]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/userfaultfd.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
9cd75c3c 15#include <linux/list.h>
86039bd3
AA
16#include <linux/hashtable.h>
17#include <linux/sched.h>
18#include <linux/mm.h>
19#include <linux/poll.h>
20#include <linux/slab.h>
21#include <linux/seq_file.h>
22#include <linux/file.h>
23#include <linux/bug.h>
24#include <linux/anon_inodes.h>
25#include <linux/syscalls.h>
26#include <linux/userfaultfd_k.h>
27#include <linux/mempolicy.h>
28#include <linux/ioctl.h>
29#include <linux/security.h>
cab350af 30#include <linux/hugetlb.h>
86039bd3 31
3004ec9c
AA
32static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
33
86039bd3
AA
34enum userfaultfd_state {
35 UFFD_STATE_WAIT_API,
36 UFFD_STATE_RUNNING,
37};
38
3004ec9c
AA
39/*
40 * Start with fault_pending_wqh and fault_wqh so they're more likely
41 * to be in the same cacheline.
42 */
86039bd3 43struct userfaultfd_ctx {
15b726ef
AA
44 /* waitqueue head for the pending (i.e. not read) userfaults */
45 wait_queue_head_t fault_pending_wqh;
46 /* waitqueue head for the userfaults */
86039bd3
AA
47 wait_queue_head_t fault_wqh;
48 /* waitqueue head for the pseudo fd to wakeup poll/read */
49 wait_queue_head_t fd_wqh;
9cd75c3c
PE
50 /* waitqueue head for events */
51 wait_queue_head_t event_wqh;
2c5b7e1b
AA
52 /* a refile sequence protected by fault_pending_wqh lock */
53 struct seqcount refile_seq;
3004ec9c
AA
54 /* pseudo fd refcounting */
55 atomic_t refcount;
86039bd3
AA
56 /* userfaultfd syscall flags */
57 unsigned int flags;
9cd75c3c
PE
58 /* features requested from the userspace */
59 unsigned int features;
86039bd3
AA
60 /* state machine */
61 enum userfaultfd_state state;
62 /* released */
63 bool released;
64 /* mm with one ore more vmas attached to this userfaultfd_ctx */
65 struct mm_struct *mm;
66};
67
893e26e6
PE
68struct userfaultfd_fork_ctx {
69 struct userfaultfd_ctx *orig;
70 struct userfaultfd_ctx *new;
71 struct list_head list;
72};
73
897ab3e0
MR
74struct userfaultfd_unmap_ctx {
75 struct userfaultfd_ctx *ctx;
76 unsigned long start;
77 unsigned long end;
78 struct list_head list;
79};
80
86039bd3 81struct userfaultfd_wait_queue {
a9b85f94 82 struct uffd_msg msg;
86039bd3 83 wait_queue_t wq;
86039bd3 84 struct userfaultfd_ctx *ctx;
15a77c6f 85 bool waken;
86039bd3
AA
86};
87
88struct userfaultfd_wake_range {
89 unsigned long start;
90 unsigned long len;
91};
92
93static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
94 int wake_flags, void *key)
95{
96 struct userfaultfd_wake_range *range = key;
97 int ret;
98 struct userfaultfd_wait_queue *uwq;
99 unsigned long start, len;
100
101 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
102 ret = 0;
86039bd3
AA
103 /* len == 0 means wake all */
104 start = range->start;
105 len = range->len;
a9b85f94
AA
106 if (len && (start > uwq->msg.arg.pagefault.address ||
107 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 108 goto out;
15a77c6f
AA
109 WRITE_ONCE(uwq->waken, true);
110 /*
111 * The implicit smp_mb__before_spinlock in try_to_wake_up()
112 * renders uwq->waken visible to other CPUs before the task is
113 * waken.
114 */
86039bd3
AA
115 ret = wake_up_state(wq->private, mode);
116 if (ret)
117 /*
118 * Wake only once, autoremove behavior.
119 *
120 * After the effect of list_del_init is visible to the
121 * other CPUs, the waitqueue may disappear from under
122 * us, see the !list_empty_careful() in
123 * handle_userfault(). try_to_wake_up() has an
124 * implicit smp_mb__before_spinlock, and the
125 * wq->private is read before calling the extern
126 * function "wake_up_state" (which in turns calls
127 * try_to_wake_up). While the spin_lock;spin_unlock;
128 * wouldn't be enough, the smp_mb__before_spinlock is
129 * enough to avoid an explicit smp_mb() here.
130 */
131 list_del_init(&wq->task_list);
132out:
133 return ret;
134}
135
136/**
137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138 * context.
139 * @ctx: [in] Pointer to the userfaultfd context.
140 *
141 * Returns: In case of success, returns not zero.
142 */
143static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
144{
145 if (!atomic_inc_not_zero(&ctx->refcount))
146 BUG();
147}
148
149/**
150 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
151 * context.
152 * @ctx: [in] Pointer to userfaultfd context.
153 *
154 * The userfaultfd context reference must have been previously acquired either
155 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
156 */
157static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
158{
159 if (atomic_dec_and_test(&ctx->refcount)) {
160 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
164 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
165 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
166 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
167 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 168 mmdrop(ctx->mm);
3004ec9c 169 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
170 }
171}
172
a9b85f94 173static inline void msg_init(struct uffd_msg *msg)
86039bd3 174{
a9b85f94
AA
175 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
176 /*
177 * Must use memset to zero out the paddings or kernel data is
178 * leaked to userland.
179 */
180 memset(msg, 0, sizeof(struct uffd_msg));
181}
182
183static inline struct uffd_msg userfault_msg(unsigned long address,
184 unsigned int flags,
185 unsigned long reason)
186{
187 struct uffd_msg msg;
188 msg_init(&msg);
189 msg.event = UFFD_EVENT_PAGEFAULT;
190 msg.arg.pagefault.address = address;
86039bd3
AA
191 if (flags & FAULT_FLAG_WRITE)
192 /*
a4605a61 193 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
194 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
195 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
196 * was a read fault, otherwise if set it means it's
197 * a write fault.
86039bd3 198 */
a9b85f94 199 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
200 if (reason & VM_UFFD_WP)
201 /*
a9b85f94
AA
202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
204 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
205 * a missing fault, otherwise if set it means it's a
206 * write protect fault.
86039bd3 207 */
a9b85f94
AA
208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
209 return msg;
86039bd3
AA
210}
211
369cd212
MK
212#ifdef CONFIG_HUGETLB_PAGE
213/*
214 * Same functionality as userfaultfd_must_wait below with modifications for
215 * hugepmd ranges.
216 */
217static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221{
222 struct mm_struct *mm = ctx->mm;
223 pte_t *pte;
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
228 pte = huge_pte_offset(mm, address);
229 if (!pte)
230 goto out;
231
232 ret = false;
233
234 /*
235 * Lockless access: we're in a wait_event so it's ok if it
236 * changes under us.
237 */
238 if (huge_pte_none(*pte))
239 ret = true;
240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 ret = true;
242out:
243 return ret;
244}
245#else
246static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 unsigned long address,
248 unsigned long flags,
249 unsigned long reason)
250{
251 return false; /* should never get here */
252}
253#endif /* CONFIG_HUGETLB_PAGE */
254
8d2afd96
AA
255/*
256 * Verify the pagetables are still not ok after having reigstered into
257 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
258 * userfault that has already been resolved, if userfaultfd_read and
259 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
260 * threads.
