]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/sched.h
reiserfs: fix "new_insert_key may be used uninitialized ..."
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8 221#define TASK_NOLOAD 1024
7dc603c9
PZ
222#define TASK_NEW 2048
223#define TASK_STATE_MAX 4096
f021a3c2 224
7dc603c9 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
73342151 226
e1781538
PZ
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 234
80ed87c8
PZ
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
92a1f4bc
MW
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 245
f021a3c2
MW
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 248#define task_is_stopped_or_traced(task) \
f021a3c2 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 250#define task_contributes_to_load(task) \
e3c8ca83 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
1da177e4 254
8eb23b9f
PZ
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 265 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
266 } while (0)
267
268/*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
273 * set_current_state(TASK_UNINTERRUPTIBLE);
274 * if (do_i_need_to_sleep())
275 * schedule();
276 *
277 * If the caller does not need such serialisation then use __set_current_state()
278 */
279#define __set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 current->state = (state_value); \
283 } while (0)
284#define set_current_state(state_value) \
285 do { \
286 current->task_state_change = _THIS_IP_; \
b92b8b35 287 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
288 } while (0)
289
290#else
291
1da177e4
LT
292#define __set_task_state(tsk, state_value) \
293 do { (tsk)->state = (state_value); } while (0)
294#define set_task_state(tsk, state_value) \
b92b8b35 295 smp_store_mb((tsk)->state, (state_value))
1da177e4 296
498d0c57
AM
297/*
298 * set_current_state() includes a barrier so that the write of current->state
299 * is correctly serialised wrt the caller's subsequent test of whether to
300 * actually sleep:
301 *
302 * set_current_state(TASK_UNINTERRUPTIBLE);
303 * if (do_i_need_to_sleep())
304 * schedule();
305 *
306 * If the caller does not need such serialisation then use __set_current_state()
307 */
8eb23b9f 308#define __set_current_state(state_value) \
1da177e4 309 do { current->state = (state_value); } while (0)
8eb23b9f 310#define set_current_state(state_value) \
b92b8b35 311 smp_store_mb(current->state, (state_value))
1da177e4 312
8eb23b9f
PZ
313#endif
314
1da177e4
LT
315/* Task command name length */
316#define TASK_COMM_LEN 16
317
1da177e4
LT
318#include <linux/spinlock.h>
319
320/*
321 * This serializes "schedule()" and also protects
322 * the run-queue from deletions/modifications (but
323 * _adding_ to the beginning of the run-queue has
324 * a separate lock).
325 */
326extern rwlock_t tasklist_lock;
327extern spinlock_t mmlist_lock;
328
36c8b586 329struct task_struct;
1da177e4 330
db1466b3
PM
331#ifdef CONFIG_PROVE_RCU
332extern int lockdep_tasklist_lock_is_held(void);
333#endif /* #ifdef CONFIG_PROVE_RCU */
334
1da177e4
LT
335extern void sched_init(void);
336extern void sched_init_smp(void);
2d07b255 337extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 338extern void init_idle(struct task_struct *idle, int cpu);
1df21055 339extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 340
3fa0818b
RR
341extern cpumask_var_t cpu_isolated_map;
342
89f19f04 343extern int runqueue_is_locked(int cpu);
017730c1 344
3451d024 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 346extern void nohz_balance_enter_idle(int cpu);
69e1e811 347extern void set_cpu_sd_state_idle(void);
bc7a34b8 348extern int get_nohz_timer_target(void);
46cb4b7c 349#else
c1cc017c 350static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 351static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 352#endif
1da177e4 353
e59e2ae2 354/*
39bc89fd 355 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
356 */
357extern void show_state_filter(unsigned long state_filter);
358
359static inline void show_state(void)
360{
39bc89fd 361 show_state_filter(0);
e59e2ae2
IM
362}
363
1da177e4
LT
364extern void show_regs(struct pt_regs *);
365
366/*
367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
368 * task), SP is the stack pointer of the first frame that should be shown in the back
369 * trace (or NULL if the entire call-chain of the task should be shown).
370 */
371extern void show_stack(struct task_struct *task, unsigned long *sp);
372
1da177e4
LT
373extern void cpu_init (void);
374extern void trap_init(void);
375extern void update_process_times(int user);
376extern void scheduler_tick(void);
9cf7243d 377extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
378extern int sched_cpu_activate(unsigned int cpu);
379extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 380
f2785ddb
TG
381#ifdef CONFIG_HOTPLUG_CPU
382extern int sched_cpu_dying(unsigned int cpu);
383#else
384# define sched_cpu_dying NULL
385#endif
1da177e4 386
82a1fcb9
IM
387extern void sched_show_task(struct task_struct *p);
388
19cc36c0 389#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 390extern void touch_softlockup_watchdog_sched(void);
8446f1d3 391extern void touch_softlockup_watchdog(void);
d6ad3e28 392extern void touch_softlockup_watchdog_sync(void);
04c9167f 393extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
395 void __user *buffer,
396 size_t *lenp, loff_t *ppos);
9c44bc03 397extern unsigned int softlockup_panic;
ac1f5912 398extern unsigned int hardlockup_panic;
004417a6 399void lockup_detector_init(void);
8446f1d3 400#else
03e0d461
TH
401static inline void touch_softlockup_watchdog_sched(void)
402{
403}
8446f1d3
IM
404static inline void touch_softlockup_watchdog(void)
405{
406}
d6ad3e28
JW
407static inline void touch_softlockup_watchdog_sync(void)
408{
409}
04c9167f
JF
410static inline void touch_all_softlockup_watchdogs(void)
411{
412}
004417a6
PZ
413static inline void lockup_detector_init(void)
414{
415}
8446f1d3
IM
416#endif
417
8b414521
MT
418#ifdef CONFIG_DETECT_HUNG_TASK
419void reset_hung_task_detector(void);
420#else
421static inline void reset_hung_task_detector(void)
422{
423}
424#endif
425
1da177e4
LT
426/* Attach to any functions which should be ignored in wchan output. */
427#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
428
429/* Linker adds these: start and end of __sched functions */
430extern char __sched_text_start[], __sched_text_end[];
431
1da177e4
LT
432/* Is this address in the __sched functions? */
433extern int in_sched_functions(unsigned long addr);
434
435#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 436extern signed long schedule_timeout(signed long timeout);
64ed93a2 437extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 438extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 439extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 440extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 441asmlinkage void schedule(void);
c5491ea7 442extern void schedule_preempt_disabled(void);
1da177e4 443
9cff8ade
N
444extern long io_schedule_timeout(long timeout);
445
446static inline void io_schedule(void)
447{
448 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
449}
450
ab516013 451struct nsproxy;
acce292c 452struct user_namespace;
1da177e4 453
efc1a3b1
DH
454#ifdef CONFIG_MMU
455extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
456extern unsigned long
457arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
458 unsigned long, unsigned long);
459extern unsigned long
460arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
461 unsigned long len, unsigned long pgoff,
462 unsigned long flags);
efc1a3b1
DH
463#else
464static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
465#endif
1da177e4 466
d049f74f
KC
467#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
468#define SUID_DUMP_USER 1 /* Dump as user of process */
469#define SUID_DUMP_ROOT 2 /* Dump as root */
470
6c5d5238 471/* mm flags */
f8af4da3 472
7288e118 473/* for SUID_DUMP_* above */
3cb4a0bb 474#define MMF_DUMPABLE_BITS 2
f8af4da3 475#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 476
942be387
ON
477extern void set_dumpable(struct mm_struct *mm, int value);
478/*
479 * This returns the actual value of the suid_dumpable flag. For things
480 * that are using this for checking for privilege transitions, it must
481 * test against SUID_DUMP_USER rather than treating it as a boolean
482 * value.
483 */
484static inline int __get_dumpable(unsigned long mm_flags)
485{
486 return mm_flags & MMF_DUMPABLE_MASK;
487}
488
489static inline int get_dumpable(struct mm_struct *mm)
490{
491 return __get_dumpable(mm->flags);
492}
493
3cb4a0bb
KH
494/* coredump filter bits */
495#define MMF_DUMP_ANON_PRIVATE 2
496#define MMF_DUMP_ANON_SHARED 3
497#define MMF_DUMP_MAPPED_PRIVATE 4
498#define MMF_DUMP_MAPPED_SHARED 5
82df3973 499#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
500#define MMF_DUMP_HUGETLB_PRIVATE 7
501#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
502#define MMF_DUMP_DAX_PRIVATE 9
503#define MMF_DUMP_DAX_SHARED 10
f8af4da3 504
3cb4a0bb 505#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 506#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
507#define MMF_DUMP_FILTER_MASK \
508 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
509#define MMF_DUMP_FILTER_DEFAULT \
e575f111 510 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
511 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
512
513#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
514# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
515#else
516# define MMF_DUMP_MASK_DEFAULT_ELF 0
517#endif
f8af4da3
HD
518 /* leave room for more dump flags */
519#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 520#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 521#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 522
9f68f672
ON
523#define MMF_HAS_UPROBES 19 /* has uprobes */
524#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
bb8a4b7f 525#define MMF_OOM_REAPED 21 /* mm has been already reaped */
11a410d5 526#define MMF_OOM_NOT_REAPABLE 22 /* mm couldn't be reaped */
f8ac4ec9 527
f8af4da3 528#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 529
1da177e4
LT
530struct sighand_struct {
531 atomic_t count;
532 struct k_sigaction action[_NSIG];
533 spinlock_t siglock;
b8fceee1 534 wait_queue_head_t signalfd_wqh;
1da177e4
LT
535};
536
0e464814 537struct pacct_struct {
f6ec29a4
KK
538 int ac_flag;
539 long ac_exitcode;
0e464814 540 unsigned long ac_mem;
77787bfb
KK
541 cputime_t ac_utime, ac_stime;
542 unsigned long ac_minflt, ac_majflt;
0e464814
KK
543};
544
42c4ab41
SG
545struct cpu_itimer {
546 cputime_t expires;
547 cputime_t incr;
8356b5f9
SG
548 u32 error;
549 u32 incr_error;
42c4ab41
SG
550};
551
d37f761d 552/**
9d7fb042 553 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
554 * @utime: time spent in user mode
555 * @stime: time spent in system mode
9d7fb042 556 * @lock: protects the above two fields
d37f761d 557 *
9d7fb042
PZ
558 * Stores previous user/system time values such that we can guarantee
559 * monotonicity.
d37f761d 560 */
9d7fb042
PZ
561struct prev_cputime {
562#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
563 cputime_t utime;
564 cputime_t stime;
9d7fb042
PZ
565 raw_spinlock_t lock;
566#endif
d37f761d
FW
567};
568
9d7fb042
PZ
569static inline void prev_cputime_init(struct prev_cputime *prev)
570{
571#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
572 prev->utime = prev->stime = 0;
573 raw_spin_lock_init(&prev->lock);
574#endif
575}
576
f06febc9
FM
577/**
578 * struct task_cputime - collected CPU time counts
579 * @utime: time spent in user mode, in &cputime_t units
580 * @stime: time spent in kernel mode, in &cputime_t units
581 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 582 *
9d7fb042
PZ
583 * This structure groups together three kinds of CPU time that are tracked for
584 * threads and thread groups. Most things considering CPU time want to group
585 * these counts together and treat all three of them in parallel.
f06febc9
FM
586 */
587struct task_cputime {
588 cputime_t utime;
589 cputime_t stime;
590 unsigned long long sum_exec_runtime;
591};
9d7fb042 592
f06febc9 593/* Alternate field names when used to cache expirations. */
f06febc9 594#define virt_exp utime
9d7fb042 595#define prof_exp stime
f06febc9
FM
596#define sched_exp sum_exec_runtime
597
4cd4c1b4
PZ
598#define INIT_CPUTIME \
599 (struct task_cputime) { \
64861634
MS
600 .utime = 0, \
601 .stime = 0, \
4cd4c1b4
PZ
602 .sum_exec_runtime = 0, \
603 }
604
971e8a98
JL
605/*
606 * This is the atomic variant of task_cputime, which can be used for
607 * storing and updating task_cputime statistics without locking.
608 */
609struct task_cputime_atomic {
610 atomic64_t utime;
611 atomic64_t stime;
612 atomic64_t sum_exec_runtime;
613};
614
615#define INIT_CPUTIME_ATOMIC \
616 (struct task_cputime_atomic) { \
617 .utime = ATOMIC64_INIT(0), \
618 .stime = ATOMIC64_INIT(0), \
619 .sum_exec_runtime = ATOMIC64_INIT(0), \
620 }
621
609ca066 622#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 623
c99e6efe 624/*
87dcbc06
PZ
625 * Disable preemption until the scheduler is running -- use an unconditional
626 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 627 *
87dcbc06 628 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 629 */
87dcbc06 630#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 631
c99e6efe 632/*
609ca066
PZ
633 * Initial preempt_count value; reflects the preempt_count schedule invariant
634 * which states that during context switches:
d86ee480 635 *
609ca066
PZ
636 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
637 *
638 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
639 * Note: See finish_task_switch().
c99e6efe 640 */
609ca066 641#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 642
f06febc9 643/**
4cd4c1b4 644 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 645 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
646 * @running: true when there are timers running and
647 * @cputime_atomic receives updates.
c8d75aa4
JL
648 * @checking_timer: true when a thread in the group is in the
649 * process of checking for thread group timers.
f06febc9
FM
650 *
651 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 652 * used for thread group CPU timer calculations.
f06febc9 653 */
4cd4c1b4 654struct thread_group_cputimer {
71107445 655 struct task_cputime_atomic cputime_atomic;
d5c373eb 656 bool running;
c8d75aa4 657 bool checking_timer;
f06febc9 658};
f06febc9 659
4714d1d3 660#include <linux/rwsem.h>
5091faa4
MG
661struct autogroup;
662
1da177e4 663/*
e815f0a8 664 * NOTE! "signal_struct" does not have its own
1da177e4
LT
665 * locking, because a shared signal_struct always
666 * implies a shared sighand_struct, so locking
667 * sighand_struct is always a proper superset of
668 * the locking of signal_struct.
