]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/bitmap.c
qnx4: use hweight8
[mirror_ubuntu-artful-kernel.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8#include <linux/module.h>
9#include <linux/ctype.h>
10#include <linux/errno.h>
11#include <linux/bitmap.h>
12#include <linux/bitops.h>
13#include <asm/uaccess.h>
14
15/*
16 * bitmaps provide an array of bits, implemented using an an
17 * array of unsigned longs. The number of valid bits in a
18 * given bitmap does _not_ need to be an exact multiple of
19 * BITS_PER_LONG.
20 *
21 * The possible unused bits in the last, partially used word
22 * of a bitmap are 'don't care'. The implementation makes
23 * no particular effort to keep them zero. It ensures that
24 * their value will not affect the results of any operation.
25 * The bitmap operations that return Boolean (bitmap_empty,
26 * for example) or scalar (bitmap_weight, for example) results
27 * carefully filter out these unused bits from impacting their
28 * results.
29 *
30 * These operations actually hold to a slightly stronger rule:
31 * if you don't input any bitmaps to these ops that have some
32 * unused bits set, then they won't output any set unused bits
33 * in output bitmaps.
34 *
35 * The byte ordering of bitmaps is more natural on little
36 * endian architectures. See the big-endian headers
37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38 * for the best explanations of this ordering.
39 */
40
41int __bitmap_empty(const unsigned long *bitmap, int bits)
42{
43 int k, lim = bits/BITS_PER_LONG;
44 for (k = 0; k < lim; ++k)
45 if (bitmap[k])
46 return 0;
47
48 if (bits % BITS_PER_LONG)
49 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 return 0;
51
52 return 1;
53}
54EXPORT_SYMBOL(__bitmap_empty);
55
56int __bitmap_full(const unsigned long *bitmap, int bits)
57{
58 int k, lim = bits/BITS_PER_LONG;
59 for (k = 0; k < lim; ++k)
60 if (~bitmap[k])
61 return 0;
62
63 if (bits % BITS_PER_LONG)
64 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 return 0;
66
67 return 1;
68}
69EXPORT_SYMBOL(__bitmap_full);
70
71int __bitmap_equal(const unsigned long *bitmap1,
72 const unsigned long *bitmap2, int bits)
73{
74 int k, lim = bits/BITS_PER_LONG;
75 for (k = 0; k < lim; ++k)
76 if (bitmap1[k] != bitmap2[k])
77 return 0;
78
79 if (bits % BITS_PER_LONG)
80 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 return 0;
82
83 return 1;
84}
85EXPORT_SYMBOL(__bitmap_equal);
86
87void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88{
89 int k, lim = bits/BITS_PER_LONG;
90 for (k = 0; k < lim; ++k)
91 dst[k] = ~src[k];
92
93 if (bits % BITS_PER_LONG)
94 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95}
96EXPORT_SYMBOL(__bitmap_complement);
97
72fd4a35 98/**
1da177e4 99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
100 * @dst : destination bitmap
101 * @src : source bitmap
102 * @shift : shift by this many bits
103 * @bits : bitmap size, in bits
1da177e4
LT
104 *
105 * Shifting right (dividing) means moving bits in the MS -> LS bit
106 * direction. Zeros are fed into the vacated MS positions and the
107 * LS bits shifted off the bottom are lost.
108 */
109void __bitmap_shift_right(unsigned long *dst,
110 const unsigned long *src, int shift, int bits)
111{
112 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 unsigned long mask = (1UL << left) - 1;
115 for (k = 0; off + k < lim; ++k) {
116 unsigned long upper, lower;
117
118 /*
119 * If shift is not word aligned, take lower rem bits of
120 * word above and make them the top rem bits of result.
121 */
122 if (!rem || off + k + 1 >= lim)
123 upper = 0;
124 else {
125 upper = src[off + k + 1];
126 if (off + k + 1 == lim - 1 && left)
127 upper &= mask;
128 }
129 lower = src[off + k];
130 if (left && off + k == lim - 1)
131 lower &= mask;
132 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 if (left && k == lim - 1)
134 dst[k] &= mask;
135 }
136 if (off)
137 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138}
139EXPORT_SYMBOL(__bitmap_shift_right);
140
141
72fd4a35 142/**
1da177e4 143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
144 * @dst : destination bitmap
145 * @src : source bitmap
146 * @shift : shift by this many bits
147 * @bits : bitmap size, in bits
1da177e4
LT
148 *
149 * Shifting left (multiplying) means moving bits in the LS -> MS
150 * direction. Zeros are fed into the vacated LS bit positions
151 * and those MS bits shifted off the top are lost.
