]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/direct-io.c
[PATCH] dio: only call aio_complete() after returning -EIOCBQUEUED
[mirror_ubuntu-artful-kernel.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 akpm@zip.com.au
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
38#include <asm/atomic.h>
39
40/*
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
43 */
44#define DIO_PAGES 64
45
46/*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 *
57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58 * This determines whether we need to do the fancy locking which prevents
59 * direct-IO from being able to read uninitialised disk blocks. If its zero
1b1dcc1b 60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
1da177e4
LT
61 * not held for the entire direct write (taken briefly, initially, during a
62 * direct read though, but its never held for the duration of a direct-IO).
63 */
64
65struct dio {
66 /* BIO submission state */
67 struct bio *bio; /* bio under assembly */
68 struct inode *inode;
69 int rw;
29504ff3 70 loff_t i_size; /* i_size when submitted */
1da177e4
LT
71 int lock_type; /* doesn't change */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 size_t size; /* total request size (doesn't change)*/
83 sector_t block_in_file; /* Current offset into the underlying
84 file in dio_block units. */
85 unsigned blocks_available; /* At block_in_file. changes */
86 sector_t final_block_in_request;/* doesn't change */
87 unsigned first_block_in_page; /* doesn't change, Used only once */
88 int boundary; /* prev block is at a boundary */
89 int reap_counter; /* rate limit reaping */
1d8fa7a2 90 get_block_t *get_block; /* block mapping function */
1da177e4
LT
91 dio_iodone_t *end_io; /* IO completion function */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
1d8fa7a2 95 struct buffer_head map_bh; /* last get_block() result */
1da177e4
LT
96
97 /*
98 * Deferred addition of a page to the dio. These variables are
99 * private to dio_send_cur_page(), submit_page_section() and
100 * dio_bio_add_page().
101 */
102 struct page *cur_page; /* The page */
103 unsigned cur_page_offset; /* Offset into it, in bytes */
104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
105 sector_t cur_page_block; /* Where it starts */
106
107 /*
108 * Page fetching state. These variables belong to dio_refill_pages().
109 */
110 int curr_page; /* changes */
111 int total_pages; /* doesn't change */
112 unsigned long curr_user_address;/* changes */
113
114 /*
115 * Page queue. These variables belong to dio_refill_pages() and
116 * dio_get_page().
117 */
118 struct page *pages[DIO_PAGES]; /* page buffer */
119 unsigned head; /* next page to process */
120 unsigned tail; /* last valid page + 1 */
121 int page_errors; /* errno from get_user_pages() */
122
123 /* BIO completion state */
0273201e 124 atomic_t refcount; /* direct_io_worker() and bios */
1da177e4 125 spinlock_t bio_lock; /* protects BIO fields below */
1da177e4
LT
126 struct bio *bio_list; /* singly linked via bi_private */
127 struct task_struct *waiter; /* waiting task (NULL if none) */
128
129 /* AIO related stuff */
130 struct kiocb *iocb; /* kiocb */
131 int is_async; /* is IO async ? */
174e27c6 132 int io_error; /* IO error in completion path */
1da177e4
LT
133 ssize_t result; /* IO result */
134};
135
136/*
137 * How many pages are in the queue?
138 */
139static inline unsigned dio_pages_present(struct dio *dio)
140{
141 return dio->tail - dio->head;
142}
143
144/*
145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
146 */
147static int dio_refill_pages(struct dio *dio)
148{
149 int ret;
150 int nr_pages;
151
152 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
153 down_read(&current->mm->mmap_sem);
154 ret = get_user_pages(
155 current, /* Task for fault acounting */
156 current->mm, /* whose pages? */
157 dio->curr_user_address, /* Where from? */
158 nr_pages, /* How many pages? */
159 dio->rw == READ, /* Write to memory? */
160 0, /* force (?) */
161 &dio->pages[0],
162 NULL); /* vmas */
163 up_read(&current->mm->mmap_sem);
164
b31dc66a 165 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
b5810039 166 struct page *page = ZERO_PAGE(dio->curr_user_address);
1da177e4
LT
167 /*
168 * A memory fault, but the filesystem has some outstanding
169 * mapped blocks. We need to use those blocks up to avoid
170 * leaking stale data in the file.
171 */
172 if (dio->page_errors == 0)
173 dio->page_errors = ret;
b5810039
NP
174 page_cache_get(page);
175 dio->pages[0] = page;
1da177e4
LT
176 dio->head = 0;
177 dio->tail = 1;
178 ret = 0;
179 goto out;
180 }
181
182 if (ret >= 0) {
183 dio->curr_user_address += ret * PAGE_SIZE;
184 dio->curr_page += ret;
185 dio->head = 0;
186 dio->tail = ret;
187 ret = 0;
188 }
189out:
190 return ret;
191}
192
193/*
194 * Get another userspace page. Returns an ERR_PTR on error. Pages are
195 * buffered inside the dio so that we can call get_user_pages() against a
196 * decent number of pages, less frequently. To provide nicer use of the
197 * L1 cache.