669 */
670struct signal_struct {
ea6d290c 671 atomic_t sigcnt;
1da177e4 672 atomic_t live;
b3ac022c 673 int nr_threads;
f44666b0 674 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */
0c740d0a 675 struct list_head thread_head;
1da177e4
LT
676
677 wait_queue_head_t wait_chldexit; /* for wait4() */
678
679 /* current thread group signal load-balancing target: */
36c8b586 680 struct task_struct *curr_target;
1da177e4
LT
681
682 /* shared signal handling: */
683 struct sigpending shared_pending;
684
685 /* thread group exit support */
686 int group_exit_code;
687 /* overloaded:
688 * - notify group_exit_task when ->count is equal to notify_count
689 * - everyone except group_exit_task is stopped during signal delivery
690 * of fatal signals, group_exit_task processes the signal.
691 */
1da177e4 692 int notify_count;
07dd20e0 693 struct task_struct *group_exit_task;
1da177e4
LT
694
695 /* thread group stop support, overloads group_exit_code too */
696 int group_stop_count;
697 unsigned int flags; /* see SIGNAL_* flags below */
698
ebec18a6
LP
699 /*
700 * PR_SET_CHILD_SUBREAPER marks a process, like a service
701 * manager, to re-parent orphan (double-forking) child processes
702 * to this process instead of 'init'. The service manager is
703 * able to receive SIGCHLD signals and is able to investigate
704 * the process until it calls wait(). All children of this
705 * process will inherit a flag if they should look for a
706 * child_subreaper process at exit.
707 */
708 unsigned int is_child_subreaper:1;
709 unsigned int has_child_subreaper:1;
710
1da177e4 711 /* POSIX.1b Interval Timers */
5ed67f05
PE
712 int posix_timer_id;
713 struct list_head posix_timers;
1da177e4
LT
714
715 /* ITIMER_REAL timer for the process */
2ff678b8 716 struct hrtimer real_timer;
fea9d175 717 struct pid *leader_pid;
2ff678b8 718 ktime_t it_real_incr;
1da177e4 719
42c4ab41
SG
720 /*
721 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
722 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
723 * values are defined to 0 and 1 respectively
724 */
725 struct cpu_itimer it[2];
1da177e4 726
f06febc9 727 /*
4cd4c1b4
PZ
728 * Thread group totals for process CPU timers.
729 * See thread_group_cputimer(), et al, for details.
f06febc9 730 */
4cd4c1b4 731 struct thread_group_cputimer cputimer;
f06febc9
FM
732
733 /* Earliest-expiration cache. */
734 struct task_cputime cputime_expires;
735
d027d45d 736#ifdef CONFIG_NO_HZ_FULL
f009a7a7 737 atomic_t tick_dep_mask;
d027d45d
FW
738#endif
739
f06febc9
FM
740 struct list_head cpu_timers[3];
741
ab521dc0 742 struct pid *tty_old_pgrp;
1ec320af 743
1da177e4
LT
744 /* boolean value for session group leader */
745 int leader;
746
747 struct tty_struct *tty; /* NULL if no tty */
748
5091faa4
MG
749#ifdef CONFIG_SCHED_AUTOGROUP
750 struct autogroup *autogroup;
751#endif
1da177e4
LT
752 /*
753 * Cumulative resource counters for dead threads in the group,
754 * and for reaped dead child processes forked by this group.
755 * Live threads maintain their own counters and add to these
756 * in __exit_signal, except for the group leader.
757 */
e78c3496 758 seqlock_t stats_lock;
32bd671d 759 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
760 cputime_t gtime;
761 cputime_t cgtime;
9d7fb042 762 struct prev_cputime prev_cputime;
1da177e4
LT
763 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
764 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 765 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 766 unsigned long maxrss, cmaxrss;
940389b8 767 struct task_io_accounting ioac;
1da177e4 768
32bd671d
PZ
769 /*
770 * Cumulative ns of schedule CPU time fo dead threads in the
771 * group, not including a zombie group leader, (This only differs
772 * from jiffies_to_ns(utime + stime) if sched_clock uses something
773 * other than jiffies.)
774 */
775 unsigned long long sum_sched_runtime;
776
1da177e4
LT
777 /*
778 * We don't bother to synchronize most readers of this at all,
779 * because there is no reader checking a limit that actually needs
780 * to get both rlim_cur and rlim_max atomically, and either one
781 * alone is a single word that can safely be read normally.
782 * getrlimit/setrlimit use task_lock(current->group_leader) to
783 * protect this instead of the siglock, because they really
784 * have no need to disable irqs.
785 */
786 struct rlimit rlim[RLIM_NLIMITS];
787
0e464814
KK
788#ifdef CONFIG_BSD_PROCESS_ACCT
789 struct pacct_struct pacct; /* per-process accounting information */
790#endif
ad4ecbcb 791#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
792 struct taskstats *stats;
793#endif
522ed776
MT
794#ifdef CONFIG_AUDIT
795 unsigned audit_tty;
796 struct tty_audit_buf *tty_audit_buf;
797#endif
28b83c51 798
c96fc2d8
TH
799 /*
800 * Thread is the potential origin of an oom condition; kill first on
801 * oom
802 */
803 bool oom_flag_origin;
a9c58b90
DR
804 short oom_score_adj; /* OOM kill score adjustment */
805 short oom_score_adj_min; /* OOM kill score adjustment min value.
806 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
807
808 struct mutex cred_guard_mutex; /* guard against foreign influences on
809 * credential calculations
810 * (notably. ptrace) */
1da177e4
LT
811};
812
813/*
814 * Bits in flags field of signal_struct.
815 */
816#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
817#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
818#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 819#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
820/*
821 * Pending notifications to parent.
822 */
823#define SIGNAL_CLD_STOPPED 0x00000010
824#define SIGNAL_CLD_CONTINUED 0x00000020
825#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 826
fae5fa44
ON
827#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
828
ed5d2cac
ON
829/* If true, all threads except ->group_exit_task have pending SIGKILL */
830static inline int signal_group_exit(const struct signal_struct *sig)
831{
832 return (sig->flags & SIGNAL_GROUP_EXIT) ||
833 (sig->group_exit_task != NULL);
834}
835
1da177e4
LT
836/*
837 * Some day this will be a full-fledged user tracking system..
838 */
839struct user_struct {
840 atomic_t __count; /* reference count */
841 atomic_t processes; /* How many processes does this user have? */
1da177e4 842 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 843#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
844 atomic_t inotify_watches; /* How many inotify watches does this user have? */
845 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
846#endif
4afeff85
EP
847#ifdef CONFIG_FANOTIFY
848 atomic_t fanotify_listeners;
849#endif
7ef9964e 850#ifdef CONFIG_EPOLL
52bd19f7 851 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 852#endif
970a8645 853#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
854 /* protected by mq_lock */
855 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 856#endif
1da177e4 857 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 858 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 859 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
860
861#ifdef CONFIG_KEYS
862 struct key *uid_keyring; /* UID specific keyring */
863 struct key *session_keyring; /* UID's default session keyring */
864#endif
865
866 /* Hash table maintenance information */
735de223 867 struct hlist_node uidhash_node;
7b44ab97 868 kuid_t uid;
24e377a8 869
aaac3ba9 870#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
871 atomic_long_t locked_vm;
872#endif
1da177e4
LT
873};
874
eb41d946 875extern int uids_sysfs_init(void);
5cb350ba 876
7b44ab97 877extern struct user_struct *find_user(kuid_t);
1da177e4
LT
878
879extern struct user_struct root_user;
880#define INIT_USER (&root_user)
881
b6dff3ec 882
1da177e4
LT
883struct backing_dev_info;
884struct reclaim_state;
885
f6db8347 886#ifdef CONFIG_SCHED_INFO
1da177e4
LT
887struct sched_info {
888 /* cumulative counters */
2d72376b 889 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 890 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
891
892 /* timestamps */
172ba844
BS
893 unsigned long long last_arrival,/* when we last ran on a cpu */
894 last_queued; /* when we were last queued to run */
1da177e4 895};
f6db8347 896#endif /* CONFIG_SCHED_INFO */
1da177e4 897
ca74e92b
SN
898#ifdef CONFIG_TASK_DELAY_ACCT
899struct task_delay_info {
900 spinlock_t lock;
901 unsigned int flags; /* Private per-task flags */
902
903 /* For each stat XXX, add following, aligned appropriately
904 *
905 * struct timespec XXX_start, XXX_end;
906 * u64 XXX_delay;
907 * u32 XXX_count;
908 *
909 * Atomicity of updates to XXX_delay, XXX_count protected by
910 * single lock above (split into XXX_lock if contention is an issue).
911 */
0ff92245
SN
912
913 /*
914 * XXX_count is incremented on every XXX operation, the delay
915 * associated with the operation is added to XXX_delay.
916 * XXX_delay contains the accumulated delay time in nanoseconds.
917 */
9667a23d 918 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
919 u64 blkio_delay; /* wait for sync block io completion */
920 u64 swapin_delay; /* wait for swapin block io completion */
921 u32 blkio_count; /* total count of the number of sync block */
922 /* io operations performed */
923 u32 swapin_count; /* total count of the number of swapin block */
924 /* io operations performed */
873b4771 925
9667a23d 926 u64 freepages_start;
873b4771
KK
927 u64 freepages_delay; /* wait for memory reclaim */
928 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 929};
52f17b6c
CS
930#endif /* CONFIG_TASK_DELAY_ACCT */
931
932static inline int sched_info_on(void)
933{
934#ifdef CONFIG_SCHEDSTATS
935 return 1;
936#elif defined(CONFIG_TASK_DELAY_ACCT)
937 extern int delayacct_on;
938 return delayacct_on;
939#else
940 return 0;
ca74e92b 941#endif
52f17b6c 942}
ca74e92b 943
cb251765
MG
944#ifdef CONFIG_SCHEDSTATS
945void force_schedstat_enabled(void);
946#endif
947
d15bcfdb
IM
948enum cpu_idle_type {
949 CPU_IDLE,
950 CPU_NOT_IDLE,
951 CPU_NEWLY_IDLE,
952 CPU_MAX_IDLE_TYPES
1da177e4
LT
953};
954
6ecdd749
YD
955/*
956 * Integer metrics need fixed point arithmetic, e.g., sched/fair
957 * has a few: load, load_avg, util_avg, freq, and capacity.
958 *
959 * We define a basic fixed point arithmetic range, and then formalize
960 * all these metrics based on that basic range.
961 */
962# define SCHED_FIXEDPOINT_SHIFT 10
963# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
964
1399fa78 965/*
ca8ce3d0 966 * Increase resolution of cpu_capacity calculations
1399fa78 967 */
6ecdd749 968#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 969#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 970
76751049
PZ
971/*
972 * Wake-queues are lists of tasks with a pending wakeup, whose
973 * callers have already marked the task as woken internally,
974 * and can thus carry on. A common use case is being able to
975 * do the wakeups once the corresponding user lock as been
976 * released.
977 *
978 * We hold reference to each task in the list across the wakeup,
979 * thus guaranteeing that the memory is still valid by the time
980 * the actual wakeups are performed in wake_up_q().
981 *
982 * One per task suffices, because there's never a need for a task to be
983 * in two wake queues simultaneously; it is forbidden to abandon a task
984 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
985 * already in a wake queue, the wakeup will happen soon and the second
986 * waker can just skip it.
987 *
988 * The WAKE_Q macro declares and initializes the list head.
989 * wake_up_q() does NOT reinitialize the list; it's expected to be
990 * called near the end of a function, where the fact that the queue is
991 * not used again will be easy to see by inspection.
992 *
993 * Note that this can cause spurious wakeups. schedule() callers
994 * must ensure the call is done inside a loop, confirming that the
995 * wakeup condition has in fact occurred.
