]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
vfs: remove unnecessary d_unhashed() check from __d_lookup_rcu
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d
LT
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
5483f18e
LT
140/*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
e419b4cc
LT
144#ifdef CONFIG_DCACHE_WORD_ACCESS
145
146#include <asm/word-at-a-time.h>
147/*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
12f8ad4b 156static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
5483f18e 157{
bfcfaa77 158 unsigned long a,b,mask;
12f8ad4b 159 const unsigned char *cs;
bfcfaa77 160
12f8ad4b 161 if (unlikely(dentry->d_name.len != tcount))
bfcfaa77 162 return 1;
12f8ad4b
LT
163 /*
164 * Be careful about RCU walk racing with rename:
165 * use ACCESS_ONCE to fetch the name pointer.
166 *
167 * NOTE! Even if a rename will mean that the length
168 * was not loaded atomically, we don't care. The
169 * RCU walk will check the sequence count eventually,
170 * and catch it. And we won't overrun the buffer,
171 * because we're reading the name pointer atomically,
172 * and a dentry name is guaranteed to be properly
173 * terminated with a NUL byte.
174 *
175 * End result: even if 'len' is wrong, we'll exit
176 * early because the data cannot match (there can
177 * be no NUL in the ct/tcount data)
178 */
179 cs = ACCESS_ONCE(dentry->d_name.name);
bfcfaa77
LT
180
181 for (;;) {
12f8ad4b 182 a = *(unsigned long *)cs;
e419b4cc 183 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
194 mask = ~(~0ul << tcount*8);
195 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
196}
197
bfcfaa77 198#else
e419b4cc 199
12f8ad4b 200static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
e419b4cc 201{
12f8ad4b
LT
202 const unsigned char *cs = dentry->d_name.name;
203
204 if (dentry->d_name.len != tcount)
5483f18e
LT
205 return 1;
206
207 do {
208 if (*cs != *ct)
209 return 1;
210 cs++;
211 ct++;
212 tcount--;
213 } while (tcount);
214 return 0;
215}
216
e419b4cc
LT
217#endif
218
9c82ab9c 219static void __d_free(struct rcu_head *head)
1da177e4 220{
9c82ab9c
CH
221 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
222
fd217f4d 223 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
224 if (dname_external(dentry))
225 kfree(dentry->d_name.name);
226 kmem_cache_free(dentry_cache, dentry);
227}
228
229/*
b5c84bf6 230 * no locks, please.
1da177e4
LT
231 */
232static void d_free(struct dentry *dentry)
233{
b7ab39f6 234 BUG_ON(dentry->d_count);
3e880fb5 235 this_cpu_dec(nr_dentry);
1da177e4
LT
236 if (dentry->d_op && dentry->d_op->d_release)
237 dentry->d_op->d_release(dentry);
312d3ca8 238
dea3667b
LT
239 /* if dentry was never visible to RCU, immediate free is OK */
240 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 241 __d_free(&dentry->d_u.d_rcu);
b3423415 242 else
9c82ab9c 243 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
244}
245
31e6b01f
NP
246/**
247 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 248 * @dentry: the target dentry
31e6b01f
NP
249 * After this call, in-progress rcu-walk path lookup will fail. This
250 * should be called after unhashing, and after changing d_inode (if
251 * the dentry has not already been unhashed).
252 */
253static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
254{
255 assert_spin_locked(&dentry->d_lock);
256 /* Go through a barrier */
257 write_seqcount_barrier(&dentry->d_seq);
258}
259
1da177e4
LT
260/*
261 * Release the dentry's inode, using the filesystem
31e6b01f
NP
262 * d_iput() operation if defined. Dentry has no refcount
263 * and is unhashed.
1da177e4 264 */
858119e1 265static void dentry_iput(struct dentry * dentry)
31f3e0b3 266 __releases(dentry->d_lock)
873feea0 267 __releases(dentry->d_inode->i_lock)
1da177e4
LT
268{
269 struct inode *inode = dentry->d_inode;
270 if (inode) {
271 dentry->d_inode = NULL;
272 list_del_init(&dentry->d_alias);
273 spin_unlock(&dentry->d_lock);
873feea0 274 spin_unlock(&inode->i_lock);
f805fbda
LT
275 if (!inode->i_nlink)
276 fsnotify_inoderemove(inode);
1da177e4
LT
277 if (dentry->d_op && dentry->d_op->d_iput)
278 dentry->d_op->d_iput(dentry, inode);
279 else
280 iput(inode);
281 } else {
282 spin_unlock(&dentry->d_lock);
1da177e4
LT
283 }
284}
285
31e6b01f
NP
286/*
287 * Release the dentry's inode, using the filesystem
288 * d_iput() operation if defined. dentry remains in-use.
289 */
290static void dentry_unlink_inode(struct dentry * dentry)
291 __releases(dentry->d_lock)
873feea0 292 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
293{
294 struct inode *inode = dentry->d_inode;
295 dentry->d_inode = NULL;
296 list_del_init(&dentry->d_alias);
297 dentry_rcuwalk_barrier(dentry);
298 spin_unlock(&dentry->d_lock);
873feea0 299 spin_unlock(&inode->i_lock);
31e6b01f
NP
300 if (!inode->i_nlink)
301 fsnotify_inoderemove(inode);
302 if (dentry->d_op && dentry->d_op->d_iput)
303 dentry->d_op->d_iput(dentry, inode);
304 else
305 iput(inode);
306}
307
da3bbdd4 308/*
f0023bc6 309 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
310 */
311static void dentry_lru_add(struct dentry *dentry)
312{
a4633357 313 if (list_empty(&dentry->d_lru)) {
23044507 314 spin_lock(&dcache_lru_lock);
a4633357
CH
315 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
316 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 317 dentry_stat.nr_unused++;
23044507 318 spin_unlock(&dcache_lru_lock);
a4633357 319 }
da3bbdd4
KM
320}
321
23044507
NP
322static void __dentry_lru_del(struct dentry *dentry)
323{
324 list_del_init(&dentry->d_lru);
eaf5f907 325 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
326 dentry->d_sb->s_nr_dentry_unused--;
327 dentry_stat.nr_unused--;
328}
329
f0023bc6
SW
330/*
331 * Remove a dentry with references from the LRU.
332 */
da3bbdd4
KM
333static void dentry_lru_del(struct dentry *dentry)
334{
335 if (!list_empty(&dentry->d_lru)) {
23044507
NP
336 spin_lock(&dcache_lru_lock);
337 __dentry_lru_del(dentry);
338 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
339 }
340}
341
f0023bc6
SW
342/*
343 * Remove a dentry that is unreferenced and about to be pruned
344 * (unhashed and destroyed) from the LRU, and inform the file system.
345 * This wrapper should be called _prior_ to unhashing a victim dentry.
346 */
347static void dentry_lru_prune(struct dentry *dentry)
348{
349 if (!list_empty(&dentry->d_lru)) {
350 if (dentry->d_flags & DCACHE_OP_PRUNE)
351 dentry->d_op->d_prune(dentry);
352
353 spin_lock(&dcache_lru_lock);
354 __dentry_lru_del(dentry);
355 spin_unlock(&dcache_lru_lock);
356 }
357}
358
b48f03b3 359static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 360{
23044507 361 spin_lock(&dcache_lru_lock);
a4633357 362 if (list_empty(&dentry->d_lru)) {
b48f03b3 363 list_add_tail(&dentry->d_lru, list);
a4633357 364 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 365 dentry_stat.nr_unused++;
a4633357 366 } else {
b48f03b3 367 list_move_tail(&dentry->d_lru, list);
da3bbdd4 368 }
23044507 369 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
370}
371
d52b9086
MS
372/**
373 * d_kill - kill dentry and return parent
374 * @dentry: dentry to kill
ff5fdb61 375 * @parent: parent dentry
d52b9086 376 *
31f3e0b3 377 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
378 *
379 * If this is the root of the dentry tree, return NULL.
23044507 380 *
b5c84bf6
NP
381 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
382 * d_kill.
d52b9086 383 */
2fd6b7f5 384static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 385 __releases(dentry->d_lock)
2fd6b7f5 386 __releases(parent->d_lock)
873feea0 387 __releases(dentry->d_inode->i_lock)
d52b9086 388{
d52b9086 389 list_del(&dentry->d_u.d_child);
c83ce989
TM
390 /*
391 * Inform try_to_ascend() that we are no longer attached to the
392 * dentry tree
393 */
394 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
395 if (parent)
396 spin_unlock(&parent->d_lock);
d52b9086 397 dentry_iput(dentry);
b7ab39f6
NP
398 /*
399 * dentry_iput drops the locks, at which point nobody (except
400 * transient RCU lookups) can reach this dentry.
401 */
d52b9086 402 d_free(dentry);
871c0067 403 return parent;
d52b9086
MS
404}
405
c6627c60
DH
406/*
407 * Unhash a dentry without inserting an RCU walk barrier or checking that
408 * dentry->d_lock is locked. The caller must take care of that, if
409 * appropriate.
410 */
411static void __d_shrink(struct dentry *dentry)
412{
413 if (!d_unhashed(dentry)) {
414 struct hlist_bl_head *b;
415 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
416 b = &dentry->d_sb->s_anon;
417 else
418 b = d_hash(dentry->d_parent, dentry->d_name.hash);
419
420 hlist_bl_lock(b);
421 __hlist_bl_del(&dentry->d_hash);
422 dentry->d_hash.pprev = NULL;
423 hlist_bl_unlock(b);
424 }
425}
426
789680d1
NP
427/**
428 * d_drop - drop a dentry
429 * @dentry: dentry to drop
430 *
431 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
432 * be found through a VFS lookup any more. Note that this is different from
433 * deleting the dentry - d_delete will try to mark the dentry negative if
434 * possible, giving a successful _negative_ lookup, while d_drop will
435 * just make the cache lookup fail.
436 *
437 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
438 * reason (NFS timeouts or autofs deletes).
439 *
440 * __d_drop requires dentry->d_lock.
441 */
442void __d_drop(struct dentry *dentry)
443{
dea3667b 444 if (!d_unhashed(dentry)) {
c6627c60 445 __d_shrink(dentry);
dea3667b 446 dentry_rcuwalk_barrier(dentry);
789680d1
NP
447 }
448}
449EXPORT_SYMBOL(__d_drop);
450
451void d_drop(struct dentry *dentry)
452{
789680d1
NP
453 spin_lock(&dentry->d_lock);
454 __d_drop(dentry);
455 spin_unlock(&dentry->d_lock);
789680d1
NP
456}
457EXPORT_SYMBOL(d_drop);
458
44396f4b
JB
459/*
460 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
461 * @dentry: dentry to drop
462 *
463 * This is called when we do a lookup on a placeholder dentry that needed to be
464 * looked up. The dentry should have been hashed in order for it to be found by
465 * the lookup code, but now needs to be unhashed while we do the actual lookup
466 * and clear the DCACHE_NEED_LOOKUP flag.
467 */
468void d_clear_need_lookup(struct dentry *dentry)
469{
470 spin_lock(&dentry->d_lock);
471 __d_drop(dentry);
472 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
473 spin_unlock(&dentry->d_lock);
474}
475EXPORT_SYMBOL(d_clear_need_lookup);
476
77812a1e
NP
477/*
478 * Finish off a dentry we've decided to kill.
479 * dentry->d_lock must be held, returns with it unlocked.
480 * If ref is non-zero, then decrement the refcount too.
481 * Returns dentry requiring refcount drop, or NULL if we're done.
482 */
483static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
484 __releases(dentry->d_lock)
485{
873feea0 486 struct inode *inode;
77812a1e
NP
487 struct dentry *parent;
488
873feea0
NP
489 inode = dentry->d_inode;
490 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
491relock:
492 spin_unlock(&dentry->d_lock);
493 cpu_relax();
494 return dentry; /* try again with same dentry */
495 }
496 if (IS_ROOT(dentry))
497 parent = NULL;
498 else
499 parent = dentry->d_parent;
500 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
501 if (inode)
502 spin_unlock(&inode->i_lock);
77812a1e
NP
503 goto relock;
504 }
31e6b01f 505
77812a1e
NP
506 if (ref)
507 dentry->d_count--;
f0023bc6
SW
508 /*
509 * if dentry was on the d_lru list delete it from there.
510 * inform the fs via d_prune that this dentry is about to be
511 * unhashed and destroyed.
512 */
513 dentry_lru_prune(dentry);
77812a1e
NP
514 /* if it was on the hash then remove it */
515 __d_drop(dentry);
516 return d_kill(dentry, parent);
517}
518
1da177e4
LT
519/*
520 * This is dput
521 *
522 * This is complicated by the fact that we do not want to put
523 * dentries that are no longer on any hash chain on the unused
524 * list: we'd much rather just get rid of them immediately.