198 */
199static struct page *dio_get_page(struct dio *dio)
200{
201 if (dio_pages_present(dio) == 0) {
202 int ret;
203
204 ret = dio_refill_pages(dio);
205 if (ret)
206 return ERR_PTR(ret);
207 BUG_ON(dio_pages_present(dio) == 0);
208 }
209 return dio->pages[dio->head++];
210}
211
6d544bb4
ZB
212/**
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
215 *
216 * This releases locks as dictated by the locking type, lets interested parties
217 * know that a DIO operation has completed, and calculates the resulting return
218 * code for the operation.
219 *
220 * It lets the filesystem know if it registered an interest earlier via
221 * get_block. Pass the private field of the map buffer_head so that
222 * filesystems can use it to hold additional state between get_block calls and
223 * dio_complete.
1da177e4 224 */
6d544bb4 225static int dio_complete(struct dio *dio, loff_t offset, int ret)
1da177e4 226{
6d544bb4
ZB
227 ssize_t transferred = 0;
228
8459d86a
ZB
229 /*
230 * AIO submission can race with bio completion to get here while
231 * expecting to have the last io completed by bio completion.
232 * In that case -EIOCBQUEUED is in fact not an error we want
233 * to preserve through this call.
234 */
235 if (ret == -EIOCBQUEUED)
236 ret = 0;
237
6d544bb4
ZB
238 if (dio->result) {
239 transferred = dio->result;
240
241 /* Check for short read case */
242 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 transferred = dio->i_size - offset;
244 }
245
1da177e4 246 if (dio->end_io && dio->result)
6d544bb4
ZB
247 dio->end_io(dio->iocb, offset, transferred,
248 dio->map_bh.b_private);
1da177e4 249 if (dio->lock_type == DIO_LOCKING)
d8aa905b
IM
250 /* lockdep: non-owner release */
251 up_read_non_owner(&dio->inode->i_alloc_sem);
6d544bb4
ZB
252
253 if (ret == 0)
254 ret = dio->page_errors;
255 if (ret == 0)
256 ret = dio->io_error;
257 if (ret == 0)
258 ret = transferred;
259
260 return ret;
1da177e4
LT
261}
262
1da177e4
LT
263static int dio_bio_complete(struct dio *dio, struct bio *bio);
264/*
265 * Asynchronous IO callback.
266 */
267static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error)
268{
269 struct dio *dio = bio->bi_private;
20258b2b
ZB
270 int waiter_holds_ref = 0;
271 int remaining;
1da177e4
LT
272
273 if (bio->bi_size)
274 return 1;
275
276 /* cleanup the bio */
277 dio_bio_complete(dio, bio);
0273201e 278
20258b2b
ZB
279 waiter_holds_ref = !!dio->waiter;
280 remaining = atomic_sub_return(1, (&dio->refcount));
281 if (remaining == 1 && waiter_holds_ref)
282 wake_up_process(dio->waiter);
283
8459d86a
ZB
284 if (remaining == 0) {
285 int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
286 aio_complete(dio->iocb, ret, 0);
287 kfree(dio);
288 }
0273201e 289
1da177e4
LT
290 return 0;
291}
292
293/*
294 * The BIO completion handler simply queues the BIO up for the process-context
295 * handler.
296 *
297 * During I/O bi_private points at the dio. After I/O, bi_private is used to
298 * implement a singly-linked list of completed BIOs, at dio->bio_list.
299 */
300static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error)
301{
302 struct dio *dio = bio->bi_private;
303 unsigned long flags;
304
305 if (bio->bi_size)
306 return 1;
307
308 spin_lock_irqsave(&dio->bio_lock, flags);
309 bio->bi_private = dio->bio_list;
310 dio->bio_list = bio;
0273201e 311 if ((atomic_sub_return(1, &dio->refcount) == 1) && dio->waiter)
1da177e4
LT
312 wake_up_process(dio->waiter);
313 spin_unlock_irqrestore(&dio->bio_lock, flags);
314 return 0;
315}
316
317static int
318dio_bio_alloc(struct dio *dio, struct block_device *bdev,
319 sector_t first_sector, int nr_vecs)
320{
321 struct bio *bio;
322
323 bio = bio_alloc(GFP_KERNEL, nr_vecs);
324 if (bio == NULL)
325 return -ENOMEM;
326
327 bio->bi_bdev = bdev;
328 bio->bi_sector = first_sector;
329 if (dio->is_async)
330 bio->bi_end_io = dio_bio_end_aio;
331 else
332 bio->bi_end_io = dio_bio_end_io;
333
334 dio->bio = bio;
335 return 0;
336}
337
338/*
339 * In the AIO read case we speculatively dirty the pages before starting IO.