996 */
997struct wake_q_node {
998 struct wake_q_node *next;
999};
1000
1001struct wake_q_head {
1002 struct wake_q_node *first;
1003 struct wake_q_node **lastp;
1004};
1005
1006#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1007
1008#define WAKE_Q(name) \
1009 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1010
1011extern void wake_q_add(struct wake_q_head *head,
1012 struct task_struct *task);
1013extern void wake_up_q(struct wake_q_head *head);
1014
1399fa78
NR
1015/*
1016 * sched-domains (multiprocessor balancing) declarations:
1017 */
2dd73a4f 1018#ifdef CONFIG_SMP
b5d978e0
PZ
1019#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1020#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1021#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1022#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1023#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1024#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 1025#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 1026#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1027#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1028#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1029#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1030#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1031#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1032#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1033
143e1e28 1034#ifdef CONFIG_SCHED_SMT
b6220ad6 1035static inline int cpu_smt_flags(void)
143e1e28 1036{
5d4dfddd 1037 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1038}
1039#endif
1040
1041#ifdef CONFIG_SCHED_MC
b6220ad6 1042static inline int cpu_core_flags(void)
143e1e28
VG
1043{
1044 return SD_SHARE_PKG_RESOURCES;
1045}
1046#endif
1047
1048#ifdef CONFIG_NUMA
b6220ad6 1049static inline int cpu_numa_flags(void)
143e1e28
VG
1050{
1051 return SD_NUMA;
1052}
1053#endif
532cb4c4 1054
1d3504fc
HS
1055struct sched_domain_attr {
1056 int relax_domain_level;
1057};
1058
1059#define SD_ATTR_INIT (struct sched_domain_attr) { \
1060 .relax_domain_level = -1, \
1061}
1062
60495e77
PZ
1063extern int sched_domain_level_max;
1064
5e6521ea
LZ
1065struct sched_group;
1066
1da177e4
LT
1067struct sched_domain {
1068 /* These fields must be setup */
1069 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1070 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1071 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1072 unsigned long min_interval; /* Minimum balance interval ms */
1073 unsigned long max_interval; /* Maximum balance interval ms */
1074 unsigned int busy_factor; /* less balancing by factor if busy */
1075 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1076 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1077 unsigned int busy_idx;
1078 unsigned int idle_idx;
1079 unsigned int newidle_idx;
1080 unsigned int wake_idx;
147cbb4b 1081 unsigned int forkexec_idx;
a52bfd73 1082 unsigned int smt_gain;
25f55d9d
VG
1083
1084 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1085 int flags; /* See SD_* */
60495e77 1086 int level;
1da177e4
LT
1087
1088 /* Runtime fields. */
1089 unsigned long last_balance; /* init to jiffies. units in jiffies */
1090 unsigned int balance_interval; /* initialise to 1. units in ms. */
1091 unsigned int nr_balance_failed; /* initialise to 0 */
1092
f48627e6 1093 /* idle_balance() stats */
9bd721c5 1094 u64 max_newidle_lb_cost;
f48627e6 1095 unsigned long next_decay_max_lb_cost;
2398f2c6 1096
1da177e4
LT
1097#ifdef CONFIG_SCHEDSTATS
1098 /* load_balance() stats */
480b9434
KC
1099 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1100 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1101 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1102 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1103 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1104 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1105 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1106 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1107
1108 /* Active load balancing */
480b9434
KC
1109 unsigned int alb_count;
1110 unsigned int alb_failed;
1111 unsigned int alb_pushed;
1da177e4 1112
68767a0a 1113 /* SD_BALANCE_EXEC stats */
480b9434
KC
1114 unsigned int sbe_count;
1115 unsigned int sbe_balanced;
1116 unsigned int sbe_pushed;
1da177e4 1117
68767a0a 1118 /* SD_BALANCE_FORK stats */
480b9434
KC
1119 unsigned int sbf_count;
1120 unsigned int sbf_balanced;
1121 unsigned int sbf_pushed;
68767a0a 1122
1da177e4 1123 /* try_to_wake_up() stats */
480b9434
KC
1124 unsigned int ttwu_wake_remote;
1125 unsigned int ttwu_move_affine;
1126 unsigned int ttwu_move_balance;
1da177e4 1127#endif
a5d8c348
IM
1128#ifdef CONFIG_SCHED_DEBUG
1129 char *name;
1130#endif
dce840a0
PZ
1131 union {
1132 void *private; /* used during construction */
1133 struct rcu_head rcu; /* used during destruction */
1134 };
6c99e9ad 1135
669c55e9 1136 unsigned int span_weight;
4200efd9
IM
1137 /*
1138 * Span of all CPUs in this domain.
1139 *
1140 * NOTE: this field is variable length. (Allocated dynamically
1141 * by attaching extra space to the end of the structure,
1142 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1143 */
1144 unsigned long span[0];
1da177e4
LT
1145};
1146
758b2cdc
RR
1147static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1148{
6c99e9ad 1149 return to_cpumask(sd->span);
758b2cdc
RR
1150}
1151
acc3f5d7 1152extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1153 struct sched_domain_attr *dattr_new);
029190c5 1154
acc3f5d7
RR
1155/* Allocate an array of sched domains, for partition_sched_domains(). */
1156cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1157void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1158
39be3501
PZ
1159bool cpus_share_cache(int this_cpu, int that_cpu);
1160
143e1e28 1161typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1162typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1163
1164#define SDTL_OVERLAP 0x01
1165
1166struct sd_data {
1167 struct sched_domain **__percpu sd;
1168 struct sched_group **__percpu sg;
63b2ca30 1169 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1170};
1171
1172struct sched_domain_topology_level {
1173 sched_domain_mask_f mask;
1174 sched_domain_flags_f sd_flags;
1175 int flags;
1176 int numa_level;
1177 struct sd_data data;
1178#ifdef CONFIG_SCHED_DEBUG
1179 char *name;
1180#endif
1181};
1182
143e1e28 1183extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1184extern void wake_up_if_idle(int cpu);
143e1e28
VG
1185
1186#ifdef CONFIG_SCHED_DEBUG
1187# define SD_INIT_NAME(type) .name = #type
1188#else
1189# define SD_INIT_NAME(type)
1190#endif
1191
1b427c15 1192#else /* CONFIG_SMP */
1da177e4 1193
1b427c15 1194struct sched_domain_attr;
d02c7a8c 1195
1b427c15 1196static inline void
acc3f5d7 1197partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1198 struct sched_domain_attr *dattr_new)
1199{
d02c7a8c 1200}
39be3501
PZ
1201
1202static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1203{
1204 return true;
1205}
1206
1b427c15 1207#endif /* !CONFIG_SMP */
1da177e4 1208
47fe38fc 1209
1da177e4 1210struct io_context; /* See blkdev.h */
1da177e4 1211
1da177e4 1212
383f2835 1213#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1214extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1215#else
1216static inline void prefetch_stack(struct task_struct *t) { }
1217#endif
1da177e4
LT
1218
1219struct audit_context; /* See audit.c */
1220struct mempolicy;
b92ce558 1221struct pipe_inode_info;
4865ecf1 1222struct uts_namespace;
1da177e4 1223
20b8a59f 1224struct load_weight {
9dbdb155
PZ
1225 unsigned long weight;
1226 u32 inv_weight;
20b8a59f
IM
1227};
1228
9d89c257 1229/*
7b595334
YD
1230 * The load_avg/util_avg accumulates an infinite geometric series
1231 * (see __update_load_avg() in kernel/sched/fair.c).
1232 *
1233 * [load_avg definition]
1234 *
1235 * load_avg = runnable% * scale_load_down(load)
1236 *
1237 * where runnable% is the time ratio that a sched_entity is runnable.
1238 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1239 * blocked sched_entities.
7b595334
YD
1240 *
1241 * load_avg may also take frequency scaling into account:
1242 *
1243 * load_avg = runnable% * scale_load_down(load) * freq%
1244 *
1245 * where freq% is the CPU frequency normalized to the highest frequency.
1246 *
1247 * [util_avg definition]
1248 *
1249 * util_avg = running% * SCHED_CAPACITY_SCALE
1250 *
1251 * where running% is the time ratio that a sched_entity is running on
1252 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1253 * and blocked sched_entities.
1254 *
1255 * util_avg may also factor frequency scaling and CPU capacity scaling:
1256 *
1257 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1258 *
1259 * where freq% is the same as above, and capacity% is the CPU capacity
1260 * normalized to the greatest capacity (due to uarch differences, etc).
1261 *
1262 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1263 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1264 * we therefore scale them to as large a range as necessary. This is for
1265 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1266 *
1267 * [Overflow issue]
1268 *
1269 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1270 * with the highest load (=88761), always runnable on a single cfs_rq,
1271 * and should not overflow as the number already hits PID_MAX_LIMIT.
1272 *
1273 * For all other cases (including 32-bit kernels), struct load_weight's
1274 * weight will overflow first before we do, because:
1275 *
1276 * Max(load_avg) <= Max(load.weight)
1277 *
1278 * Then it is the load_weight's responsibility to consider overflow
1279 * issues.
9d89c257 1280 */
9d85f21c 1281struct sched_avg {
9d89c257
YD
1282 u64 last_update_time, load_sum;
1283 u32 util_sum, period_contrib;
1284 unsigned long load_avg, util_avg;
9d85f21c
PT
1285};
1286
94c18227 1287#ifdef CONFIG_SCHEDSTATS
41acab88 1288struct sched_statistics {
20b8a59f 1289 u64 wait_start;
94c18227 1290 u64 wait_max;
6d082592
AV
1291 u64 wait_count;
1292 u64 wait_sum;
8f0dfc34
AV
1293 u64 iowait_count;
1294 u64 iowait_sum;
94c18227 1295
20b8a59f 1296 u64 sleep_start;
20b8a59f 1297 u64 sleep_max;
94c18227
IM
1298 s64 sum_sleep_runtime;
1299
1300 u64 block_start;
20b8a59f
IM
1301 u64 block_max;
1302 u64 exec_max;
eba1ed4b 1303 u64 slice_max;
cc367732 1304
cc367732
IM
1305 u64 nr_migrations_cold;
1306 u64 nr_failed_migrations_affine;
1307 u64 nr_failed_migrations_running;
1308 u64 nr_failed_migrations_hot;
1309 u64 nr_forced_migrations;
cc367732
IM
1310
1311 u64 nr_wakeups;
1312 u64 nr_wakeups_sync;
1313 u64 nr_wakeups_migrate;
1314 u64 nr_wakeups_local;
1315 u64 nr_wakeups_remote;
1316 u64 nr_wakeups_affine;
1317 u64 nr_wakeups_affine_attempts;
1318 u64 nr_wakeups_passive;
1319 u64 nr_wakeups_idle;
41acab88
LDM
1320};
1321#endif
1322
1323struct sched_entity {
1324 struct load_weight load; /* for load-balancing */
1325 struct rb_node run_node;
1326 struct list_head group_node;
1327 unsigned int on_rq;
1328
1329 u64 exec_start;
1330 u64 sum_exec_runtime;
1331 u64 vruntime;
1332 u64 prev_sum_exec_runtime;
1333
41acab88
LDM
1334 u64 nr_migrations;
1335
41acab88
LDM
1336#ifdef CONFIG_SCHEDSTATS
1337 struct sched_statistics statistics;
94c18227
IM
1338#endif
1339
20b8a59f 1340#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1341 int depth;
20b8a59f
IM
1342 struct sched_entity *parent;
1343 /* rq on which this entity is (to be) queued: */
1344 struct cfs_rq *cfs_rq;
1345 /* rq "owned" by this entity/group: */
1346 struct cfs_rq *my_q;
1347#endif
8bd75c77 1348
141965c7 1349#ifdef CONFIG_SMP
5a107804
JO
1350 /*
1351 * Per entity load average tracking.
1352 *
1353 * Put into separate cache line so it does not
1354 * collide with read-mostly values above.
1355 */
1356 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1357#endif
20b8a59f 1358};
70b97a7f 1359
fa717060
PZ
1360struct sched_rt_entity {
1361 struct list_head run_list;
78f2c7db 1362 unsigned long timeout;
57d2aa00 1363 unsigned long watchdog_stamp;
bee367ed 1364 unsigned int time_slice;
ff77e468
PZ
1365 unsigned short on_rq;
1366 unsigned short on_list;
6f505b16 1367
58d6c2d7 1368 struct sched_rt_entity *back;
052f1dc7 1369#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1370 struct sched_rt_entity *parent;
1371 /* rq on which this entity is (to be) queued: */
1372 struct rt_rq *rt_rq;
1373 /* rq "owned" by this entity/group: */
1374 struct rt_rq *my_q;
1375#endif
fa717060
PZ
1376};
1377
aab03e05
DF
1378struct sched_dl_entity {
1379 struct rb_node rb_node;
1380
1381 /*
1382 * Original scheduling parameters. Copied here from sched_attr
4027d080 1383 * during sched_setattr(), they will remain the same until
1384 * the next sched_setattr().
aab03e05
DF
1385 */
1386 u64 dl_runtime; /* maximum runtime for each instance */
1387 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1388 u64 dl_period; /* separation of two instances (period) */
332ac17e 1389 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1390
1391 /*
1392 * Actual scheduling parameters. Initialized with the values above,
1393 * they are continously updated during task execution. Note that
1394 * the remaining runtime could be < 0 in case we are in overrun.
1395 */
1396 s64 runtime; /* remaining runtime for this instance */
1397 u64 deadline; /* absolute deadline for this instance */
1398 unsigned int flags; /* specifying the scheduler behaviour */
1399
1400 /*
1401 * Some bool flags:
1402 *
1403 * @dl_throttled tells if we exhausted the runtime. If so, the
1404 * task has to wait for a replenishment to be performed at the
1405 * next firing of dl_timer.