261 */
262static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
263 unsigned long address,
264 unsigned long flags,
265 unsigned long reason)
266{
267 struct mm_struct *mm = ctx->mm;
268 pgd_t *pgd;
269 pud_t *pud;
270 pmd_t *pmd, _pmd;
271 pte_t *pte;
272 bool ret = true;
273
274 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
275
276 pgd = pgd_offset(mm, address);
277 if (!pgd_present(*pgd))
278 goto out;
279 pud = pud_offset(pgd, address);
280 if (!pud_present(*pud))
281 goto out;
282 pmd = pmd_offset(pud, address);
283 /*
284 * READ_ONCE must function as a barrier with narrower scope
285 * and it must be equivalent to:
286 * _pmd = *pmd; barrier();
287 *
288 * This is to deal with the instability (as in
289 * pmd_trans_unstable) of the pmd.
290 */
291 _pmd = READ_ONCE(*pmd);
292 if (!pmd_present(_pmd))
293 goto out;
294
295 ret = false;
296 if (pmd_trans_huge(_pmd))
297 goto out;
298
299 /*
300 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
301 * and use the standard pte_offset_map() instead of parsing _pmd.
302 */
303 pte = pte_offset_map(pmd, address);
304 /*
305 * Lockless access: we're in a wait_event so it's ok if it
306 * changes under us.
307 */
308 if (pte_none(*pte))
309 ret = true;
310 pte_unmap(pte);
311
312out:
313 return ret;
314}
315
86039bd3
AA
316/*
317 * The locking rules involved in returning VM_FAULT_RETRY depending on
318 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
319 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
320 * recommendation in __lock_page_or_retry is not an understatement.
321 *
322 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
323 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
324 * not set.
325 *
326 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
327 * set, VM_FAULT_RETRY can still be returned if and only if there are
328 * fatal_signal_pending()s, and the mmap_sem must be released before
329 * returning it.
330 */
82b0f8c3 331int handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 332{
82b0f8c3 333 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
334 struct userfaultfd_ctx *ctx;
335 struct userfaultfd_wait_queue uwq;
ba85c702 336 int ret;
dfa37dc3 337 bool must_wait, return_to_userland;
15a77c6f 338 long blocking_state;
86039bd3
AA
339
340 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
341
ba85c702 342 ret = VM_FAULT_SIGBUS;
82b0f8c3 343 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 344 if (!ctx)
ba85c702 345 goto out;
86039bd3
AA
346
347 BUG_ON(ctx->mm != mm);
348
349 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
350 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
351
352 /*
353 * If it's already released don't get it. This avoids to loop
354 * in __get_user_pages if userfaultfd_release waits on the
355 * caller of handle_userfault to release the mmap_sem.
356 */
357 if (unlikely(ACCESS_ONCE(ctx->released)))
ba85c702 358 goto out;
86039bd3 359
39680f50
LT
360 /*
361 * We don't do userfault handling for the final child pid update.
362 */
363 if (current->flags & PF_EXITING)
364 goto out;
365
86039bd3
AA
366 /*
367 * Check that we can return VM_FAULT_RETRY.
368 *
369 * NOTE: it should become possible to return VM_FAULT_RETRY
370 * even if FAULT_FLAG_TRIED is set without leading to gup()
371 * -EBUSY failures, if the userfaultfd is to be extended for
372 * VM_UFFD_WP tracking and we intend to arm the userfault
373 * without first stopping userland access to the memory. For
374 * VM_UFFD_MISSING userfaults this is enough for now.
375 */
82b0f8c3 376 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
377 /*
378 * Validate the invariant that nowait must allow retry
379 * to be sure not to return SIGBUS erroneously on
380 * nowait invocations.
381 */
82b0f8c3 382 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
383#ifdef CONFIG_DEBUG_VM
384 if (printk_ratelimit()) {
385 printk(KERN_WARNING
82b0f8c3
JK
386 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
387 vmf->flags);
86039bd3
AA
388 dump_stack();
389 }
390#endif
ba85c702 391 goto out;
86039bd3
AA
392 }
393
394 /*
395 * Handle nowait, not much to do other than tell it to retry
396 * and wait.
397 */
ba85c702 398 ret = VM_FAULT_RETRY;
82b0f8c3 399 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 400 goto out;
86039bd3
AA
401
402 /* take the reference before dropping the mmap_sem */
403 userfaultfd_ctx_get(ctx);
404
86039bd3
AA
405 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
406 uwq.wq.private = current;
82b0f8c3 407 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
86039bd3 408 uwq.ctx = ctx;
15a77c6f 409 uwq.waken = false;
86039bd3 410
bae473a4 411 return_to_userland =
82b0f8c3 412 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 413 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
414 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
415 TASK_KILLABLE;
dfa37dc3 416
15b726ef 417 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
418 /*
419 * After the __add_wait_queue the uwq is visible to userland
420 * through poll/read().
421 */
15b726ef
AA
422 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
423 /*
424 * The smp_mb() after __set_current_state prevents the reads
425 * following the spin_unlock to happen before the list_add in
426 * __add_wait_queue.
427 */
15a77c6f 428 set_current_state(blocking_state);
15b726ef 429 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 430
369cd212
MK
431 if (!is_vm_hugetlb_page(vmf->vma))
432 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
433 reason);
434 else
435 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
436 vmf->flags, reason);
8d2afd96
AA
437 up_read(&mm->mmap_sem);
438
439 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
dfa37dc3
AA
440 (return_to_userland ? !signal_pending(current) :
441 !fatal_signal_pending(current)))) {
86039bd3
AA
442 wake_up_poll(&ctx->fd_wqh, POLLIN);
443 schedule();
ba85c702 444 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
445
446 /*
447 * False wakeups can orginate even from rwsem before
448 * up_read() however userfaults will wait either for a
449 * targeted wakeup on the specific uwq waitqueue from
450 * wake_userfault() or for signals or for uffd
451 * release.
452 */
453 while (!READ_ONCE(uwq.waken)) {
454 /*
455 * This needs the full smp_store_mb()
456 * guarantee as the state write must be
457 * visible to other CPUs before reading
458 * uwq.waken from other CPUs.
459 */
460 set_current_state(blocking_state);
461 if (READ_ONCE(uwq.waken) ||
462 READ_ONCE(ctx->released) ||
463 (return_to_userland ? signal_pending(current) :
464 fatal_signal_pending(current)))
465 break;
466 schedule();
467 }
ba85c702 468 }
86039bd3 469
ba85c702 470 __set_current_state(TASK_RUNNING);
15b726ef 471
dfa37dc3
AA
472 if (return_to_userland) {
473 if (signal_pending(current) &&
474 !fatal_signal_pending(current)) {
475 /*
476 * If we got a SIGSTOP or SIGCONT and this is
477 * a normal userland page fault, just let
478 * userland return so the signal will be
479 * handled and gdb debugging works. The page
480 * fault code immediately after we return from
481 * this function is going to release the
482 * mmap_sem and it's not depending on it
483 * (unlike gup would if we were not to return
484 * VM_FAULT_RETRY).
485 *
486 * If a fatal signal is pending we still take
487 * the streamlined VM_FAULT_RETRY failure path
488 * and there's no need to retake the mmap_sem
489 * in such case.