525 *
526 * However, that implies that we have to traverse the dentry
527 * tree upwards to the parents which might _also_ now be
528 * scheduled for deletion (it may have been only waiting for
529 * its last child to go away).
530 *
531 * This tail recursion is done by hand as we don't want to depend
532 * on the compiler to always get this right (gcc generally doesn't).
533 * Real recursion would eat up our stack space.
534 */
535
536/*
537 * dput - release a dentry
538 * @dentry: dentry to release
539 *
540 * Release a dentry. This will drop the usage count and if appropriate
541 * call the dentry unlink method as well as removing it from the queues and
542 * releasing its resources. If the parent dentries were scheduled for release
543 * they too may now get deleted.
1da177e4 544 */
1da177e4
LT
545void dput(struct dentry *dentry)
546{
547 if (!dentry)
548 return;
549
550repeat:
b7ab39f6 551 if (dentry->d_count == 1)
1da177e4 552 might_sleep();
1da177e4 553 spin_lock(&dentry->d_lock);
61f3dee4
NP
554 BUG_ON(!dentry->d_count);
555 if (dentry->d_count > 1) {
556 dentry->d_count--;
1da177e4 557 spin_unlock(&dentry->d_lock);
1da177e4
LT
558 return;
559 }
560
fb045adb 561 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 562 if (dentry->d_op->d_delete(dentry))
61f3dee4 563 goto kill_it;
1da177e4 564 }
265ac902 565
1da177e4
LT
566 /* Unreachable? Get rid of it */
567 if (d_unhashed(dentry))
568 goto kill_it;
265ac902 569
44396f4b
JB
570 /*
571 * If this dentry needs lookup, don't set the referenced flag so that it
572 * is more likely to be cleaned up by the dcache shrinker in case of
573 * memory pressure.
574 */
575 if (!d_need_lookup(dentry))
576 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 577 dentry_lru_add(dentry);
265ac902 578
61f3dee4
NP
579 dentry->d_count--;
580 spin_unlock(&dentry->d_lock);
1da177e4
LT
581 return;
582
d52b9086 583kill_it:
77812a1e 584 dentry = dentry_kill(dentry, 1);
d52b9086
MS
585 if (dentry)
586 goto repeat;
1da177e4 587}
ec4f8605 588EXPORT_SYMBOL(dput);
1da177e4
LT
589
590/**
591 * d_invalidate - invalidate a dentry
592 * @dentry: dentry to invalidate
593 *
594 * Try to invalidate the dentry if it turns out to be
595 * possible. If there are other dentries that can be
596 * reached through this one we can't delete it and we
597 * return -EBUSY. On success we return 0.
598 *
599 * no dcache lock.
600 */
601
602int d_invalidate(struct dentry * dentry)
603{
604 /*
605 * If it's already been dropped, return OK.
606 */
da502956 607 spin_lock(&dentry->d_lock);
1da177e4 608 if (d_unhashed(dentry)) {
da502956 609 spin_unlock(&dentry->d_lock);
1da177e4
LT
610 return 0;
611 }
612 /*
613 * Check whether to do a partial shrink_dcache
614 * to get rid of unused child entries.
615 */
616 if (!list_empty(&dentry->d_subdirs)) {
da502956 617 spin_unlock(&dentry->d_lock);
1da177e4 618 shrink_dcache_parent(dentry);
da502956 619 spin_lock(&dentry->d_lock);
1da177e4
LT
620 }
621
622 /*
623 * Somebody else still using it?
624 *
625 * If it's a directory, we can't drop it
626 * for fear of somebody re-populating it
627 * with children (even though dropping it
628 * would make it unreachable from the root,
629 * we might still populate it if it was a
630 * working directory or similar).
50e69630
AV
631 * We also need to leave mountpoints alone,
632 * directory or not.
1da177e4 633 */
50e69630
AV
634 if (dentry->d_count > 1 && dentry->d_inode) {
635 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 636 spin_unlock(&dentry->d_lock);
1da177e4
LT
637 return -EBUSY;
638 }
639 }
640
641 __d_drop(dentry);
642 spin_unlock(&dentry->d_lock);
1da177e4
LT
643 return 0;
644}
ec4f8605 645EXPORT_SYMBOL(d_invalidate);
1da177e4 646
b5c84bf6 647/* This must be called with d_lock held */
dc0474be 648static inline void __dget_dlock(struct dentry *dentry)
23044507 649{
b7ab39f6 650 dentry->d_count++;
23044507
NP
651}
652
dc0474be 653static inline void __dget(struct dentry *dentry)
1da177e4 654{
23044507 655 spin_lock(&dentry->d_lock);
dc0474be 656 __dget_dlock(dentry);
23044507 657 spin_unlock(&dentry->d_lock);
1da177e4
LT
658}
659
b7ab39f6
NP
660struct dentry *dget_parent(struct dentry *dentry)
661{
662 struct dentry *ret;
663
664repeat:
a734eb45
NP
665 /*
666 * Don't need rcu_dereference because we re-check it was correct under
667 * the lock.
668 */
669 rcu_read_lock();
b7ab39f6 670 ret = dentry->d_parent;
a734eb45
NP
671 spin_lock(&ret->d_lock);
672 if (unlikely(ret != dentry->d_parent)) {
673 spin_unlock(&ret->d_lock);
674 rcu_read_unlock();
b7ab39f6
NP
675 goto repeat;
676 }
a734eb45 677 rcu_read_unlock();
b7ab39f6
NP
678 BUG_ON(!ret->d_count);
679 ret->d_count++;
680 spin_unlock(&ret->d_lock);
b7ab39f6
NP
681 return ret;
682}
683EXPORT_SYMBOL(dget_parent);
684
1da177e4
LT
685/**
686 * d_find_alias - grab a hashed alias of inode
687 * @inode: inode in question
688 * @want_discon: flag, used by d_splice_alias, to request
689 * that only a DISCONNECTED alias be returned.
690 *
691 * If inode has a hashed alias, or is a directory and has any alias,
692 * acquire the reference to alias and return it. Otherwise return NULL.
693 * Notice that if inode is a directory there can be only one alias and
694 * it can be unhashed only if it has no children, or if it is the root
695 * of a filesystem.
696 *
21c0d8fd 697 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 698 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 699 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 700 */
da502956 701static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 702{
da502956 703 struct dentry *alias, *discon_alias;
1da177e4 704
da502956
NP
705again:
706 discon_alias = NULL;
707 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
708 spin_lock(&alias->d_lock);
1da177e4 709 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 710 if (IS_ROOT(alias) &&
da502956 711 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 712 discon_alias = alias;
da502956 713 } else if (!want_discon) {
dc0474be 714 __dget_dlock(alias);
da502956
NP
715 spin_unlock(&alias->d_lock);
716 return alias;
717 }
718 }
719 spin_unlock(&alias->d_lock);
720 }
721 if (discon_alias) {
722 alias = discon_alias;
723 spin_lock(&alias->d_lock);
724 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
725 if (IS_ROOT(alias) &&
726 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 727 __dget_dlock(alias);
da502956 728 spin_unlock(&alias->d_lock);
1da177e4
LT
729 return alias;
730 }
731 }
da502956
NP
732 spin_unlock(&alias->d_lock);
733 goto again;
1da177e4 734 }
da502956 735 return NULL;
1da177e4
LT
736}
737
da502956 738struct dentry *d_find_alias(struct inode *inode)
1da177e4 739{
214fda1f
DH
740 struct dentry *de = NULL;
741
742 if (!list_empty(&inode->i_dentry)) {
873feea0 743 spin_lock(&inode->i_lock);
214fda1f 744 de = __d_find_alias(inode, 0);
873feea0 745 spin_unlock(&inode->i_lock);
214fda1f 746 }
1da177e4
LT
747 return de;
748}
ec4f8605 749EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
750
751/*
752 * Try to kill dentries associated with this inode.
753 * WARNING: you must own a reference to inode.
754 */
755void d_prune_aliases(struct inode *inode)
756{
0cdca3f9 757 struct dentry *dentry;
1da177e4 758restart:
873feea0 759 spin_lock(&inode->i_lock);
0cdca3f9 760 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 761 spin_lock(&dentry->d_lock);
b7ab39f6 762 if (!dentry->d_count) {
dc0474be 763 __dget_dlock(dentry);
1da177e4
LT
764 __d_drop(dentry);
765 spin_unlock(&dentry->d_lock);
873feea0 766 spin_unlock(&inode->i_lock);
1da177e4
LT
767 dput(dentry);
768 goto restart;
769 }
770 spin_unlock(&dentry->d_lock);
771 }
873feea0 772 spin_unlock(&inode->i_lock);
1da177e4 773}
ec4f8605 774EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
775
776/*
77812a1e
NP
777 * Try to throw away a dentry - free the inode, dput the parent.
778 * Requires dentry->d_lock is held, and dentry->d_count == 0.
779 * Releases dentry->d_lock.
d702ccb3 780 *
77812a1e 781 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 782 */
77812a1e 783static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 784 __releases(dentry->d_lock)
1da177e4 785{
77812a1e 786 struct dentry *parent;
d52b9086 787
77812a1e 788 parent = dentry_kill(dentry, 0);
d52b9086 789 /*
77812a1e
NP
790 * If dentry_kill returns NULL, we have nothing more to do.
791 * if it returns the same dentry, trylocks failed. In either
792 * case, just loop again.
793 *
794 * Otherwise, we need to prune ancestors too. This is necessary
795 * to prevent quadratic behavior of shrink_dcache_parent(), but
796 * is also expected to be beneficial in reducing dentry cache
797 * fragmentation.
d52b9086 798 */
77812a1e
NP
799 if (!parent)
800 return;
801 if (parent == dentry)
802 return;
803
804 /* Prune ancestors. */
805 dentry = parent;
d52b9086 806 while (dentry) {
b7ab39f6 807 spin_lock(&dentry->d_lock);
89e60548
NP
808 if (dentry->d_count > 1) {
809 dentry->d_count--;
810 spin_unlock(&dentry->d_lock);
811 return;
812 }
77812a1e 813 dentry = dentry_kill(dentry, 1);
d52b9086 814 }
1da177e4
LT
815}
816
3049cfe2 817static void shrink_dentry_list(struct list_head *list)
1da177e4 818{
da3bbdd4 819 struct dentry *dentry;
da3bbdd4 820
ec33679d
NP
821 rcu_read_lock();
822 for (;;) {
ec33679d
NP
823 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
824 if (&dentry->d_lru == list)
825 break; /* empty */
826 spin_lock(&dentry->d_lock);
827 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
828 spin_unlock(&dentry->d_lock);
23044507
NP
829 continue;
830 }
831
1da177e4
LT
832 /*
833 * We found an inuse dentry which was not removed from
da3bbdd4
KM
834 * the LRU because of laziness during lookup. Do not free
835 * it - just keep it off the LRU list.
1da177e4 836 */
b7ab39f6 837 if (dentry->d_count) {
ec33679d 838 dentry_lru_del(dentry);
da3bbdd4 839 spin_unlock(&dentry->d_lock);
1da177e4
LT
840 continue;
841 }
ec33679d 842
ec33679d 843 rcu_read_unlock();
77812a1e
NP
844
845 try_prune_one_dentry(dentry);
846
ec33679d 847 rcu_read_lock();
da3bbdd4 848 }
ec33679d 849 rcu_read_unlock();
3049cfe2
CH
850}
851
852/**
b48f03b3
DC
853 * prune_dcache_sb - shrink the dcache
854 * @sb: superblock
855 * @count: number of entries to try to free
856 *
857 * Attempt to shrink the superblock dcache LRU by @count entries. This is
858 * done when we need more memory an called from the superblock shrinker
859 * function.
3049cfe2 860 *
b48f03b3
DC
861 * This function may fail to free any resources if all the dentries are in
862 * use.
3049cfe2 863 */
b48f03b3 864void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 865{
3049cfe2
CH
866 struct dentry *dentry;
867 LIST_HEAD(referenced);
868 LIST_HEAD(tmp);
3049cfe2 869
23044507
NP
870relock:
871 spin_lock(&dcache_lru_lock);
3049cfe2
CH
872 while (!list_empty(&sb->s_dentry_lru)) {
873 dentry = list_entry(sb->s_dentry_lru.prev,
874 struct dentry, d_lru);
875 BUG_ON(dentry->d_sb != sb);
876
23044507
NP
877 if (!spin_trylock(&dentry->d_lock)) {
878 spin_unlock(&dcache_lru_lock);
879 cpu_relax();
880 goto relock;
881 }
882
b48f03b3 883 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
884 dentry->d_flags &= ~DCACHE_REFERENCED;
885 list_move(&dentry->d_lru, &referenced);
3049cfe2 886 spin_unlock(&dentry->d_lock);
23044507
NP
887 } else {
888 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 889 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 890 spin_unlock(&dentry->d_lock);
b0d40c92 891 if (!--count)
23044507 892 break;
3049cfe2 893 }
ec33679d 894 cond_resched_lock(&dcache_lru_lock);
3049cfe2 895 }
da3bbdd4
KM
896 if (!list_empty(&referenced))
897 list_splice(&referenced, &sb->s_dentry_lru);
23044507 898 spin_unlock(&dcache_lru_lock);
ec33679d
NP
899
900 shrink_dentry_list(&tmp);
da3bbdd4
KM
901}
902
1da177e4
LT
903/**
904 * shrink_dcache_sb - shrink dcache for a superblock
905 * @sb: superblock
906 *
3049cfe2
CH
907 * Shrink the dcache for the specified super block. This is used to free
908 * the dcache before unmounting a file system.
