigned len, unsigned copied,
2047 struct page *page, void *fsdata)
2048{
2049 struct inode *inode = mapping->host;
2050 unsigned start;
2051
2052 start = pos & (PAGE_CACHE_SIZE - 1);
2053
2054 if (unlikely(copied < len)) {
2055 /*
2056 * The buffers that were written will now be uptodate, so we
2057 * don't have to worry about a readpage reading them and
2058 * overwriting a partial write. However if we have encountered
2059 * a short write and only partially written into a buffer, it
2060 * will not be marked uptodate, so a readpage might come in and
2061 * destroy our partial write.
2062 *
2063 * Do the simplest thing, and just treat any short write to a
2064 * non uptodate page as a zero-length write, and force the
2065 * caller to redo the whole thing.
2066 */
2067 if (!PageUptodate(page))
2068 copied = 0;
2069
2070 page_zero_new_buffers(page, start+copied, start+len);
2071 }
2072 flush_dcache_page(page);
2073
2074 /* This could be a short (even 0-length) commit */
2075 __block_commit_write(inode, page, start, start+copied);
2076
2077 return copied;
2078}
2079EXPORT_SYMBOL(block_write_end);
2080
2081int generic_write_end(struct file *file, struct address_space *mapping,
2082 loff_t pos, unsigned len, unsigned copied,
2083 struct page *page, void *fsdata)
2084{
2085 struct inode *inode = mapping->host;
90a80202 2086 loff_t old_size = inode->i_size;
c7d206b3 2087 int i_size_changed = 0;
afddba49
NP
2088
2089 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2090
2091 /*
2092 * No need to use i_size_read() here, the i_size
2093 * cannot change under us because we hold i_mutex.
2094 *
2095 * But it's important to update i_size while still holding page lock:
2096 * page writeout could otherwise come in and zero beyond i_size.
2097 */
2098 if (pos+copied > inode->i_size) {
2099 i_size_write(inode, pos+copied);
c7d206b3 2100 i_size_changed = 1;
afddba49
NP
2101 }
2102
2103 unlock_page(page);
2104 page_cache_release(page);
2105
90a80202
JK
2106 if (old_size < pos)
2107 pagecache_isize_extended(inode, old_size, pos);
c7d206b3
JK
2108 /*
2109 * Don't mark the inode dirty under page lock. First, it unnecessarily
2110 * makes the holding time of page lock longer. Second, it forces lock
2111 * ordering of page lock and transaction start for journaling
2112 * filesystems.
2113 */
2114 if (i_size_changed)
2115 mark_inode_dirty(inode);
2116
afddba49
NP
2117 return copied;
2118}
2119EXPORT_SYMBOL(generic_write_end);
2120
8ab22b9a
HH
2121/*
2122 * block_is_partially_uptodate checks whether buffers within a page are
2123 * uptodate or not.
2124 *
2125 * Returns true if all buffers which correspond to a file portion
2126 * we want to read are uptodate.
2127 */
c186afb4
AV
2128int block_is_partially_uptodate(struct page *page, unsigned long from,
2129 unsigned long count)
8ab22b9a 2130{
8ab22b9a
HH
2131 unsigned block_start, block_end, blocksize;
2132 unsigned to;
2133 struct buffer_head *bh, *head;
2134 int ret = 1;
2135
2136 if (!page_has_buffers(page))
2137 return 0;
2138
45bce8f3
LT
2139 head = page_buffers(page);
2140 blocksize = head->b_size;
c186afb4 2141 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
8ab22b9a
HH
2142 to = from + to;
2143 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2144 return 0;
2145
8ab22b9a
HH
2146 bh = head;
2147 block_start = 0;
2148 do {
2149 block_end = block_start + blocksize;
2150 if (block_end > from && block_start < to) {
2151 if (!buffer_uptodate(bh)) {
2152 ret = 0;
2153 break;
2154 }
2155 if (block_end >= to)
2156 break;
2157 }
2158 block_start = block_end;
2159 bh = bh->b_this_page;
2160 } while (bh != head);
2161
2162 return ret;
2163}
2164EXPORT_SYMBOL(block_is_partially_uptodate);
2165
1da177e4
LT
2166/*
2167 * Generic "read page" function for block devices that have the normal
2168 * get_block functionality. This is most of the block device filesystems.
2169 * Reads the page asynchronously --- the unlock_buffer() and
2170 * set/clear_buffer_uptodate() functions propagate buffer state into the
2171 * page struct once IO has completed.
2172 */
2173int block_read_full_page(struct page *page, get_block_t *get_block)
2174{
2175 struct inode *inode = page->mapping->host;
2176 sector_t iblock, lblock;
2177 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2178 unsigned int blocksize, bbits;
1da177e4
LT
2179 int nr, i;
2180 int fully_mapped = 1;
2181
45bce8f3
LT
2182 head = create_page_buffers(page, inode, 0);
2183 blocksize = head->b_size;
2184 bbits = block_size_bits(blocksize);
1da177e4 2185
45bce8f3
LT
2186 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2187 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2188 bh = head;
2189 nr = 0;
2190 i = 0;
2191
2192 do {
2193 if (buffer_uptodate(bh))
2194 continue;
2195
2196 if (!buffer_mapped(bh)) {
c64610ba
AM
2197 int err = 0;
2198
1da177e4
LT
2199 fully_mapped = 0;
2200 if (iblock < lblock) {
b0cf2321 2201 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2202 err = get_block(inode, iblock, bh, 0);
2203 if (err)
1da177e4
LT
2204 SetPageError(page);
2205 }
2206 if (!buffer_mapped(bh)) {
eebd2aa3 2207 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2208 if (!err)
2209 set_buffer_uptodate(bh);
1da177e4
LT
2210 continue;
2211 }
2212 /*
2213 * get_block() might have updated the buffer
2214 * synchronously
2215 */
2216 if (buffer_uptodate(bh))
2217 continue;
2218 }
2219 arr[nr++] = bh;
2220 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2221
2222 if (fully_mapped)
2223 SetPageMappedToDisk(page);
2224
2225 if (!nr) {
2226 /*
2227 * All buffers are uptodate - we can set the page uptodate
2228 * as well. But not if get_block() returned an error.