340 * During IO completion, any of these pages which happen to have been written
341 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
342 *
343 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4
LT
344 */
345static void dio_bio_submit(struct dio *dio)
346{
347 struct bio *bio = dio->bio;
1da177e4
LT
348
349 bio->bi_private = dio;
0273201e 350 atomic_inc(&dio->refcount);
1da177e4
LT
351 if (dio->is_async && dio->rw == READ)
352 bio_set_pages_dirty(bio);
353 submit_bio(dio->rw, bio);
354
355 dio->bio = NULL;
356 dio->boundary = 0;
357}
358
359/*
360 * Release any resources in case of a failure
361 */
362static void dio_cleanup(struct dio *dio)
363{
364 while (dio_pages_present(dio))
365 page_cache_release(dio_get_page(dio));
366}
367
0273201e
ZB
368static int wait_for_more_bios(struct dio *dio)
369{
370 assert_spin_locked(&dio->bio_lock);
371
372 return (atomic_read(&dio->refcount) > 1) && (dio->bio_list == NULL);
373}
374
1da177e4 375/*
0273201e
ZB
376 * Wait for the next BIO to complete. Remove it and return it. NULL is
377 * returned once all BIOs have been completed. This must only be called once
378 * all bios have been issued so that dio->refcount can only decrease. This
379 * requires that that the caller hold a reference on the dio.
1da177e4
LT
380 */
381static struct bio *dio_await_one(struct dio *dio)
382{
383 unsigned long flags;
0273201e 384 struct bio *bio = NULL;
1da177e4
LT
385
386 spin_lock_irqsave(&dio->bio_lock, flags);
0273201e 387 while (wait_for_more_bios(dio)) {
1da177e4 388 set_current_state(TASK_UNINTERRUPTIBLE);
0273201e 389 if (wait_for_more_bios(dio)) {
1da177e4
LT
390 dio->waiter = current;
391 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
392 io_schedule();
393 spin_lock_irqsave(&dio->bio_lock, flags);
394 dio->waiter = NULL;
395 }
396 set_current_state(TASK_RUNNING);
397 }
0273201e
ZB
398 if (dio->bio_list) {
399 bio = dio->bio_list;
400 dio->bio_list = bio->bi_private;
401 }
1da177e4
LT
402 spin_unlock_irqrestore(&dio->bio_lock, flags);
403 return bio;
404}
405
406/*
407 * Process one completed BIO. No locks are held.
408 */
409static int dio_bio_complete(struct dio *dio, struct bio *bio)
410{
411 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
412 struct bio_vec *bvec = bio->bi_io_vec;
413 int page_no;
414
415 if (!uptodate)
174e27c6 416 dio->io_error = -EIO;
1da177e4
LT
417
418 if (dio->is_async && dio->rw == READ) {
419 bio_check_pages_dirty(bio); /* transfers ownership */
420 } else {
421 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
422 struct page *page = bvec[page_no].bv_page;
423
424 if (dio->rw == READ && !PageCompound(page))
425 set_page_dirty_lock(page);
426 page_cache_release(page);
427 }
428 bio_put(bio);
429 }
1da177e4
LT
430 return uptodate ? 0 : -EIO;
431}
432
433/*
0273201e
ZB
434 * Wait on and process all in-flight BIOs. This must only be called once
435 * all bios have been issued so that the refcount can only decrease.
436 * This just waits for all bios to make it through dio_bio_complete. IO
437 * errors are propogated through dio->io_error and should be propogated via
438 * dio_complete().
1da177e4 439 */
6d544bb4 440static void dio_await_completion(struct dio *dio)
1da177e4 441{
0273201e
ZB
442 struct bio *bio;
443 do {
444 bio = dio_await_one(dio);
445 if (bio)
446 dio_bio_complete(dio, bio);
447 } while (bio);
1da177e4
LT
448}
449
450/*
451 * A really large O_DIRECT read or write can generate a lot of BIOs. So
452 * to keep the memory consumption sane we periodically reap any completed BIOs
453 * during the BIO generation phase.
454 *
455 * This also helps to limit the peak amount of pinned userspace memory.
456 */
457static int dio_bio_reap(struct dio *dio)
458{
459 int ret = 0;
460
461 if (dio->reap_counter++ >= 64) {
462 while (dio->bio_list) {
463 unsigned long flags;
464 struct bio *bio;
465 int ret2;
466
467 spin_lock_irqsave(&dio->bio_lock, flags);
468 bio = dio->bio_list;
469 dio->bio_list = bio->bi_private;
470 spin_unlock_irqrestore(&dio->bio_lock, flags);
471 ret2 = dio_bio_complete(dio, bio);
472 if (ret == 0)
473 ret = ret2;
474 }
475 dio->reap_counter = 0;
476 }
477 return ret;
478}
479
480/*
481 * Call into the fs to map some more disk blocks. We record the current number
482 * of available blocks at dio->blocks_available. These are in units of the
483 * fs blocksize, (1 << inode->i_blkbits).
484 *
485 * The fs is allowed to map lots of blocks at once. If it wants to do that,
486 * it uses the passed inode-relative block number as the file offset, as usual.
487 *
1d8fa7a2 488 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
489 * has remaining to do. The fs should not map more than this number of blocks.
490 *
491 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
492 * indicate how much contiguous disk space has been made available at
493 * bh->b_blocknr.
494 *
495 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
496 * This isn't very efficient...