1da177e4 909 */
3049cfe2 910void shrink_dcache_sb(struct super_block *sb)
1da177e4 911{
3049cfe2
CH
912 LIST_HEAD(tmp);
913
23044507 914 spin_lock(&dcache_lru_lock);
3049cfe2
CH
915 while (!list_empty(&sb->s_dentry_lru)) {
916 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 917 spin_unlock(&dcache_lru_lock);
3049cfe2 918 shrink_dentry_list(&tmp);
ec33679d 919 spin_lock(&dcache_lru_lock);
3049cfe2 920 }
23044507 921 spin_unlock(&dcache_lru_lock);
1da177e4 922}
ec4f8605 923EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 924
c636ebdb
DH
925/*
926 * destroy a single subtree of dentries for unmount
927 * - see the comments on shrink_dcache_for_umount() for a description of the
928 * locking
929 */
930static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
931{
932 struct dentry *parent;
933
934 BUG_ON(!IS_ROOT(dentry));
935
c636ebdb
DH
936 for (;;) {
937 /* descend to the first leaf in the current subtree */
43c1c9cd 938 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
939 dentry = list_entry(dentry->d_subdirs.next,
940 struct dentry, d_u.d_child);
c636ebdb
DH
941
942 /* consume the dentries from this leaf up through its parents
943 * until we find one with children or run out altogether */
944 do {
945 struct inode *inode;
946
f0023bc6
SW
947 /*
948 * remove the dentry from the lru, and inform
949 * the fs that this dentry is about to be
950 * unhashed and destroyed.
951 */
952 dentry_lru_prune(dentry);
43c1c9cd
DH
953 __d_shrink(dentry);
954
b7ab39f6 955 if (dentry->d_count != 0) {
c636ebdb
DH
956 printk(KERN_ERR
957 "BUG: Dentry %p{i=%lx,n=%s}"
958 " still in use (%d)"
959 " [unmount of %s %s]\n",
960 dentry,
961 dentry->d_inode ?
962 dentry->d_inode->i_ino : 0UL,
963 dentry->d_name.name,
b7ab39f6 964 dentry->d_count,
c636ebdb
DH
965 dentry->d_sb->s_type->name,
966 dentry->d_sb->s_id);
967 BUG();
968 }
969
2fd6b7f5 970 if (IS_ROOT(dentry)) {
c636ebdb 971 parent = NULL;
2fd6b7f5
NP
972 list_del(&dentry->d_u.d_child);
973 } else {
871c0067 974 parent = dentry->d_parent;
b7ab39f6 975 parent->d_count--;
2fd6b7f5 976 list_del(&dentry->d_u.d_child);
871c0067 977 }
c636ebdb 978
c636ebdb
DH
979 inode = dentry->d_inode;
980 if (inode) {
981 dentry->d_inode = NULL;
982 list_del_init(&dentry->d_alias);
983 if (dentry->d_op && dentry->d_op->d_iput)
984 dentry->d_op->d_iput(dentry, inode);
985 else
986 iput(inode);
987 }
988
989 d_free(dentry);
990
991 /* finished when we fall off the top of the tree,
992 * otherwise we ascend to the parent and move to the
993 * next sibling if there is one */
994 if (!parent)
312d3ca8 995 return;
c636ebdb 996 dentry = parent;
c636ebdb
DH
997 } while (list_empty(&dentry->d_subdirs));
998
999 dentry = list_entry(dentry->d_subdirs.next,
1000 struct dentry, d_u.d_child);
1001 }
1002}
1003
1004/*
1005 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 1006 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
1007 * - the superblock is detached from all mountings and open files, so the
1008 * dentry trees will not be rearranged by the VFS
1009 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1010 * any dentries belonging to this superblock that it comes across
1011 * - the filesystem itself is no longer permitted to rearrange the dentries
1012 * in this superblock
1013 */
1014void shrink_dcache_for_umount(struct super_block *sb)
1015{
1016 struct dentry *dentry;
1017
1018 if (down_read_trylock(&sb->s_umount))
1019 BUG();
1020
1021 dentry = sb->s_root;
1022 sb->s_root = NULL;
b7ab39f6 1023 dentry->d_count--;
c636ebdb
DH
1024 shrink_dcache_for_umount_subtree(dentry);
1025
ceb5bdc2
NP
1026 while (!hlist_bl_empty(&sb->s_anon)) {
1027 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1028 shrink_dcache_for_umount_subtree(dentry);
1029 }
1030}
1031
c826cb7d
LT
1032/*
1033 * This tries to ascend one level of parenthood, but
1034 * we can race with renaming, so we need to re-check
1035 * the parenthood after dropping the lock and check
1036 * that the sequence number still matches.
1037 */
1038static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1039{
1040 struct dentry *new = old->d_parent;
1041
1042 rcu_read_lock();
1043 spin_unlock(&old->d_lock);
1044 spin_lock(&new->d_lock);
1045
1046 /*
1047 * might go back up the wrong parent if we have had a rename
1048 * or deletion
1049 */
1050 if (new != old->d_parent ||
c83ce989 1051 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
1052 (!locked && read_seqretry(&rename_lock, seq))) {
1053 spin_unlock(&new->d_lock);
1054 new = NULL;
1055 }
1056 rcu_read_unlock();
1057 return new;
1058}
1059
1060
1da177e4
LT
1061/*
1062 * Search for at least 1 mount point in the dentry's subdirs.
1063 * We descend to the next level whenever the d_subdirs
1064 * list is non-empty and continue searching.
1065 */
1066
1067/**
1068 * have_submounts - check for mounts over a dentry
1069 * @parent: dentry to check.
1070 *
1071 * Return true if the parent or its subdirectories contain
1072 * a mount point
1073 */
1da177e4
LT
1074int have_submounts(struct dentry *parent)
1075{
949854d0 1076 struct dentry *this_parent;
1da177e4 1077 struct list_head *next;
949854d0 1078 unsigned seq;
58db63d0 1079 int locked = 0;
949854d0 1080
949854d0 1081 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1082again:
1083 this_parent = parent;
1da177e4 1084
1da177e4
LT
1085 if (d_mountpoint(parent))
1086 goto positive;
2fd6b7f5 1087 spin_lock(&this_parent->d_lock);
1da177e4
LT
1088repeat:
1089 next = this_parent->d_subdirs.next;
1090resume:
1091 while (next != &this_parent->d_subdirs) {
1092 struct list_head *tmp = next;
5160ee6f 1093 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1094 next = tmp->next;
2fd6b7f5
NP
1095
1096 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1097 /* Have we found a mount point ? */
2fd6b7f5
NP
1098 if (d_mountpoint(dentry)) {
1099 spin_unlock(&dentry->d_lock);
1100 spin_unlock(&this_parent->d_lock);
1da177e4 1101 goto positive;
2fd6b7f5 1102 }
1da177e4 1103 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1104 spin_unlock(&this_parent->d_lock);
1105 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1106 this_parent = dentry;
2fd6b7f5 1107 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1108 goto repeat;
1109 }
2fd6b7f5 1110 spin_unlock(&dentry->d_lock);
1da177e4
LT
1111 }
1112 /*
1113 * All done at this level ... ascend and resume the search.
1114 */
1115 if (this_parent != parent) {
c826cb7d
LT
1116 struct dentry *child = this_parent;
1117 this_parent = try_to_ascend(this_parent, locked, seq);
1118 if (!this_parent)
949854d0 1119 goto rename_retry;
949854d0 1120 next = child->d_u.d_child.next;
1da177e4
LT
1121 goto resume;
1122 }
2fd6b7f5 1123 spin_unlock(&this_parent->d_lock);
58db63d0 1124 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1125 goto rename_retry;
58db63d0
NP
1126 if (locked)
1127 write_sequnlock(&rename_lock);
1da177e4
LT
1128 return 0; /* No mount points found in tree */
1129positive:
58db63d0 1130 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1131 goto rename_retry;
58db63d0
NP
1132 if (locked)
1133 write_sequnlock(&rename_lock);
1da177e4 1134 return 1;
58db63d0
NP
1135
1136rename_retry:
1137 locked = 1;
1138 write_seqlock(&rename_lock);
1139 goto again;
1da177e4 1140}
ec4f8605 1141EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1142
1143/*
1144 * Search the dentry child list for the specified parent,
1145 * and move any unused dentries to the end of the unused
1146 * list for prune_dcache(). We descend to the next level
1147 * whenever the d_subdirs list is non-empty and continue
1148 * searching.
1149 *
1150 * It returns zero iff there are no unused children,
1151 * otherwise it returns the number of children moved to
1152 * the end of the unused list. This may not be the total
1153 * number of unused children, because select_parent can
1154 * drop the lock and return early due to latency
1155 * constraints.
1156 */
b48f03b3 1157static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1158{
949854d0 1159 struct dentry *this_parent;
1da177e4 1160 struct list_head *next;
949854d0 1161 unsigned seq;
1da177e4 1162 int found = 0;
58db63d0 1163 int locked = 0;
1da177e4 1164
949854d0 1165 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1166again:
1167 this_parent = parent;
2fd6b7f5 1168 spin_lock(&this_parent->d_lock);
1da177e4
LT
1169repeat:
1170 next = this_parent->d_subdirs.next;
1171resume:
1172 while (next != &this_parent->d_subdirs) {
1173 struct list_head *tmp = next;
5160ee6f 1174 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1175 next = tmp->next;
1176
2fd6b7f5 1177 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1178
b48f03b3
DC
1179 /*
1180 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1181 *
1182 * Those which are presently on the shrink list, being processed
1183 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1184 * loop in shrink_dcache_parent() might not make any progress
1185 * and loop forever.
1da177e4 1186 */
eaf5f907
MS
1187 if (dentry->d_count) {
1188 dentry_lru_del(dentry);
1189 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1190 dentry_lru_move_list(dentry, dispose);
eaf5f907 1191 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1192 found++;
1193 }
1da177e4
LT
1194 /*
1195 * We can return to the caller if we have found some (this
1196 * ensures forward progress). We'll be coming back to find
1197 * the rest.
1198 */
2fd6b7f5
NP
1199 if (found && need_resched()) {
1200 spin_unlock(&dentry->d_lock);
1da177e4 1201 goto out;
2fd6b7f5 1202 }
1da177e4
LT
1203
1204 /*
1205 * Descend a level if the d_subdirs list is non-empty.
1206 */
1207 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1208 spin_unlock(&this_parent->d_lock);
1209 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1210 this_parent = dentry;
2fd6b7f5 1211 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1212 goto repeat;
1213 }
2fd6b7f5
NP
1214
1215 spin_unlock(&dentry->d_lock);
1da177e4
LT
1216 }
1217 /*
1218 * All done at this level ... ascend and resume the search.
1219 */
1220 if (this_parent != parent) {
c826cb7d
LT
1221 struct dentry *child = this_parent;
1222 this_parent = try_to_ascend(this_parent, locked, seq);
1223 if (!this_parent)
949854d0 1224 goto rename_retry;
949854d0 1225 next = child->d_u.d_child.next;
1da177e4
LT
1226 goto resume;
1227 }
1228out:
2fd6b7f5 1229 spin_unlock(&this_parent->d_lock);
58db63d0 1230 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1231 goto rename_retry;
58db63d0
NP
1232 if (locked)
1233 write_sequnlock(&rename_lock);
1da177e4 1234 return found;
58db63d0
NP
1235
1236rename_retry:
1237 if (found)
1238 return found;
1239 locked = 1;
1240 write_seqlock(&rename_lock);
1241 goto again;
1da177e4
LT
1242}
1243
1244/**
1245 * shrink_dcache_parent - prune dcache
1246 * @parent: parent of entries to prune
1247 *
1248 * Prune the dcache to remove unused children of the parent dentry.