2229 */
2230 if (!PageError(page))
2231 SetPageUptodate(page);
2232 unlock_page(page);
2233 return 0;
2234 }
2235
2236 /* Stage two: lock the buffers */
2237 for (i = 0; i < nr; i++) {
2238 bh = arr[i];
2239 lock_buffer(bh);
2240 mark_buffer_async_read(bh);
2241 }
2242
2243 /*
2244 * Stage 3: start the IO. Check for uptodateness
2245 * inside the buffer lock in case another process reading
2246 * the underlying blockdev brought it uptodate (the sct fix).
2247 */
2248 for (i = 0; i < nr; i++) {
2249 bh = arr[i];
2250 if (buffer_uptodate(bh))
2251 end_buffer_async_read(bh, 1);
2252 else
2253 submit_bh(READ, bh);
2254 }
2255 return 0;
2256}
1fe72eaa 2257EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2258
2259/* utility function for filesystems that need to do work on expanding
89e10787 2260 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2261 * deal with the hole.
2262 */
89e10787 2263int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2264{
2265 struct address_space *mapping = inode->i_mapping;
2266 struct page *page;
89e10787 2267 void *fsdata;
1da177e4
LT
2268 int err;
2269
c08d3b0e 2270 err = inode_newsize_ok(inode, size);
2271 if (err)
1da177e4
LT
2272 goto out;
2273
89e10787
NP
2274 err = pagecache_write_begin(NULL, mapping, size, 0,
2275 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2276 &page, &fsdata);
2277 if (err)
05eb0b51 2278 goto out;
05eb0b51 2279
89e10787
NP
2280 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2281 BUG_ON(err > 0);
05eb0b51 2282
1da177e4
LT
2283out:
2284 return err;
2285}
1fe72eaa 2286EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2287
f1e3af72
AB
2288static int cont_expand_zero(struct file *file, struct address_space *mapping,
2289 loff_t pos, loff_t *bytes)
1da177e4 2290{
1da177e4 2291 struct inode *inode = mapping->host;
1da177e4 2292 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2293 struct page *page;
2294 void *fsdata;
2295 pgoff_t index, curidx;
2296 loff_t curpos;
2297 unsigned zerofrom, offset, len;
2298 int err = 0;
1da177e4 2299
89e10787
NP
2300 index = pos >> PAGE_CACHE_SHIFT;
2301 offset = pos & ~PAGE_CACHE_MASK;
2302
2303 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2304 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2305 if (zerofrom & (blocksize-1)) {
2306 *bytes |= (blocksize-1);
2307 (*bytes)++;
2308 }
89e10787 2309 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2310
89e10787
NP
2311 err = pagecache_write_begin(file, mapping, curpos, len,
2312 AOP_FLAG_UNINTERRUPTIBLE,
2313 &page, &fsdata);
2314 if (err)
2315 goto out;
eebd2aa3 2316 zero_user(page, zerofrom, len);
89e10787
NP
2317 err = pagecache_write_end(file, mapping, curpos, len, len,
2318 page, fsdata);
2319 if (err < 0)
2320 goto out;
2321 BUG_ON(err != len);
2322 err = 0;
061e9746
OH
2323
2324 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd
MP
2325
2326 if (unlikely(fatal_signal_pending(current))) {
2327 err = -EINTR;
2328 goto out;
2329 }
89e10787 2330 }
1da177e4 2331
89e10787
NP
2332 /* page covers the boundary, find the boundary offset */
2333 if (index == curidx) {
2334 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2335 /* if we will expand the thing last block will be filled */
89e10787
NP
2336 if (offset <= zerofrom) {
2337 goto out;
2338 }
2339 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2340 *bytes |= (blocksize-1);
2341 (*bytes)++;
2342 }
89e10787 2343 len = offset - zerofrom;
1da177e4 2344
89e10787
NP
2345 err = pagecache_write_begin(file, mapping, curpos, len,
2346 AOP_FLAG_UNINTERRUPTIBLE,
2347 &page, &fsdata);
2348 if (err)
2349 goto out;
eebd2aa3 2350 zero_user(page, zerofrom, len);
89e10787
NP
2351 err = pagecache_write_end(file, mapping, curpos, len, len,
2352 page, fsdata);
2353 if (err < 0)
2354 goto out;
2355 BUG_ON(err != len);
2356 err = 0;
1da177e4 2357 }
89e10787
NP
2358out:
2359 return err;
2360}
2361
2362/*
2363 * For moronic filesystems that do not allow holes in file.
2364 * We may have to extend the file.
2365 */
282dc178 2366int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2367 loff_t pos, unsigned len, unsigned flags,
2368 struct page **pagep, void **fsdata,
2369 get_block_t *get_block, loff_t *bytes)
2370{
2371 struct inode *inode = mapping->host;
2372 unsigned blocksize = 1 << inode->i_blkbits;
2373 unsigned zerofrom;
2374 int err;
2375
2376 err = cont_expand_zero(file, mapping, pos, bytes);
2377 if (err)
155130a4 2378 return err;
89e10787
NP
2379
2380 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2381 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2382 *bytes |= (blocksize-1);
2383 (*bytes)++;
1da177e4 2384 }
1da177e4 2385
155130a4 2386 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2387}
1fe72eaa 2388EXPORT_SYMBOL(cont_write_begin);
1da177e4 2389
1da177e4
LT
2390int block_commit_write(struct page *page, unsigned from, unsigned to)
2391{
2392 struct inode *inode = page->mapping->host;
2393 __block_commit_write(inode,page,from,to);
2394 return 0;
2395}
1fe72eaa 2396EXPORT_SYMBOL(block_commit_write);
1da177e4 2397
54171690
DC
2398/*
2399 * block_page_mkwrite() is not allowed to change the file size as it gets
2400 * called from a page fault handler when a page is first dirtied. Hence we must
2401 * be careful to check for EOF conditions here. We set the page up correctly
2402 * for a written page which means we get ENOSPC checking when writing into
2403 * holes and correct delalloc and unwritten extent mapping on filesystems that
2404 * support these features.