490 */
491 down_read(&mm->mmap_sem);
492 ret = 0;
493 }
494 }
495
15b726ef
AA
496 /*
497 * Here we race with the list_del; list_add in
498 * userfaultfd_ctx_read(), however because we don't ever run
499 * list_del_init() to refile across the two lists, the prev
500 * and next pointers will never point to self. list_add also
501 * would never let any of the two pointers to point to
502 * self. So list_empty_careful won't risk to see both pointers
503 * pointing to self at any time during the list refile. The
504 * only case where list_del_init() is called is the full
505 * removal in the wake function and there we don't re-list_add
506 * and it's fine not to block on the spinlock. The uwq on this
507 * kernel stack can be released after the list_del_init.
508 */
ba85c702 509 if (!list_empty_careful(&uwq.wq.task_list)) {
15b726ef
AA
510 spin_lock(&ctx->fault_pending_wqh.lock);
511 /*
512 * No need of list_del_init(), the uwq on the stack
513 * will be freed shortly anyway.
514 */
515 list_del(&uwq.wq.task_list);
516 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 517 }
86039bd3
AA
518
519 /*
520 * ctx may go away after this if the userfault pseudo fd is
521 * already released.
522 */
523 userfaultfd_ctx_put(ctx);
524
ba85c702
AA
525out:
526 return ret;
86039bd3
AA
527}
528
893e26e6
PE
529static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
530 struct userfaultfd_wait_queue *ewq)
9cd75c3c
PE
531{
532 int ret = 0;
533
534 ewq->ctx = ctx;
535 init_waitqueue_entry(&ewq->wq, current);
536
537 spin_lock(&ctx->event_wqh.lock);
538 /*
539 * After the __add_wait_queue the uwq is visible to userland
540 * through poll/read().
541 */
542 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
543 for (;;) {
544 set_current_state(TASK_KILLABLE);
545 if (ewq->msg.event == 0)
546 break;
547 if (ACCESS_ONCE(ctx->released) ||
548 fatal_signal_pending(current)) {
549 ret = -1;
550 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
551 break;
552 }
553
554 spin_unlock(&ctx->event_wqh.lock);
555
556 wake_up_poll(&ctx->fd_wqh, POLLIN);
557 schedule();
558
559 spin_lock(&ctx->event_wqh.lock);
560 }
561 __set_current_state(TASK_RUNNING);
562 spin_unlock(&ctx->event_wqh.lock);
563
564 /*
565 * ctx may go away after this if the userfault pseudo fd is
566 * already released.
567 */
568
569 userfaultfd_ctx_put(ctx);
570 return ret;
571}
572
573static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
574 struct userfaultfd_wait_queue *ewq)
575{
576 ewq->msg.event = 0;
577 wake_up_locked(&ctx->event_wqh);
578 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
579}
580
893e26e6
PE
581int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
582{
583 struct userfaultfd_ctx *ctx = NULL, *octx;
584 struct userfaultfd_fork_ctx *fctx;
585
586 octx = vma->vm_userfaultfd_ctx.ctx;
587 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
588 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
589 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
590 return 0;
591 }
592
593 list_for_each_entry(fctx, fcs, list)
594 if (fctx->orig == octx) {
595 ctx = fctx->new;
596 break;
597 }
598
599 if (!ctx) {
600 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
601 if (!fctx)
602 return -ENOMEM;
603
604 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
605 if (!ctx) {
606 kfree(fctx);
607 return -ENOMEM;
608 }
609
610 atomic_set(&ctx->refcount, 1);
611 ctx->flags = octx->flags;
612 ctx->state = UFFD_STATE_RUNNING;
613 ctx->features = octx->features;
614 ctx->released = false;
615 ctx->mm = vma->vm_mm;
d3aadc8e 616 atomic_inc(&ctx->mm->mm_count);
893e26e6
PE
617
618 userfaultfd_ctx_get(octx);
619 fctx->orig = octx;
620 fctx->new = ctx;
621 list_add_tail(&fctx->list, fcs);
622 }
623
624 vma->vm_userfaultfd_ctx.ctx = ctx;
625 return 0;
626}
627
628static int dup_fctx(struct userfaultfd_fork_ctx *fctx)
629{
630 struct userfaultfd_ctx *ctx = fctx->orig;
631 struct userfaultfd_wait_queue ewq;
632
633 msg_init(&ewq.msg);
634
635 ewq.msg.event = UFFD_EVENT_FORK;
636 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
637
638 return userfaultfd_event_wait_completion(ctx, &ewq);
639}
640
641void dup_userfaultfd_complete(struct list_head *fcs)
642{
643 int ret = 0;
644 struct userfaultfd_fork_ctx *fctx, *n;
645
646 list_for_each_entry_safe(fctx, n, fcs, list) {
647 if (!ret)
648 ret = dup_fctx(fctx);
649 list_del(&fctx->list);
650 kfree(fctx);
651 }
652}
653
72f87654
PE
654void mremap_userfaultfd_prep(struct vm_area_struct *vma,
655 struct vm_userfaultfd_ctx *vm_ctx)
656{
657 struct userfaultfd_ctx *ctx;
658
659 ctx = vma->vm_userfaultfd_ctx.ctx;
660 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
661 vm_ctx->ctx = ctx;
662 userfaultfd_ctx_get(ctx);
663 }
664}
665
90794bf1 666void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
667 unsigned long from, unsigned long to,
668 unsigned long len)
669{
90794bf1 670 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
671 struct userfaultfd_wait_queue ewq;
672
673 if (!ctx)
674 return;
675
676 if (to & ~PAGE_MASK) {
677 userfaultfd_ctx_put(ctx);
678 return;
679 }
680
681 msg_init(&ewq.msg);
682
683 ewq.msg.event = UFFD_EVENT_REMAP;
684 ewq.msg.arg.remap.from = from;
685 ewq.msg.arg.remap.to = to;
686 ewq.msg.arg.remap.len = len;
687
688 userfaultfd_event_wait_completion(ctx, &ewq);
689}
690
d811914d
MR
691void userfaultfd_remove(struct vm_area_struct *vma,
692 struct vm_area_struct **prev,
693 unsigned long start, unsigned long end)
05ce7724
PE
694{
695 struct mm_struct *mm = vma->vm_mm;
696 struct userfaultfd_ctx *ctx;
697 struct userfaultfd_wait_queue ewq;
698
699 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 700 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
05ce7724
PE
701 return;
702
703 userfaultfd_ctx_get(ctx);
704 up_read(&mm->mmap_sem);
705
706 *prev = NULL; /* We wait for ACK w/o the mmap semaphore */
707
708 msg_init(&ewq.msg);
709
d811914d
MR
710 ewq.msg.event = UFFD_EVENT_REMOVE;
711 ewq.msg.arg.remove.start = start;
712 ewq.msg.arg.remove.end = end;
05ce7724
PE
713
714 userfaultfd_event_wait_completion(ctx, &ewq);
715
716 down_read(&mm->mmap_sem);
717}
718
897ab3e0
MR
719static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
720 unsigned long start, unsigned long end)
721{
722 struct userfaultfd_unmap_ctx *unmap_ctx;
723
724 list_for_each_entry(unmap_ctx, unmaps, list)
725 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
726 unmap_ctx->end == end)
727 return true;
728
729 return false;
730}
731
732int userfaultfd_unmap_prep(struct vm_area_struct *vma,
733 unsigned long start, unsigned long end,
734 struct list_head *unmaps)
735{
736 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
737 struct userfaultfd_unmap_ctx *unmap_ctx;
738 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
739
740 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
741 has_unmap_ctx(ctx, unmaps, start, end))
742 continue;
743
744 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