1249 */
1da177e4
LT
1250void shrink_dcache_parent(struct dentry * parent)
1251{
b48f03b3 1252 LIST_HEAD(dispose);
1da177e4
LT
1253 int found;
1254
b48f03b3
DC
1255 while ((found = select_parent(parent, &dispose)) != 0)
1256 shrink_dentry_list(&dispose);
1da177e4 1257}
ec4f8605 1258EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1259
1da177e4 1260/**
a4464dbc
AV
1261 * __d_alloc - allocate a dcache entry
1262 * @sb: filesystem it will belong to
1da177e4
LT
1263 * @name: qstr of the name
1264 *
1265 * Allocates a dentry. It returns %NULL if there is insufficient memory
1266 * available. On a success the dentry is returned. The name passed in is
1267 * copied and the copy passed in may be reused after this call.
1268 */
1269
a4464dbc 1270struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1271{
1272 struct dentry *dentry;
1273 char *dname;
1274
e12ba74d 1275 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1276 if (!dentry)
1277 return NULL;
1278
1279 if (name->len > DNAME_INLINE_LEN-1) {
1280 dname = kmalloc(name->len + 1, GFP_KERNEL);
1281 if (!dname) {
1282 kmem_cache_free(dentry_cache, dentry);
1283 return NULL;
1284 }
1285 } else {
1286 dname = dentry->d_iname;
1287 }
1288 dentry->d_name.name = dname;
1289
1290 dentry->d_name.len = name->len;
1291 dentry->d_name.hash = name->hash;
1292 memcpy(dname, name->name, name->len);
1293 dname[name->len] = 0;
1294
b7ab39f6 1295 dentry->d_count = 1;
dea3667b 1296 dentry->d_flags = 0;
1da177e4 1297 spin_lock_init(&dentry->d_lock);
31e6b01f 1298 seqcount_init(&dentry->d_seq);
1da177e4 1299 dentry->d_inode = NULL;
a4464dbc
AV
1300 dentry->d_parent = dentry;
1301 dentry->d_sb = sb;
1da177e4
LT
1302 dentry->d_op = NULL;
1303 dentry->d_fsdata = NULL;
ceb5bdc2 1304 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1305 INIT_LIST_HEAD(&dentry->d_lru);
1306 INIT_LIST_HEAD(&dentry->d_subdirs);
1307 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1308 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1309 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1310
3e880fb5 1311 this_cpu_inc(nr_dentry);
312d3ca8 1312
1da177e4
LT
1313 return dentry;
1314}
a4464dbc
AV
1315
1316/**
1317 * d_alloc - allocate a dcache entry
1318 * @parent: parent of entry to allocate
1319 * @name: qstr of the name
1320 *
1321 * Allocates a dentry. It returns %NULL if there is insufficient memory
1322 * available. On a success the dentry is returned. The name passed in is
1323 * copied and the copy passed in may be reused after this call.
1324 */
1325struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1326{
1327 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1328 if (!dentry)
1329 return NULL;
1330
1331 spin_lock(&parent->d_lock);
1332 /*
1333 * don't need child lock because it is not subject
1334 * to concurrency here
1335 */
1336 __dget_dlock(parent);
1337 dentry->d_parent = parent;
1338 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1339 spin_unlock(&parent->d_lock);
1340
1341 return dentry;
1342}
ec4f8605 1343EXPORT_SYMBOL(d_alloc);
1da177e4 1344
4b936885
NP
1345struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1346{
a4464dbc
AV
1347 struct dentry *dentry = __d_alloc(sb, name);
1348 if (dentry)
4b936885 1349 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1350 return dentry;
1351}
1352EXPORT_SYMBOL(d_alloc_pseudo);
1353
1da177e4
LT
1354struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1355{
1356 struct qstr q;
1357
1358 q.name = name;
1359 q.len = strlen(name);
1360 q.hash = full_name_hash(q.name, q.len);
1361 return d_alloc(parent, &q);
1362}
ef26ca97 1363EXPORT_SYMBOL(d_alloc_name);
1da177e4 1364
fb045adb
NP
1365void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1366{
6f7f7caa
LT
1367 WARN_ON_ONCE(dentry->d_op);
1368 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1369 DCACHE_OP_COMPARE |
1370 DCACHE_OP_REVALIDATE |
1371 DCACHE_OP_DELETE ));
1372 dentry->d_op = op;
1373 if (!op)
1374 return;
1375 if (op->d_hash)
1376 dentry->d_flags |= DCACHE_OP_HASH;
1377 if (op->d_compare)
1378 dentry->d_flags |= DCACHE_OP_COMPARE;
1379 if (op->d_revalidate)
1380 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1381 if (op->d_delete)
1382 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1383 if (op->d_prune)
1384 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1385
1386}
1387EXPORT_SYMBOL(d_set_d_op);
1388
360da900
OH
1389static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1390{
b23fb0a6 1391 spin_lock(&dentry->d_lock);
9875cf80
DH
1392 if (inode) {
1393 if (unlikely(IS_AUTOMOUNT(inode)))
1394 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1395 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1396 }
360da900 1397 dentry->d_inode = inode;
31e6b01f 1398 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1399 spin_unlock(&dentry->d_lock);
360da900
OH
1400 fsnotify_d_instantiate(dentry, inode);
1401}
1402
1da177e4
LT
1403/**
1404 * d_instantiate - fill in inode information for a dentry
1405 * @entry: dentry to complete
1406 * @inode: inode to attach to this dentry
1407 *
1408 * Fill in inode information in the entry.
1409 *
1410 * This turns negative dentries into productive full members
1411 * of society.
1412 *
1413 * NOTE! This assumes that the inode count has been incremented
1414 * (or otherwise set) by the caller to indicate that it is now
1415 * in use by the dcache.
1416 */
1417
1418void d_instantiate(struct dentry *entry, struct inode * inode)
1419{
28133c7b 1420 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1421 if (inode)
1422 spin_lock(&inode->i_lock);
360da900 1423 __d_instantiate(entry, inode);
873feea0
NP
1424 if (inode)
1425 spin_unlock(&inode->i_lock);
1da177e4
LT
1426 security_d_instantiate(entry, inode);
1427}
ec4f8605 1428EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1429
1430/**
1431 * d_instantiate_unique - instantiate a non-aliased dentry
1432 * @entry: dentry to instantiate
1433 * @inode: inode to attach to this dentry
1434 *
1435 * Fill in inode information in the entry. On success, it returns NULL.
1436 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1437 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1438 *
1439 * Note that in order to avoid conflicts with rename() etc, the caller
1440 * had better be holding the parent directory semaphore.
e866cfa9
OD
1441 *
1442 * This also assumes that the inode count has been incremented
1443 * (or otherwise set) by the caller to indicate that it is now
1444 * in use by the dcache.
1da177e4 1445 */
770bfad8
DH
1446static struct dentry *__d_instantiate_unique(struct dentry *entry,
1447 struct inode *inode)
1da177e4
LT
1448{
1449 struct dentry *alias;
1450 int len = entry->d_name.len;
1451 const char *name = entry->d_name.name;
1452 unsigned int hash = entry->d_name.hash;
1453
770bfad8 1454 if (!inode) {
360da900 1455 __d_instantiate(entry, NULL);
770bfad8
DH
1456 return NULL;
1457 }
1458
1da177e4 1459 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1460 /*
1461 * Don't need alias->d_lock here, because aliases with
1462 * d_parent == entry->d_parent are not subject to name or
1463 * parent changes, because the parent inode i_mutex is held.
1464 */
12f8ad4b 1465 if (alias->d_name.hash != hash)
1da177e4
LT
1466 continue;
1467 if (alias->d_parent != entry->d_parent)
1468 continue;
12f8ad4b 1469 if (dentry_cmp(alias, name, len))
1da177e4 1470 continue;
dc0474be 1471 __dget(alias);
1da177e4
LT
1472 return alias;
1473 }
770bfad8 1474
360da900 1475 __d_instantiate(entry, inode);
1da177e4
LT
1476 return NULL;
1477}
770bfad8
DH
1478
1479struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1480{
1481 struct dentry *result;
1482
1483 BUG_ON(!list_empty(&entry->d_alias));
1484
873feea0
NP
1485 if (inode)
1486 spin_lock(&inode->i_lock);
770bfad8 1487 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1488 if (inode)
1489 spin_unlock(&inode->i_lock);
770bfad8
DH
1490
1491 if (!result) {
1492 security_d_instantiate(entry, inode);
1493 return NULL;
1494 }
1495
1496 BUG_ON(!d_unhashed(result));
1497 iput(inode);
1498 return result;
1499}
1500
1da177e4
LT
1501EXPORT_SYMBOL(d_instantiate_unique);
1502
adc0e91a
AV
1503struct dentry *d_make_root(struct inode *root_inode)
1504{
1505 struct dentry *res = NULL;
1506
1507 if (root_inode) {
1508 static const struct qstr name = { .name = "/", .len = 1 };
1509
1510 res = __d_alloc(root_inode->i_sb, &name);
1511 if (res)
1512 d_instantiate(res, root_inode);
1513 else
1514 iput(root_inode);
1515 }
1516 return res;
1517}
1518EXPORT_SYMBOL(d_make_root);
1519
d891eedb
BF
1520static struct dentry * __d_find_any_alias(struct inode *inode)
1521{
1522 struct dentry *alias;
1523
1524 if (list_empty(&inode->i_dentry))
1525 return NULL;
1526 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1527 __dget(alias);
1528 return alias;
1529}
1530
46f72b34
SW
1531/**
1532 * d_find_any_alias - find any alias for a given inode
1533 * @inode: inode to find an alias for
1534 *
1535 * If any aliases exist for the given inode, take and return a
1536 * reference for one of them. If no aliases exist, return %NULL.
1537 */
1538struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1539{
1540 struct dentry *de;
1541
1542 spin_lock(&inode->i_lock);
1543 de = __d_find_any_alias(inode);
1544 spin_unlock(&inode->i_lock);
1545 return de;
1546}
46f72b34 1547EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1548
4ea3ada2
CH
1549/**
1550 * d_obtain_alias - find or allocate a dentry for a given inode
1551 * @inode: inode to allocate the dentry for
1552 *
1553 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1554 * similar open by handle operations. The returned dentry may be anonymous,
1555 * or may have a full name (if the inode was already in the cache).
1556 *
1557 * When called on a directory inode, we must ensure that the inode only ever
1558 * has one dentry. If a dentry is found, that is returned instead of
1559 * allocating a new one.
1560 *
1561 * On successful return, the reference to the inode has been transferred
44003728
CH
1562 * to the dentry. In case of an error the reference on the inode is released.
1563 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1564 * be passed in and will be the error will be propagate to the return value,
1565 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1566 */
1567struct dentry *d_obtain_alias(struct inode *inode)
1568{
9308a612
CH
1569 static const struct qstr anonstring = { .name = "" };
1570 struct dentry *tmp;
1571 struct dentry *res;
4ea3ada2
CH
1572
1573 if (!inode)
44003728 1574 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1575 if (IS_ERR(inode))
1576 return ERR_CAST(inode);
1577
d891eedb 1578 res = d_find_any_alias(inode);
9308a612
CH
1579 if (res)
1580 goto out_iput;
1581
a4464dbc 1582 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1583 if (!tmp) {
1584 res = ERR_PTR(-ENOMEM);
1585 goto out_iput;
4ea3ada2 1586 }
b5c84bf6 1587
873feea0 1588 spin_lock(&inode->i_lock);
d891eedb 1589 res = __d_find_any_alias(inode);
9308a612 1590 if (res) {
873feea0 1591 spin_unlock(&inode->i_lock);
9308a612
CH
1592 dput(tmp);
1593 goto out_iput;
1594 }
1595
1596 /* attach a disconnected dentry */
1597 spin_lock(&tmp->d_lock);
9308a612
CH
1598 tmp->d_inode = inode;
1599 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1600 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1601 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1602 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1603 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1604 spin_unlock(&tmp->d_lock);
873feea0 1605 spin_unlock(&inode->i_lock);
24ff6663 1606 security_d_instantiate(tmp, inode);
9308a612 1607
9308a612
CH
1608 return tmp;
1609
1610 out_iput:
24ff6663
JB
1611 if (res && !IS_ERR(res))
1612 security_d_instantiate(res, inode);
9308a612
CH
1613 iput(inode);
1614 return res;
4ea3ada2 1615}
adc48720 1616EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1617
1618/**
1619 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1620 * @inode: the inode which may have a disconnected dentry
1621 * @dentry: a negative dentry which we want to point to the inode.
1622 *
1623 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1624 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1625 * and return it, else simply d_add the inode to the dentry and return NULL.
1626 *
1627 * This is needed in the lookup routine of any filesystem that is exportable
1628 * (via knfsd) so that we can build dcache paths to directories effectively.
1629 *
1630 * If a dentry was found and moved, then it is returned. Otherwise NULL
1631 * is returned. This matches the expected return value of ->lookup.