2405 *
2406 * We are not allowed to take the i_mutex here so we have to play games to
2407 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2408 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2409 * page lock we can determine safely if the page is beyond EOF. If it is not
2410 * beyond EOF, then the page is guaranteed safe against truncation until we
2411 * unlock the page.
ea13a864 2412 *
14da9200 2413 * Direct callers of this function should protect against filesystem freezing
5c500029 2414 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2415 */
5c500029 2416int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2417 get_block_t get_block)
54171690 2418{
c2ec175c 2419 struct page *page = vmf->page;
496ad9aa 2420 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2421 unsigned long end;
2422 loff_t size;
24da4fab 2423 int ret;
54171690
DC
2424
2425 lock_page(page);
2426 size = i_size_read(inode);
2427 if ((page->mapping != inode->i_mapping) ||
18336338 2428 (page_offset(page) > size)) {
24da4fab
JK
2429 /* We overload EFAULT to mean page got truncated */
2430 ret = -EFAULT;
2431 goto out_unlock;
54171690
DC
2432 }
2433
2434 /* page is wholly or partially inside EOF */
2435 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2436 end = size & ~PAGE_CACHE_MASK;
2437 else
2438 end = PAGE_CACHE_SIZE;
2439
ebdec241 2440 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2441 if (!ret)
2442 ret = block_commit_write(page, 0, end);
2443
24da4fab
JK
2444 if (unlikely(ret < 0))
2445 goto out_unlock;
ea13a864 2446 set_page_dirty(page);
1d1d1a76 2447 wait_for_stable_page(page);
24da4fab
JK
2448 return 0;
2449out_unlock:
2450 unlock_page(page);
54171690 2451 return ret;
24da4fab 2452}
1fe72eaa 2453EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2454
2455/*
03158cd7 2456 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2457 * immediately, while under the page lock. So it needs a special end_io
2458 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2459 */
2460static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2461{
68671f35 2462 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2463}
2464
03158cd7
NP
2465/*
2466 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2467 * the page (converting it to circular linked list and taking care of page
2468 * dirty races).
2469 */
2470static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2471{
2472 struct buffer_head *bh;
2473
2474 BUG_ON(!PageLocked(page));
2475
2476 spin_lock(&page->mapping->private_lock);
2477 bh = head;
2478 do {
2479 if (PageDirty(page))
2480 set_buffer_dirty(bh);
2481 if (!bh->b_this_page)
2482 bh->b_this_page = head;
2483 bh = bh->b_this_page;
2484 } while (bh != head);
2485 attach_page_buffers(page, head);
2486 spin_unlock(&page->mapping->private_lock);
2487}
2488
1da177e4 2489/*
ea0f04e5
CH
2490 * On entry, the page is fully not uptodate.
2491 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2492 * The filesystem needs to handle block truncation upon failure.
1da177e4 2493 */
ea0f04e5 2494int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2495 loff_t pos, unsigned len, unsigned flags,
2496 struct page **pagep, void **fsdata,
1da177e4
LT
2497 get_block_t *get_block)
2498{
03158cd7 2499 struct inode *inode = mapping->host;
1da177e4
LT
2500 const unsigned blkbits = inode->i_blkbits;
2501 const unsigned blocksize = 1 << blkbits;
a4b0672d 2502 struct buffer_head *head, *bh;
03158cd7
NP
2503 struct page *page;
2504 pgoff_t index;
2505 unsigned from, to;
1da177e4 2506 unsigned block_in_page;
a4b0672d 2507 unsigned block_start, block_end;
1da177e4 2508 sector_t block_in_file;
1da177e4 2509 int nr_reads = 0;
1da177e4
LT
2510 int ret = 0;
2511 int is_mapped_to_disk = 1;
1da177e4 2512
03158cd7
NP
2513 index = pos >> PAGE_CACHE_SHIFT;
2514 from = pos & (PAGE_CACHE_SIZE - 1);
2515 to = from + len;
2516
54566b2c 2517 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2518 if (!page)
2519 return -ENOMEM;
2520 *pagep = page;
2521 *fsdata = NULL;
2522
2523 if (page_has_buffers(page)) {
309f77ad
NK
2524 ret = __block_write_begin(page, pos, len, get_block);
2525 if (unlikely(ret))
2526 goto out_release;
2527 return ret;
03158cd7 2528 }
a4b0672d 2529
1da177e4
LT
2530 if (PageMappedToDisk(page))
2531 return 0;
2532
a4b0672d
NP
2533 /*
2534 * Allocate buffers so that we can keep track of state, and potentially
2535 * attach them to the page if an error occurs. In the common case of
2536 * no error, they will just be freed again without ever being attached
2537 * to the page (which is all OK, because we're under the page lock).
2538 *
2539 * Be careful: the buffer linked list is a NULL terminated one, rather
2540 * than the circular one we're used to.
2541 */
2542 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2543 if (!head) {
2544 ret = -ENOMEM;
2545 goto out_release;
2546 }
a4b0672d 2547
1da177e4 2548 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2549
2550 /*
2551 * We loop across all blocks in the page, whether or not they are
2552 * part of the affected region. This is so we can discover if the
2553 * page is fully mapped-to-disk.