152 */
153
154void __bitmap_shift_left(unsigned long *dst,
155 const unsigned long *src, int shift, int bits)
156{
157 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 for (k = lim - off - 1; k >= 0; --k) {
160 unsigned long upper, lower;
161
162 /*
163 * If shift is not word aligned, take upper rem bits of
164 * word below and make them the bottom rem bits of result.
165 */
166 if (rem && k > 0)
167 lower = src[k - 1];
168 else
169 lower = 0;
170 upper = src[k];
171 if (left && k == lim - 1)
172 upper &= (1UL << left) - 1;
173 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
174 if (left && k + off == lim - 1)
175 dst[k + off] &= (1UL << left) - 1;
176 }
177 if (off)
178 memset(dst, 0, off*sizeof(unsigned long));
179}
180EXPORT_SYMBOL(__bitmap_shift_left);
181
f4b0373b 182int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
1da177e4
LT
183 const unsigned long *bitmap2, int bits)
184{
185 int k;
186 int nr = BITS_TO_LONGS(bits);
f4b0373b 187 unsigned long result = 0;
1da177e4
LT
188
189 for (k = 0; k < nr; k++)
f4b0373b
LT
190 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
191 return result != 0;
1da177e4
LT
192}
193EXPORT_SYMBOL(__bitmap_and);
194
195void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
196 const unsigned long *bitmap2, int bits)
197{
198 int k;
199 int nr = BITS_TO_LONGS(bits);
200
201 for (k = 0; k < nr; k++)
202 dst[k] = bitmap1[k] | bitmap2[k];
203}
204EXPORT_SYMBOL(__bitmap_or);
205
206void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
207 const unsigned long *bitmap2, int bits)
208{
209 int k;
210 int nr = BITS_TO_LONGS(bits);
211
212 for (k = 0; k < nr; k++)
213 dst[k] = bitmap1[k] ^ bitmap2[k];
214}
215EXPORT_SYMBOL(__bitmap_xor);
216
f4b0373b 217int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
1da177e4
LT
218 const unsigned long *bitmap2, int bits)
219{
220 int k;
221 int nr = BITS_TO_LONGS(bits);
f4b0373b 222 unsigned long result = 0;
1da177e4
LT
223
224 for (k = 0; k < nr; k++)
f4b0373b
LT
225 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
226 return result != 0;
1da177e4
LT
227}
228EXPORT_SYMBOL(__bitmap_andnot);
229
230int __bitmap_intersects(const unsigned long *bitmap1,
231 const unsigned long *bitmap2, int bits)
232{
233 int k, lim = bits/BITS_PER_LONG;
234 for (k = 0; k < lim; ++k)
235 if (bitmap1[k] & bitmap2[k])
236 return 1;
237
238 if (bits % BITS_PER_LONG)
239 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
240 return 1;
241 return 0;
242}
243EXPORT_SYMBOL(__bitmap_intersects);
244
245int __bitmap_subset(const unsigned long *bitmap1,
246 const unsigned long *bitmap2, int bits)
247{
248 int k, lim = bits/BITS_PER_LONG;
249 for (k = 0; k < lim; ++k)
250 if (bitmap1[k] & ~bitmap2[k])
251 return 0;
252
253 if (bits % BITS_PER_LONG)
254 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
255 return 0;
256 return 1;
257}
258EXPORT_SYMBOL(__bitmap_subset);
259
1da177e4
LT
260int __bitmap_weight(const unsigned long *bitmap, int bits)
261{
262 int k, w = 0, lim = bits/BITS_PER_LONG;
263
264 for (k = 0; k < lim; k++)
37d54111 265 w += hweight_long(bitmap[k]);
1da177e4
LT
266
267 if (bits % BITS_PER_LONG)
37d54111 268 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
269
270 return w;
271}
1da177e4
LT
272EXPORT_SYMBOL(__bitmap_weight);
273
274/*
275 * Bitmap printing & parsing functions: first version by Bill Irwin,
276 * second version by Paul Jackson, third by Joe Korty.