1632 *
1633 */
1634struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1635{
1636 struct dentry *new = NULL;
1637
a9049376
AV
1638 if (IS_ERR(inode))
1639 return ERR_CAST(inode);
1640
21c0d8fd 1641 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1642 spin_lock(&inode->i_lock);
1da177e4
LT
1643 new = __d_find_alias(inode, 1);
1644 if (new) {
1645 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1646 spin_unlock(&inode->i_lock);
1da177e4 1647 security_d_instantiate(new, inode);
1da177e4
LT
1648 d_move(new, dentry);
1649 iput(inode);
1650 } else {
873feea0 1651 /* already taking inode->i_lock, so d_add() by hand */
360da900 1652 __d_instantiate(dentry, inode);
873feea0 1653 spin_unlock(&inode->i_lock);
1da177e4
LT
1654 security_d_instantiate(dentry, inode);
1655 d_rehash(dentry);
1656 }
1657 } else
1658 d_add(dentry, inode);
1659 return new;
1660}
ec4f8605 1661EXPORT_SYMBOL(d_splice_alias);
1da177e4 1662
9403540c
BN
1663/**
1664 * d_add_ci - lookup or allocate new dentry with case-exact name
1665 * @inode: the inode case-insensitive lookup has found
1666 * @dentry: the negative dentry that was passed to the parent's lookup func
1667 * @name: the case-exact name to be associated with the returned dentry
1668 *
1669 * This is to avoid filling the dcache with case-insensitive names to the
1670 * same inode, only the actual correct case is stored in the dcache for
1671 * case-insensitive filesystems.
1672 *
1673 * For a case-insensitive lookup match and if the the case-exact dentry
1674 * already exists in in the dcache, use it and return it.
1675 *
1676 * If no entry exists with the exact case name, allocate new dentry with
1677 * the exact case, and return the spliced entry.
1678 */
e45b590b 1679struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1680 struct qstr *name)
1681{
1682 int error;
1683 struct dentry *found;
1684 struct dentry *new;
1685
b6520c81
CH
1686 /*
1687 * First check if a dentry matching the name already exists,
1688 * if not go ahead and create it now.
1689 */
9403540c 1690 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1691 if (!found) {
1692 new = d_alloc(dentry->d_parent, name);
1693 if (!new) {
1694 error = -ENOMEM;
1695 goto err_out;
1696 }
b6520c81 1697
9403540c
BN
1698 found = d_splice_alias(inode, new);
1699 if (found) {
1700 dput(new);
1701 return found;
1702 }
1703 return new;
1704 }
b6520c81
CH
1705
1706 /*
1707 * If a matching dentry exists, and it's not negative use it.
1708 *
1709 * Decrement the reference count to balance the iget() done
1710 * earlier on.
1711 */
9403540c
BN
1712 if (found->d_inode) {
1713 if (unlikely(found->d_inode != inode)) {
1714 /* This can't happen because bad inodes are unhashed. */
1715 BUG_ON(!is_bad_inode(inode));
1716 BUG_ON(!is_bad_inode(found->d_inode));
1717 }
9403540c
BN
1718 iput(inode);
1719 return found;
1720 }
b6520c81 1721
9403540c 1722 /*
44396f4b
JB
1723 * We are going to instantiate this dentry, unhash it and clear the
1724 * lookup flag so we can do that.
9403540c 1725 */
44396f4b
JB
1726 if (unlikely(d_need_lookup(found)))
1727 d_clear_need_lookup(found);
b6520c81 1728
9403540c 1729 /*
9403540c 1730 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1731 * already has a dentry.
9403540c 1732 */
4513d899
AV
1733 new = d_splice_alias(inode, found);
1734 if (new) {
1735 dput(found);
1736 found = new;
9403540c 1737 }
4513d899 1738 return found;
9403540c
BN
1739
1740err_out:
1741 iput(inode);
1742 return ERR_PTR(error);
1743}
ec4f8605 1744EXPORT_SYMBOL(d_add_ci);
1da177e4 1745
12f8ad4b
LT
1746/*
1747 * Do the slow-case of the dentry name compare.
1748 *
1749 * Unlike the dentry_cmp() function, we need to atomically
1750 * load the name, length and inode information, so that the
1751 * filesystem can rely on them, and can use the 'name' and
1752 * 'len' information without worrying about walking off the
1753 * end of memory etc.
1754 *
1755 * Thus the read_seqcount_retry() and the "duplicate" info
1756 * in arguments (the low-level filesystem should not look
1757 * at the dentry inode or name contents directly, since
1758 * rename can change them while we're in RCU mode).
1759 */
1760enum slow_d_compare {
1761 D_COMP_OK,
1762 D_COMP_NOMATCH,
1763 D_COMP_SEQRETRY,
1764};
1765
1766static noinline enum slow_d_compare slow_dentry_cmp(
1767 const struct dentry *parent,
1768 struct inode *inode,
1769 struct dentry *dentry,
1770 unsigned int seq,
1771 const struct qstr *name)
1772{
1773 int tlen = dentry->d_name.len;
1774 const char *tname = dentry->d_name.name;
1775 struct inode *i = dentry->d_inode;
1776
1777 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1778 cpu_relax();
1779 return D_COMP_SEQRETRY;
1780 }
1781 if (parent->d_op->d_compare(parent, inode,
1782 dentry, i,
1783 tlen, tname, name))
1784 return D_COMP_NOMATCH;
1785 return D_COMP_OK;
1786}
1787
31e6b01f
NP
1788/**
1789 * __d_lookup_rcu - search for a dentry (racy, store-free)
1790 * @parent: parent dentry
1791 * @name: qstr of name we wish to find
1f1e6e52 1792 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1793 * @inode: returns dentry->d_inode when the inode was found valid.
1794 * Returns: dentry, or NULL
1795 *
1796 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1797 * resolution (store-free path walking) design described in
1798 * Documentation/filesystems/path-lookup.txt.
1799 *
1800 * This is not to be used outside core vfs.
1801 *
1802 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1803 * held, and rcu_read_lock held. The returned dentry must not be stored into
1804 * without taking d_lock and checking d_seq sequence count against @seq
1805 * returned here.
1806 *
1807 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1808 * function.
1809 *
1810 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1811 * the returned dentry, so long as its parent's seqlock is checked after the
1812 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1813 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1814 *
1815 * NOTE! The caller *has* to check the resulting dentry against the sequence
1816 * number we've returned before using any of the resulting dentry state!
31e6b01f 1817 */
8966be90
LT
1818struct dentry *__d_lookup_rcu(const struct dentry *parent,
1819 const struct qstr *name,
12f8ad4b 1820 unsigned *seqp, struct inode *inode)
31e6b01f
NP
1821{
1822 unsigned int len = name->len;
1823 unsigned int hash = name->hash;
1824 const unsigned char *str = name->name;
b07ad996 1825 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1826 struct hlist_bl_node *node;
31e6b01f
NP
1827 struct dentry *dentry;
1828
1829 /*
1830 * Note: There is significant duplication with __d_lookup_rcu which is
1831 * required to prevent single threaded performance regressions
1832 * especially on architectures where smp_rmb (in seqcounts) are costly.
1833 * Keep the two functions in sync.
1834 */
1835
1836 /*
1837 * The hash list is protected using RCU.
1838 *
1839 * Carefully use d_seq when comparing a candidate dentry, to avoid
1840 * races with d_move().
1841 *
1842 * It is possible that concurrent renames can mess up our list
1843 * walk here and result in missing our dentry, resulting in the
1844 * false-negative result. d_lookup() protects against concurrent
1845 * renames using rename_lock seqlock.
1846 *
b0a4bb83 1847 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1848 */
b07ad996 1849 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1850 unsigned seq;
31e6b01f
NP
1851
1852 if (dentry->d_name.hash != hash)
1853 continue;
1854
1855seqretry:
12f8ad4b
LT
1856 /*
1857 * The dentry sequence count protects us from concurrent
1858 * renames, and thus protects inode, parent and name fields.
1859 *
1860 * The caller must perform a seqcount check in order
1861 * to do anything useful with the returned dentry,
1862 * including using the 'd_inode' pointer.
1863 *
1864 * NOTE! We do a "raw" seqcount_begin here. That means that
1865 * we don't wait for the sequence count to stabilize if it
1866 * is in the middle of a sequence change. If we do the slow
1867 * dentry compare, we will do seqretries until it is stable,
1868 * and if we end up with a successful lookup, we actually
1869 * want to exit RCU lookup anyway.
1870 */
1871 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1872 if (dentry->d_parent != parent)
1873 continue;
12f8ad4b
LT
1874 *seqp = seq;
1875
830c0f0e 1876 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
12f8ad4b
LT
1877 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1878 case D_COMP_OK:
1879 return dentry;
1880 case D_COMP_NOMATCH:
31e6b01f 1881 continue;
12f8ad4b
LT
1882 default:
1883 goto seqretry;
1884 }
31e6b01f 1885 }
12f8ad4b
LT
1886
1887 if (!dentry_cmp(dentry, str, len))
1888 return dentry;
31e6b01f
NP
1889 }
1890 return NULL;
1891}
1892
1da177e4
LT
1893/**
1894 * d_lookup - search for a dentry
1895 * @parent: parent dentry
1896 * @name: qstr of name we wish to find
b04f784e 1897 * Returns: dentry, or NULL
1da177e4 1898 *
b04f784e
NP
1899 * d_lookup searches the children of the parent dentry for the name in
1900 * question. If the dentry is found its reference count is incremented and the
1901 * dentry is returned. The caller must use dput to free the entry when it has
1902 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1903 */
31e6b01f 1904struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1905{
31e6b01f 1906 struct dentry *dentry;
949854d0 1907 unsigned seq;
1da177e4
LT
1908
1909 do {
1910 seq = read_seqbegin(&rename_lock);
1911 dentry = __d_lookup(parent, name);
1912 if (dentry)
1913 break;
1914 } while (read_seqretry(&rename_lock, seq));
1915 return dentry;
1916}
ec4f8605 1917EXPORT_SYMBOL(d_lookup);
1da177e4 1918
31e6b01f 1919/**
b04f784e
NP
1920 * __d_lookup - search for a dentry (racy)
1921 * @parent: parent dentry
1922 * @name: qstr of name we wish to find
1923 * Returns: dentry, or NULL
1924 *
1925 * __d_lookup is like d_lookup, however it may (rarely) return a
1926 * false-negative result due to unrelated rename activity.
1927 *
1928 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1929 * however it must be used carefully, eg. with a following d_lookup in
1930 * the case of failure.
1931 *
1932 * __d_lookup callers must be commented.
1933 */
31e6b01f 1934struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1935{
1936 unsigned int len = name->len;
1937 unsigned int hash = name->hash;
1938 const unsigned char *str = name->name;
b07ad996 1939 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1940 struct hlist_bl_node *node;
31e6b01f 1941 struct dentry *found = NULL;
665a7583 1942 struct dentry *dentry;
1da177e4 1943
31e6b01f
NP
1944 /*
1945 * Note: There is significant duplication with __d_lookup_rcu which is
1946 * required to prevent single threaded performance regressions
1947 * especially on architectures where smp_rmb (in seqcounts) are costly.
1948 * Keep the two functions in sync.
1949 */
1950
b04f784e
NP
1951 /*
1952 * The hash list is protected using RCU.
1953 *
1954 * Take d_lock when comparing a candidate dentry, to avoid races
1955 * with d_move().
1956 *
1957 * It is possible that concurrent renames can mess up our list
1958 * walk here and result in missing our dentry, resulting in the
1959 * false-negative result. d_lookup() protects against concurrent
1960 * renames using rename_lock seqlock.
1961 *
b0a4bb83 1962 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1963 */
1da177e4
LT
1964 rcu_read_lock();
1965
b07ad996 1966 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1967
1da177e4
LT
1968 if (dentry->d_name.hash != hash)
1969 continue;
1da177e4
LT
1970
1971 spin_lock(&dentry->d_lock);
1da177e4
LT
1972 if (dentry->d_parent != parent)
1973 goto next;
d0185c08
LT
1974 if (d_unhashed(dentry))
1975 goto next;
1976
1da177e4
LT
1977 /*
1978 * It is safe to compare names since d_move() cannot
1979 * change the qstr (protected by d_lock).
1980 */
fb045adb 1981 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1982 int tlen = dentry->d_name.len;
1983 const char *tname = dentry->d_name.name;
621e155a
NP
1984 if (parent->d_op->d_compare(parent, parent->d_inode,
1985 dentry, dentry->d_inode,
31e6b01f 1986 tlen, tname, name))
1da177e4
LT
1987 goto next;
1988 } else {
12f8ad4b 1989 if (dentry_cmp(dentry, str, len))
1da177e4
LT
1990 goto next;
1991 }
1992
b7ab39f6 1993 dentry->d_count++;
d0185c08 1994 found = dentry;
1da177e4
LT
1995 spin_unlock(&dentry->d_lock);
1996 break;
1997next:
1998 spin_unlock(&dentry->d_lock);
1999 }
2000 rcu_read_unlock();
2001
2002 return found;
2003}
2004
3e7e241f
EB
2005/**
2006 * d_hash_and_lookup - hash the qstr then search for a dentry
2007 * @dir: Directory to search in
2008 * @name: qstr of name we wish to find
2009 *
2010 * On hash failure or on lookup failure NULL is returned.