745 if (!unmap_ctx)
746 return -ENOMEM;
747
748 userfaultfd_ctx_get(ctx);
749 unmap_ctx->ctx = ctx;
750 unmap_ctx->start = start;
751 unmap_ctx->end = end;
752 list_add_tail(&unmap_ctx->list, unmaps);
753 }
754
755 return 0;
756}
757
758void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
759{
760 struct userfaultfd_unmap_ctx *ctx, *n;
761 struct userfaultfd_wait_queue ewq;
762
763 list_for_each_entry_safe(ctx, n, uf, list) {
764 msg_init(&ewq.msg);
765
766 ewq.msg.event = UFFD_EVENT_UNMAP;
767 ewq.msg.arg.remove.start = ctx->start;
768 ewq.msg.arg.remove.end = ctx->end;
769
770 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
771
772 list_del(&ctx->list);
773 kfree(ctx);
774 }
775}
776
ca49ca71
MR
777void userfaultfd_exit(struct mm_struct *mm)
778{
779 struct vm_area_struct *vma = mm->mmap;
780
781 /*
782 * We can do the vma walk without locking because the caller
783 * (exit_mm) knows it now has exclusive access
784 */
785 while (vma) {
786 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
787
788 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_EXIT)) {
789 struct userfaultfd_wait_queue ewq;
790
791 userfaultfd_ctx_get(ctx);
792
793 msg_init(&ewq.msg);
794 ewq.msg.event = UFFD_EVENT_EXIT;
795
796 userfaultfd_event_wait_completion(ctx, &ewq);
797
798 ctx->features &= ~UFFD_FEATURE_EVENT_EXIT;
799 }
800
801 vma = vma->vm_next;
802 }
803}
804
86039bd3
AA
805static int userfaultfd_release(struct inode *inode, struct file *file)
806{
807 struct userfaultfd_ctx *ctx = file->private_data;
808 struct mm_struct *mm = ctx->mm;
809 struct vm_area_struct *vma, *prev;
810 /* len == 0 means wake all */
811 struct userfaultfd_wake_range range = { .len = 0, };
812 unsigned long new_flags;
813
814 ACCESS_ONCE(ctx->released) = true;
815
d2005e3f
ON
816 if (!mmget_not_zero(mm))
817 goto wakeup;
818
86039bd3
AA
819 /*
820 * Flush page faults out of all CPUs. NOTE: all page faults
821 * must be retried without returning VM_FAULT_SIGBUS if
822 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
823 * changes while handle_userfault released the mmap_sem. So
824 * it's critical that released is set to true (above), before
825 * taking the mmap_sem for writing.
826 */
827 down_write(&mm->mmap_sem);
828 prev = NULL;
829 for (vma = mm->mmap; vma; vma = vma->vm_next) {
830 cond_resched();
831 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
832 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
833 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
834 prev = vma;
835 continue;
836 }
837 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
838 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
839 new_flags, vma->anon_vma,
840 vma->vm_file, vma->vm_pgoff,
841 vma_policy(vma),
842 NULL_VM_UFFD_CTX);
843 if (prev)
844 vma = prev;
845 else
846 prev = vma;
847 vma->vm_flags = new_flags;
848 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
849 }
850 up_write(&mm->mmap_sem);
d2005e3f
ON
851 mmput(mm);
852wakeup:
86039bd3 853 /*
15b726ef 854 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 855 * the last page faults that may have been already waiting on
15b726ef 856 * the fault_*wqh.
86039bd3 857 */
15b726ef 858 spin_lock(&ctx->fault_pending_wqh.lock);
ac5be6b4
AA
859 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
860 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
15b726ef 861 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
862
863 wake_up_poll(&ctx->fd_wqh, POLLHUP);
864 userfaultfd_ctx_put(ctx);
865 return 0;
866}
867
15b726ef 868/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
869static inline struct userfaultfd_wait_queue *find_userfault_in(
870 wait_queue_head_t *wqh)
86039bd3
AA
871{
872 wait_queue_t *wq;
15b726ef 873 struct userfaultfd_wait_queue *uwq;
86039bd3 874
6dcc27fd 875 VM_BUG_ON(!spin_is_locked(&wqh->lock));
86039bd3 876
15b726ef 877 uwq = NULL;
6dcc27fd 878 if (!waitqueue_active(wqh))
15b726ef
AA
879 goto out;
880 /* walk in reverse to provide FIFO behavior to read userfaults */
6dcc27fd 881 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
15b726ef
AA
882 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
883out:
884 return uwq;
86039bd3 885}
6dcc27fd
PE
886
887static inline struct userfaultfd_wait_queue *find_userfault(
888 struct userfaultfd_ctx *ctx)
889{
890 return find_userfault_in(&ctx->fault_pending_wqh);
891}
86039bd3 892
9cd75c3c
PE
893static inline struct userfaultfd_wait_queue *find_userfault_evt(
894 struct userfaultfd_ctx *ctx)
895{
896 return find_userfault_in(&ctx->event_wqh);
897}
898
86039bd3
AA
899static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
900{
901 struct userfaultfd_ctx *ctx = file->private_data;
902 unsigned int ret;
903
904 poll_wait(file, &ctx->fd_wqh, wait);
905
906 switch (ctx->state) {
907 case UFFD_STATE_WAIT_API:
908 return POLLERR;
909 case UFFD_STATE_RUNNING:
ba85c702
AA
910 /*
911 * poll() never guarantees that read won't block.
912 * userfaults can be waken before they're read().
913 */
914 if (unlikely(!(file->f_flags & O_NONBLOCK)))
915 return POLLERR;
15b726ef
AA
916 /*
917 * lockless access to see if there are pending faults
918 * __pollwait last action is the add_wait_queue but
919 * the spin_unlock would allow the waitqueue_active to
920 * pass above the actual list_add inside
921 * add_wait_queue critical section. So use a full
922 * memory barrier to serialize the list_add write of
923 * add_wait_queue() with the waitqueue_active read
924 * below.
925 */
926 ret = 0;
927 smp_mb();
928 if (waitqueue_active(&ctx->fault_pending_wqh))
929 ret = POLLIN;
9cd75c3c
PE
930 else if (waitqueue_active(&ctx->event_wqh))
931 ret = POLLIN;
932
86039bd3
AA
933 return ret;
934 default:
8474901a
AA
935 WARN_ON_ONCE(1);
936 return POLLERR;
86039bd3
AA
937 }
938}
939
893e26e6
PE
940static const struct file_operations userfaultfd_fops;
941
942static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
943 struct userfaultfd_ctx *new,
944 struct uffd_msg *msg)
945{
946 int fd;
947 struct file *file;
948 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
949
950 fd = get_unused_fd_flags(flags);
951 if (fd < 0)
952 return fd;
953
954 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
955 O_RDWR | flags);
956 if (IS_ERR(file)) {
957 put_unused_fd(fd);
958 return PTR_ERR(file);
959 }
960
961 fd_install(fd, file);
962 msg->arg.reserved.reserved1 = 0;
963 msg->arg.fork.ufd = fd;
964
965 return 0;
966}
967
86039bd3 968static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 969 struct uffd_msg *msg)
86039bd3
AA
970{
971 ssize_t ret;
972 DECLARE_WAITQUEUE(wait, current);
15b726ef 973 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
974 /*
975 * Handling fork event requires sleeping operations, so
976 * we drop the event_wqh lock, then do these ops, then
977 * lock it back and wake up the waiter. While the lock is
978 * dropped the ewq may go away so we keep track of it
979 * carefully.