277 */
278
279#define CHUNKSZ 32
280#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
281#define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
282#define BASEDEC 10 /* fancier cpuset lists input in decimal */
283
284/**
285 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
286 * @buf: byte buffer into which string is placed
287 * @buflen: reserved size of @buf, in bytes
288 * @maskp: pointer to bitmap to convert
289 * @nmaskbits: size of bitmap, in bits
290 *
291 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
292 * comma-separated sets of eight digits per set.
293 */
294int bitmap_scnprintf(char *buf, unsigned int buflen,
295 const unsigned long *maskp, int nmaskbits)
296{
297 int i, word, bit, len = 0;
298 unsigned long val;
299 const char *sep = "";
300 int chunksz;
301 u32 chunkmask;
302
303 chunksz = nmaskbits & (CHUNKSZ - 1);
304 if (chunksz == 0)
305 chunksz = CHUNKSZ;
306
8c0e33c1 307 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
1da177e4
LT
308 for (; i >= 0; i -= CHUNKSZ) {
309 chunkmask = ((1ULL << chunksz) - 1);
310 word = i / BITS_PER_LONG;
311 bit = i % BITS_PER_LONG;
312 val = (maskp[word] >> bit) & chunkmask;
313 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
314 (chunksz+3)/4, val);
315 chunksz = CHUNKSZ;
316 sep = ",";
317 }
318 return len;
319}
320EXPORT_SYMBOL(bitmap_scnprintf);
321
322/**
01a3ee2b
RC
323 * __bitmap_parse - convert an ASCII hex string into a bitmap.
324 * @buf: pointer to buffer containing string.
325 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 326 * then it must be terminated with a \0.
01a3ee2b 327 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
328 * @maskp: pointer to bitmap array that will contain result.
329 * @nmaskbits: size of bitmap, in bits.
330 *
331 * Commas group hex digits into chunks. Each chunk defines exactly 32
332 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
333 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
334 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
335 * characters and for grouping errors such as "1,,5", ",44", "," and "".
336 * Leading and trailing whitespace accepted, but not embedded whitespace.
337 */
01a3ee2b
RC
338int __bitmap_parse(const char *buf, unsigned int buflen,
339 int is_user, unsigned long *maskp,
340 int nmaskbits)
1da177e4
LT
341{
342 int c, old_c, totaldigits, ndigits, nchunks, nbits;
343 u32 chunk;
01a3ee2b 344 const char __user *ubuf = buf;
1da177e4
LT
345
346 bitmap_zero(maskp, nmaskbits);
347
348 nchunks = nbits = totaldigits = c = 0;
349 do {
350 chunk = ndigits = 0;
351
352 /* Get the next chunk of the bitmap */
01a3ee2b 353 while (buflen) {
1da177e4 354 old_c = c;
01a3ee2b
RC
355 if (is_user) {
356 if (__get_user(c, ubuf++))
357 return -EFAULT;
358 }
359 else
360 c = *buf++;
361 buflen--;
1da177e4
LT
362 if (isspace(c))
363 continue;
364
365 /*
366 * If the last character was a space and the current
367 * character isn't '\0', we've got embedded whitespace.
368 * This is a no-no, so throw an error.
369 */
370 if (totaldigits && c && isspace(old_c))
371 return -EINVAL;
372
373 /* A '\0' or a ',' signal the end of the chunk */
374 if (c == '\0' || c == ',')
375 break;
376
377 if (!isxdigit(c))
378 return -EINVAL;
379
380 /*
381 * Make sure there are at least 4 free bits in 'chunk'.
382 * If not, this hexdigit will overflow 'chunk', so
383 * throw an error.
384 */
385 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
386 return -EOVERFLOW;
387
388 chunk = (chunk << 4) | unhex(c);
389 ndigits++; totaldigits++;
390 }
391 if (ndigits == 0)
392 return -EINVAL;
393 if (nchunks == 0 && chunk == 0)
394 continue;
395
396 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
397 *maskp |= chunk;
398 nchunks++;
399 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
400 if (nbits > nmaskbits)
401 return -EOVERFLOW;
01a3ee2b 402 } while (buflen && c == ',');
1da177e4
LT
403
404 return 0;
405}
01a3ee2b
RC
406EXPORT_SYMBOL(__bitmap_parse);
407
408/**
409 * bitmap_parse_user()
410 *
411 * @ubuf: pointer to user buffer containing string.