497 *
498 * In the case of filesystem holes: the fs may return an arbitrarily-large
499 * hole by returning an appropriate value in b_size and by clearing
500 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 501 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4
LT
502 */
503static int get_more_blocks(struct dio *dio)
504{
505 int ret;
506 struct buffer_head *map_bh = &dio->map_bh;
507 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
508 unsigned long fs_count; /* Number of filesystem-sized blocks */
509 unsigned long dio_count;/* Number of dio_block-sized blocks */
510 unsigned long blkmask;
511 int create;
512
513 /*
514 * If there was a memory error and we've overwritten all the
515 * mapped blocks then we can now return that memory error
516 */
517 ret = dio->page_errors;
518 if (ret == 0) {
1da177e4
LT
519 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
520 fs_startblk = dio->block_in_file >> dio->blkfactor;
521 dio_count = dio->final_block_in_request - dio->block_in_file;
522 fs_count = dio_count >> dio->blkfactor;
523 blkmask = (1 << dio->blkfactor) - 1;
524 if (dio_count & blkmask)
525 fs_count++;
526
3c674e74
NS
527 map_bh->b_state = 0;
528 map_bh->b_size = fs_count << dio->inode->i_blkbits;
529
b31dc66a 530 create = dio->rw & WRITE;
1da177e4
LT
531 if (dio->lock_type == DIO_LOCKING) {
532 if (dio->block_in_file < (i_size_read(dio->inode) >>
533 dio->blkbits))
534 create = 0;
535 } else if (dio->lock_type == DIO_NO_LOCKING) {
536 create = 0;
537 }
3c674e74 538
1da177e4
LT
539 /*
540 * For writes inside i_size we forbid block creations: only
541 * overwrites are permitted. We fall back to buffered writes
542 * at a higher level for inside-i_size block-instantiating
543 * writes.
544 */
1d8fa7a2 545 ret = (*dio->get_block)(dio->inode, fs_startblk,
1da177e4
LT
546 map_bh, create);
547 }
548 return ret;
549}
550
551/*
552 * There is no bio. Make one now.
553 */
554static int dio_new_bio(struct dio *dio, sector_t start_sector)
555{
556 sector_t sector;
557 int ret, nr_pages;
558
559 ret = dio_bio_reap(dio);
560 if (ret)
561 goto out;
562 sector = start_sector << (dio->blkbits - 9);
563 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
564 BUG_ON(nr_pages <= 0);
565 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
566 dio->boundary = 0;
567out:
568 return ret;
569}
570
571/*
572 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
573 * that was successful then update final_block_in_bio and take a ref against
574 * the just-added page.
575 *
576 * Return zero on success. Non-zero means the caller needs to start a new BIO.
577 */
578static int dio_bio_add_page(struct dio *dio)
579{
580 int ret;
581
582 ret = bio_add_page(dio->bio, dio->cur_page,
583 dio->cur_page_len, dio->cur_page_offset);
584 if (ret == dio->cur_page_len) {
585 /*
586 * Decrement count only, if we are done with this page
587 */
588 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
589 dio->pages_in_io--;
590 page_cache_get(dio->cur_page);
591 dio->final_block_in_bio = dio->cur_page_block +
592 (dio->cur_page_len >> dio->blkbits);
593 ret = 0;
594 } else {
595 ret = 1;
596 }
597 return ret;
598}
599
600/*
601 * Put cur_page under IO. The section of cur_page which is described by
602 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
603 * starts on-disk at cur_page_block.
604 *
605 * We take a ref against the page here (on behalf of its presence in the bio).
606 *
607 * The caller of this function is responsible for removing cur_page from the
608 * dio, and for dropping the refcount which came from that presence.
609 */
610static int dio_send_cur_page(struct dio *dio)
611{
612 int ret = 0;
613
614 if (dio->bio) {
615 /*
616 * See whether this new request is contiguous with the old
617 */
618 if (dio->final_block_in_bio != dio->cur_page_block)
619 dio_bio_submit(dio);
620 /*
621 * Submit now if the underlying fs is about to perform a
622 * metadata read
623 */
624 if (dio->boundary)
625 dio_bio_submit(dio);
626 }
627
628 if (dio->bio == NULL) {
629 ret = dio_new_bio(dio, dio->cur_page_block);
630 if (ret)
631 goto out;
632 }
633
634 if (dio_bio_add_page(dio) != 0) {
635 dio_bio_submit(dio);
636 ret = dio_new_bio(dio, dio->cur_page_block);
637 if (ret == 0) {
638 ret = dio_bio_add_page(dio);
639 BUG_ON(ret != 0);
640 }
641 }
642out:
643 return ret;
644}
645
646/*
647 * An autonomous function to put a chunk of a page under deferred IO.
648 *
649 * The caller doesn't actually know (or care) whether this piece of page is in
650 * a BIO, or is under IO or whatever. We just take care of all possible
651 * situations here. The separation between the logic of do_direct_IO() and
652 * that of submit_page_section() is important for clarity. Please don't break.
653 *
654 * The chunk of page starts on-disk at blocknr.
655 *
656 * We perform deferred IO, by recording the last-submitted page inside our
657 * private part of the dio structure. If possible, we just expand the IO
658 * across that page here.
659 *
660 * If that doesn't work out then we put the old page into the bio and add this
661 * page to the dio instead.