2011 */
2012struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2013{
2014 struct dentry *dentry = NULL;
2015
2016 /*
2017 * Check for a fs-specific hash function. Note that we must
2018 * calculate the standard hash first, as the d_op->d_hash()
2019 * routine may choose to leave the hash value unchanged.
2020 */
2021 name->hash = full_name_hash(name->name, name->len);
fb045adb 2022 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 2023 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
2024 goto out;
2025 }
2026 dentry = d_lookup(dir, name);
2027out:
2028 return dentry;
2029}
2030
1da177e4 2031/**
786a5e15 2032 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2033 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2034 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2035 *
2036 * An insecure source has sent us a dentry, here we verify it and dget() it.
2037 * This is used by ncpfs in its readdir implementation.
2038 * Zero is returned in the dentry is invalid.
786a5e15
NP
2039 *
2040 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2041 */
d3a23e16 2042int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2043{
786a5e15 2044 struct dentry *child;
d3a23e16 2045
2fd6b7f5 2046 spin_lock(&dparent->d_lock);
786a5e15
NP
2047 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2048 if (dentry == child) {
2fd6b7f5 2049 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2050 __dget_dlock(dentry);
2fd6b7f5
NP
2051 spin_unlock(&dentry->d_lock);
2052 spin_unlock(&dparent->d_lock);
1da177e4
LT
2053 return 1;
2054 }
2055 }
2fd6b7f5 2056 spin_unlock(&dparent->d_lock);
786a5e15 2057
1da177e4
LT
2058 return 0;
2059}
ec4f8605 2060EXPORT_SYMBOL(d_validate);
1da177e4
LT
2061
2062/*
2063 * When a file is deleted, we have two options:
2064 * - turn this dentry into a negative dentry
2065 * - unhash this dentry and free it.
2066 *
2067 * Usually, we want to just turn this into
2068 * a negative dentry, but if anybody else is
2069 * currently using the dentry or the inode
2070 * we can't do that and we fall back on removing
2071 * it from the hash queues and waiting for
2072 * it to be deleted later when it has no users
2073 */
2074
2075/**
2076 * d_delete - delete a dentry
2077 * @dentry: The dentry to delete
2078 *
2079 * Turn the dentry into a negative dentry if possible, otherwise
2080 * remove it from the hash queues so it can be deleted later
2081 */
2082
2083void d_delete(struct dentry * dentry)
2084{
873feea0 2085 struct inode *inode;
7a91bf7f 2086 int isdir = 0;
1da177e4
LT
2087 /*
2088 * Are we the only user?
2089 */
357f8e65 2090again:
1da177e4 2091 spin_lock(&dentry->d_lock);
873feea0
NP
2092 inode = dentry->d_inode;
2093 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2094 if (dentry->d_count == 1) {
873feea0 2095 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
2096 spin_unlock(&dentry->d_lock);
2097 cpu_relax();
2098 goto again;
2099 }
13e3c5e5 2100 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2101 dentry_unlink_inode(dentry);
7a91bf7f 2102 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2103 return;
2104 }
2105
2106 if (!d_unhashed(dentry))
2107 __d_drop(dentry);
2108
2109 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2110
2111 fsnotify_nameremove(dentry, isdir);
1da177e4 2112}
ec4f8605 2113EXPORT_SYMBOL(d_delete);
1da177e4 2114
b07ad996 2115static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2116{
ceb5bdc2 2117 BUG_ON(!d_unhashed(entry));
1879fd6a 2118 hlist_bl_lock(b);
dea3667b 2119 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2120 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2121 hlist_bl_unlock(b);
1da177e4
LT
2122}
2123
770bfad8
DH
2124static void _d_rehash(struct dentry * entry)
2125{
2126 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2127}
2128
1da177e4
LT
2129/**
2130 * d_rehash - add an entry back to the hash
2131 * @entry: dentry to add to the hash
2132 *
2133 * Adds a dentry to the hash according to its name.
2134 */
2135
2136void d_rehash(struct dentry * entry)
2137{
1da177e4 2138 spin_lock(&entry->d_lock);
770bfad8 2139 _d_rehash(entry);
1da177e4 2140 spin_unlock(&entry->d_lock);
1da177e4 2141}
ec4f8605 2142EXPORT_SYMBOL(d_rehash);
1da177e4 2143
fb2d5b86
NP
2144/**
2145 * dentry_update_name_case - update case insensitive dentry with a new name
2146 * @dentry: dentry to be updated
2147 * @name: new name
2148 *
2149 * Update a case insensitive dentry with new case of name.
2150 *
2151 * dentry must have been returned by d_lookup with name @name. Old and new
2152 * name lengths must match (ie. no d_compare which allows mismatched name
2153 * lengths).
2154 *
2155 * Parent inode i_mutex must be held over d_lookup and into this call (to
2156 * keep renames and concurrent inserts, and readdir(2) away).
2157 */
2158void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2159{
7ebfa57f 2160 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2161 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2162
fb2d5b86 2163 spin_lock(&dentry->d_lock);
31e6b01f 2164 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2165 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2166 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2167 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2168}
2169EXPORT_SYMBOL(dentry_update_name_case);
2170
1da177e4
LT
2171static void switch_names(struct dentry *dentry, struct dentry *target)
2172{
2173 if (dname_external(target)) {
2174 if (dname_external(dentry)) {
2175 /*
2176 * Both external: swap the pointers
2177 */
9a8d5bb4 2178 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2179 } else {
2180 /*
2181 * dentry:internal, target:external. Steal target's
2182 * storage and make target internal.
2183 */
321bcf92
BF
2184 memcpy(target->d_iname, dentry->d_name.name,
2185 dentry->d_name.len + 1);
1da177e4
LT
2186 dentry->d_name.name = target->d_name.name;
2187 target->d_name.name = target->d_iname;
2188 }
2189 } else {
2190 if (dname_external(dentry)) {
2191 /*
2192 * dentry:external, target:internal. Give dentry's
2193 * storage to target and make dentry internal
2194 */
2195 memcpy(dentry->d_iname, target->d_name.name,
2196 target->d_name.len + 1);
2197 target->d_name.name = dentry->d_name.name;
2198 dentry->d_name.name = dentry->d_iname;
2199 } else {
2200 /*
2201 * Both are internal. Just copy target to dentry
2202 */
2203 memcpy(dentry->d_iname, target->d_name.name,
2204 target->d_name.len + 1);
dc711ca3
AV
2205 dentry->d_name.len = target->d_name.len;
2206 return;
1da177e4
LT
2207 }
2208 }
9a8d5bb4 2209 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2210}
2211
2fd6b7f5
NP
2212static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2213{
2214 /*
2215 * XXXX: do we really need to take target->d_lock?
2216 */
2217 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2218 spin_lock(&target->d_parent->d_lock);
2219 else {
2220 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2221 spin_lock(&dentry->d_parent->d_lock);
2222 spin_lock_nested(&target->d_parent->d_lock,
2223 DENTRY_D_LOCK_NESTED);
2224 } else {
2225 spin_lock(&target->d_parent->d_lock);
2226 spin_lock_nested(&dentry->d_parent->d_lock,
2227 DENTRY_D_LOCK_NESTED);
2228 }
2229 }
2230 if (target < dentry) {
2231 spin_lock_nested(&target->d_lock, 2);
2232 spin_lock_nested(&dentry->d_lock, 3);
2233 } else {
2234 spin_lock_nested(&dentry->d_lock, 2);
2235 spin_lock_nested(&target->d_lock, 3);
2236 }
2237}
2238
2239static void dentry_unlock_parents_for_move(struct dentry *dentry,
2240 struct dentry *target)
2241{
2242 if (target->d_parent != dentry->d_parent)
2243 spin_unlock(&dentry->d_parent->d_lock);
2244 if (target->d_parent != target)
2245 spin_unlock(&target->d_parent->d_lock);
2246}
2247
1da177e4 2248/*
2fd6b7f5
NP
2249 * When switching names, the actual string doesn't strictly have to
2250 * be preserved in the target - because we're dropping the target
2251 * anyway. As such, we can just do a simple memcpy() to copy over
2252 * the new name before we switch.
2253 *
2254 * Note that we have to be a lot more careful about getting the hash
2255 * switched - we have to switch the hash value properly even if it
2256 * then no longer matches the actual (corrupted) string of the target.
2257 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2258 */
9eaef27b 2259/*
18367501 2260 * __d_move - move a dentry
1da177e4
LT
2261 * @dentry: entry to move
2262 * @target: new dentry
2263 *
2264 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2265 * dcache entries should not be moved in this way. Caller must hold
2266 * rename_lock, the i_mutex of the source and target directories,
2267 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2268 */
18367501 2269static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2270{
1da177e4
LT
2271 if (!dentry->d_inode)
2272 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2273
2fd6b7f5
NP
2274 BUG_ON(d_ancestor(dentry, target));
2275 BUG_ON(d_ancestor(target, dentry));
2276
2fd6b7f5 2277 dentry_lock_for_move(dentry, target);
1da177e4 2278
31e6b01f
NP
2279 write_seqcount_begin(&dentry->d_seq);
2280 write_seqcount_begin(&target->d_seq);
2281
ceb5bdc2
NP
2282 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2283
2284 /*
2285 * Move the dentry to the target hash queue. Don't bother checking
2286 * for the same hash queue because of how unlikely it is.
2287 */
2288 __d_drop(dentry);
789680d1 2289 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2290
2291 /* Unhash the target: dput() will then get rid of it */
2292 __d_drop(target);
2293
5160ee6f
ED
2294 list_del(&dentry->d_u.d_child);
2295 list_del(&target->d_u.d_child);
1da177e4
LT
2296
2297 /* Switch the names.. */
2298 switch_names(dentry, target);
9a8d5bb4 2299 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2300
2301 /* ... and switch the parents */
2302 if (IS_ROOT(dentry)) {
2303 dentry->d_parent = target->d_parent;
2304 target->d_parent = target;
5160ee6f 2305 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2306 } else {
9a8d5bb4 2307 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2308
2309 /* And add them back to the (new) parent lists */
5160ee6f 2310 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2311 }
2312
5160ee6f 2313 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2314
31e6b01f
NP
2315 write_seqcount_end(&target->d_seq);
2316 write_seqcount_end(&dentry->d_seq);
2317
2fd6b7f5 2318 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2319 spin_unlock(&target->d_lock);
c32ccd87 2320 fsnotify_d_move(dentry);
1da177e4 2321 spin_unlock(&dentry->d_lock);
18367501
AV
2322}
2323
2324/*
2325 * d_move - move a dentry
2326 * @dentry: entry to move
2327 * @target: new dentry
2328 *
2329 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2330 * dcache entries should not be moved in this way. See the locking
2331 * requirements for __d_move.
18367501
AV
2332 */
2333void d_move(struct dentry *dentry, struct dentry *target)
2334{
2335 write_seqlock(&rename_lock);
2336 __d_move(dentry, target);
1da177e4 2337 write_sequnlock(&rename_lock);
9eaef27b 2338}
ec4f8605 2339EXPORT_SYMBOL(d_move);
1da177e4 2340
e2761a11
OH
2341/**
2342 * d_ancestor - search for an ancestor
2343 * @p1: ancestor dentry
2344 * @p2: child dentry
2345 *
2346 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2347 * an ancestor of p2, else NULL.
9eaef27b 2348 */
e2761a11 2349struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2350{
2351 struct dentry *p;
2352
871c0067 2353 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2354 if (p->d_parent == p1)
e2761a11 2355 return p;
9eaef27b 2356 }
e2761a11 2357 return NULL;
9eaef27b
TM
2358}
2359
2360/*
2361 * This helper attempts to cope with remotely renamed directories
2362 *
2363 * It assumes that the caller is already holding
18367501 2364 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2365 *
2366 * Note: If ever the locking in lock_rename() changes, then please
2367 * remember to update this too...
9eaef27b 2368 */
873feea0
NP
2369static struct dentry *__d_unalias(struct inode *inode,
2370 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2371{
2372 struct mutex *m1 = NULL, *m2 = NULL;
2373 struct dentry *ret;
2374
2375 /* If alias and dentry share a parent, then no extra locks required */
2376 if (alias->d_parent == dentry->d_parent)
2377 goto out_unalias;
2378
9eaef27b
TM
2379 /* See lock_rename() */
2380 ret = ERR_PTR(-EBUSY);
2381 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2382 goto out_err;
2383 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2384 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2385 goto out_err;
2386 m2 = &alias->d_parent->d_inode->i_mutex;
2387out_unalias:
18367501 2388 __d_move(alias, dentry);
9eaef27b
TM
2389 ret = alias;
2390out_err:
873feea0 2391 spin_unlock(&inode->i_lock);
9eaef27b
TM
2392 if (m2)
2393 mutex_unlock(m2);
2394 if (m1)
2395 mutex_unlock(m1);
2396 return ret;
2397}
2398
770bfad8
DH
2399/*
2400 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2401 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2402 * returns with anon->d_lock held!