1406 *
2d3d891d
DF
1407 * @dl_boosted tells if we are boosted due to DI. If so we are
1408 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1409 * exit the critical section);
1410 *
1411 * @dl_yielded tells if task gave up the cpu before consuming
1412 * all its available runtime during the last job.
aab03e05 1413 */
72f9f3fd 1414 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1415
1416 /*
1417 * Bandwidth enforcement timer. Each -deadline task has its
1418 * own bandwidth to be enforced, thus we need one timer per task.
1419 */
1420 struct hrtimer dl_timer;
1421};
8bd75c77 1422
1d082fd0
PM
1423union rcu_special {
1424 struct {
8203d6d0
PM
1425 u8 blocked;
1426 u8 need_qs;
1427 u8 exp_need_qs;
1428 u8 pad; /* Otherwise the compiler can store garbage here. */
1429 } b; /* Bits. */
1430 u32 s; /* Set of bits. */
1d082fd0 1431};
86848966
PM
1432struct rcu_node;
1433
8dc85d54
PZ
1434enum perf_event_task_context {
1435 perf_invalid_context = -1,
1436 perf_hw_context = 0,
89a1e187 1437 perf_sw_context,
8dc85d54
PZ
1438 perf_nr_task_contexts,
1439};
1440
72b252ae
MG
1441/* Track pages that require TLB flushes */
1442struct tlbflush_unmap_batch {
1443 /*
1444 * Each bit set is a CPU that potentially has a TLB entry for one of
1445 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1446 */
1447 struct cpumask cpumask;
1448
1449 /* True if any bit in cpumask is set */
1450 bool flush_required;
d950c947
MG
1451
1452 /*
1453 * If true then the PTE was dirty when unmapped. The entry must be
1454 * flushed before IO is initiated or a stale TLB entry potentially
1455 * allows an update without redirtying the page.
1456 */
1457 bool writable;
72b252ae
MG
1458};
1459
1da177e4
LT
1460struct task_struct {
1461 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1462 void *stack;
1da177e4 1463 atomic_t usage;
97dc32cd
WC
1464 unsigned int flags; /* per process flags, defined below */
1465 unsigned int ptrace;
1da177e4 1466
2dd73a4f 1467#ifdef CONFIG_SMP
fa14ff4a 1468 struct llist_node wake_entry;
3ca7a440 1469 int on_cpu;
63b0e9ed 1470 unsigned int wakee_flips;
62470419 1471 unsigned long wakee_flip_decay_ts;
63b0e9ed 1472 struct task_struct *last_wakee;
ac66f547
PZ
1473
1474 int wake_cpu;
2dd73a4f 1475#endif
fd2f4419 1476 int on_rq;
50e645a8 1477
b29739f9 1478 int prio, static_prio, normal_prio;
c7aceaba 1479 unsigned int rt_priority;
5522d5d5 1480 const struct sched_class *sched_class;
20b8a59f 1481 struct sched_entity se;
fa717060 1482 struct sched_rt_entity rt;
8323f26c
PZ
1483#ifdef CONFIG_CGROUP_SCHED
1484 struct task_group *sched_task_group;
1485#endif
aab03e05 1486 struct sched_dl_entity dl;
1da177e4 1487
e107be36
AK
1488#ifdef CONFIG_PREEMPT_NOTIFIERS
1489 /* list of struct preempt_notifier: */
1490 struct hlist_head preempt_notifiers;
1491#endif
1492
6c5c9341 1493#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1494 unsigned int btrace_seq;
6c5c9341 1495#endif
1da177e4 1496
97dc32cd 1497 unsigned int policy;
29baa747 1498 int nr_cpus_allowed;
1da177e4 1499 cpumask_t cpus_allowed;
1da177e4 1500
a57eb940 1501#ifdef CONFIG_PREEMPT_RCU
e260be67 1502 int rcu_read_lock_nesting;
1d082fd0 1503 union rcu_special rcu_read_unlock_special;
f41d911f 1504 struct list_head rcu_node_entry;
a57eb940 1505 struct rcu_node *rcu_blocked_node;
28f6569a 1506#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1507#ifdef CONFIG_TASKS_RCU
1508 unsigned long rcu_tasks_nvcsw;
1509 bool rcu_tasks_holdout;
1510 struct list_head rcu_tasks_holdout_list;
176f8f7a 1511 int rcu_tasks_idle_cpu;
8315f422 1512#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1513
f6db8347 1514#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1515 struct sched_info sched_info;
1516#endif
1517
1518 struct list_head tasks;
806c09a7 1519#ifdef CONFIG_SMP
917b627d 1520 struct plist_node pushable_tasks;
1baca4ce 1521 struct rb_node pushable_dl_tasks;
806c09a7 1522#endif
1da177e4
LT
1523
1524 struct mm_struct *mm, *active_mm;
615d6e87
DB
1525 /* per-thread vma caching */
1526 u32 vmacache_seqnum;
1527 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1528#if defined(SPLIT_RSS_COUNTING)
1529 struct task_rss_stat rss_stat;
1530#endif
1da177e4 1531/* task state */
97dc32cd 1532 int exit_state;
1da177e4
LT
1533 int exit_code, exit_signal;
1534 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1535 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1536
1537 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1538 unsigned int personality;
9b89f6ba 1539
be958bdc 1540 /* scheduler bits, serialized by scheduler locks */
ca94c442 1541 unsigned sched_reset_on_fork:1;
a8e4f2ea 1542 unsigned sched_contributes_to_load:1;
ff303e66 1543 unsigned sched_migrated:1;
b7e7ade3 1544 unsigned sched_remote_wakeup:1;
be958bdc
PZ
1545 unsigned :0; /* force alignment to the next boundary */
1546
1547 /* unserialized, strictly 'current' */
1548 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1549 unsigned in_iowait:1;
626ebc41
TH
1550#ifdef CONFIG_MEMCG
1551 unsigned memcg_may_oom:1;
127424c8 1552#ifndef CONFIG_SLOB
6f185c29
VD
1553 unsigned memcg_kmem_skip_account:1;
1554#endif
127424c8 1555#endif
ff303e66
PZ
1556#ifdef CONFIG_COMPAT_BRK
1557 unsigned brk_randomized:1;
1558#endif
6f185c29 1559
1d4457f9
KC
1560 unsigned long atomic_flags; /* Flags needing atomic access. */
1561
f56141e3
AL
1562 struct restart_block restart_block;
1563
1da177e4
LT
1564 pid_t pid;
1565 pid_t tgid;
0a425405 1566
1314562a 1567#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1568 /* Canary value for the -fstack-protector gcc feature */
1569 unsigned long stack_canary;
1314562a 1570#endif
4d1d61a6 1571 /*
1da177e4 1572 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1573 * older sibling, respectively. (p->father can be replaced with
f470021a 1574 * p->real_parent->pid)
1da177e4 1575 */
abd63bc3
KC
1576 struct task_struct __rcu *real_parent; /* real parent process */
1577 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1578 /*
f470021a 1579 * children/sibling forms the list of my natural children
1da177e4
LT
1580 */
1581 struct list_head children; /* list of my children */
1582 struct list_head sibling; /* linkage in my parent's children list */
1583 struct task_struct *group_leader; /* threadgroup leader */
1584
f470021a
RM
1585 /*
1586 * ptraced is the list of tasks this task is using ptrace on.
1587 * This includes both natural children and PTRACE_ATTACH targets.
1588 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1589 */
1590 struct list_head ptraced;
1591 struct list_head ptrace_entry;
1592
1da177e4 1593 /* PID/PID hash table linkage. */
92476d7f 1594 struct pid_link pids[PIDTYPE_MAX];
47e65328 1595 struct list_head thread_group;
0c740d0a 1596 struct list_head thread_node;
1da177e4
LT
1597
1598 struct completion *vfork_done; /* for vfork() */
1599 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1600 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1601
c66f08be 1602 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1603 cputime_t gtime;
9d7fb042 1604 struct prev_cputime prev_cputime;
6a61671b 1605#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1606 seqcount_t vtime_seqcount;
6a61671b
FW
1607 unsigned long long vtime_snap;
1608 enum {
7098c1ea
FW
1609 /* Task is sleeping or running in a CPU with VTIME inactive */
1610 VTIME_INACTIVE = 0,
1611 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1612 VTIME_USER,
7098c1ea 1613 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1614 VTIME_SYS,
1615 } vtime_snap_whence;
d99ca3b9 1616#endif
d027d45d
FW
1617
1618#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1619 atomic_t tick_dep_mask;
d027d45d 1620#endif
1da177e4 1621 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1622 u64 start_time; /* monotonic time in nsec */
57e0be04 1623 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1624/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1625 unsigned long min_flt, maj_flt;
1626
f06febc9 1627 struct task_cputime cputime_expires;
1da177e4
LT
1628 struct list_head cpu_timers[3];
1629
1630/* process credentials */
1b0ba1c9 1631 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1632 * credentials (COW) */
1b0ba1c9 1633 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1634 * credentials (COW) */
36772092
PBG
1635 char comm[TASK_COMM_LEN]; /* executable name excluding path
1636 - access with [gs]et_task_comm (which lock
1637 it with task_lock())
221af7f8 1638 - initialized normally by setup_new_exec */
1da177e4 1639/* file system info */
756daf26 1640 struct nameidata *nameidata;
3d5b6fcc 1641#ifdef CONFIG_SYSVIPC
1da177e4
LT
1642/* ipc stuff */
1643 struct sysv_sem sysvsem;
ab602f79 1644 struct sysv_shm sysvshm;
3d5b6fcc 1645#endif
e162b39a 1646#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1647/* hung task detection */
82a1fcb9
IM
1648 unsigned long last_switch_count;
1649#endif
1da177e4
LT
1650/* filesystem information */
1651 struct fs_struct *fs;
1652/* open file information */
1653 struct files_struct *files;
1651e14e 1654/* namespaces */
ab516013 1655 struct nsproxy *nsproxy;
1da177e4
LT
1656/* signal handlers */
1657 struct signal_struct *signal;
1658 struct sighand_struct *sighand;
1659
1660 sigset_t blocked, real_blocked;
f3de272b 1661 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1662 struct sigpending pending;
1663
1664 unsigned long sas_ss_sp;
1665 size_t sas_ss_size;
2a742138 1666 unsigned sas_ss_flags;
2e01fabe 1667
67d12145 1668 struct callback_head *task_works;
e73f8959 1669
1da177e4 1670 struct audit_context *audit_context;
bfef93a5 1671#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1672 kuid_t loginuid;
4746ec5b 1673 unsigned int sessionid;
bfef93a5 1674#endif
932ecebb 1675 struct seccomp seccomp;
1da177e4
LT
1676
1677/* Thread group tracking */
1678 u32 parent_exec_id;
1679 u32 self_exec_id;
58568d2a
MX
1680/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1681 * mempolicy */
1da177e4 1682 spinlock_t alloc_lock;
1da177e4 1683
b29739f9 1684 /* Protection of the PI data structures: */
1d615482 1685 raw_spinlock_t pi_lock;
b29739f9 1686
76751049
PZ
1687 struct wake_q_node wake_q;
1688
23f78d4a
IM
1689#ifdef CONFIG_RT_MUTEXES
1690 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1691 struct rb_root pi_waiters;
1692 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1693 /* Deadlock detection and priority inheritance handling */
1694 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1695#endif
1696
408894ee
IM
1697#ifdef CONFIG_DEBUG_MUTEXES
1698 /* mutex deadlock detection */
1699 struct mutex_waiter *blocked_on;
1700#endif
de30a2b3
IM
1701#ifdef CONFIG_TRACE_IRQFLAGS
1702 unsigned int irq_events;
de30a2b3 1703 unsigned long hardirq_enable_ip;
de30a2b3 1704 unsigned long hardirq_disable_ip;
fa1452e8 1705 unsigned int hardirq_enable_event;
de30a2b3 1706 unsigned int hardirq_disable_event;
fa1452e8
HS
1707 int hardirqs_enabled;
1708 int hardirq_context;
de30a2b3 1709 unsigned long softirq_disable_ip;
de30a2b3 1710 unsigned long softirq_enable_ip;
fa1452e8 1711 unsigned int softirq_disable_event;
de30a2b3 1712 unsigned int softirq_enable_event;
fa1452e8 1713 int softirqs_enabled;
de30a2b3
IM
1714 int softirq_context;
1715#endif
fbb9ce95 1716#ifdef CONFIG_LOCKDEP
bdb9441e 1717# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1718 u64 curr_chain_key;
1719 int lockdep_depth;
fbb9ce95 1720 unsigned int lockdep_recursion;
c7aceaba 1721 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1722 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1723#endif
c6d30853
AR
1724#ifdef CONFIG_UBSAN
1725 unsigned int in_ubsan;
1726#endif
408894ee 1727
1da177e4
LT
1728/* journalling filesystem info */
1729 void *journal_info;
1730
d89d8796 1731/* stacked block device info */
bddd87c7 1732 struct bio_list *bio_list;
d89d8796 1733
73c10101
JA
1734#ifdef CONFIG_BLOCK
1735/* stack plugging */
1736 struct blk_plug *plug;
1737#endif
1738
1da177e4
LT
1739/* VM state */
1740 struct reclaim_state *reclaim_state;
1741
1da177e4
LT
1742 struct backing_dev_info *backing_dev_info;
1743
1744 struct io_context *io_context;
1745
1746 unsigned long ptrace_message;
1747 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1748 struct task_io_accounting ioac;
8f0ab514 1749#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1750 u64 acct_rss_mem1; /* accumulated rss usage */
1751 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1752 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1753#endif
1754#ifdef CONFIG_CPUSETS
58568d2a 1755 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1756 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1757 int cpuset_mem_spread_rotor;
6adef3eb 1758 int cpuset_slab_spread_rotor;
1da177e4 1759#endif
ddbcc7e8 1760#ifdef CONFIG_CGROUPS
817929ec 1761 /* Control Group info protected by css_set_lock */
2c392b8c 1762 struct css_set __rcu *cgroups;
817929ec
PM
1763 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1764 struct list_head cg_list;
ddbcc7e8 1765#endif
42b2dd0a 1766#ifdef CONFIG_FUTEX
0771dfef 1767 struct robust_list_head __user *robust_list;
34f192c6
IM
1768#ifdef CONFIG_COMPAT
1769 struct compat_robust_list_head __user *compat_robust_list;
1770#endif
c87e2837
IM
1771 struct list_head pi_state_list;
1772 struct futex_pi_state *pi_state_cache;
c7aceaba 1773#endif
cdd6c482 1774#ifdef CONFIG_PERF_EVENTS
8dc85d54 1775 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1776 struct mutex perf_event_mutex;
1777 struct list_head perf_event_list;
a63eaf34 1778#endif
8f47b187
TG
1779#ifdef CONFIG_DEBUG_PREEMPT
1780 unsigned long preempt_disable_ip;
1781#endif
c7aceaba 1782#ifdef CONFIG_NUMA
58568d2a 1783 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1784 short il_next;
207205a2 1785 short pref_node_fork;
42b2dd0a 1786#endif
cbee9f88
PZ
1787#ifdef CONFIG_NUMA_BALANCING
1788 int numa_scan_seq;
cbee9f88 1789 unsigned int numa_scan_period;
598f0ec0 1790 unsigned int numa_scan_period_max;
de1c9ce6 1791 int numa_preferred_nid;
6b9a7460 1792 unsigned long numa_migrate_retry;
cbee9f88 1793 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1794 u64 last_task_numa_placement;
1795 u64 last_sum_exec_runtime;
cbee9f88 1796 struct callback_head numa_work;
f809ca9a 1797
8c8a743c
PZ
1798 struct list_head numa_entry;
1799 struct numa_group *numa_group;
1800
745d6147 1801 /*
44dba3d5
IM
1802 * numa_faults is an array split into four regions:
1803 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1804 * in this precise order.