2554 */
a4b0672d 2555 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2556 block_start < PAGE_CACHE_SIZE;
a4b0672d 2557 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2558 int create;
2559
a4b0672d
NP
2560 block_end = block_start + blocksize;
2561 bh->b_state = 0;
1da177e4
LT
2562 create = 1;
2563 if (block_start >= to)
2564 create = 0;
2565 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2566 bh, create);
1da177e4
LT
2567 if (ret)
2568 goto failed;
a4b0672d 2569 if (!buffer_mapped(bh))
1da177e4 2570 is_mapped_to_disk = 0;
a4b0672d
NP
2571 if (buffer_new(bh))
2572 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2573 if (PageUptodate(page)) {
2574 set_buffer_uptodate(bh);
1da177e4 2575 continue;
a4b0672d
NP
2576 }
2577 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2578 zero_user_segments(page, block_start, from,
2579 to, block_end);
1da177e4
LT
2580 continue;
2581 }
a4b0672d 2582 if (buffer_uptodate(bh))
1da177e4
LT
2583 continue; /* reiserfs does this */
2584 if (block_start < from || block_end > to) {
a4b0672d
NP
2585 lock_buffer(bh);
2586 bh->b_end_io = end_buffer_read_nobh;
2587 submit_bh(READ, bh);
2588 nr_reads++;
1da177e4
LT
2589 }
2590 }
2591
2592 if (nr_reads) {
1da177e4
LT
2593 /*
2594 * The page is locked, so these buffers are protected from
2595 * any VM or truncate activity. Hence we don't need to care
2596 * for the buffer_head refcounts.
2597 */
a4b0672d 2598 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2599 wait_on_buffer(bh);
2600 if (!buffer_uptodate(bh))
2601 ret = -EIO;
1da177e4
LT
2602 }
2603 if (ret)
2604 goto failed;
2605 }
2606
2607 if (is_mapped_to_disk)
2608 SetPageMappedToDisk(page);
1da177e4 2609
03158cd7 2610 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2611
1da177e4
LT
2612 return 0;
2613
2614failed:
03158cd7 2615 BUG_ON(!ret);
1da177e4 2616 /*
a4b0672d
NP
2617 * Error recovery is a bit difficult. We need to zero out blocks that
2618 * were newly allocated, and dirty them to ensure they get written out.
2619 * Buffers need to be attached to the page at this point, otherwise
2620 * the handling of potential IO errors during writeout would be hard
2621 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2622 */
03158cd7
NP
2623 attach_nobh_buffers(page, head);
2624 page_zero_new_buffers(page, from, to);
a4b0672d 2625
03158cd7
NP
2626out_release:
2627 unlock_page(page);
2628 page_cache_release(page);
2629 *pagep = NULL;
a4b0672d 2630
7bb46a67 2631 return ret;
2632}
03158cd7 2633EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2634
03158cd7
NP
2635int nobh_write_end(struct file *file, struct address_space *mapping,
2636 loff_t pos, unsigned len, unsigned copied,
2637 struct page *page, void *fsdata)
1da177e4
LT
2638{
2639 struct inode *inode = page->mapping->host;
efdc3131 2640 struct buffer_head *head = fsdata;
03158cd7 2641 struct buffer_head *bh;
5b41e74a 2642 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2643
d4cf109f 2644 if (unlikely(copied < len) && head)
5b41e74a
DM
2645 attach_nobh_buffers(page, head);
2646 if (page_has_buffers(page))
2647 return generic_write_end(file, mapping, pos, len,
2648 copied, page, fsdata);
a4b0672d 2649
22c8ca78 2650 SetPageUptodate(page);
1da177e4 2651 set_page_dirty(page);
03158cd7
NP
2652 if (pos+copied > inode->i_size) {
2653 i_size_write(inode, pos+copied);
1da177e4
LT
2654 mark_inode_dirty(inode);
2655 }
03158cd7
NP
2656
2657 unlock_page(page);
2658 page_cache_release(page);
2659
03158cd7
NP
2660 while (head) {
2661 bh = head;
2662 head = head->b_this_page;
2663 free_buffer_head(bh);
2664 }
2665
2666 return copied;
1da177e4 2667}
03158cd7 2668EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2669
2670/*
2671 * nobh_writepage() - based on block_full_write_page() except
2672 * that it tries to operate without attaching bufferheads to
2673 * the page.
2674 */
2675int nobh_writepage(struct page *page, get_block_t *get_block,
2676 struct writeback_control *wbc)
2677{
2678 struct inode * const inode = page->mapping->host;
2679 loff_t i_size = i_size_read(inode);
2680 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2681 unsigned offset;
1da177e4
LT
2682 int ret;
2683
2684 /* Is the page fully inside i_size? */
2685 if (page->index < end_index)
2686 goto out;
2687
2688 /* Is the page fully outside i_size? (truncate in progress) */
2689 offset = i_size & (PAGE_CACHE_SIZE-1);
2690 if (page->index >= end_index+1 || !offset) {
2691 /*
2692 * The page may have dirty, unmapped buffers. For example,
2693 * they may have been added in ext3_writepage(). Make them
2694 * freeable here, so the page does not leak.
2695 */
2696#if 0
2697 /* Not really sure about this - do we need this ? */
2698 if (page->mapping->a_ops->invalidatepage)
2699 page->mapping->a_ops->invalidatepage(page, offset);
2700#endif
2701 unlock_page(page);
2702 return 0; /* don't care */
2703 }
2704
2705 /*
2706 * The page straddles i_size. It must be zeroed out on each and every
2707 * writepage invocation because it may be mmapped. "A file is mapped
2708 * in multiples of the page size. For a file that is not a multiple of
2709 * the page size, the remaining memory is zeroed when mapped, and
2710 * writes to that region are not written out to the file."