662 */
663static int
664submit_page_section(struct dio *dio, struct page *page,
665 unsigned offset, unsigned len, sector_t blocknr)
666{
667 int ret = 0;
668
98c4d57d
AM
669 if (dio->rw & WRITE) {
670 /*
671 * Read accounting is performed in submit_bio()
672 */
673 task_io_account_write(len);
674 }
675
1da177e4
LT
676 /*
677 * Can we just grow the current page's presence in the dio?
678 */
679 if ( (dio->cur_page == page) &&
680 (dio->cur_page_offset + dio->cur_page_len == offset) &&
681 (dio->cur_page_block +
682 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
683 dio->cur_page_len += len;
684
685 /*
686 * If dio->boundary then we want to schedule the IO now to
687 * avoid metadata seeks.
688 */
689 if (dio->boundary) {
690 ret = dio_send_cur_page(dio);
691 page_cache_release(dio->cur_page);
692 dio->cur_page = NULL;
693 }
694 goto out;
695 }
696
697 /*
698 * If there's a deferred page already there then send it.
699 */
700 if (dio->cur_page) {
701 ret = dio_send_cur_page(dio);
702 page_cache_release(dio->cur_page);
703 dio->cur_page = NULL;
704 if (ret)
705 goto out;
706 }
707
708 page_cache_get(page); /* It is in dio */
709 dio->cur_page = page;
710 dio->cur_page_offset = offset;
711 dio->cur_page_len = len;
712 dio->cur_page_block = blocknr;
713out:
714 return ret;
715}
716
717/*
718 * Clean any dirty buffers in the blockdev mapping which alias newly-created
719 * file blocks. Only called for S_ISREG files - blockdevs do not set
720 * buffer_new
721 */
722static void clean_blockdev_aliases(struct dio *dio)
723{
724 unsigned i;
725 unsigned nblocks;
726
727 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
728
729 for (i = 0; i < nblocks; i++) {
730 unmap_underlying_metadata(dio->map_bh.b_bdev,
731 dio->map_bh.b_blocknr + i);
732 }
733}
734
735/*
736 * If we are not writing the entire block and get_block() allocated
737 * the block for us, we need to fill-in the unused portion of the
738 * block with zeros. This happens only if user-buffer, fileoffset or
739 * io length is not filesystem block-size multiple.
740 *
741 * `end' is zero if we're doing the start of the IO, 1 at the end of the
742 * IO.
743 */
744static void dio_zero_block(struct dio *dio, int end)
745{
746 unsigned dio_blocks_per_fs_block;
747 unsigned this_chunk_blocks; /* In dio_blocks */
748 unsigned this_chunk_bytes;
749 struct page *page;
750
751 dio->start_zero_done = 1;
752 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
753 return;
754
755 dio_blocks_per_fs_block = 1 << dio->blkfactor;
756 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
757
758 if (!this_chunk_blocks)
759 return;
760
761 /*
762 * We need to zero out part of an fs block. It is either at the
763 * beginning or the end of the fs block.
764 */
765 if (end)
766 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
767
768 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
769
770 page = ZERO_PAGE(dio->curr_user_address);
771 if (submit_page_section(dio, page, 0, this_chunk_bytes,
772 dio->next_block_for_io))
773 return;
774
775 dio->next_block_for_io += this_chunk_blocks;
776}
777
778/*
779 * Walk the user pages, and the file, mapping blocks to disk and generating
780 * a sequence of (page,offset,len,block) mappings. These mappings are injected
781 * into submit_page_section(), which takes care of the next stage of submission
782 *
783 * Direct IO against a blockdev is different from a file. Because we can
784 * happily perform page-sized but 512-byte aligned IOs. It is important that
785 * blockdev IO be able to have fine alignment and large sizes.
786 *
1d8fa7a2 787 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
788 * with the size of IO which is permitted at this offset and this i_blkbits.
789 *
790 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 791 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
792 * fine alignment but still allows this function to work in PAGE_SIZE units.