770bfad8
DH
2403 */
2404static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2405{
2406 struct dentry *dparent, *aparent;
2407
2fd6b7f5 2408 dentry_lock_for_move(anon, dentry);
770bfad8 2409
31e6b01f
NP
2410 write_seqcount_begin(&dentry->d_seq);
2411 write_seqcount_begin(&anon->d_seq);
2412
770bfad8
DH
2413 dparent = dentry->d_parent;
2414 aparent = anon->d_parent;
2415
2fd6b7f5
NP
2416 switch_names(dentry, anon);
2417 swap(dentry->d_name.hash, anon->d_name.hash);
2418
770bfad8
DH
2419 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2420 list_del(&dentry->d_u.d_child);
2421 if (!IS_ROOT(dentry))
2422 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2423 else
2424 INIT_LIST_HEAD(&dentry->d_u.d_child);
2425
2426 anon->d_parent = (dparent == dentry) ? anon : dparent;
2427 list_del(&anon->d_u.d_child);
2428 if (!IS_ROOT(anon))
2429 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2430 else
2431 INIT_LIST_HEAD(&anon->d_u.d_child);
2432
31e6b01f
NP
2433 write_seqcount_end(&dentry->d_seq);
2434 write_seqcount_end(&anon->d_seq);
2435
2fd6b7f5
NP
2436 dentry_unlock_parents_for_move(anon, dentry);
2437 spin_unlock(&dentry->d_lock);
2438
2439 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2440 anon->d_flags &= ~DCACHE_DISCONNECTED;
2441}
2442
2443/**
2444 * d_materialise_unique - introduce an inode into the tree
2445 * @dentry: candidate dentry
2446 * @inode: inode to bind to the dentry, to which aliases may be attached
2447 *
2448 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2449 * root directory alias in its place if there is one. Caller must hold the
2450 * i_mutex of the parent directory.
770bfad8
DH
2451 */
2452struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2453{
9eaef27b 2454 struct dentry *actual;
770bfad8
DH
2455
2456 BUG_ON(!d_unhashed(dentry));
2457
770bfad8
DH
2458 if (!inode) {
2459 actual = dentry;
360da900 2460 __d_instantiate(dentry, NULL);
357f8e65
NP
2461 d_rehash(actual);
2462 goto out_nolock;
770bfad8
DH
2463 }
2464
873feea0 2465 spin_lock(&inode->i_lock);
357f8e65 2466
9eaef27b
TM
2467 if (S_ISDIR(inode->i_mode)) {
2468 struct dentry *alias;
2469
2470 /* Does an aliased dentry already exist? */
2471 alias = __d_find_alias(inode, 0);
2472 if (alias) {
2473 actual = alias;
18367501
AV
2474 write_seqlock(&rename_lock);
2475
2476 if (d_ancestor(alias, dentry)) {
2477 /* Check for loops */
2478 actual = ERR_PTR(-ELOOP);
b18dafc8 2479 spin_unlock(&inode->i_lock);
18367501
AV
2480 } else if (IS_ROOT(alias)) {
2481 /* Is this an anonymous mountpoint that we
2482 * could splice into our tree? */
9eaef27b 2483 __d_materialise_dentry(dentry, alias);
18367501 2484 write_sequnlock(&rename_lock);
9eaef27b
TM
2485 __d_drop(alias);
2486 goto found;
18367501
AV
2487 } else {
2488 /* Nope, but we must(!) avoid directory
b18dafc8 2489 * aliasing. This drops inode->i_lock */
18367501 2490 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2491 }
18367501 2492 write_sequnlock(&rename_lock);
dd179946
DH
2493 if (IS_ERR(actual)) {
2494 if (PTR_ERR(actual) == -ELOOP)
2495 pr_warn_ratelimited(
2496 "VFS: Lookup of '%s' in %s %s"
2497 " would have caused loop\n",
2498 dentry->d_name.name,
2499 inode->i_sb->s_type->name,
2500 inode->i_sb->s_id);
9eaef27b 2501 dput(alias);
dd179946 2502 }
9eaef27b
TM
2503 goto out_nolock;
2504 }
770bfad8
DH
2505 }
2506
2507 /* Add a unique reference */
2508 actual = __d_instantiate_unique(dentry, inode);
2509 if (!actual)
2510 actual = dentry;
357f8e65
NP
2511 else
2512 BUG_ON(!d_unhashed(actual));
770bfad8 2513
770bfad8
DH
2514 spin_lock(&actual->d_lock);
2515found:
2516 _d_rehash(actual);
2517 spin_unlock(&actual->d_lock);
873feea0 2518 spin_unlock(&inode->i_lock);
9eaef27b 2519out_nolock:
770bfad8
DH
2520 if (actual == dentry) {
2521 security_d_instantiate(dentry, inode);
2522 return NULL;
2523 }
2524
2525 iput(inode);
2526 return actual;
770bfad8 2527}
ec4f8605 2528EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2529
cdd16d02 2530static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2531{
2532 *buflen -= namelen;
2533 if (*buflen < 0)
2534 return -ENAMETOOLONG;
2535 *buffer -= namelen;
2536 memcpy(*buffer, str, namelen);
2537 return 0;
2538}
2539
cdd16d02
MS
2540static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2541{
2542 return prepend(buffer, buflen, name->name, name->len);
2543}
2544
1da177e4 2545/**
208898c1 2546 * prepend_path - Prepend path string to a buffer
9d1bc601 2547 * @path: the dentry/vfsmount to report
02125a82 2548 * @root: root vfsmnt/dentry
f2eb6575
MS
2549 * @buffer: pointer to the end of the buffer
2550 * @buflen: pointer to buffer length
552ce544 2551 *
949854d0 2552 * Caller holds the rename_lock.
1da177e4 2553 */
02125a82
AV
2554static int prepend_path(const struct path *path,
2555 const struct path *root,
f2eb6575 2556 char **buffer, int *buflen)
1da177e4 2557{
9d1bc601
MS
2558 struct dentry *dentry = path->dentry;
2559 struct vfsmount *vfsmnt = path->mnt;
0714a533 2560 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2561 bool slash = false;
2562 int error = 0;
6092d048 2563
99b7db7b 2564 br_read_lock(vfsmount_lock);
f2eb6575 2565 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2566 struct dentry * parent;
2567
1da177e4 2568 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2569 /* Global root? */
676da58d 2570 if (!mnt_has_parent(mnt))
1da177e4 2571 goto global_root;
a73324da 2572 dentry = mnt->mnt_mountpoint;
0714a533
AV
2573 mnt = mnt->mnt_parent;
2574 vfsmnt = &mnt->mnt;
1da177e4
LT
2575 continue;
2576 }
2577 parent = dentry->d_parent;
2578 prefetch(parent);
9abca360 2579 spin_lock(&dentry->d_lock);
f2eb6575 2580 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2581 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2582 if (!error)
2583 error = prepend(buffer, buflen, "/", 1);
2584 if (error)
2585 break;
2586
2587 slash = true;
1da177e4
LT
2588 dentry = parent;
2589 }
2590
f2eb6575
MS
2591 if (!error && !slash)
2592 error = prepend(buffer, buflen, "/", 1);
2593
02125a82 2594out:
99b7db7b 2595 br_read_unlock(vfsmount_lock);
f2eb6575 2596 return error;
1da177e4
LT
2597
2598global_root:
98dc568b
MS
2599 /*
2600 * Filesystems needing to implement special "root names"
2601 * should do so with ->d_dname()
2602 */
2603 if (IS_ROOT(dentry) &&
2604 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2605 WARN(1, "Root dentry has weird name <%.*s>\n",
2606 (int) dentry->d_name.len, dentry->d_name.name);
2607 }
02125a82
AV
2608 if (!slash)
2609 error = prepend(buffer, buflen, "/", 1);
2610 if (!error)
143c8c91 2611 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
be285c71 2612 goto out;
f2eb6575 2613}
be285c71 2614
f2eb6575
MS
2615/**
2616 * __d_path - return the path of a dentry
2617 * @path: the dentry/vfsmount to report
02125a82 2618 * @root: root vfsmnt/dentry
cd956a1c 2619 * @buf: buffer to return value in
f2eb6575
MS
2620 * @buflen: buffer length
2621 *
ffd1f4ed 2622 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2623 *
2624 * Returns a pointer into the buffer or an error code if the
2625 * path was too long.
2626 *
be148247 2627 * "buflen" should be positive.
f2eb6575 2628 *
02125a82 2629 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2630 */
02125a82
AV
2631char *__d_path(const struct path *path,
2632 const struct path *root,
f2eb6575
MS
2633 char *buf, int buflen)
2634{
2635 char *res = buf + buflen;
2636 int error;
2637
2638 prepend(&res, &buflen, "\0", 1);
949854d0 2639 write_seqlock(&rename_lock);
f2eb6575 2640 error = prepend_path(path, root, &res, &buflen);
949854d0 2641 write_sequnlock(&rename_lock);
be148247 2642
02125a82
AV
2643 if (error < 0)
2644 return ERR_PTR(error);
2645 if (error > 0)
2646 return NULL;
2647 return res;
2648}
2649
2650char *d_absolute_path(const struct path *path,
2651 char *buf, int buflen)
2652{
2653 struct path root = {};
2654 char *res = buf + buflen;
2655 int error;
2656
2657 prepend(&res, &buflen, "\0", 1);
2658 write_seqlock(&rename_lock);
2659 error = prepend_path(path, &root, &res, &buflen);
2660 write_sequnlock(&rename_lock);
2661
2662 if (error > 1)
2663 error = -EINVAL;
2664 if (error < 0)
f2eb6575 2665 return ERR_PTR(error);
f2eb6575 2666 return res;
1da177e4
LT
2667}
2668
ffd1f4ed
MS
2669/*
2670 * same as __d_path but appends "(deleted)" for unlinked files.
2671 */
02125a82
AV
2672static int path_with_deleted(const struct path *path,
2673 const struct path *root,
2674 char **buf, int *buflen)
ffd1f4ed
MS
2675{
2676 prepend(buf, buflen, "\0", 1);
2677 if (d_unlinked(path->dentry)) {
2678 int error = prepend(buf, buflen, " (deleted)", 10);
2679 if (error)
2680 return error;
2681 }
2682
2683 return prepend_path(path, root, buf, buflen);
2684}
2685
8df9d1a4
MS
2686static int prepend_unreachable(char **buffer, int *buflen)
2687{
2688 return prepend(buffer, buflen, "(unreachable)", 13);
2689}
2690
a03a8a70
JB
2691/**
2692 * d_path - return the path of a dentry
cf28b486 2693 * @path: path to report
a03a8a70
JB
2694 * @buf: buffer to return value in
2695 * @buflen: buffer length
2696 *
2697 * Convert a dentry into an ASCII path name. If the entry has been deleted
2698 * the string " (deleted)" is appended. Note that this is ambiguous.
2699 *
52afeefb
AV
2700 * Returns a pointer into the buffer or an error code if the path was
2701 * too long. Note: Callers should use the returned pointer, not the passed
2702 * in buffer, to use the name! The implementation often starts at an offset
2703 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2704 *
31f3e0b3 2705 * "buflen" should be positive.
a03a8a70 2706 */
20d4fdc1 2707char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2708{
ffd1f4ed 2709 char *res = buf + buflen;
6ac08c39 2710 struct path root;
ffd1f4ed 2711 int error;
1da177e4 2712
c23fbb6b
ED
2713 /*
2714 * We have various synthetic filesystems that never get mounted. On
2715 * these filesystems dentries are never used for lookup purposes, and
2716 * thus don't need to be hashed. They also don't need a name until a
2717 * user wants to identify the object in /proc/pid/fd/. The little hack
2718 * below allows us to generate a name for these objects on demand:
2719 */
cf28b486
JB
2720 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2721 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2722
f7ad3c6b 2723 get_fs_root(current->fs, &root);
949854d0 2724 write_seqlock(&rename_lock);
02125a82
AV
2725 error = path_with_deleted(path, &root, &res, &buflen);
2726 if (error < 0)
ffd1f4ed 2727 res = ERR_PTR(error);
949854d0 2728 write_sequnlock(&rename_lock);
6ac08c39 2729 path_put(&root);
1da177e4
LT
2730 return res;
2731}
ec4f8605 2732EXPORT_SYMBOL(d_path);
1da177e4 2733
8df9d1a4
MS
2734/**
2735 * d_path_with_unreachable - return the path of a dentry
2736 * @path: path to report
2737 * @buf: buffer to return value in
2738 * @buflen: buffer length
2739 *
2740 * The difference from d_path() is that this prepends "(unreachable)"
2741 * to paths which are unreachable from the current process' root.