980 */
981 LIST_HEAD(fork_event);
982 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 983
15b726ef 984 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
985 spin_lock(&ctx->fd_wqh.lock);
986 __add_wait_queue(&ctx->fd_wqh, &wait);
987 for (;;) {
988 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
989 spin_lock(&ctx->fault_pending_wqh.lock);
990 uwq = find_userfault(ctx);
991 if (uwq) {
2c5b7e1b
AA
992 /*
993 * Use a seqcount to repeat the lockless check
994 * in wake_userfault() to avoid missing
995 * wakeups because during the refile both
996 * waitqueue could become empty if this is the
997 * only userfault.
998 */
999 write_seqcount_begin(&ctx->refile_seq);
1000
86039bd3 1001 /*
15b726ef
AA
1002 * The fault_pending_wqh.lock prevents the uwq
1003 * to disappear from under us.
1004 *
1005 * Refile this userfault from
1006 * fault_pending_wqh to fault_wqh, it's not
1007 * pending anymore after we read it.
1008 *
1009 * Use list_del() by hand (as
1010 * userfaultfd_wake_function also uses
1011 * list_del_init() by hand) to be sure nobody
1012 * changes __remove_wait_queue() to use
1013 * list_del_init() in turn breaking the
1014 * !list_empty_careful() check in
1015 * handle_userfault(). The uwq->wq.task_list
1016 * must never be empty at any time during the
1017 * refile, or the waitqueue could disappear
1018 * from under us. The "wait_queue_head_t"
1019 * parameter of __remove_wait_queue() is unused
1020 * anyway.
86039bd3 1021 */
15b726ef
AA
1022 list_del(&uwq->wq.task_list);
1023 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1024
2c5b7e1b
AA
1025 write_seqcount_end(&ctx->refile_seq);
1026
a9b85f94
AA
1027 /* careful to always initialize msg if ret == 0 */
1028 *msg = uwq->msg;
15b726ef 1029 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1030 ret = 0;
1031 break;
1032 }
15b726ef 1033 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1034
1035 spin_lock(&ctx->event_wqh.lock);
1036 uwq = find_userfault_evt(ctx);
1037 if (uwq) {
1038 *msg = uwq->msg;
1039
893e26e6
PE
1040 if (uwq->msg.event == UFFD_EVENT_FORK) {
1041 fork_nctx = (struct userfaultfd_ctx *)
1042 (unsigned long)
1043 uwq->msg.arg.reserved.reserved1;
1044 list_move(&uwq->wq.task_list, &fork_event);
1045 spin_unlock(&ctx->event_wqh.lock);
1046 ret = 0;
1047 break;
1048 }
1049
9cd75c3c
PE
1050 userfaultfd_event_complete(ctx, uwq);
1051 spin_unlock(&ctx->event_wqh.lock);
1052 ret = 0;
1053 break;
1054 }
1055 spin_unlock(&ctx->event_wqh.lock);
1056
86039bd3
AA
1057 if (signal_pending(current)) {
1058 ret = -ERESTARTSYS;
1059 break;
1060 }
1061 if (no_wait) {
1062 ret = -EAGAIN;
1063 break;
1064 }
1065 spin_unlock(&ctx->fd_wqh.lock);
1066 schedule();
1067 spin_lock(&ctx->fd_wqh.lock);
1068 }
1069 __remove_wait_queue(&ctx->fd_wqh, &wait);
1070 __set_current_state(TASK_RUNNING);
1071 spin_unlock(&ctx->fd_wqh.lock);
1072
893e26e6
PE
1073 if (!ret && msg->event == UFFD_EVENT_FORK) {
1074 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1075
1076 if (!ret) {
1077 spin_lock(&ctx->event_wqh.lock);
1078 if (!list_empty(&fork_event)) {
1079 uwq = list_first_entry(&fork_event,
1080 typeof(*uwq),
1081 wq.task_list);
1082 list_del(&uwq->wq.task_list);
1083 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1084 userfaultfd_event_complete(ctx, uwq);
1085 }
1086 spin_unlock(&ctx->event_wqh.lock);
1087 }
1088 }
1089
86039bd3
AA
1090 return ret;
1091}
1092
1093static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1094 size_t count, loff_t *ppos)
1095{
1096 struct userfaultfd_ctx *ctx = file->private_data;
1097 ssize_t _ret, ret = 0;
a9b85f94 1098 struct uffd_msg msg;
86039bd3
AA
1099 int no_wait = file->f_flags & O_NONBLOCK;
1100
1101 if (ctx->state == UFFD_STATE_WAIT_API)
1102 return -EINVAL;
86039bd3
AA
1103
1104 for (;;) {
a9b85f94 1105 if (count < sizeof(msg))
86039bd3 1106 return ret ? ret : -EINVAL;
a9b85f94 1107 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1108 if (_ret < 0)
1109 return ret ? ret : _ret;
a9b85f94 1110 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1111 return ret ? ret : -EFAULT;
a9b85f94
AA
1112 ret += sizeof(msg);
1113 buf += sizeof(msg);
1114 count -= sizeof(msg);
86039bd3
AA
1115 /*
1116 * Allow to read more than one fault at time but only
1117 * block if waiting for the very first one.
1118 */
1119 no_wait = O_NONBLOCK;
1120 }
1121}
1122
1123static void __wake_userfault(struct userfaultfd_ctx *ctx,
1124 struct userfaultfd_wake_range *range)
1125{
1126 unsigned long start, end;
1127
1128 start = range->start;
1129 end = range->start + range->len;
1130
15b726ef 1131 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 1132 /* wake all in the range and autoremove */
15b726ef 1133 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1134 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1135 range);
1136 if (waitqueue_active(&ctx->fault_wqh))
ac5be6b4 1137 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
15b726ef 1138 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1139}
1140
1141static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1142 struct userfaultfd_wake_range *range)
1143{
2c5b7e1b
AA
1144 unsigned seq;
1145 bool need_wakeup;
1146
86039bd3
AA
1147 /*
1148 * To be sure waitqueue_active() is not reordered by the CPU
1149 * before the pagetable update, use an explicit SMP memory
1150 * barrier here. PT lock release or up_read(mmap_sem) still
1151 * have release semantics that can allow the
1152 * waitqueue_active() to be reordered before the pte update.
1153 */
1154 smp_mb();
1155
1156 /*
1157 * Use waitqueue_active because it's very frequent to
1158 * change the address space atomically even if there are no
1159 * userfaults yet. So we take the spinlock only when we're
1160 * sure we've userfaults to wake.