1805 *
1806 * faults_memory: Exponential decaying average of faults on a per-node
1807 * basis. Scheduling placement decisions are made based on these
1808 * counts. The values remain static for the duration of a PTE scan.
1809 * faults_cpu: Track the nodes the process was running on when a NUMA
1810 * hinting fault was incurred.
1811 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1812 * during the current scan window. When the scan completes, the counts
1813 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1814 */
44dba3d5 1815 unsigned long *numa_faults;
83e1d2cd 1816 unsigned long total_numa_faults;
745d6147 1817
04bb2f94
RR
1818 /*
1819 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1820 * scan window were remote/local or failed to migrate. The task scan
1821 * period is adapted based on the locality of the faults with different
1822 * weights depending on whether they were shared or private faults
04bb2f94 1823 */
074c2381 1824 unsigned long numa_faults_locality[3];
04bb2f94 1825
b32e86b4 1826 unsigned long numa_pages_migrated;
cbee9f88
PZ
1827#endif /* CONFIG_NUMA_BALANCING */
1828
72b252ae
MG
1829#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1830 struct tlbflush_unmap_batch tlb_ubc;
1831#endif
1832
e56d0903 1833 struct rcu_head rcu;
b92ce558
JA
1834
1835 /*
1836 * cache last used pipe for splice
1837 */
1838 struct pipe_inode_info *splice_pipe;
5640f768
ED
1839
1840 struct page_frag task_frag;
1841
ca74e92b
SN
1842#ifdef CONFIG_TASK_DELAY_ACCT
1843 struct task_delay_info *delays;
f4f154fd
AM
1844#endif
1845#ifdef CONFIG_FAULT_INJECTION
1846 int make_it_fail;
ca74e92b 1847#endif
9d823e8f
WF
1848 /*
1849 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1850 * balance_dirty_pages() for some dirty throttling pause
1851 */
1852 int nr_dirtied;
1853 int nr_dirtied_pause;
83712358 1854 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1855
9745512c
AV
1856#ifdef CONFIG_LATENCYTOP
1857 int latency_record_count;
1858 struct latency_record latency_record[LT_SAVECOUNT];
1859#endif
6976675d
AV
1860 /*
1861 * time slack values; these are used to round up poll() and
1862 * select() etc timeout values. These are in nanoseconds.
1863 */
da8b44d5
JS
1864 u64 timer_slack_ns;
1865 u64 default_timer_slack_ns;
f8d570a4 1866
0b24becc
AR
1867#ifdef CONFIG_KASAN
1868 unsigned int kasan_depth;
1869#endif
fb52607a 1870#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1871 /* Index of current stored address in ret_stack */
f201ae23
FW
1872 int curr_ret_stack;
1873 /* Stack of return addresses for return function tracing */
1874 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1875 /* time stamp for last schedule */
1876 unsigned long long ftrace_timestamp;
f201ae23
FW
1877 /*
1878 * Number of functions that haven't been traced
1879 * because of depth overrun.
1880 */
1881 atomic_t trace_overrun;
380c4b14
FW
1882 /* Pause for the tracing */
1883 atomic_t tracing_graph_pause;
f201ae23 1884#endif
ea4e2bc4
SR
1885#ifdef CONFIG_TRACING
1886 /* state flags for use by tracers */
1887 unsigned long trace;
b1cff0ad 1888 /* bitmask and counter of trace recursion */
261842b7
SR
1889 unsigned long trace_recursion;
1890#endif /* CONFIG_TRACING */
5c9a8750
DV
1891#ifdef CONFIG_KCOV
1892 /* Coverage collection mode enabled for this task (0 if disabled). */
1893 enum kcov_mode kcov_mode;
1894 /* Size of the kcov_area. */
1895 unsigned kcov_size;
1896 /* Buffer for coverage collection. */
1897 void *kcov_area;
1898 /* kcov desciptor wired with this task or NULL. */
1899 struct kcov *kcov;
1900#endif
6f185c29 1901#ifdef CONFIG_MEMCG
626ebc41
TH
1902 struct mem_cgroup *memcg_in_oom;
1903 gfp_t memcg_oom_gfp_mask;
1904 int memcg_oom_order;
b23afb93
TH
1905
1906 /* number of pages to reclaim on returning to userland */
1907 unsigned int memcg_nr_pages_over_high;
569b846d 1908#endif
0326f5a9
SD
1909#ifdef CONFIG_UPROBES
1910 struct uprobe_task *utask;
0326f5a9 1911#endif
cafe5635
KO
1912#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1913 unsigned int sequential_io;
1914 unsigned int sequential_io_avg;
1915#endif
8eb23b9f
PZ
1916#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1917 unsigned long task_state_change;
1918#endif
8bcbde54 1919 int pagefault_disabled;
03049269 1920#ifdef CONFIG_MMU
29c696e1 1921 struct task_struct *oom_reaper_list;
03049269 1922#endif
0c8c0f03
DH
1923/* CPU-specific state of this task */
1924 struct thread_struct thread;
1925/*
1926 * WARNING: on x86, 'thread_struct' contains a variable-sized
1927 * structure. It *MUST* be at the end of 'task_struct'.
1928 *
1929 * Do not put anything below here!
1930 */
1da177e4
LT
1931};
1932
5aaeb5c0
IM
1933#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1934extern int arch_task_struct_size __read_mostly;
1935#else
1936# define arch_task_struct_size (sizeof(struct task_struct))
1937#endif
0c8c0f03 1938
76e6eee0 1939/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1940#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1941
50605ffb
TG
1942static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1943{
1944 return p->nr_cpus_allowed;
1945}
1946
6688cc05
PZ
1947#define TNF_MIGRATED 0x01
1948#define TNF_NO_GROUP 0x02
dabe1d99 1949#define TNF_SHARED 0x04
04bb2f94 1950#define TNF_FAULT_LOCAL 0x08
074c2381 1951#define TNF_MIGRATE_FAIL 0x10
6688cc05 1952
b18dc5f2
MH
1953static inline bool in_vfork(struct task_struct *tsk)
1954{
1955 bool ret;
1956
1957 /*
1958 * need RCU to access ->real_parent if CLONE_VM was used along with
1959 * CLONE_PARENT.
1960 *
1961 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
1962 * imply CLONE_VM
1963 *
1964 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
1965 * ->real_parent is not necessarily the task doing vfork(), so in
1966 * theory we can't rely on task_lock() if we want to dereference it.
1967 *
1968 * And in this case we can't trust the real_parent->mm == tsk->mm
1969 * check, it can be false negative. But we do not care, if init or
1970 * another oom-unkillable task does this it should blame itself.
1971 */
1972 rcu_read_lock();
1973 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
1974 rcu_read_unlock();
1975
1976 return ret;
1977}
1978
cbee9f88 1979#ifdef CONFIG_NUMA_BALANCING
6688cc05 1980extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1981extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1982extern void set_numabalancing_state(bool enabled);
82727018 1983extern void task_numa_free(struct task_struct *p);
10f39042
RR
1984extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1985 int src_nid, int dst_cpu);
cbee9f88 1986#else
ac8e895b 1987static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1988 int flags)
cbee9f88
PZ
1989{
1990}
e29cf08b
MG
1991static inline pid_t task_numa_group_id(struct task_struct *p)
1992{
1993 return 0;
1994}
1a687c2e
MG
1995static inline void set_numabalancing_state(bool enabled)
1996{
1997}
82727018
RR
1998static inline void task_numa_free(struct task_struct *p)
1999{
2000}
10f39042
RR
2001static inline bool should_numa_migrate_memory(struct task_struct *p,
2002 struct page *page, int src_nid, int dst_cpu)
2003{
2004 return true;
2005}
cbee9f88
PZ
2006#endif
2007
e868171a 2008static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
2009{
2010 return task->pids[PIDTYPE_PID].pid;
2011}
2012
e868171a 2013static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
2014{
2015 return task->group_leader->pids[PIDTYPE_PID].pid;
2016}
2017
6dda81f4
ON
2018/*
2019 * Without tasklist or rcu lock it is not safe to dereference
2020 * the result of task_pgrp/task_session even if task == current,
2021 * we can race with another thread doing sys_setsid/sys_setpgid.
2022 */
e868171a 2023static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
2024{
2025 return task->group_leader->pids[PIDTYPE_PGID].pid;
2026}
2027
e868171a 2028static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
2029{
2030 return task->group_leader->pids[PIDTYPE_SID].pid;
2031}
2032
7af57294
PE
2033struct pid_namespace;
2034
2035/*
2036 * the helpers to get the task's different pids as they are seen
2037 * from various namespaces
2038 *
2039 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2040 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2041 * current.
7af57294
PE
2042 * task_xid_nr_ns() : id seen from the ns specified;
2043 *
2044 * set_task_vxid() : assigns a virtual id to a task;
2045 *
7af57294
PE
2046 * see also pid_nr() etc in include/linux/pid.h
2047 */
52ee2dfd
ON
2048pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2049 struct pid_namespace *ns);
7af57294 2050
e868171a 2051static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2052{
2053 return tsk->pid;
2054}
2055
52ee2dfd
ON
2056static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2057 struct pid_namespace *ns)
2058{
2059 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2060}
7af57294
PE
2061
2062static inline pid_t task_pid_vnr(struct task_struct *tsk)
2063{
52ee2dfd 2064 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2065}
2066
2067
e868171a 2068static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2069{
2070 return tsk->tgid;
2071}
2072
2f2a3a46 2073pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2074
2075static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2076{
2077 return pid_vnr(task_tgid(tsk));
2078}
2079
2080
80e0b6e8 2081static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2082static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2083{
2084 pid_t pid = 0;
2085
2086 rcu_read_lock();
2087 if (pid_alive(tsk))
2088 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2089 rcu_read_unlock();
2090
2091 return pid;
2092}
2093
2094static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2095{
2096 return task_ppid_nr_ns(tsk, &init_pid_ns);
2097}
2098
52ee2dfd
ON
2099static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2100 struct pid_namespace *ns)
7af57294 2101{
52ee2dfd 2102 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2103}
2104
7af57294
PE
2105static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2106{
52ee2dfd 2107 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2108}
2109
2110
52ee2dfd
ON
2111static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2112 struct pid_namespace *ns)
7af57294 2113{
52ee2dfd 2114 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2115}
2116
7af57294
PE
2117static inline pid_t task_session_vnr(struct task_struct *tsk)
2118{
52ee2dfd 2119 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2120}
2121
1b0f7ffd
ON
2122/* obsolete, do not use */
2123static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2124{
2125 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2126}
7af57294 2127
1da177e4
LT
2128/**
2129 * pid_alive - check that a task structure is not stale
2130 * @p: Task structure to be checked.