2711 */
eebd2aa3 2712 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2713out:
2714 ret = mpage_writepage(page, get_block, wbc);
2715 if (ret == -EAGAIN)
35c80d5f
CM
2716 ret = __block_write_full_page(inode, page, get_block, wbc,
2717 end_buffer_async_write);
1da177e4
LT
2718 return ret;
2719}
2720EXPORT_SYMBOL(nobh_writepage);
2721
03158cd7
NP
2722int nobh_truncate_page(struct address_space *mapping,
2723 loff_t from, get_block_t *get_block)
1da177e4 2724{
1da177e4
LT
2725 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2726 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2727 unsigned blocksize;
2728 sector_t iblock;
2729 unsigned length, pos;
2730 struct inode *inode = mapping->host;
1da177e4 2731 struct page *page;
03158cd7
NP
2732 struct buffer_head map_bh;
2733 int err;
1da177e4 2734
03158cd7
NP
2735 blocksize = 1 << inode->i_blkbits;
2736 length = offset & (blocksize - 1);
2737
2738 /* Block boundary? Nothing to do */
2739 if (!length)
2740 return 0;
2741
2742 length = blocksize - length;
2743 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2744
1da177e4 2745 page = grab_cache_page(mapping, index);
03158cd7 2746 err = -ENOMEM;
1da177e4
LT
2747 if (!page)
2748 goto out;
2749
03158cd7
NP
2750 if (page_has_buffers(page)) {
2751has_buffers:
2752 unlock_page(page);
2753 page_cache_release(page);
2754 return block_truncate_page(mapping, from, get_block);
2755 }
2756
2757 /* Find the buffer that contains "offset" */
2758 pos = blocksize;
2759 while (offset >= pos) {
2760 iblock++;
2761 pos += blocksize;
2762 }
2763
460bcf57
TT
2764 map_bh.b_size = blocksize;
2765 map_bh.b_state = 0;
03158cd7
NP
2766 err = get_block(inode, iblock, &map_bh, 0);
2767 if (err)
2768 goto unlock;
2769 /* unmapped? It's a hole - nothing to do */
2770 if (!buffer_mapped(&map_bh))
2771 goto unlock;
2772
2773 /* Ok, it's mapped. Make sure it's up-to-date */
2774 if (!PageUptodate(page)) {
2775 err = mapping->a_ops->readpage(NULL, page);
2776 if (err) {
2777 page_cache_release(page);
2778 goto out;
2779 }
2780 lock_page(page);
2781 if (!PageUptodate(page)) {
2782 err = -EIO;
2783 goto unlock;
2784 }
2785 if (page_has_buffers(page))
2786 goto has_buffers;
1da177e4 2787 }
eebd2aa3 2788 zero_user(page, offset, length);
03158cd7
NP
2789 set_page_dirty(page);
2790 err = 0;
2791
2792unlock:
1da177e4
LT
2793 unlock_page(page);
2794 page_cache_release(page);
2795out:
03158cd7 2796 return err;
1da177e4
LT
2797}
2798EXPORT_SYMBOL(nobh_truncate_page);
2799
2800int block_truncate_page(struct address_space *mapping,
2801 loff_t from, get_block_t *get_block)
2802{
2803 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2804 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2805 unsigned blocksize;
54b21a79 2806 sector_t iblock;
1da177e4
LT
2807 unsigned length, pos;
2808 struct inode *inode = mapping->host;
2809 struct page *page;
2810 struct buffer_head *bh;
1da177e4
LT
2811 int err;
2812
2813 blocksize = 1 << inode->i_blkbits;
2814 length = offset & (blocksize - 1);
2815
2816 /* Block boundary? Nothing to do */
2817 if (!length)
2818 return 0;
2819
2820 length = blocksize - length;
54b21a79 2821 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2822
2823 page = grab_cache_page(mapping, index);
2824 err = -ENOMEM;
2825 if (!page)
2826 goto out;
2827
2828 if (!page_has_buffers(page))
2829 create_empty_buffers(page, blocksize, 0);
2830
2831 /* Find the buffer that contains "offset" */
2832 bh = page_buffers(page);
2833 pos = blocksize;
2834 while (offset >= pos) {
2835 bh = bh->b_this_page;
2836 iblock++;
2837 pos += blocksize;
2838 }
2839
2840 err = 0;
2841 if (!buffer_mapped(bh)) {
b0cf2321 2842 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2843 err = get_block(inode, iblock, bh, 0);
2844 if (err)
2845 goto unlock;
2846 /* unmapped? It's a hole - nothing to do */
2847 if (!buffer_mapped(bh))
2848 goto unlock;
2849 }
2850
2851 /* Ok, it's mapped. Make sure it's up-to-date */
2852 if (PageUptodate(page))
2853 set_buffer_uptodate(bh);
2854
33a266dd 2855 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2856 err = -EIO;
2857 ll_rw_block(READ, 1, &bh);
2858 wait_on_buffer(bh);
2859 /* Uhhuh. Read error. Complain and punt. */
2860 if (!buffer_uptodate(bh))
2861 goto unlock;
2862 }
2863
eebd2aa3 2864 zero_user(page, offset, length);
1da177e4
LT
2865 mark_buffer_dirty(bh);
2866 err = 0;
2867
2868unlock:
2869 unlock_page(page);
2870 page_cache_release(page);
2871out:
2872 return err;
2873}
1fe72eaa 2874EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2875
2876/*
2877 * The generic ->writepage function for buffer-backed address_spaces
2878 */
1b938c08
MW
2879int block_write_full_page(struct page *page, get_block_t *get_block,
2880 struct writeback_control *wbc)
1da177e4
LT
2881{
2882 struct inode * const inode = page->mapping->host;
2883 loff_t i_size = i_size_read(inode);
2884 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2885 unsigned offset;
1da177e4
LT
2886
2887 /* Is the page fully inside i_size? */
2888 if (page->index < end_index)
35c80d5f 2889 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2890 end_buffer_async_write);
1da177e4
LT
2891
2892 /* Is the page fully outside i_size? (truncate in progress) */
2893 offset = i_size & (PAGE_CACHE_SIZE-1);
2894 if (page->index >= end_index+1 || !offset) {
2895 /*
2896 * The page may have dirty, unmapped buffers. For example,
2897 * they may have been added in ext3_writepage(). Make them
2898 * freeable here, so the page does not leak.