1161 */
2c5b7e1b
AA
1162 do {
1163 seq = read_seqcount_begin(&ctx->refile_seq);
1164 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1165 waitqueue_active(&ctx->fault_wqh);
1166 cond_resched();
1167 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1168 if (need_wakeup)
86039bd3
AA
1169 __wake_userfault(ctx, range);
1170}
1171
1172static __always_inline int validate_range(struct mm_struct *mm,
1173 __u64 start, __u64 len)
1174{
1175 __u64 task_size = mm->task_size;
1176
1177 if (start & ~PAGE_MASK)
1178 return -EINVAL;
1179 if (len & ~PAGE_MASK)
1180 return -EINVAL;
1181 if (!len)
1182 return -EINVAL;
1183 if (start < mmap_min_addr)
1184 return -EINVAL;
1185 if (start >= task_size)
1186 return -EINVAL;
1187 if (len > task_size - start)
1188 return -EINVAL;
1189 return 0;
1190}
1191
ba6907db
MR
1192static inline bool vma_can_userfault(struct vm_area_struct *vma)
1193{
cac67329
MR
1194 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1195 vma_is_shmem(vma);
ba6907db
MR
1196}
1197
86039bd3
AA
1198static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1199 unsigned long arg)
1200{
1201 struct mm_struct *mm = ctx->mm;
1202 struct vm_area_struct *vma, *prev, *cur;
1203 int ret;
1204 struct uffdio_register uffdio_register;
1205 struct uffdio_register __user *user_uffdio_register;
1206 unsigned long vm_flags, new_flags;
1207 bool found;
cac67329 1208 bool non_anon_pages;
86039bd3
AA
1209 unsigned long start, end, vma_end;
1210
1211 user_uffdio_register = (struct uffdio_register __user *) arg;
1212
1213 ret = -EFAULT;
1214 if (copy_from_user(&uffdio_register, user_uffdio_register,
1215 sizeof(uffdio_register)-sizeof(__u64)))
1216 goto out;
1217
1218 ret = -EINVAL;
1219 if (!uffdio_register.mode)
1220 goto out;
1221 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1222 UFFDIO_REGISTER_MODE_WP))
1223 goto out;
1224 vm_flags = 0;
1225 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1226 vm_flags |= VM_UFFD_MISSING;
1227 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1228 vm_flags |= VM_UFFD_WP;
1229 /*
1230 * FIXME: remove the below error constraint by
1231 * implementing the wprotect tracking mode.
1232 */
1233 ret = -EINVAL;
1234 goto out;
1235 }
1236
1237 ret = validate_range(mm, uffdio_register.range.start,
1238 uffdio_register.range.len);
1239 if (ret)
1240 goto out;
1241
1242 start = uffdio_register.range.start;
1243 end = start + uffdio_register.range.len;
1244
d2005e3f
ON
1245 ret = -ENOMEM;
1246 if (!mmget_not_zero(mm))
1247 goto out;
1248
86039bd3
AA
1249 down_write(&mm->mmap_sem);
1250 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1251 if (!vma)
1252 goto out_unlock;
1253
1254 /* check that there's at least one vma in the range */
1255 ret = -EINVAL;
1256 if (vma->vm_start >= end)
1257 goto out_unlock;
1258
cab350af
MK
1259 /*
1260 * If the first vma contains huge pages, make sure start address
1261 * is aligned to huge page size.
1262 */
1263 if (is_vm_hugetlb_page(vma)) {
1264 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1265
1266 if (start & (vma_hpagesize - 1))
1267 goto out_unlock;
1268 }
1269
86039bd3
AA
1270 /*
1271 * Search for not compatible vmas.
86039bd3
AA
1272 */
1273 found = false;
cac67329 1274 non_anon_pages = false;
86039bd3
AA
1275 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1276 cond_resched();
1277
1278 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1279 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1280
1281 /* check not compatible vmas */
1282 ret = -EINVAL;
ba6907db 1283 if (!vma_can_userfault(cur))
86039bd3 1284 goto out_unlock;
cab350af
MK
1285 /*
1286 * If this vma contains ending address, and huge pages
1287 * check alignment.
1288 */
1289 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1290 end > cur->vm_start) {
1291 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1292
1293 ret = -EINVAL;
1294
1295 if (end & (vma_hpagesize - 1))
1296 goto out_unlock;
1297 }
86039bd3
AA
1298
1299 /*
1300 * Check that this vma isn't already owned by a
1301 * different userfaultfd. We can't allow more than one
1302 * userfaultfd to own a single vma simultaneously or we
1303 * wouldn't know which one to deliver the userfaults to.
1304 */
1305 ret = -EBUSY;
1306 if (cur->vm_userfaultfd_ctx.ctx &&
1307 cur->vm_userfaultfd_ctx.ctx != ctx)
1308 goto out_unlock;
1309
cab350af
MK
1310 /*
1311 * Note vmas containing huge pages
1312 */
cac67329
MR
1313 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1314 non_anon_pages = true;
cab350af 1315
86039bd3
AA
1316 found = true;
1317 }
1318 BUG_ON(!found);
1319
1320 if (vma->vm_start < start)
1321 prev = vma;
1322
1323 ret = 0;
1324 do {
1325 cond_resched();
1326
ba6907db 1327 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1328 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1329 vma->vm_userfaultfd_ctx.ctx != ctx);
1330
1331 /*
1332 * Nothing to do: this vma is already registered into this
1333 * userfaultfd and with the right tracking mode too.
1334 */
1335 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1336 (vma->vm_flags & vm_flags) == vm_flags)
1337 goto skip;
1338
1339 if (vma->vm_start > start)
1340 start = vma->vm_start;
1341 vma_end = min(end, vma->vm_end);
1342
1343 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1344 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1345 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1346 vma_policy(vma),
1347 ((struct vm_userfaultfd_ctx){ ctx }));
1348 if (prev) {
1349 vma = prev;
1350 goto next;
1351 }
1352 if (vma->vm_start < start) {
1353 ret = split_vma(mm, vma, start, 1);
1354 if (ret)
1355 break;
1356 }
1357 if (vma->vm_end > end) {
1358 ret = split_vma(mm, vma, end, 0);
1359 if (ret)
1360 break;
1361 }
1362 next:
1363 /*
1364 * In the vma_merge() successful mprotect-like case 8:
1365 * the next vma was merged into the current one and
1366 * the current one has not been updated yet.
1367 */
1368 vma->vm_flags = new_flags;
1369 vma->vm_userfaultfd_ctx.ctx = ctx;
1370
1371 skip:
1372 prev = vma;
1373 start = vma->vm_end;
1374 vma = vma->vm_next;
1375 } while (vma && vma->vm_start < end);
1376out_unlock:
1377 up_write(&mm->mmap_sem);
d2005e3f 1378 mmput(mm);
86039bd3
AA
1379 if (!ret) {
1380 /*
1381 * Now that we scanned all vmas we can already tell
1382 * userland which ioctls methods are guaranteed to
1383 * succeed on this range.