412 * @ulen: buffer size in bytes. If string is smaller than this
413 * then it must be terminated with a \0.
414 * @maskp: pointer to bitmap array that will contain result.
415 * @nmaskbits: size of bitmap, in bits.
416 *
417 * Wrapper for __bitmap_parse(), providing it with user buffer.
418 *
419 * We cannot have this as an inline function in bitmap.h because it needs
420 * linux/uaccess.h to get the access_ok() declaration and this causes
421 * cyclic dependencies.
422 */
423int bitmap_parse_user(const char __user *ubuf,
424 unsigned int ulen, unsigned long *maskp,
425 int nmaskbits)
426{
427 if (!access_ok(VERIFY_READ, ubuf, ulen))
428 return -EFAULT;
429 return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
430}
431EXPORT_SYMBOL(bitmap_parse_user);
1da177e4
LT
432
433/*
434 * bscnl_emit(buf, buflen, rbot, rtop, bp)
435 *
436 * Helper routine for bitmap_scnlistprintf(). Write decimal number
437 * or range to buf, suppressing output past buf+buflen, with optional
438 * comma-prefix. Return len of what would be written to buf, if it
439 * all fit.
440 */
441static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
442{
443 if (len > 0)
444 len += scnprintf(buf + len, buflen - len, ",");
445 if (rbot == rtop)
446 len += scnprintf(buf + len, buflen - len, "%d", rbot);
447 else
448 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
449 return len;
450}
451
452/**
453 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
454 * @buf: byte buffer into which string is placed
455 * @buflen: reserved size of @buf, in bytes
456 * @maskp: pointer to bitmap to convert
457 * @nmaskbits: size of bitmap, in bits
458 *
459 * Output format is a comma-separated list of decimal numbers and
460 * ranges. Consecutively set bits are shown as two hyphen-separated
461 * decimal numbers, the smallest and largest bit numbers set in
462 * the range. Output format is compatible with the format
463 * accepted as input by bitmap_parselist().
464 *
465 * The return value is the number of characters which would be
466 * generated for the given input, excluding the trailing '\0', as
467 * per ISO C99.
468 */
469int bitmap_scnlistprintf(char *buf, unsigned int buflen,
470 const unsigned long *maskp, int nmaskbits)
471{
472 int len = 0;
473 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
474 int cur, rbot, rtop;
475
0b030c2c
AK
476 if (buflen == 0)
477 return 0;
478 buf[0] = 0;
479
1da177e4
LT
480 rbot = cur = find_first_bit(maskp, nmaskbits);
481 while (cur < nmaskbits) {
482 rtop = cur;
483 cur = find_next_bit(maskp, nmaskbits, cur+1);
484 if (cur >= nmaskbits || cur > rtop + 1) {
485 len = bscnl_emit(buf, buflen, rbot, rtop, len);
486 rbot = cur;
487 }
488 }
489 return len;
490}
491EXPORT_SYMBOL(bitmap_scnlistprintf);
492
493/**
494 * bitmap_parselist - convert list format ASCII string to bitmap
6e1907ff
RD
495 * @bp: read nul-terminated user string from this buffer
496 * @maskp: write resulting mask here
1da177e4
LT
497 * @nmaskbits: number of bits in mask to be written
498 *
499 * Input format is a comma-separated list of decimal numbers and
500 * ranges. Consecutively set bits are shown as two hyphen-separated
501 * decimal numbers, the smallest and largest bit numbers set in
502 * the range.
503 *
6e1907ff
RD
504 * Returns 0 on success, -errno on invalid input strings.