2899 */
d47992f8 2900 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1da177e4
LT
2901 unlock_page(page);
2902 return 0; /* don't care */
2903 }
2904
2905 /*
2906 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2907 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2908 * in multiples of the page size. For a file that is not a multiple of
2909 * the page size, the remaining memory is zeroed when mapped, and
2910 * writes to that region are not written out to the file."
2911 */
eebd2aa3 2912 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1b938c08
MW
2913 return __block_write_full_page(inode, page, get_block, wbc,
2914 end_buffer_async_write);
35c80d5f 2915}
1fe72eaa 2916EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2917
1da177e4
LT
2918sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2919 get_block_t *get_block)
2920{
2921 struct buffer_head tmp;
2922 struct inode *inode = mapping->host;
2923 tmp.b_state = 0;
2924 tmp.b_blocknr = 0;
b0cf2321 2925 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2926 get_block(inode, block, &tmp, 0);
2927 return tmp.b_blocknr;
2928}
1fe72eaa 2929EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2930
4246a0b6 2931static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
2932{
2933 struct buffer_head *bh = bio->bi_private;
2934
b7c44ed9 2935 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
2936 set_bit(BH_Quiet, &bh->b_state);
2937
4246a0b6 2938 bh->b_end_io(bh, !bio->bi_error);
1da177e4 2939 bio_put(bio);
1da177e4
LT
2940}
2941
57302e0d
LT
2942/*
2943 * This allows us to do IO even on the odd last sectors
59d43914 2944 * of a device, even if the block size is some multiple
57302e0d
LT
2945 * of the physical sector size.
2946 *
2947 * We'll just truncate the bio to the size of the device,
2948 * and clear the end of the buffer head manually.
2949 *
2950 * Truly out-of-range accesses will turn into actual IO
2951 * errors, this only handles the "we need to be able to
2952 * do IO at the final sector" case.
2953 */
4db96b71 2954void guard_bio_eod(int rw, struct bio *bio)
57302e0d
LT
2955{
2956 sector_t maxsector;
59d43914
AM
2957 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2958 unsigned truncated_bytes;
57302e0d
LT
2959
2960 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2961 if (!maxsector)
2962 return;
2963
2964 /*
2965 * If the *whole* IO is past the end of the device,
2966 * let it through, and the IO layer will turn it into
2967 * an EIO.
2968 */
4f024f37 2969 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
2970 return;
2971
4f024f37 2972 maxsector -= bio->bi_iter.bi_sector;
59d43914 2973 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
2974 return;
2975
59d43914
AM
2976 /* Uhhuh. We've got a bio that straddles the device size! */
2977 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d
LT
2978
2979 /* Truncate the bio.. */
59d43914
AM
2980 bio->bi_iter.bi_size -= truncated_bytes;
2981 bvec->bv_len -= truncated_bytes;
57302e0d
LT
2982
2983 /* ..and clear the end of the buffer for reads */
27d7c2a0 2984 if ((rw & RW_MASK) == READ) {
59d43914
AM
2985 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2986 truncated_bytes);
57302e0d
LT
2987 }
2988}
2989
b16b1deb
TH
2990static int submit_bh_wbc(int rw, struct buffer_head *bh,
2991 unsigned long bio_flags, struct writeback_control *wbc)
1da177e4
LT
2992{
2993 struct bio *bio;
1da177e4
LT
2994
2995 BUG_ON(!buffer_locked(bh));
2996 BUG_ON(!buffer_mapped(bh));
2997 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2998 BUG_ON(buffer_delay(bh));
2999 BUG_ON(buffer_unwritten(bh));
1da177e4 3000
1da177e4 3001 /*
48fd4f93 3002 * Only clear out a write error when rewriting
1da177e4 3003 */
48fd4f93 3004 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
3005 clear_buffer_write_io_error(bh);
3006
3007 /*
3008 * from here on down, it's all bio -- do the initial mapping,
3009 * submit_bio -> generic_make_request may further map this bio around
3010 */
3011 bio = bio_alloc(GFP_NOIO, 1);
3012
2a814908 3013 if (wbc) {
b16b1deb 3014 wbc_init_bio(wbc, bio);
2a814908
TH
3015 wbc_account_io(wbc, bh->b_page, bh->b_size);
3016 }
bafc0dba 3017
4f024f37 3018 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4 3019 bio->bi_bdev = bh->b_bdev;
1da177e4 3020
6cf66b4c
KO
3021 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3022 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3023
3024 bio->bi_end_io = end_bio_bh_io_sync;
3025 bio->bi_private = bh;
71368511 3026 bio->bi_flags |= bio_flags;
1da177e4 3027
57302e0d 3028 /* Take care of bh's that straddle the end of the device */
59d43914 3029 guard_bio_eod(rw, bio);
57302e0d 3030
877f962c
TT
3031 if (buffer_meta(bh))
3032 rw |= REQ_META;
3033 if (buffer_prio(bh))
3034 rw |= REQ_PRIO;
3035
1da177e4 3036 submit_bio(rw, bio);
f6454b04 3037 return 0;
1da177e4 3038}
bafc0dba
TH
3039
3040int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3041{
b16b1deb 3042 return submit_bh_wbc(rw, bh, bio_flags, NULL);
bafc0dba 3043}
71368511
DW
3044EXPORT_SYMBOL_GPL(_submit_bh);
3045
3046int submit_bh(int rw, struct buffer_head *bh)
3047{
b16b1deb 3048 return submit_bh_wbc(rw, bh, 0, NULL);
71368511 3049}
1fe72eaa 3050EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3051
3052/**
3053 * ll_rw_block: low-level access to block devices (DEPRECATED)
9cb569d6 3054 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
1da177e4
LT
3055 * @nr: number of &struct buffer_heads in the array
3056 * @bhs: array of pointers to &struct buffer_head
3057 *
a7662236
JK
3058 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3059 * requests an I/O operation on them, either a %READ or a %WRITE. The third
9cb569d6
CH
3060 * %READA option is described in the documentation for generic_make_request()
3061 * which ll_rw_block() calls.