2742 */
2743char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2744{
2745 char *res = buf + buflen;
2746 struct path root;
8df9d1a4
MS
2747 int error;
2748
2749 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2750 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2751
2752 get_fs_root(current->fs, &root);
949854d0 2753 write_seqlock(&rename_lock);
02125a82
AV
2754 error = path_with_deleted(path, &root, &res, &buflen);
2755 if (error > 0)
8df9d1a4 2756 error = prepend_unreachable(&res, &buflen);
949854d0 2757 write_sequnlock(&rename_lock);
8df9d1a4
MS
2758 path_put(&root);
2759 if (error)
2760 res = ERR_PTR(error);
2761
2762 return res;
2763}
2764
c23fbb6b
ED
2765/*
2766 * Helper function for dentry_operations.d_dname() members
2767 */
2768char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2769 const char *fmt, ...)
2770{
2771 va_list args;
2772 char temp[64];
2773 int sz;
2774
2775 va_start(args, fmt);
2776 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2777 va_end(args);
2778
2779 if (sz > sizeof(temp) || sz > buflen)
2780 return ERR_PTR(-ENAMETOOLONG);
2781
2782 buffer += buflen - sz;
2783 return memcpy(buffer, temp, sz);
2784}
2785
6092d048
RP
2786/*
2787 * Write full pathname from the root of the filesystem into the buffer.
2788 */
ec2447c2 2789static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2790{
2791 char *end = buf + buflen;
2792 char *retval;
2793
6092d048 2794 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2795 if (buflen < 1)
2796 goto Elong;
2797 /* Get '/' right */
2798 retval = end-1;
2799 *retval = '/';
2800
cdd16d02
MS
2801 while (!IS_ROOT(dentry)) {
2802 struct dentry *parent = dentry->d_parent;
9abca360 2803 int error;
6092d048 2804
6092d048 2805 prefetch(parent);
9abca360
NP
2806 spin_lock(&dentry->d_lock);
2807 error = prepend_name(&end, &buflen, &dentry->d_name);
2808 spin_unlock(&dentry->d_lock);
2809 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2810 goto Elong;
2811
2812 retval = end;
2813 dentry = parent;
2814 }
c103135c
AV
2815 return retval;
2816Elong:
2817 return ERR_PTR(-ENAMETOOLONG);
2818}
ec2447c2
NP
2819
2820char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2821{
2822 char *retval;
2823
949854d0 2824 write_seqlock(&rename_lock);
ec2447c2 2825 retval = __dentry_path(dentry, buf, buflen);
949854d0 2826 write_sequnlock(&rename_lock);
ec2447c2
NP
2827
2828 return retval;
2829}
2830EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2831
2832char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2833{
2834 char *p = NULL;
2835 char *retval;
2836
949854d0 2837 write_seqlock(&rename_lock);
c103135c
AV
2838 if (d_unlinked(dentry)) {
2839 p = buf + buflen;
2840 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2841 goto Elong;
2842 buflen++;
2843 }
2844 retval = __dentry_path(dentry, buf, buflen);
949854d0 2845 write_sequnlock(&rename_lock);
c103135c
AV
2846 if (!IS_ERR(retval) && p)
2847 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2848 return retval;
2849Elong:
6092d048
RP
2850 return ERR_PTR(-ENAMETOOLONG);
2851}
2852
1da177e4
LT
2853/*
2854 * NOTE! The user-level library version returns a
2855 * character pointer. The kernel system call just
2856 * returns the length of the buffer filled (which
2857 * includes the ending '\0' character), or a negative
2858 * error value. So libc would do something like
2859 *
2860 * char *getcwd(char * buf, size_t size)
2861 * {
2862 * int retval;
2863 *
2864 * retval = sys_getcwd(buf, size);
2865 * if (retval >= 0)
2866 * return buf;
2867 * errno = -retval;
2868 * return NULL;
2869 * }
2870 */
3cdad428 2871SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2872{
552ce544 2873 int error;
6ac08c39 2874 struct path pwd, root;
552ce544 2875 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2876
2877 if (!page)
2878 return -ENOMEM;
2879
f7ad3c6b 2880 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2881
552ce544 2882 error = -ENOENT;
949854d0 2883 write_seqlock(&rename_lock);
f3da392e 2884 if (!d_unlinked(pwd.dentry)) {
552ce544 2885 unsigned long len;
8df9d1a4
MS
2886 char *cwd = page + PAGE_SIZE;
2887 int buflen = PAGE_SIZE;
1da177e4 2888
8df9d1a4 2889 prepend(&cwd, &buflen, "\0", 1);
02125a82 2890 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2891 write_sequnlock(&rename_lock);
552ce544 2892
02125a82 2893 if (error < 0)
552ce544
LT
2894 goto out;
2895
8df9d1a4 2896 /* Unreachable from current root */
02125a82 2897 if (error > 0) {
8df9d1a4
MS
2898 error = prepend_unreachable(&cwd, &buflen);
2899 if (error)
2900 goto out;
2901 }
2902
552ce544
LT
2903 error = -ERANGE;
2904 len = PAGE_SIZE + page - cwd;
2905 if (len <= size) {
2906 error = len;
2907 if (copy_to_user(buf, cwd, len))
2908 error = -EFAULT;
2909 }
949854d0
NP
2910 } else {
2911 write_sequnlock(&rename_lock);
949854d0 2912 }
1da177e4
LT
2913
2914out:
6ac08c39
JB
2915 path_put(&pwd);
2916 path_put(&root);
1da177e4
LT
2917 free_page((unsigned long) page);
2918 return error;
2919}
2920
2921/*
2922 * Test whether new_dentry is a subdirectory of old_dentry.
2923 *
2924 * Trivially implemented using the dcache structure
2925 */
2926
2927/**
2928 * is_subdir - is new dentry a subdirectory of old_dentry
2929 * @new_dentry: new dentry
2930 * @old_dentry: old dentry
2931 *
2932 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2933 * Returns 0 otherwise.
2934 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2935 */
2936
e2761a11 2937int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2938{
2939 int result;
949854d0 2940 unsigned seq;
1da177e4 2941
e2761a11
OH
2942 if (new_dentry == old_dentry)
2943 return 1;
2944
e2761a11 2945 do {
1da177e4 2946 /* for restarting inner loop in case of seq retry */
1da177e4 2947 seq = read_seqbegin(&rename_lock);
949854d0
NP
2948 /*
2949 * Need rcu_readlock to protect against the d_parent trashing
2950 * due to d_move
2951 */
2952 rcu_read_lock();
e2761a11 2953 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2954 result = 1;
e2761a11
OH
2955 else
2956 result = 0;
949854d0 2957 rcu_read_unlock();
1da177e4 2958 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2959
2960 return result;
2961}
2962
2963void d_genocide(struct dentry *root)
2964{
949854d0 2965 struct dentry *this_parent;
1da177e4 2966 struct list_head *next;
949854d0 2967 unsigned seq;
58db63d0 2968 int locked = 0;
1da177e4 2969
949854d0 2970 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2971again:
2972 this_parent = root;
2fd6b7f5 2973 spin_lock(&this_parent->d_lock);
1da177e4
LT
2974repeat:
2975 next = this_parent->d_subdirs.next;
2976resume:
2977 while (next != &this_parent->d_subdirs) {
2978 struct list_head *tmp = next;
5160ee6f 2979 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2980 next = tmp->next;
949854d0 2981
da502956
NP
2982 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2983 if (d_unhashed(dentry) || !dentry->d_inode) {
2984 spin_unlock(&dentry->d_lock);
1da177e4 2985 continue;
da502956 2986 }
1da177e4 2987 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2988 spin_unlock(&this_parent->d_lock);
2989 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2990 this_parent = dentry;
2fd6b7f5 2991 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2992 goto repeat;
2993 }
949854d0
NP
2994 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2995 dentry->d_flags |= DCACHE_GENOCIDE;
2996 dentry->d_count--;
2997 }
b7ab39f6 2998 spin_unlock(&dentry->d_lock);
1da177e4
LT
2999 }
3000 if (this_parent != root) {
c826cb7d 3001 struct dentry *child = this_parent;
949854d0
NP
3002 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3003 this_parent->d_flags |= DCACHE_GENOCIDE;
3004 this_parent->d_count--;
3005 }
c826cb7d
LT
3006 this_parent = try_to_ascend(this_parent, locked, seq);
3007 if (!this_parent)
949854d0 3008 goto rename_retry;
949854d0 3009 next = child->d_u.d_child.next;
1da177e4
LT
3010 goto resume;
3011 }
2fd6b7f5 3012 spin_unlock(&this_parent->d_lock);
58db63d0 3013 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 3014 goto rename_retry;
58db63d0
NP
3015 if (locked)
3016 write_sequnlock(&rename_lock);
3017 return;
3018
3019rename_retry:
3020 locked = 1;
3021 write_seqlock(&rename_lock);
3022 goto again;
1da177e4
LT
3023}
3024
3025/**
3026 * find_inode_number - check for dentry with name
3027 * @dir: directory to check
3028 * @name: Name to find.
3029 *
3030 * Check whether a dentry already exists for the given name,
3031 * and return the inode number if it has an inode. Otherwise
3032 * 0 is returned.
3033 *
3034 * This routine is used to post-process directory listings for
3035 * filesystems using synthetic inode numbers, and is necessary
3036 * to keep getcwd() working.
3037 */
3038
3039ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3040{
3041 struct dentry * dentry;
3042 ino_t ino = 0;
3043
3e7e241f
EB
3044 dentry = d_hash_and_lookup(dir, name);
3045 if (dentry) {
1da177e4
LT
3046 if (dentry->d_inode)
3047 ino = dentry->d_inode->i_ino;
3048 dput(dentry);
3049 }
1da177e4
LT
3050 return ino;
3051}
ec4f8605 3052EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3053
3054static __initdata unsigned long dhash_entries;
3055static int __init set_dhash_entries(char *str)
3056{
3057 if (!str)
3058 return 0;
3059 dhash_entries = simple_strtoul(str, &str, 0);
3060 return 1;
3061}
3062__setup("dhash_entries=", set_dhash_entries);
3063
3064static void __init dcache_init_early(void)
3065{
074b8517 3066 unsigned int loop;
1da177e4
LT
3067
3068 /* If hashes are distributed across NUMA nodes, defer
3069 * hash allocation until vmalloc space is available.
3070 */
3071 if (hashdist)
3072 return;
3073
3074 dentry_hashtable =
3075 alloc_large_system_hash("Dentry cache",
b07ad996 3076 sizeof(struct hlist_bl_head),
1da177e4
LT
3077 dhash_entries,
3078 13,
3079 HASH_EARLY,
3080 &d_hash_shift,
3081 &d_hash_mask,
3082 0);
3083
074b8517 3084 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3085 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3086}
3087
74bf17cf 3088static void __init dcache_init(void)
1da177e4 3089{
074b8517 3090 unsigned int loop;
1da177e4
LT
3091
3092 /*
3093 * A constructor could be added for stable state like the lists,
3094 * but it is probably not worth it because of the cache nature
3095 * of the dcache.
3096 */
0a31bd5f
CL
3097 dentry_cache = KMEM_CACHE(dentry,
3098 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3099
3100 /* Hash may have been set up in dcache_init_early */
3101 if (!hashdist)
3102 return;
3103
3104 dentry_hashtable =
3105 alloc_large_system_hash("Dentry cache",
b07ad996 3106 sizeof(struct hlist_bl_head),
1da177e4
LT
3107 dhash_entries,
3108 13,
3109 0,
3110 &d_hash_shift,
3111 &d_hash_mask,
3112 0);
3113
074b8517 3114 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3115 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3116}
3117
3118/* SLAB cache for __getname() consumers */
e18b890b 3119struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3120EXPORT_SYMBOL(names_cachep);
1da177e4 3121
1da177e4
LT
3122EXPORT_SYMBOL(d_genocide);
3123
1da177e4
LT
3124void __init vfs_caches_init_early(void)
3125{
3126 dcache_init_early();
3127 inode_init_early();
3128}
3129
3130void __init vfs_caches_init(unsigned long mempages)
3131{
3132 unsigned long reserve;
3133
3134 /* Base hash sizes on available memory, with a reserve equal to
3135 150% of current kernel size */
3136
3137 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3138 mempages -= reserve;
3139
3140 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3141 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3142
74bf17cf
DC
3143 dcache_init();
3144 inode_init();
1da177e4 3145 files_init(mempages);
74bf17cf 3146 mnt_init();
1da177e4
LT
3147 bdev_cache_init();
3148 chrdev_init();
3149}