2131 *
2132 * Test if a process is not yet dead (at most zombie state)
2133 * If pid_alive fails, then pointers within the task structure
2134 * can be stale and must not be dereferenced.
e69f6186
YB
2135 *
2136 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2137 */
ad36d282 2138static inline int pid_alive(const struct task_struct *p)
1da177e4 2139{
92476d7f 2140 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2141}
2142
f400e198 2143/**
570f5241
SS
2144 * is_global_init - check if a task structure is init. Since init
2145 * is free to have sub-threads we need to check tgid.
3260259f
HK
2146 * @tsk: Task structure to be checked.
2147 *
2148 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2149 *
2150 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2151 */
e868171a 2152static inline int is_global_init(struct task_struct *tsk)
b461cc03 2153{
570f5241 2154 return task_tgid_nr(tsk) == 1;
b461cc03 2155}
b460cbc5 2156
9ec52099
CLG
2157extern struct pid *cad_pid;
2158
1da177e4 2159extern void free_task(struct task_struct *tsk);
1da177e4 2160#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2161
158d9ebd 2162extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2163
2164static inline void put_task_struct(struct task_struct *t)
2165{
2166 if (atomic_dec_and_test(&t->usage))
8c7904a0 2167 __put_task_struct(t);
e56d0903 2168}
1da177e4 2169
150593bf
ON
2170struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2171struct task_struct *try_get_task_struct(struct task_struct **ptask);
2172
6a61671b
FW
2173#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2174extern void task_cputime(struct task_struct *t,
2175 cputime_t *utime, cputime_t *stime);
2176extern void task_cputime_scaled(struct task_struct *t,
2177 cputime_t *utimescaled, cputime_t *stimescaled);
2178extern cputime_t task_gtime(struct task_struct *t);
2179#else
6fac4829
FW
2180static inline void task_cputime(struct task_struct *t,
2181 cputime_t *utime, cputime_t *stime)
2182{
2183 if (utime)
2184 *utime = t->utime;
2185 if (stime)
2186 *stime = t->stime;
2187}
2188
2189static inline void task_cputime_scaled(struct task_struct *t,
2190 cputime_t *utimescaled,
2191 cputime_t *stimescaled)
2192{
2193 if (utimescaled)
2194 *utimescaled = t->utimescaled;
2195 if (stimescaled)
2196 *stimescaled = t->stimescaled;
2197}
6a61671b
FW
2198
2199static inline cputime_t task_gtime(struct task_struct *t)
2200{
2201 return t->gtime;
2202}
2203#endif
e80d0a1a
FW
2204extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2205extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2206
1da177e4
LT
2207/*
2208 * Per process flags
2209 */
1da177e4 2210#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2211#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2212#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2213#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2214#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2215#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2216#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2217#define PF_DUMPCORE 0x00000200 /* dumped core */
2218#define PF_SIGNALED 0x00000400 /* killed by a signal */
2219#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2220#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2221#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2222#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2223#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2224#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2225#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2226#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2227#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2228#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2229#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2230#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2231#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2232#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2233#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2234#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2235#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2236#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2237
2238/*
2239 * Only the _current_ task can read/write to tsk->flags, but other
2240 * tasks can access tsk->flags in readonly mode for example
2241 * with tsk_used_math (like during threaded core dumping).
2242 * There is however an exception to this rule during ptrace
2243 * or during fork: the ptracer task is allowed to write to the
2244 * child->flags of its traced child (same goes for fork, the parent
2245 * can write to the child->flags), because we're guaranteed the
2246 * child is not running and in turn not changing child->flags
2247 * at the same time the parent does it.
2248 */
2249#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2250#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2251#define clear_used_math() clear_stopped_child_used_math(current)
2252#define set_used_math() set_stopped_child_used_math(current)
2253#define conditional_stopped_child_used_math(condition, child) \
2254 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2255#define conditional_used_math(condition) \
2256 conditional_stopped_child_used_math(condition, current)
2257#define copy_to_stopped_child_used_math(child) \
2258 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2259/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2260#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2261#define used_math() tsk_used_math(current)
2262
934f3072
JB
2263/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2264 * __GFP_FS is also cleared as it implies __GFP_IO.
2265 */
21caf2fc
ML
2266static inline gfp_t memalloc_noio_flags(gfp_t flags)
2267{
2268 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2269 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2270 return flags;
2271}
2272
2273static inline unsigned int memalloc_noio_save(void)
2274{
2275 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2276 current->flags |= PF_MEMALLOC_NOIO;
2277 return flags;
2278}
2279
2280static inline void memalloc_noio_restore(unsigned int flags)
2281{
2282 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2283}
2284
1d4457f9 2285/* Per-process atomic flags. */
a2b86f77 2286#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2287#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2288#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
77ed2c57 2289#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2ad654bc 2290
1d4457f9 2291
e0e5070b
ZL
2292#define TASK_PFA_TEST(name, func) \
2293 static inline bool task_##func(struct task_struct *p) \
2294 { return test_bit(PFA_##name, &p->atomic_flags); }
2295#define TASK_PFA_SET(name, func) \
2296 static inline void task_set_##func(struct task_struct *p) \
2297 { set_bit(PFA_##name, &p->atomic_flags); }
2298#define TASK_PFA_CLEAR(name, func) \
2299 static inline void task_clear_##func(struct task_struct *p) \
2300 { clear_bit(PFA_##name, &p->atomic_flags); }
2301
2302TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2303TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2304
2ad654bc
ZL
2305TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2306TASK_PFA_SET(SPREAD_PAGE, spread_page)
2307TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2308
2309TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2310TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2311TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2312
77ed2c57
TH
2313TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2314TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2315
e5c1902e 2316/*
a8f072c1 2317 * task->jobctl flags
e5c1902e 2318 */
a8f072c1 2319#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2320
a8f072c1
TH
2321#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2322#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2323#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2324#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2325#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2326#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2327#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2328
b76808e6
PD
2329#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2330#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2331#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2332#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2333#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2334#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2335#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2336
fb1d910c 2337#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2338#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2339
7dd3db54 2340extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2341 unsigned long mask);
73ddff2b 2342extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2343extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2344 unsigned long mask);
39efa3ef 2345
f41d911f
PM
2346static inline void rcu_copy_process(struct task_struct *p)
2347{
8315f422 2348#ifdef CONFIG_PREEMPT_RCU
f41d911f 2349 p->rcu_read_lock_nesting = 0;
1d082fd0 2350 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2351 p->rcu_blocked_node = NULL;
f41d911f 2352 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2353#endif /* #ifdef CONFIG_PREEMPT_RCU */
2354#ifdef CONFIG_TASKS_RCU
2355 p->rcu_tasks_holdout = false;
2356 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2357 p->rcu_tasks_idle_cpu = -1;
8315f422 2358#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2359}
2360
907aed48
MG
2361static inline void tsk_restore_flags(struct task_struct *task,
2362 unsigned long orig_flags, unsigned long flags)
2363{
2364 task->flags &= ~flags;
2365 task->flags |= orig_flags & flags;
2366}
2367
f82f8042
JL
2368extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2369 const struct cpumask *trial);
7f51412a
JL
2370extern int task_can_attach(struct task_struct *p,
2371 const struct cpumask *cs_cpus_allowed);
1da177e4 2372#ifdef CONFIG_SMP
1e1b6c51
KM
2373extern void do_set_cpus_allowed(struct task_struct *p,
2374 const struct cpumask *new_mask);
2375
cd8ba7cd 2376extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2377 const struct cpumask *new_mask);
1da177e4 2378#else
1e1b6c51
KM
2379static inline void do_set_cpus_allowed(struct task_struct *p,
2380 const struct cpumask *new_mask)
2381{
2382}
cd8ba7cd 2383static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2384 const struct cpumask *new_mask)
1da177e4 2385{
96f874e2 2386 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2387 return -EINVAL;
2388 return 0;
2389}
2390#endif
e0ad9556 2391
3451d024 2392#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2393void calc_load_enter_idle(void);
2394void calc_load_exit_idle(void);
2395#else
2396static inline void calc_load_enter_idle(void) { }
2397static inline void calc_load_exit_idle(void) { }
3451d024 2398#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2399
b342501c 2400/*
c676329a
PZ
2401 * Do not use outside of architecture code which knows its limitations.
2402 *
2403 * sched_clock() has no promise of monotonicity or bounded drift between
2404 * CPUs, use (which you should not) requires disabling IRQs.
2405 *
2406 * Please use one of the three interfaces below.
b342501c 2407 */
1bbfa6f2 2408extern unsigned long long notrace sched_clock(void);
c676329a 2409/*
489a71b0 2410 * See the comment in kernel/sched/clock.c
c676329a 2411 */
545a2bf7 2412extern u64 running_clock(void);
c676329a
PZ
2413extern u64 sched_clock_cpu(int cpu);
2414
e436d800 2415
c1955a3d 2416extern void sched_clock_init(void);
3e51f33f 2417
c1955a3d 2418#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2419static inline void sched_clock_tick(void)
2420{
2421}
2422
2423static inline void sched_clock_idle_sleep_event(void)
2424{
2425}
2426
2427static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2428{
2429}
2c923e94
DL
2430
2431static inline u64 cpu_clock(int cpu)
2432{
2433 return sched_clock();
2434}
2435
2436static inline u64 local_clock(void)
2437{
2438 return sched_clock();
2439}
3e51f33f 2440#else
c676329a
PZ
2441/*
2442 * Architectures can set this to 1 if they have specified
2443 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2444 * but then during bootup it turns out that sched_clock()
2445 * is reliable after all:
2446 */
35af99e6
PZ
2447extern int sched_clock_stable(void);
2448extern void set_sched_clock_stable(void);
2449extern void clear_sched_clock_stable(void);
c676329a 2450
3e51f33f
PZ
2451extern void sched_clock_tick(void);
2452extern void sched_clock_idle_sleep_event(void);
2453extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2454
2455/*
2456 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2457 * time source that is monotonic per cpu argument and has bounded drift
2458 * between cpus.
2459 *
2460 * ######################### BIG FAT WARNING ##########################
2461 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2462 * # go backwards !! #
2463 * ####################################################################
2464 */
2465static inline u64 cpu_clock(int cpu)
2466{
2467 return sched_clock_cpu(cpu);
2468}
2469
2470static inline u64 local_clock(void)
2471{
2472 return sched_clock_cpu(raw_smp_processor_id());
2473}
3e51f33f
PZ
2474#endif
2475
b52bfee4
VP
2476#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2477/*
2478 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2479 * The reason for this explicit opt-in is not to have perf penalty with
2480 * slow sched_clocks.
2481 */
2482extern void enable_sched_clock_irqtime(void);
2483extern void disable_sched_clock_irqtime(void);
2484#else
2485static inline void enable_sched_clock_irqtime(void) {}
2486static inline void disable_sched_clock_irqtime(void) {}
2487#endif
2488
36c8b586 2489extern unsigned long long
41b86e9c 2490task_sched_runtime(struct task_struct *task);
1da177e4
LT
2491
2492/* sched_exec is called by processes performing an exec */
2493#ifdef CONFIG_SMP
2494extern void sched_exec(void);
2495#else
2496#define sched_exec() {}
2497#endif
2498
2aa44d05
IM
2499extern void sched_clock_idle_sleep_event(void);
2500extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2501
1da177e4
LT
2502#ifdef CONFIG_HOTPLUG_CPU
2503extern void idle_task_exit(void);
2504#else
2505static inline void idle_task_exit(void) {}
2506#endif
2507
3451d024 2508#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2509extern void wake_up_nohz_cpu(int cpu);
06d8308c 2510#else
1c20091e 2511static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2512#endif
2513
ce831b38 2514#ifdef CONFIG_NO_HZ_FULL
265f22a9 2515extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2516#endif
2517
5091faa4 2518#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2519extern void sched_autogroup_create_attach(struct task_struct *p);
2520extern void sched_autogroup_detach(struct task_struct *p);
2521extern void sched_autogroup_fork(struct signal_struct *sig);
2522extern void sched_autogroup_exit(struct signal_struct *sig);
2523#ifdef CONFIG_PROC_FS
2524extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2525extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2526#endif
2527#else
2528static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2529static inline void sched_autogroup_detach(struct task_struct *p) { }
2530static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2531static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2532#endif
2533
fa93384f 2534extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2535extern void set_user_nice(struct task_struct *p, long nice);
2536extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2537/**
2538 * task_nice - return the nice value of a given task.
2539 * @p: the task in question.
2540 *
2541 * Return: The nice value [ -20 ... 0 ... 19 ].