1da177e4
LT
3062 *
3063 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3064 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3065 * request, and any buffer that appears to be up-to-date when doing read
3066 * request. Further it marks as clean buffers that are processed for
3067 * writing (the buffer cache won't assume that they are actually clean
3068 * until the buffer gets unlocked).
1da177e4
LT
3069 *
3070 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3071 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3072 * any waiters.
3073 *
3074 * All of the buffers must be for the same device, and must also be a
3075 * multiple of the current approved size for the device.
3076 */
3077void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3078{
3079 int i;
3080
3081 for (i = 0; i < nr; i++) {
3082 struct buffer_head *bh = bhs[i];
3083
9cb569d6 3084 if (!trylock_buffer(bh))
1da177e4 3085 continue;
9cb569d6 3086 if (rw == WRITE) {
1da177e4 3087 if (test_clear_buffer_dirty(bh)) {
76c3073a 3088 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3089 get_bh(bh);
9cb569d6 3090 submit_bh(WRITE, bh);
1da177e4
LT
3091 continue;
3092 }
3093 } else {
1da177e4 3094 if (!buffer_uptodate(bh)) {
76c3073a 3095 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3096 get_bh(bh);
1da177e4
LT
3097 submit_bh(rw, bh);
3098 continue;
3099 }
3100 }
3101 unlock_buffer(bh);
1da177e4
LT
3102 }
3103}
1fe72eaa 3104EXPORT_SYMBOL(ll_rw_block);
1da177e4 3105
9cb569d6
CH
3106void write_dirty_buffer(struct buffer_head *bh, int rw)
3107{
3108 lock_buffer(bh);
3109 if (!test_clear_buffer_dirty(bh)) {
3110 unlock_buffer(bh);
3111 return;
3112 }
3113 bh->b_end_io = end_buffer_write_sync;
3114 get_bh(bh);
3115 submit_bh(rw, bh);
3116}
3117EXPORT_SYMBOL(write_dirty_buffer);
3118
1da177e4
LT
3119/*
3120 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3121 * and then start new I/O and then wait upon it. The caller must have a ref on
3122 * the buffer_head.
3123 */
87e99511 3124int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3125{
3126 int ret = 0;
3127
3128 WARN_ON(atomic_read(&bh->b_count) < 1);
3129 lock_buffer(bh);
3130 if (test_clear_buffer_dirty(bh)) {
3131 get_bh(bh);
3132 bh->b_end_io = end_buffer_write_sync;
87e99511 3133 ret = submit_bh(rw, bh);
1da177e4 3134 wait_on_buffer(bh);
1da177e4
LT
3135 if (!ret && !buffer_uptodate(bh))
3136 ret = -EIO;
3137 } else {
3138 unlock_buffer(bh);
3139 }
3140 return ret;
3141}
87e99511
CH
3142EXPORT_SYMBOL(__sync_dirty_buffer);
3143
3144int sync_dirty_buffer(struct buffer_head *bh)
3145{
3146 return __sync_dirty_buffer(bh, WRITE_SYNC);
3147}
1fe72eaa 3148EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3149
3150/*
3151 * try_to_free_buffers() checks if all the buffers on this particular page
3152 * are unused, and releases them if so.
3153 *
3154 * Exclusion against try_to_free_buffers may be obtained by either
3155 * locking the page or by holding its mapping's private_lock.
3156 *
3157 * If the page is dirty but all the buffers are clean then we need to
3158 * be sure to mark the page clean as well. This is because the page
3159 * may be against a block device, and a later reattachment of buffers
3160 * to a dirty page will set *all* buffers dirty. Which would corrupt
3161 * filesystem data on the same device.
3162 *
3163 * The same applies to regular filesystem pages: if all the buffers are
3164 * clean then we set the page clean and proceed. To do that, we require
3165 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3166 * private_lock.
3167 *
3168 * try_to_free_buffers() is non-blocking.
3169 */
3170static inline int buffer_busy(struct buffer_head *bh)
3171{
3172 return atomic_read(&bh->b_count) |
3173 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3174}
3175
3176static int
3177drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3178{
3179 struct buffer_head *head = page_buffers(page);
3180 struct buffer_head *bh;
3181
3182 bh = head;
3183 do {
de7d5a3b 3184 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3185 set_bit(AS_EIO, &page->mapping->flags);
3186 if (buffer_busy(bh))
3187 goto failed;
3188 bh = bh->b_this_page;
3189 } while (bh != head);
3190
3191 do {
3192 struct buffer_head *next = bh->b_this_page;
3193
535ee2fb 3194 if (bh->b_assoc_map)
1da177e4
LT
3195 __remove_assoc_queue(bh);
3196 bh = next;
3197 } while (bh != head);
3198 *buffers_to_free = head;
3199 __clear_page_buffers(page);
3200 return 1;
3201failed:
3202 return 0;
3203}
3204
3205int try_to_free_buffers(struct page *page)
3206{
3207 struct address_space * const mapping = page->mapping;
3208 struct buffer_head *buffers_to_free = NULL;
3209 int ret = 0;
3210
3211 BUG_ON(!PageLocked(page));
ecdfc978 3212 if (PageWriteback(page))
1da177e4
LT
3213 return 0;
3214
3215 if (mapping == NULL) { /* can this still happen? */
3216 ret = drop_buffers(page, &buffers_to_free);
3217 goto out;
3218 }
3219
3220 spin_lock(&mapping->private_lock);
3221 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3222
3223 /*
3224 * If the filesystem writes its buffers by hand (eg ext3)
3225 * then we can have clean buffers against a dirty page. We
3226 * clean the page here; otherwise the VM will never notice
3227 * that the filesystem did any IO at all.
3228 *
3229 * Also, during truncate, discard_buffer will have marked all
3230 * the page's buffers clean. We discover that here and clean
3231 * the page also.