793 */
794static int do_direct_IO(struct dio *dio)
795{
796 const unsigned blkbits = dio->blkbits;
797 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
798 struct page *page;
799 unsigned block_in_page;
800 struct buffer_head *map_bh = &dio->map_bh;
801 int ret = 0;
802
803 /* The I/O can start at any block offset within the first page */
804 block_in_page = dio->first_block_in_page;
805
806 while (dio->block_in_file < dio->final_block_in_request) {
807 page = dio_get_page(dio);
808 if (IS_ERR(page)) {
809 ret = PTR_ERR(page);
810 goto out;
811 }
812
813 while (block_in_page < blocks_per_page) {
814 unsigned offset_in_page = block_in_page << blkbits;
815 unsigned this_chunk_bytes; /* # of bytes mapped */
816 unsigned this_chunk_blocks; /* # of blocks */
817 unsigned u;
818
819 if (dio->blocks_available == 0) {
820 /*
821 * Need to go and map some more disk
822 */
823 unsigned long blkmask;
824 unsigned long dio_remainder;
825
826 ret = get_more_blocks(dio);
827 if (ret) {
828 page_cache_release(page);
829 goto out;
830 }
831 if (!buffer_mapped(map_bh))
832 goto do_holes;
833
834 dio->blocks_available =
835 map_bh->b_size >> dio->blkbits;
836 dio->next_block_for_io =
837 map_bh->b_blocknr << dio->blkfactor;
838 if (buffer_new(map_bh))
839 clean_blockdev_aliases(dio);
840
841 if (!dio->blkfactor)
842 goto do_holes;
843
844 blkmask = (1 << dio->blkfactor) - 1;
845 dio_remainder = (dio->block_in_file & blkmask);
846
847 /*
848 * If we are at the start of IO and that IO
849 * starts partway into a fs-block,
850 * dio_remainder will be non-zero. If the IO
851 * is a read then we can simply advance the IO
852 * cursor to the first block which is to be
853 * read. But if the IO is a write and the
854 * block was newly allocated we cannot do that;
855 * the start of the fs block must be zeroed out
856 * on-disk
857 */
858 if (!buffer_new(map_bh))
859 dio->next_block_for_io += dio_remainder;
860 dio->blocks_available -= dio_remainder;
861 }
862do_holes:
863 /* Handle holes */
864 if (!buffer_mapped(map_bh)) {
865 char *kaddr;
35dc8161 866 loff_t i_size_aligned;
1da177e4
LT
867
868 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 869 if (dio->rw & WRITE) {
1da177e4
LT
870 page_cache_release(page);
871 return -ENOTBLK;
872 }
873
35dc8161
JM
874 /*
875 * Be sure to account for a partial block as the
876 * last block in the file
877 */
878 i_size_aligned = ALIGN(i_size_read(dio->inode),
879 1 << blkbits);
1da177e4 880 if (dio->block_in_file >=
35dc8161 881 i_size_aligned >> blkbits) {
1da177e4
LT
882 /* We hit eof */
883 page_cache_release(page);
884 goto out;
885 }
886 kaddr = kmap_atomic(page, KM_USER0);
887 memset(kaddr + (block_in_page << blkbits),
888 0, 1 << blkbits);
889 flush_dcache_page(page);
890 kunmap_atomic(kaddr, KM_USER0);
891 dio->block_in_file++;
892 block_in_page++;
893 goto next_block;
894 }
895
896 /*
897 * If we're performing IO which has an alignment which
898 * is finer than the underlying fs, go check to see if
899 * we must zero out the start of this block.
900 */
901 if (unlikely(dio->blkfactor && !dio->start_zero_done))
902 dio_zero_block(dio, 0);
903
904 /*
905 * Work out, in this_chunk_blocks, how much disk we
906 * can add to this page
907 */
908 this_chunk_blocks = dio->blocks_available;
909 u = (PAGE_SIZE - offset_in_page) >> blkbits;
910 if (this_chunk_blocks > u)
911 this_chunk_blocks = u;
912 u = dio->final_block_in_request - dio->block_in_file;
913 if (this_chunk_blocks > u)
914 this_chunk_blocks = u;
915 this_chunk_bytes = this_chunk_blocks << blkbits;
916 BUG_ON(this_chunk_bytes == 0);
917
918 dio->boundary = buffer_boundary(map_bh);
919 ret = submit_page_section(dio, page, offset_in_page,
920 this_chunk_bytes, dio->next_block_for_io);
921 if (ret) {
922 page_cache_release(page);
923 goto out;
924 }
925 dio->next_block_for_io += this_chunk_blocks;
926
927 dio->block_in_file += this_chunk_blocks;
928 block_in_page += this_chunk_blocks;
929 dio->blocks_available -= this_chunk_blocks;
930next_block:
d4569d2e 931 BUG_ON(dio->block_in_file > dio->final_block_in_request);
1da177e4
LT
932 if (dio->block_in_file == dio->final_block_in_request)
933 break;
934 }
935
936 /* Drop the ref which was taken in get_user_pages() */
937 page_cache_release(page);
938 block_in_page = 0;
939 }
940out:
941 return ret;
942}
943
944/*
1b1dcc1b 945 * Releases both i_mutex and i_alloc_sem
1da177e4
LT
946 */
947static ssize_t
948direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
949 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1d8fa7a2 950 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
951 struct dio *dio)
952{
953 unsigned long user_addr;
954 int seg;
955 ssize_t ret = 0;
956 ssize_t ret2;
957 size_t bytes;
958
959 dio->bio = NULL;
960 dio->inode = inode;
961 dio->rw = rw;
962 dio->blkbits = blkbits;
963 dio->blkfactor = inode->i_blkbits - blkbits;
964 dio->start_zero_done = 0;
965 dio->size = 0;
966 dio->block_in_file = offset >> blkbits;
967 dio->blocks_available = 0;
968 dio->cur_page = NULL;
969
970 dio->boundary = 0;
971 dio->reap_counter = 0;
1d8fa7a2 972 dio->get_block = get_block;
1da177e4
LT
973 dio->end_io = end_io;
974 dio->map_bh.b_private = NULL;
975 dio->final_block_in_bio = -1;
976 dio->next_block_for_io = -1;
977
978 dio->page_errors = 0;
174e27c6 979 dio->io_error = 0;
1da177e4
LT
980 dio->result = 0;
981 dio->iocb = iocb;
29504ff3 982 dio->i_size = i_size_read(inode);
1da177e4 983
0273201e 984 atomic_set(&dio->refcount, 1);
1da177e4
LT
985 spin_lock_init(&dio->bio_lock);
986 dio->bio_list = NULL;
987 dio->waiter = NULL;
988
989 /*
990 * In case of non-aligned buffers, we may need 2 more
991 * pages since we need to zero out first and last block.