2542 */
2543static inline int task_nice(const struct task_struct *p)
2544{
2545 return PRIO_TO_NICE((p)->static_prio);
2546}
36c8b586
IM
2547extern int can_nice(const struct task_struct *p, const int nice);
2548extern int task_curr(const struct task_struct *p);
1da177e4 2549extern int idle_cpu(int cpu);
fe7de49f
KM
2550extern int sched_setscheduler(struct task_struct *, int,
2551 const struct sched_param *);
961ccddd 2552extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2553 const struct sched_param *);
d50dde5a
DF
2554extern int sched_setattr(struct task_struct *,
2555 const struct sched_attr *);
36c8b586 2556extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2557/**
2558 * is_idle_task - is the specified task an idle task?
fa757281 2559 * @p: the task in question.
e69f6186
YB
2560 *
2561 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2562 */
7061ca3b 2563static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2564{
2565 return p->pid == 0;
2566}
36c8b586
IM
2567extern struct task_struct *curr_task(int cpu);
2568extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2569
2570void yield(void);
2571
1da177e4
LT
2572union thread_union {
2573 struct thread_info thread_info;
2574 unsigned long stack[THREAD_SIZE/sizeof(long)];
2575};
2576
2577#ifndef __HAVE_ARCH_KSTACK_END
2578static inline int kstack_end(void *addr)
2579{
2580 /* Reliable end of stack detection:
2581 * Some APM bios versions misalign the stack
2582 */
2583 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2584}
2585#endif
2586
2587extern union thread_union init_thread_union;
2588extern struct task_struct init_task;
2589
2590extern struct mm_struct init_mm;
2591
198fe21b
PE
2592extern struct pid_namespace init_pid_ns;
2593
2594/*
2595 * find a task by one of its numerical ids
2596 *
198fe21b
PE
2597 * find_task_by_pid_ns():
2598 * finds a task by its pid in the specified namespace
228ebcbe
PE
2599 * find_task_by_vpid():
2600 * finds a task by its virtual pid
198fe21b 2601 *
e49859e7 2602 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2603 */
2604
228ebcbe
PE
2605extern struct task_struct *find_task_by_vpid(pid_t nr);
2606extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2607 struct pid_namespace *ns);
198fe21b 2608
1da177e4 2609/* per-UID process charging. */
7b44ab97 2610extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2611static inline struct user_struct *get_uid(struct user_struct *u)
2612{
2613 atomic_inc(&u->__count);
2614 return u;
2615}
2616extern void free_uid(struct user_struct *);
1da177e4
LT
2617
2618#include <asm/current.h>
2619
f0af911a 2620extern void xtime_update(unsigned long ticks);
1da177e4 2621
b3c97528
HH
2622extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2623extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2624extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2625#ifdef CONFIG_SMP
2626 extern void kick_process(struct task_struct *tsk);
2627#else
2628 static inline void kick_process(struct task_struct *tsk) { }
2629#endif
aab03e05 2630extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2631extern void sched_dead(struct task_struct *p);
1da177e4 2632
1da177e4
LT
2633extern void proc_caches_init(void);
2634extern void flush_signals(struct task_struct *);
10ab825b 2635extern void ignore_signals(struct task_struct *);
1da177e4
LT
2636extern void flush_signal_handlers(struct task_struct *, int force_default);
2637extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2638
be0e6f29 2639static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2640{
be0e6f29
ON
2641 struct task_struct *tsk = current;
2642 siginfo_t __info;
1da177e4
LT
2643 int ret;
2644
be0e6f29
ON
2645 spin_lock_irq(&tsk->sighand->siglock);
2646 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2647 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2648
2649 return ret;
53c8f9f1 2650}
1da177e4 2651
9a13049e
ON
2652static inline void kernel_signal_stop(void)
2653{
2654 spin_lock_irq(&current->sighand->siglock);
2655 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2656 __set_current_state(TASK_STOPPED);
2657 spin_unlock_irq(&current->sighand->siglock);
2658
2659 schedule();
2660}
2661
1da177e4
LT
2662extern void release_task(struct task_struct * p);
2663extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2664extern int force_sigsegv(int, struct task_struct *);
2665extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2666extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2667extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2668extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2669 const struct cred *, u32);
c4b92fc1
EB
2670extern int kill_pgrp(struct pid *pid, int sig, int priv);
2671extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2672extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2673extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2674extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2675extern void force_sig(int, struct task_struct *);
1da177e4 2676extern int send_sig(int, struct task_struct *, int);
09faef11 2677extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2678extern struct sigqueue *sigqueue_alloc(void);
2679extern void sigqueue_free(struct sigqueue *);
ac5c2153 2680extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2681extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2682
51a7b448
AV
2683static inline void restore_saved_sigmask(void)
2684{
2685 if (test_and_clear_restore_sigmask())
77097ae5 2686 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2687}
2688
b7f9a11a
AV
2689static inline sigset_t *sigmask_to_save(void)
2690{
2691 sigset_t *res = &current->blocked;
2692 if (unlikely(test_restore_sigmask()))
2693 res = &current->saved_sigmask;
2694 return res;
2695}
2696
9ec52099
CLG
2697static inline int kill_cad_pid(int sig, int priv)
2698{
2699 return kill_pid(cad_pid, sig, priv);
2700}
2701
1da177e4
LT
2702/* These can be the second arg to send_sig_info/send_group_sig_info. */
2703#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2704#define SEND_SIG_PRIV ((struct siginfo *) 1)
2705#define SEND_SIG_FORCED ((struct siginfo *) 2)
2706
2a855dd0
SAS
2707/*
2708 * True if we are on the alternate signal stack.
2709 */
1da177e4
LT
2710static inline int on_sig_stack(unsigned long sp)
2711{
c876eeab
AL
2712 /*
2713 * If the signal stack is SS_AUTODISARM then, by construction, we
2714 * can't be on the signal stack unless user code deliberately set
2715 * SS_AUTODISARM when we were already on it.
2716 *
2717 * This improves reliability: if user state gets corrupted such that
2718 * the stack pointer points very close to the end of the signal stack,
2719 * then this check will enable the signal to be handled anyway.
2720 */
2721 if (current->sas_ss_flags & SS_AUTODISARM)
2722 return 0;
2723
2a855dd0
SAS
2724#ifdef CONFIG_STACK_GROWSUP
2725 return sp >= current->sas_ss_sp &&
2726 sp - current->sas_ss_sp < current->sas_ss_size;
2727#else
2728 return sp > current->sas_ss_sp &&
2729 sp - current->sas_ss_sp <= current->sas_ss_size;
2730#endif
1da177e4
LT
2731}
2732
2733static inline int sas_ss_flags(unsigned long sp)
2734{
72f15c03
RW
2735 if (!current->sas_ss_size)
2736 return SS_DISABLE;
2737
2738 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2739}
2740
2a742138
SS
2741static inline void sas_ss_reset(struct task_struct *p)
2742{
2743 p->sas_ss_sp = 0;
2744 p->sas_ss_size = 0;
2745 p->sas_ss_flags = SS_DISABLE;
2746}
2747
5a1b98d3
AV
2748static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2749{
2750 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2751#ifdef CONFIG_STACK_GROWSUP
2752 return current->sas_ss_sp;
2753#else
2754 return current->sas_ss_sp + current->sas_ss_size;
2755#endif
2756 return sp;
2757}
2758
1da177e4
LT
2759/*
2760 * Routines for handling mm_structs
2761 */
2762extern struct mm_struct * mm_alloc(void);
2763
2764/* mmdrop drops the mm and the page tables */
b3c97528 2765extern void __mmdrop(struct mm_struct *);
d2005e3f 2766static inline void mmdrop(struct mm_struct *mm)
1da177e4 2767{
6fb43d7b 2768 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2769 __mmdrop(mm);
2770}
2771
d2005e3f
ON
2772static inline bool mmget_not_zero(struct mm_struct *mm)
2773{
2774 return atomic_inc_not_zero(&mm->mm_users);
2775}
2776
1da177e4
LT
2777/* mmput gets rid of the mappings and all user-space */
2778extern void mmput(struct mm_struct *);
7ef949d7
MH
2779#ifdef CONFIG_MMU
2780/* same as above but performs the slow path from the async context. Can
ec8d7c14
MH
2781 * be called from the atomic context as well
2782 */
2783extern void mmput_async(struct mm_struct *);
7ef949d7 2784#endif
ec8d7c14 2785
1da177e4
LT
2786/* Grab a reference to a task's mm, if it is not already going away */
2787extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2788/*
2789 * Grab a reference to a task's mm, if it is not already going away
2790 * and ptrace_may_access with the mode parameter passed to it
2791 * succeeds.
2792 */
2793extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2794/* Remove the current tasks stale references to the old mm_struct */
2795extern void mm_release(struct task_struct *, struct mm_struct *);
2796
3033f14a
JT
2797#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2798extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2799 struct task_struct *, unsigned long);
2800#else
6f2c55b8 2801extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2802 struct task_struct *);
3033f14a
JT
2803
2804/* Architectures that haven't opted into copy_thread_tls get the tls argument
2805 * via pt_regs, so ignore the tls argument passed via C. */
2806static inline int copy_thread_tls(
2807 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2808 struct task_struct *p, unsigned long tls)
2809{
2810 return copy_thread(clone_flags, sp, arg, p);
2811}
2812#endif
1da177e4 2813extern void flush_thread(void);
5f56a5df
JS
2814
2815#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 2816extern void exit_thread(struct task_struct *tsk);
5f56a5df 2817#else
e6464694 2818static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
2819{
2820}
2821#endif
1da177e4 2822
1da177e4 2823extern void exit_files(struct task_struct *);
a7e5328a 2824extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2825
1da177e4 2826extern void exit_itimers(struct signal_struct *);
cbaffba1 2827extern void flush_itimer_signals(void);
1da177e4 2828
9402c95f 2829extern void do_group_exit(int);
1da177e4 2830
c4ad8f98 2831extern int do_execve(struct filename *,
d7627467 2832 const char __user * const __user *,
da3d4c5f 2833 const char __user * const __user *);
51f39a1f
DD
2834extern int do_execveat(int, struct filename *,
2835 const char __user * const __user *,
2836 const char __user * const __user *,
2837 int);
3033f14a 2838extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2839extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2840struct task_struct *fork_idle(int);
2aa3a7f8 2841extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2842
82b89778
AH
2843extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2844static inline void set_task_comm(struct task_struct *tsk, const char *from)
2845{
2846 __set_task_comm(tsk, from, false);
2847}
59714d65 2848extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2849
2850#ifdef CONFIG_SMP
317f3941 2851void scheduler_ipi(void);
85ba2d86 2852extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2853#else
184748cc 2854static inline void scheduler_ipi(void) { }
85ba2d86
RM
2855static inline unsigned long wait_task_inactive(struct task_struct *p,
2856 long match_state)
2857{
2858 return 1;
2859}
1da177e4
LT
2860#endif
2861
fafe870f
FW
2862#define tasklist_empty() \
2863 list_empty(&init_task.tasks)
2864
05725f7e
JP
2865#define next_task(p) \
2866 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2867
2868#define for_each_process(p) \
2869 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2870
5bb459bb 2871extern bool current_is_single_threaded(void);
d84f4f99 2872
1da177e4
LT
2873/*
2874 * Careful: do_each_thread/while_each_thread is a double loop so
2875 * 'break' will not work as expected - use goto instead.
2876 */
2877#define do_each_thread(g, t) \
2878 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2879
2880#define while_each_thread(g, t) \
2881 while ((t = next_thread(t)) != g)
2882
0c740d0a
ON
2883#define __for_each_thread(signal, t) \
2884 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2885
2886#define for_each_thread(p, t) \
2887 __for_each_thread((p)->signal, t)
2888
2889/* Careful: this is a double loop, 'break' won't work as expected. */
2890#define for_each_process_thread(p, t) \
2891 for_each_process(p) for_each_thread(p, t)
2892
7e49827c
ON
2893static inline int get_nr_threads(struct task_struct *tsk)
2894{
b3ac022c 2895 return tsk->signal->nr_threads;
7e49827c
ON
2896}
2897
087806b1
ON
2898static inline bool thread_group_leader(struct task_struct *p)
2899{
2900 return p->exit_signal >= 0;
2901}
1da177e4 2902
0804ef4b
EB
2903/* Do to the insanities of de_thread it is possible for a process
2904 * to have the pid of the thread group leader without actually being
2905 * the thread group leader. For iteration through the pids in proc
2906 * all we care about is that we have a task with the appropriate
2907 * pid, we don't actually care if we have the right task.
2908 */
e1403b8e 2909static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2910{
e1403b8e 2911 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2912}
2913
bac0abd6 2914static inline
e1403b8e 2915bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2916{
e1403b8e 2917 return p1->signal == p2->signal;
bac0abd6
PE
2918}
2919
36c8b586 2920static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2921{
05725f7e
JP
2922 return list_entry_rcu(p->thread_group.next,
2923 struct task_struct, thread_group);
47e65328
ON
2924}
2925
e868171a 2926static inline int thread_group_empty(struct task_struct *p)
1da177e4 2927{
47e65328 2928 return list_empty(&p->thread_group);
1da177e4
LT
2929}
2930
2931#define delay_group_leader(p) \
2932 (thread_group_leader(p) && !thread_group_empty(p))
2933
1da177e4 2934/*
260ea101 2935 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2936 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2937 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2938 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2939 *
2940 * Nests both inside and outside of read_lock(&tasklist_lock).
2941 * It must not be nested with write_lock_irq(&tasklist_lock),
2942 * neither inside nor outside.