1384 */
cac67329 1385 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1386 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1387 &user_uffdio_register->ioctls))
1388 ret = -EFAULT;
1389 }
1390out:
1391 return ret;
1392}
1393
1394static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1395 unsigned long arg)
1396{
1397 struct mm_struct *mm = ctx->mm;
1398 struct vm_area_struct *vma, *prev, *cur;
1399 int ret;
1400 struct uffdio_range uffdio_unregister;
1401 unsigned long new_flags;
1402 bool found;
1403 unsigned long start, end, vma_end;
1404 const void __user *buf = (void __user *)arg;
1405
1406 ret = -EFAULT;
1407 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1408 goto out;
1409
1410 ret = validate_range(mm, uffdio_unregister.start,
1411 uffdio_unregister.len);
1412 if (ret)
1413 goto out;
1414
1415 start = uffdio_unregister.start;
1416 end = start + uffdio_unregister.len;
1417
d2005e3f
ON
1418 ret = -ENOMEM;
1419 if (!mmget_not_zero(mm))
1420 goto out;
1421
86039bd3
AA
1422 down_write(&mm->mmap_sem);
1423 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1424 if (!vma)
1425 goto out_unlock;
1426
1427 /* check that there's at least one vma in the range */
1428 ret = -EINVAL;
1429 if (vma->vm_start >= end)
1430 goto out_unlock;
1431
cab350af
MK
1432 /*
1433 * If the first vma contains huge pages, make sure start address
1434 * is aligned to huge page size.
1435 */
1436 if (is_vm_hugetlb_page(vma)) {
1437 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1438
1439 if (start & (vma_hpagesize - 1))
1440 goto out_unlock;
1441 }
1442
86039bd3
AA
1443 /*
1444 * Search for not compatible vmas.
86039bd3
AA
1445 */
1446 found = false;
1447 ret = -EINVAL;
1448 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1449 cond_resched();
1450
1451 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1452 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1453
1454 /*
1455 * Check not compatible vmas, not strictly required
1456 * here as not compatible vmas cannot have an
1457 * userfaultfd_ctx registered on them, but this
1458 * provides for more strict behavior to notice
1459 * unregistration errors.
1460 */
ba6907db 1461 if (!vma_can_userfault(cur))
86039bd3
AA
1462 goto out_unlock;
1463
1464 found = true;
1465 }
1466 BUG_ON(!found);
1467
1468 if (vma->vm_start < start)
1469 prev = vma;
1470
1471 ret = 0;
1472 do {
1473 cond_resched();
1474
ba6907db 1475 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1476
1477 /*
1478 * Nothing to do: this vma is already registered into this
1479 * userfaultfd and with the right tracking mode too.
1480 */
1481 if (!vma->vm_userfaultfd_ctx.ctx)
1482 goto skip;
1483
1484 if (vma->vm_start > start)
1485 start = vma->vm_start;
1486 vma_end = min(end, vma->vm_end);
1487
09fa5296
AA
1488 if (userfaultfd_missing(vma)) {
1489 /*
1490 * Wake any concurrent pending userfault while
1491 * we unregister, so they will not hang
1492 * permanently and it avoids userland to call
1493 * UFFDIO_WAKE explicitly.
1494 */
1495 struct userfaultfd_wake_range range;
1496 range.start = start;
1497 range.len = vma_end - start;
1498 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1499 }
1500
86039bd3
AA
1501 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1502 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1503 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1504 vma_policy(vma),
1505 NULL_VM_UFFD_CTX);
1506 if (prev) {
1507 vma = prev;
1508 goto next;
1509 }
1510 if (vma->vm_start < start) {
1511 ret = split_vma(mm, vma, start, 1);
1512 if (ret)
1513 break;
1514 }
1515 if (vma->vm_end > end) {
1516 ret = split_vma(mm, vma, end, 0);
1517 if (ret)
1518 break;
1519 }
1520 next:
1521 /*
1522 * In the vma_merge() successful mprotect-like case 8:
1523 * the next vma was merged into the current one and
1524 * the current one has not been updated yet.
1525 */
1526 vma->vm_flags = new_flags;
1527 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1528
1529 skip:
1530 prev = vma;
1531 start = vma->vm_end;
1532 vma = vma->vm_next;
1533 } while (vma && vma->vm_start < end);
1534out_unlock:
1535 up_write(&mm->mmap_sem);
d2005e3f 1536 mmput(mm);
86039bd3
AA
1537out:
1538 return ret;
1539}
1540
1541/*
ba85c702
AA
1542 * userfaultfd_wake may be used in combination with the
1543 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1544 */
1545static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1546 unsigned long arg)
1547{
1548 int ret;
1549 struct uffdio_range uffdio_wake;
1550 struct userfaultfd_wake_range range;
1551 const void __user *buf = (void __user *)arg;
1552
1553 ret = -EFAULT;
1554 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1555 goto out;
1556
1557 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1558 if (ret)
1559 goto out;
1560
1561 range.start = uffdio_wake.start;
1562 range.len = uffdio_wake.len;
1563
1564 /*
1565 * len == 0 means wake all and we don't want to wake all here,
1566 * so check it again to be sure.
1567 */
1568 VM_BUG_ON(!range.len);
1569
1570 wake_userfault(ctx, &range);
1571 ret = 0;
1572
1573out:
1574 return ret;
1575}
1576
ad465cae
AA
1577static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1578 unsigned long arg)
1579{
1580 __s64 ret;
1581 struct uffdio_copy uffdio_copy;
1582 struct uffdio_copy __user *user_uffdio_copy;
1583 struct userfaultfd_wake_range range;
1584
1585 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1586
1587 ret = -EFAULT;
1588 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1589 /* don't copy "copy" last field */
1590 sizeof(uffdio_copy)-sizeof(__s64)))
1591 goto out;
1592
1593 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1594 if (ret)
1595 goto out;
1596 /*
1597 * double check for wraparound just in case. copy_from_user()
1598 * will later check uffdio_copy.src + uffdio_copy.len to fit
1599 * in the userland range.
1600 */
1601 ret = -EINVAL;
1602 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1603 goto out;
1604 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1605 goto out;
d2005e3f
ON
1606 if (mmget_not_zero(ctx->mm)) {
1607 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1608 uffdio_copy.len);
1609 mmput(ctx->mm);
96333187
MR
1610 } else {
1611 return -ENOSPC;
d2005e3f 1612 }
ad465cae
AA
1613 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1614 return -EFAULT;
1615 if (ret < 0)
1616 goto out;
1617 BUG_ON(!ret);
1618 /* len == 0 would wake all */
1619 range.len = ret;
1620 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1621 range.start = uffdio_copy.dst;
1622 wake_userfault(ctx, &range);
1623 }
1624 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1625out:
1626 return ret;
1627}
1628
1629static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1630 unsigned long arg)
1631{
1632 __s64 ret;
1633 struct uffdio_zeropage uffdio_zeropage;
1634 struct uffdio_zeropage __user *user_uffdio_zeropage;
1635 struct userfaultfd_wake_range range;
1636
1637 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1638
1639 ret = -EFAULT;
1640 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1641 /* don't copy "zeropage" last field */
1642 sizeof(uffdio_zeropage)-sizeof(__s64)))
1643 goto out;
1644
1645 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1646 uffdio_zeropage.range.len);
1647 if (ret)
1648 goto out;
1649 ret = -EINVAL;
1650 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1651 goto out;
1652
d2005e3f
ON
1653 if (mmget_not_zero(ctx->mm)) {
1654 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1655 uffdio_zeropage.range.len);
1656 mmput(ctx->mm);
1657 }
ad465cae
AA
1658 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1659 return -EFAULT;
1660 if (ret < 0)
1661 goto out;
1662 /* len == 0 would wake all */
1663 BUG_ON(!ret);
1664 range.len = ret;
1665 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1666 range.start = uffdio_zeropage.range.start;
1667 wake_userfault(ctx, &range);
1668 }
1669 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1670out:
1671 return ret;
1672}
1673
9cd75c3c
PE
1674static inline unsigned int uffd_ctx_features(__u64 user_features)
1675{
1676 /*
1677 * For the current set of features the bits just coincide
1678 */
1679 return (unsigned int)user_features;
1680}
1681
86039bd3
AA
1682/*
1683 * userland asks for a certain API version and we return which bits
1684 * and ioctl commands are implemented in this kernel for such API
1685 * version or -EINVAL if unknown.