992 */
993 if (unlikely(dio->blkfactor))
994 dio->pages_in_io = 2;
995 else
996 dio->pages_in_io = 0;
997
998 for (seg = 0; seg < nr_segs; seg++) {
999 user_addr = (unsigned long)iov[seg].iov_base;
1000 dio->pages_in_io +=
1001 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1002 - user_addr/PAGE_SIZE);
1003 }
1004
1005 for (seg = 0; seg < nr_segs; seg++) {
1006 user_addr = (unsigned long)iov[seg].iov_base;
1007 dio->size += bytes = iov[seg].iov_len;
1008
1009 /* Index into the first page of the first block */
1010 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1011 dio->final_block_in_request = dio->block_in_file +
1012 (bytes >> blkbits);
1013 /* Page fetching state */
1014 dio->head = 0;
1015 dio->tail = 0;
1016 dio->curr_page = 0;
1017
1018 dio->total_pages = 0;
1019 if (user_addr & (PAGE_SIZE-1)) {
1020 dio->total_pages++;
1021 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1022 }
1023 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1024 dio->curr_user_address = user_addr;
1025
1026 ret = do_direct_IO(dio);
1027
1028 dio->result += iov[seg].iov_len -
1029 ((dio->final_block_in_request - dio->block_in_file) <<
1030 blkbits);
1031
1032 if (ret) {
1033 dio_cleanup(dio);
1034 break;
1035 }
1036 } /* end iovec loop */
1037
b31dc66a 1038 if (ret == -ENOTBLK && (rw & WRITE)) {
1da177e4
LT
1039 /*
1040 * The remaining part of the request will be
1041 * be handled by buffered I/O when we return
1042 */
1043 ret = 0;
1044 }
1045 /*
1046 * There may be some unwritten disk at the end of a part-written
1047 * fs-block-sized block. Go zero that now.
1048 */
1049 dio_zero_block(dio, 1);
1050
1051 if (dio->cur_page) {
1052 ret2 = dio_send_cur_page(dio);
1053 if (ret == 0)
1054 ret = ret2;
1055 page_cache_release(dio->cur_page);
1056 dio->cur_page = NULL;
1057 }
1058 if (dio->bio)
1059 dio_bio_submit(dio);
1060
17a7b1d7
ZB
1061 /* All IO is now issued, send it on its way */
1062 blk_run_address_space(inode->i_mapping);
1063
1da177e4
LT
1064 /*
1065 * It is possible that, we return short IO due to end of file.
1066 * In that case, we need to release all the pages we got hold on.
1067 */
1068 dio_cleanup(dio);
1069
1070 /*
1071 * All block lookups have been performed. For READ requests
1b1dcc1b 1072 * we can let i_mutex go now that its achieved its purpose
1da177e4
LT
1073 * of protecting us from looking up uninitialized blocks.
1074 */
1075 if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1b1dcc1b 1076 mutex_unlock(&dio->inode->i_mutex);
1da177e4
LT
1077
1078 /*
8459d86a
ZB
1079 * The only time we want to leave bios in flight is when a successful
1080 * partial aio read or full aio write have been setup. In that case
1081 * bio completion will call aio_complete. The only time it's safe to
1082 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1083 * This had *better* be the only place that raises -EIOCBQUEUED.
1da177e4 1084 */
8459d86a
ZB
1085 BUG_ON(ret == -EIOCBQUEUED);
1086 if (dio->is_async && ret == 0 && dio->result &&
1087 ((rw & READ) || (dio->result == dio->size)))
1088 ret = -EIOCBQUEUED;
0273201e 1089
8459d86a 1090 if (ret != -EIOCBQUEUED)
6d544bb4 1091 dio_await_completion(dio);
1da177e4 1092
8459d86a
ZB
1093 /*
1094 * Sync will always be dropping the final ref and completing the
1095 * operation. AIO can if it was a broken operation described above
1096 * or in fact if all the bios race to complete before we get here.
1097 * In that case dio_complete() translates the EIOCBQUEUED into
1098 * the proper return code that the caller will hand to aio_complete().
1099 */
1100 if (atomic_dec_and_test(&dio->refcount)) {
6d544bb4 1101 ret = dio_complete(dio, offset, ret);
8459d86a
ZB
1102 kfree(dio);
1103 } else
1104 BUG_ON(ret != -EIOCBQUEUED);
1da177e4 1105
1da177e4
LT
1106 return ret;
1107}
1108
1109/*
1110 * This is a library function for use by filesystem drivers.
1111 * The locking rules are governed by the dio_lock_type parameter.
1112 *
1113 * DIO_NO_LOCKING (no locking, for raw block device access)
1b1dcc1b 1114 * For writes, i_mutex is not held on entry; it is never taken.