87df7241
NP
3232 *
3233 * private_lock must be held over this entire operation in order
3234 * to synchronise against __set_page_dirty_buffers and prevent the
3235 * dirty bit from being lost.
ecdfc978 3236 */
11f81bec
TH
3237 if (ret)
3238 cancel_dirty_page(page);
87df7241 3239 spin_unlock(&mapping->private_lock);
1da177e4
LT
3240out:
3241 if (buffers_to_free) {
3242 struct buffer_head *bh = buffers_to_free;
3243
3244 do {
3245 struct buffer_head *next = bh->b_this_page;
3246 free_buffer_head(bh);
3247 bh = next;
3248 } while (bh != buffers_to_free);
3249 }
3250 return ret;
3251}
3252EXPORT_SYMBOL(try_to_free_buffers);
3253
1da177e4
LT
3254/*
3255 * There are no bdflush tunables left. But distributions are
3256 * still running obsolete flush daemons, so we terminate them here.
3257 *
3258 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3259 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3260 */
bdc480e3 3261SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3262{
3263 static int msg_count;
3264
3265 if (!capable(CAP_SYS_ADMIN))
3266 return -EPERM;
3267
3268 if (msg_count < 5) {
3269 msg_count++;
3270 printk(KERN_INFO
3271 "warning: process `%s' used the obsolete bdflush"
3272 " system call\n", current->comm);
3273 printk(KERN_INFO "Fix your initscripts?\n");
3274 }
3275
3276 if (func == 1)
3277 do_exit(0);
3278 return 0;
3279}
3280
3281/*
3282 * Buffer-head allocation
3283 */
a0a9b043 3284static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3285
3286/*
3287 * Once the number of bh's in the machine exceeds this level, we start
3288 * stripping them in writeback.
3289 */
43be594a 3290static unsigned long max_buffer_heads;
1da177e4
LT
3291
3292int buffer_heads_over_limit;
3293
3294struct bh_accounting {
3295 int nr; /* Number of live bh's */
3296 int ratelimit; /* Limit cacheline bouncing */
3297};
3298
3299static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3300
3301static void recalc_bh_state(void)
3302{
3303 int i;
3304 int tot = 0;
3305
ee1be862 3306 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3307 return;
c7b92516 3308 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3309 for_each_online_cpu(i)
1da177e4
LT
3310 tot += per_cpu(bh_accounting, i).nr;
3311 buffer_heads_over_limit = (tot > max_buffer_heads);
3312}
c7b92516 3313
dd0fc66f 3314struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3315{
019b4d12 3316 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3317 if (ret) {
a35afb83 3318 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3319 preempt_disable();
3320 __this_cpu_inc(bh_accounting.nr);
1da177e4 3321 recalc_bh_state();
c7b92516 3322 preempt_enable();
1da177e4
LT
3323 }
3324 return ret;
3325}
3326EXPORT_SYMBOL(alloc_buffer_head);
3327
3328void free_buffer_head(struct buffer_head *bh)
3329{
3330 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3331 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3332 preempt_disable();
3333 __this_cpu_dec(bh_accounting.nr);
1da177e4 3334 recalc_bh_state();
c7b92516 3335 preempt_enable();
1da177e4
LT
3336}
3337EXPORT_SYMBOL(free_buffer_head);
3338
1da177e4
LT
3339static void buffer_exit_cpu(int cpu)
3340{
3341 int i;
3342 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3343
3344 for (i = 0; i < BH_LRU_SIZE; i++) {
3345 brelse(b->bhs[i]);
3346 b->bhs[i] = NULL;
3347 }
c7b92516 3348 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3349 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3350}
3351
3352static int buffer_cpu_notify(struct notifier_block *self,
3353 unsigned long action, void *hcpu)
3354{
8bb78442 3355 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3356 buffer_exit_cpu((unsigned long)hcpu);
3357 return NOTIFY_OK;
3358}
1da177e4 3359
389d1b08 3360/**
a6b91919 3361 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3362 * @bh: struct buffer_head
3363 *
3364 * Return true if the buffer is up-to-date and false,
3365 * with the buffer locked, if not.
3366 */
3367int bh_uptodate_or_lock(struct buffer_head *bh)
3368{
3369 if (!buffer_uptodate(bh)) {
3370 lock_buffer(bh);
3371 if (!buffer_uptodate(bh))
3372 return 0;
3373 unlock_buffer(bh);
3374 }
3375 return 1;
3376}
3377EXPORT_SYMBOL(bh_uptodate_or_lock);
3378
3379/**
a6b91919 3380 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3381 * @bh: struct buffer_head
3382 *
3383 * Returns zero on success and -EIO on error.
3384 */
3385int bh_submit_read(struct buffer_head *bh)
3386{
3387 BUG_ON(!buffer_locked(bh));
3388
3389 if (buffer_uptodate(bh)) {
3390 unlock_buffer(bh);
3391 return 0;
3392 }
3393
3394 get_bh(bh);
3395 bh->b_end_io = end_buffer_read_sync;
3396 submit_bh(READ, bh);
3397 wait_on_buffer(bh);
3398 if (buffer_uptodate(bh))
3399 return 0;
3400 return -EIO;
3401}
3402EXPORT_SYMBOL(bh_submit_read);
3403
1da177e4
LT
3404void __init buffer_init(void)
3405{
43be594a 3406 unsigned long nrpages;
1da177e4 3407
b98938c3
CL
3408 bh_cachep = kmem_cache_create("buffer_head",
3409 sizeof(struct buffer_head), 0,
3410 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3411 SLAB_MEM_SPREAD),
019b4d12 3412 NULL);
1da177e4
LT
3413
3414 /*
3415 * Limit the bh occupancy to 10% of ZONE_NORMAL
3416 */
3417 nrpages = (nr_free_buffer_pages() * 10) / 100;
3418 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3419 hotcpu_notifier(buffer_cpu_notify, 0);
3420}