1686 */
1687static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1688 unsigned long arg)
1689{
1690 struct uffdio_api uffdio_api;
1691 void __user *buf = (void __user *)arg;
1692 int ret;
65603144 1693 __u64 features;
86039bd3
AA
1694
1695 ret = -EINVAL;
1696 if (ctx->state != UFFD_STATE_WAIT_API)
1697 goto out;
1698 ret = -EFAULT;
a9b85f94 1699 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1700 goto out;
65603144
AA
1701 features = uffdio_api.features;
1702 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1703 memset(&uffdio_api, 0, sizeof(uffdio_api));
1704 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1705 goto out;
1706 ret = -EINVAL;
1707 goto out;
1708 }
65603144
AA
1709 /* report all available features and ioctls to userland */
1710 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1711 uffdio_api.ioctls = UFFD_API_IOCTLS;
1712 ret = -EFAULT;
1713 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1714 goto out;
1715 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1716 /* only enable the requested features for this uffd context */
1717 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1718 ret = 0;
1719out:
1720 return ret;
1721}
1722
1723static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1724 unsigned long arg)
1725{
1726 int ret = -EINVAL;
1727 struct userfaultfd_ctx *ctx = file->private_data;
1728
e6485a47
AA
1729 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1730 return -EINVAL;
1731
86039bd3
AA
1732 switch(cmd) {
1733 case UFFDIO_API:
1734 ret = userfaultfd_api(ctx, arg);
1735 break;
1736 case UFFDIO_REGISTER:
1737 ret = userfaultfd_register(ctx, arg);
1738 break;
1739 case UFFDIO_UNREGISTER:
1740 ret = userfaultfd_unregister(ctx, arg);
1741 break;
1742 case UFFDIO_WAKE:
1743 ret = userfaultfd_wake(ctx, arg);
1744 break;
ad465cae
AA
1745 case UFFDIO_COPY:
1746 ret = userfaultfd_copy(ctx, arg);
1747 break;
1748 case UFFDIO_ZEROPAGE:
1749 ret = userfaultfd_zeropage(ctx, arg);
1750 break;
86039bd3
AA
1751 }
1752 return ret;
1753}
1754
1755#ifdef CONFIG_PROC_FS
1756static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1757{
1758 struct userfaultfd_ctx *ctx = f->private_data;
1759 wait_queue_t *wq;
1760 struct userfaultfd_wait_queue *uwq;
1761 unsigned long pending = 0, total = 0;
1762
15b726ef
AA
1763 spin_lock(&ctx->fault_pending_wqh.lock);
1764 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1765 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1766 pending++;
1767 total++;
1768 }
86039bd3
AA
1769 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1770 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1771 total++;
1772 }
15b726ef 1773 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1774
1775 /*
1776 * If more protocols will be added, there will be all shown
1777 * separated by a space. Like this:
1778 * protocols: aa:... bb:...
1779 */
1780 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
3f602d27 1781 pending, total, UFFD_API, UFFD_API_FEATURES,
86039bd3
AA
1782 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1783}
1784#endif
1785
1786static const struct file_operations userfaultfd_fops = {
1787#ifdef CONFIG_PROC_FS
1788 .show_fdinfo = userfaultfd_show_fdinfo,
1789#endif
1790 .release = userfaultfd_release,
1791 .poll = userfaultfd_poll,
1792 .read = userfaultfd_read,
1793 .unlocked_ioctl = userfaultfd_ioctl,
1794 .compat_ioctl = userfaultfd_ioctl,
1795 .llseek = noop_llseek,
1796};
1797
3004ec9c
AA
1798static void init_once_userfaultfd_ctx(void *mem)
1799{
1800 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1801
1802 init_waitqueue_head(&ctx->fault_pending_wqh);
1803 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1804 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1805 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1806 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1807}
1808
86039bd3 1809/**
9332ef9d 1810 * userfaultfd_file_create - Creates a userfaultfd file pointer.
86039bd3
AA
1811 * @flags: Flags for the userfaultfd file.
1812 *
9332ef9d 1813 * This function creates a userfaultfd file pointer, w/out installing
86039bd3
AA
1814 * it into the fd table. This is useful when the userfaultfd file is
1815 * used during the initialization of data structures that require
1816 * extra setup after the userfaultfd creation. So the userfaultfd
1817 * creation is split into the file pointer creation phase, and the
1818 * file descriptor installation phase. In this way races with
1819 * userspace closing the newly installed file descriptor can be
9332ef9d 1820 * avoided. Returns a userfaultfd file pointer, or a proper error
86039bd3
AA
1821 * pointer.
1822 */
1823static struct file *userfaultfd_file_create(int flags)
1824{
1825 struct file *file;
1826 struct userfaultfd_ctx *ctx;
1827
1828 BUG_ON(!current->mm);
1829
1830 /* Check the UFFD_* constants for consistency. */
1831 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1832 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1833
1834 file = ERR_PTR(-EINVAL);
1835 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1836 goto out;
1837
1838 file = ERR_PTR(-ENOMEM);
3004ec9c 1839 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1840 if (!ctx)
1841 goto out;
1842
1843 atomic_set(&ctx->refcount, 1);
86039bd3 1844 ctx->flags = flags;
9cd75c3c 1845 ctx->features = 0;
86039bd3
AA
1846 ctx->state = UFFD_STATE_WAIT_API;
1847 ctx->released = false;
1848 ctx->mm = current->mm;
1849 /* prevent the mm struct to be freed */
f1f10076 1850 mmgrab(ctx->mm);
86039bd3
AA
1851
1852 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1853 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
c03e946f 1854 if (IS_ERR(file)) {
d2005e3f 1855 mmdrop(ctx->mm);
3004ec9c 1856 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1857 }
86039bd3
AA
1858out:
1859 return file;
1860}
1861
1862SYSCALL_DEFINE1(userfaultfd, int, flags)
1863{
1864 int fd, error;
1865 struct file *file;
1866
1867 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1868 if (error < 0)
1869 return error;
1870 fd = error;
1871
1872 file = userfaultfd_file_create(flags);
1873 if (IS_ERR(file)) {
1874 error = PTR_ERR(file);
1875 goto err_put_unused_fd;
1876 }
1877 fd_install(fd, file);
1878
1879 return fd;
1880
1881err_put_unused_fd:
1882 put_unused_fd(fd);
1883
1884 return error;
1885}
3004ec9c
AA
1886
1887static int __init userfaultfd_init(void)
1888{
1889 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1890 sizeof(struct userfaultfd_ctx),
1891 0,
1892 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1893 init_once_userfaultfd_ctx);
1894 return 0;
1895}
1896__initcall(userfaultfd_init);