1da177e4
LT
1115 *
1116 * DIO_LOCKING (simple locking for regular files)
3fb962bd
NS
1117 * For writes we are called under i_mutex and return with i_mutex held, even
1118 * though it is internally dropped.
1b1dcc1b 1119 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1da177e4
LT
1120 * returning.
1121 *
1122 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1123 * uninitialised data, allowing parallel direct readers and writers)
1b1dcc1b 1124 * For writes we are called without i_mutex, return without it, never touch it.
3fb962bd
NS
1125 * For reads we are called under i_mutex and return with i_mutex held, even
1126 * though it may be internally dropped.
1da177e4
LT
1127 *
1128 * Additional i_alloc_sem locking requirements described inline below.
1129 */
1130ssize_t
1131__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1132 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1d8fa7a2 1133 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
1134 int dio_lock_type)
1135{
1136 int seg;
1137 size_t size;
1138 unsigned long addr;
1139 unsigned blkbits = inode->i_blkbits;
1140 unsigned bdev_blkbits = 0;
1141 unsigned blocksize_mask = (1 << blkbits) - 1;
1142 ssize_t retval = -EINVAL;
1143 loff_t end = offset;
1144 struct dio *dio;
3fb962bd
NS
1145 int release_i_mutex = 0;
1146 int acquire_i_mutex = 0;
1da177e4
LT
1147
1148 if (rw & WRITE)
b31dc66a 1149 rw = WRITE_SYNC;
1da177e4
LT
1150
1151 if (bdev)
1152 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1153
1154 if (offset & blocksize_mask) {
1155 if (bdev)
1156 blkbits = bdev_blkbits;
1157 blocksize_mask = (1 << blkbits) - 1;
1158 if (offset & blocksize_mask)
1159 goto out;
1160 }
1161
1162 /* Check the memory alignment. Blocks cannot straddle pages */
1163 for (seg = 0; seg < nr_segs; seg++) {
1164 addr = (unsigned long)iov[seg].iov_base;
1165 size = iov[seg].iov_len;
1166 end += size;
1167 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1168 if (bdev)
1169 blkbits = bdev_blkbits;
1170 blocksize_mask = (1 << blkbits) - 1;
1171 if ((addr & blocksize_mask) || (size & blocksize_mask))
1172 goto out;
1173 }
1174 }
1175
1176 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1177 retval = -ENOMEM;
1178 if (!dio)
1179 goto out;
1180
1181 /*
1182 * For block device access DIO_NO_LOCKING is used,
1183 * neither readers nor writers do any locking at all
1184 * For regular files using DIO_LOCKING,
1b1dcc1b
JS
1185 * readers need to grab i_mutex and i_alloc_sem
1186 * writers need to grab i_alloc_sem only (i_mutex is already held)
1da177e4
LT
1187 * For regular files using DIO_OWN_LOCKING,
1188 * neither readers nor writers take any locks here
1da177e4
LT
1189 */
1190 dio->lock_type = dio_lock_type;
1191 if (dio_lock_type != DIO_NO_LOCKING) {
1192 /* watch out for a 0 len io from a tricksy fs */
1193 if (rw == READ && end > offset) {
1194 struct address_space *mapping;
1195
1196 mapping = iocb->ki_filp->f_mapping;
1197 if (dio_lock_type != DIO_OWN_LOCKING) {
1b1dcc1b 1198 mutex_lock(&inode->i_mutex);
3fb962bd 1199 release_i_mutex = 1;
1da177e4
LT
1200 }
1201
1202 retval = filemap_write_and_wait_range(mapping, offset,
1203 end - 1);
1204 if (retval) {
1205 kfree(dio);
1206 goto out;
1207 }
1208
1209 if (dio_lock_type == DIO_OWN_LOCKING) {
1b1dcc1b 1210 mutex_unlock(&inode->i_mutex);
3fb962bd 1211 acquire_i_mutex = 1;
1da177e4
LT
1212 }
1213 }
1214
1215 if (dio_lock_type == DIO_LOCKING)
d8aa905b
IM
1216 /* lockdep: not the owner will release it */
1217 down_read_non_owner(&inode->i_alloc_sem);
1da177e4
LT
1218 }
1219
1220 /*
1221 * For file extending writes updating i_size before data
1222 * writeouts complete can expose uninitialized blocks. So
1223 * even for AIO, we need to wait for i/o to complete before
1224 * returning in this case.
1225 */
b31dc66a 1226 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1da177e4
LT
1227 (end > i_size_read(inode)));
1228
1229 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1d8fa7a2 1230 nr_segs, blkbits, get_block, end_io, dio);
1da177e4
LT
1231
1232 if (rw == READ && dio_lock_type == DIO_LOCKING)
3fb962bd 1233 release_i_mutex = 0;
1da177e4
LT
1234
1235out:
3fb962bd 1236 if (release_i_mutex)
1b1dcc1b 1237 mutex_unlock(&inode->i_mutex);
3fb962bd
NS
1238 else if (acquire_i_mutex)
1239 mutex_lock(&inode->i_mutex);
1da177e4
LT
1240 return retval;
1241}
1242EXPORT_SYMBOL(__blockdev_direct_IO);