2943 */
2944static inline void task_lock(struct task_struct *p)
2945{
2946 spin_lock(&p->alloc_lock);
2947}
2948
2949static inline void task_unlock(struct task_struct *p)
2950{
2951 spin_unlock(&p->alloc_lock);
2952}
2953
b8ed374e 2954extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2955 unsigned long *flags);
2956
9388dc30
AV
2957static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2958 unsigned long *flags)
2959{
2960 struct sighand_struct *ret;
2961
2962 ret = __lock_task_sighand(tsk, flags);
2963 (void)__cond_lock(&tsk->sighand->siglock, ret);
2964 return ret;
2965}
b8ed374e 2966
f63ee72e
ON
2967static inline void unlock_task_sighand(struct task_struct *tsk,
2968 unsigned long *flags)
2969{
2970 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2971}
2972
77e4ef99 2973/**
7d7efec3
TH
2974 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2975 * @tsk: task causing the changes
77e4ef99 2976 *
7d7efec3
TH
2977 * All operations which modify a threadgroup - a new thread joining the
2978 * group, death of a member thread (the assertion of PF_EXITING) and
2979 * exec(2) dethreading the process and replacing the leader - are wrapped
2980 * by threadgroup_change_{begin|end}(). This is to provide a place which
2981 * subsystems needing threadgroup stability can hook into for
2982 * synchronization.
77e4ef99 2983 */
7d7efec3 2984static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2985{
7d7efec3
TH
2986 might_sleep();
2987 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2988}
77e4ef99
TH
2989
2990/**
7d7efec3
TH
2991 * threadgroup_change_end - mark the end of changes to a threadgroup
2992 * @tsk: task causing the changes
77e4ef99 2993 *
7d7efec3 2994 * See threadgroup_change_begin().
77e4ef99 2995 */
7d7efec3 2996static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2997{
7d7efec3 2998 cgroup_threadgroup_change_end(tsk);
4714d1d3 2999}
4714d1d3 3000
f037360f
AV
3001#ifndef __HAVE_THREAD_FUNCTIONS
3002
f7e4217b
RZ
3003#define task_thread_info(task) ((struct thread_info *)(task)->stack)
3004#define task_stack_page(task) ((task)->stack)
a1261f54 3005
10ebffde
AV
3006static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3007{
3008 *task_thread_info(p) = *task_thread_info(org);
3009 task_thread_info(p)->task = p;
3010}
3011
6a40281a
CE
3012/*
3013 * Return the address of the last usable long on the stack.
3014 *
3015 * When the stack grows down, this is just above the thread
3016 * info struct. Going any lower will corrupt the threadinfo.
3017 *
3018 * When the stack grows up, this is the highest address.
3019 * Beyond that position, we corrupt data on the next page.
3020 */
10ebffde
AV
3021static inline unsigned long *end_of_stack(struct task_struct *p)
3022{
6a40281a
CE
3023#ifdef CONFIG_STACK_GROWSUP
3024 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3025#else
f7e4217b 3026 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 3027#endif
10ebffde
AV
3028}
3029
f037360f 3030#endif
a70857e4
AT
3031#define task_stack_end_corrupted(task) \
3032 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 3033
8b05c7e6
FT
3034static inline int object_is_on_stack(void *obj)
3035{
3036 void *stack = task_stack_page(current);
3037
3038 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3039}
3040
b235beea 3041extern void thread_stack_cache_init(void);
8c9843e5 3042
7c9f8861
ES
3043#ifdef CONFIG_DEBUG_STACK_USAGE
3044static inline unsigned long stack_not_used(struct task_struct *p)
3045{
3046 unsigned long *n = end_of_stack(p);
3047
3048 do { /* Skip over canary */
6c31da34
HD
3049# ifdef CONFIG_STACK_GROWSUP
3050 n--;
3051# else
7c9f8861 3052 n++;
6c31da34 3053# endif
7c9f8861
ES
3054 } while (!*n);
3055
6c31da34
HD
3056# ifdef CONFIG_STACK_GROWSUP
3057 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3058# else
7c9f8861 3059 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3060# endif
7c9f8861
ES
3061}
3062#endif
d4311ff1 3063extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3064
1da177e4
LT
3065/* set thread flags in other task's structures
3066 * - see asm/thread_info.h for TIF_xxxx flags available
3067 */
3068static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3069{
a1261f54 3070 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3071}
3072
3073static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3074{
a1261f54 3075 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3076}
3077
3078static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3079{
a1261f54 3080 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3081}
3082
3083static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3084{
a1261f54 3085 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3086}
3087
3088static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3089{
a1261f54 3090 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3091}
3092
3093static inline void set_tsk_need_resched(struct task_struct *tsk)
3094{
3095 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3096}
3097
3098static inline void clear_tsk_need_resched(struct task_struct *tsk)
3099{
3100 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3101}
3102
8ae121ac
GH
3103static inline int test_tsk_need_resched(struct task_struct *tsk)
3104{
3105 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3106}
3107
690cc3ff
EB
3108static inline int restart_syscall(void)
3109{
3110 set_tsk_thread_flag(current, TIF_SIGPENDING);
3111 return -ERESTARTNOINTR;
3112}
3113
1da177e4
LT
3114static inline int signal_pending(struct task_struct *p)
3115{
3116 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3117}
f776d12d 3118
d9588725
RM
3119static inline int __fatal_signal_pending(struct task_struct *p)
3120{
3121 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3122}
f776d12d
MW
3123
3124static inline int fatal_signal_pending(struct task_struct *p)
3125{
3126 return signal_pending(p) && __fatal_signal_pending(p);
3127}
3128
16882c1e
ON
3129static inline int signal_pending_state(long state, struct task_struct *p)
3130{
3131 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3132 return 0;
3133 if (!signal_pending(p))
3134 return 0;
3135
16882c1e
ON
3136 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3137}
3138
1da177e4
LT
3139/*
3140 * cond_resched() and cond_resched_lock(): latency reduction via
3141 * explicit rescheduling in places that are safe. The return
3142 * value indicates whether a reschedule was done in fact.
3143 * cond_resched_lock() will drop the spinlock before scheduling,
3144 * cond_resched_softirq() will enable bhs before scheduling.
3145 */
c3921ab7 3146extern int _cond_resched(void);
6f80bd98 3147
613afbf8 3148#define cond_resched() ({ \
3427445a 3149 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3150 _cond_resched(); \
3151})
6f80bd98 3152
613afbf8
FW
3153extern int __cond_resched_lock(spinlock_t *lock);
3154
3155#define cond_resched_lock(lock) ({ \
3427445a 3156 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3157 __cond_resched_lock(lock); \
3158})
3159
3160extern int __cond_resched_softirq(void);
3161
75e1056f 3162#define cond_resched_softirq() ({ \
3427445a 3163 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3164 __cond_resched_softirq(); \
613afbf8 3165})
1da177e4 3166
f6f3c437
SH
3167static inline void cond_resched_rcu(void)
3168{
3169#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3170 rcu_read_unlock();
3171 cond_resched();
3172 rcu_read_lock();
3173#endif
3174}
3175
1da177e4
LT
3176/*
3177 * Does a critical section need to be broken due to another
95c354fe
NP
3178 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3179 * but a general need for low latency)
1da177e4 3180 */
95c354fe 3181static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3182{
95c354fe
NP
3183#ifdef CONFIG_PREEMPT
3184 return spin_is_contended(lock);
3185#else
1da177e4 3186 return 0;
95c354fe 3187#endif
1da177e4
LT
3188}
3189
ee761f62
TG
3190/*
3191 * Idle thread specific functions to determine the need_resched
69dd0f84 3192 * polling state.
ee761f62 3193 */
69dd0f84 3194#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3195static inline int tsk_is_polling(struct task_struct *p)
3196{
3197 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3198}
ea811747
PZ
3199
3200static inline void __current_set_polling(void)
3a98f871
TG
3201{
3202 set_thread_flag(TIF_POLLING_NRFLAG);
3203}
3204
ea811747
PZ
3205static inline bool __must_check current_set_polling_and_test(void)
3206{
3207 __current_set_polling();
3208
3209 /*
3210 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3211 * paired by resched_curr()
ea811747 3212 */
4e857c58 3213 smp_mb__after_atomic();
ea811747
PZ
3214
3215 return unlikely(tif_need_resched());
3216}
3217
3218static inline void __current_clr_polling(void)
3a98f871
TG
3219{
3220 clear_thread_flag(TIF_POLLING_NRFLAG);
3221}
ea811747
PZ
3222
3223static inline bool __must_check current_clr_polling_and_test(void)
3224{
3225 __current_clr_polling();
3226
3227 /*
3228 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3229 * paired by resched_curr()
ea811747 3230 */
4e857c58 3231 smp_mb__after_atomic();
ea811747
PZ
3232
3233 return unlikely(tif_need_resched());
3234}
3235
ee761f62
TG
3236#else
3237static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3238static inline void __current_set_polling(void) { }
3239static inline void __current_clr_polling(void) { }
3240
3241static inline bool __must_check current_set_polling_and_test(void)
3242{
3243 return unlikely(tif_need_resched());
3244}
3245static inline bool __must_check current_clr_polling_and_test(void)
3246{
3247 return unlikely(tif_need_resched());
3248}
ee761f62
TG
3249#endif
3250
8cb75e0c
PZ
3251static inline void current_clr_polling(void)
3252{
3253 __current_clr_polling();
3254
3255 /*
3256 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3257 * Once the bit is cleared, we'll get IPIs with every new
3258 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3259 * fold.
3260 */
8875125e 3261 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3262
3263 preempt_fold_need_resched();
3264}
3265
75f93fed
PZ
3266static __always_inline bool need_resched(void)
3267{
3268 return unlikely(tif_need_resched());
3269}
3270
f06febc9
FM
3271/*
3272 * Thread group CPU time accounting.
3273 */
4cd4c1b4 3274void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3275void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3276
7bb44ade
RM
3277/*
3278 * Reevaluate whether the task has signals pending delivery.
3279 * Wake the task if so.
3280 * This is required every time the blocked sigset_t changes.
3281 * callers must hold sighand->siglock.
3282 */
3283extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3284extern void recalc_sigpending(void);
3285
910ffdb1
ON
3286extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3287
3288static inline void signal_wake_up(struct task_struct *t, bool resume)
3289{
3290 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3291}
3292static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3293{
3294 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3295}
1da177e4
LT
3296
3297/*
3298 * Wrappers for p->thread_info->cpu access. No-op on UP.
3299 */
3300#ifdef CONFIG_SMP
3301
3302static inline unsigned int task_cpu(const struct task_struct *p)
3303{
a1261f54 3304 return task_thread_info(p)->cpu;
1da177e4
LT
3305}
3306
b32e86b4
IM
3307static inline int task_node(const struct task_struct *p)
3308{
3309 return cpu_to_node(task_cpu(p));
3310}
3311
c65cc870 3312extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3313
3314#else
3315
3316static inline unsigned int task_cpu(const struct task_struct *p)
3317{
3318 return 0;
3319}
3320
3321static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3322{
3323}
3324
3325#endif /* CONFIG_SMP */
3326
96f874e2
RR
3327extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3328extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3329
7c941438 3330#ifdef CONFIG_CGROUP_SCHED
07e06b01 3331extern struct task_group root_task_group;
8323f26c 3332#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3333
54e99124
DG
3334extern int task_can_switch_user(struct user_struct *up,
3335 struct task_struct *tsk);
3336
4b98d11b
AD
3337#ifdef CONFIG_TASK_XACCT
3338static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3339{
940389b8 3340 tsk->ioac.rchar += amt;
4b98d11b
AD
3341}
3342
3343static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3344{
940389b8 3345 tsk->ioac.wchar += amt;
4b98d11b
AD
3346}
3347
3348static inline void inc_syscr(struct task_struct *tsk)
3349{
940389b8 3350 tsk->ioac.syscr++;
4b98d11b
AD
3351}
3352
3353static inline void inc_syscw(struct task_struct *tsk)
3354{
940389b8 3355 tsk->ioac.syscw++;
4b98d11b
AD
3356}
3357#else
3358static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3359{
3360}
3361
3362static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3363{
3364}
3365
3366static inline void inc_syscr(struct task_struct *tsk)
3367{
3368}
3369
3370static inline void inc_syscw(struct task_struct *tsk)
3371{
3372}
3373#endif
3374
82455257
DH
3375#ifndef TASK_SIZE_OF
3376#define TASK_SIZE_OF(tsk) TASK_SIZE
3377#endif
3378
f98bafa0 3379#ifdef CONFIG_MEMCG
cf475ad2 3380extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3381#else
3382static inline void mm_update_next_owner(struct mm_struct *mm)
3383{
3384}
f98bafa0 3385#endif /* CONFIG_MEMCG */
cf475ad2 3386
3e10e716
JS
3387static inline unsigned long task_rlimit(const struct task_struct *tsk,
3388 unsigned int limit)
3389{
316c1608 3390 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3391}
3392
3393static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3394 unsigned int limit)
3395{
316c1608 3396 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3397}
3398
3399static inline unsigned long rlimit(unsigned int limit)
3400{
3401 return task_rlimit(current, limit);
3402}
3403
3404static inline unsigned long rlimit_max(unsigned int limit)
3405{
3406 return task_rlimit_max(current, limit);
3407}
3408
adaf9fcd
RW
3409#ifdef CONFIG_CPU_FREQ
3410struct update_util_data {
3411 void (*func)(struct update_util_data *data,
3412 u64 time, unsigned long util, unsigned long max);
3413};
3414
0bed612b
RW
3415void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3416 void (*func)(struct update_util_data *data, u64 time,
3417 unsigned long util, unsigned long max));
3418void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3419#endif /* CONFIG_CPU_FREQ */
3420
1da177e4 3421#endif