505 * Error values:
506 * %-EINVAL: second number in range smaller than first
507 * %-EINVAL: invalid character in string
508 * %-ERANGE: bit number specified too large for mask
1da177e4
LT
509 */
510int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
511{
512 unsigned a, b;
513
514 bitmap_zero(maskp, nmaskbits);
515 do {
516 if (!isdigit(*bp))
517 return -EINVAL;
518 b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
519 if (*bp == '-') {
520 bp++;
521 if (!isdigit(*bp))
522 return -EINVAL;
523 b = simple_strtoul(bp, (char **)&bp, BASEDEC);
524 }
525 if (!(a <= b))
526 return -EINVAL;
527 if (b >= nmaskbits)
528 return -ERANGE;
529 while (a <= b) {
530 set_bit(a, maskp);
531 a++;
532 }
533 if (*bp == ',')
534 bp++;
535 } while (*bp != '\0' && *bp != '\n');
536 return 0;
537}
538EXPORT_SYMBOL(bitmap_parselist);
539
72fd4a35 540/**
fb5eeeee
PJ
541 * bitmap_pos_to_ord(buf, pos, bits)
542 * @buf: pointer to a bitmap
543 * @pos: a bit position in @buf (0 <= @pos < @bits)
544 * @bits: number of valid bit positions in @buf
545 *
546 * Map the bit at position @pos in @buf (of length @bits) to the
547 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 548 * is not a valid bit position, map to -1.
fb5eeeee
PJ
549 *
550 * If for example, just bits 4 through 7 are set in @buf, then @pos
551 * values 4 through 7 will get mapped to 0 through 3, respectively,
552 * and other @pos values will get mapped to 0. When @pos value 7
553 * gets mapped to (returns) @ord value 3 in this example, that means
554 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
555 *
556 * The bit positions 0 through @bits are valid positions in @buf.
557 */
558static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
559{
96b7f341 560 int i, ord;
fb5eeeee 561
96b7f341
PJ
562 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
563 return -1;
fb5eeeee 564
96b7f341
PJ
565 i = find_first_bit(buf, bits);
566 ord = 0;
567 while (i < pos) {
568 i = find_next_bit(buf, bits, i + 1);
569 ord++;
fb5eeeee 570 }
96b7f341
PJ
571 BUG_ON(i != pos);
572
fb5eeeee
PJ
573 return ord;
574}
575
576/**
577 * bitmap_ord_to_pos(buf, ord, bits)
578 * @buf: pointer to bitmap
579 * @ord: ordinal bit position (n-th set bit, n >= 0)
580 * @bits: number of valid bit positions in @buf
581 *
582 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
96b7f341
PJ
583 * Value of @ord should be in range 0 <= @ord < weight(buf), else
584 * results are undefined.
fb5eeeee
PJ
585 *
586 * If for example, just bits 4 through 7 are set in @buf, then @ord
587 * values 0 through 3 will get mapped to 4 through 7, respectively,
96b7f341 588 * and all other @ord values return undefined values. When @ord value 3
fb5eeeee
PJ
589 * gets mapped to (returns) @pos value 7 in this example, that means
590 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
591 *
592 * The bit positions 0 through @bits are valid positions in @buf.
593 */
594static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
595{
596 int pos = 0;
597
598 if (ord >= 0 && ord < bits) {
599 int i;
600
601 for (i = find_first_bit(buf, bits);
602 i < bits && ord > 0;
603 i = find_next_bit(buf, bits, i + 1))
604 ord--;
605 if (i < bits && ord == 0)
606 pos = i;
607 }
608
609 return pos;
610}
611
612/**
613 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 614 * @dst: remapped result
96b7f341 615 * @src: subset to be remapped
fb5eeeee
PJ
616 * @old: defines domain of map
617 * @new: defines range of map
618 * @bits: number of bits in each of these bitmaps
619 *
620 * Let @old and @new define a mapping of bit positions, such that
621 * whatever position is held by the n-th set bit in @old is mapped
622 * to the n-th set bit in @new. In the more general case, allowing
623 * for the possibility that the weight 'w' of @new is less than the
624 * weight of @old, map the position of the n-th set bit in @old to
625 * the position of the m-th set bit in @new, where m == n % w.
626 *
96b7f341
PJ
627 * If either of the @old and @new bitmaps are empty, or if @src and
628 * @dst point to the same location, then this routine copies @src
629 * to @dst.
fb5eeeee 630 *
96b7f341
PJ
631 * The positions of unset bits in @old are mapped to themselves
632 * (the identify map).
fb5eeeee
PJ
633 *
634 * Apply the above specified mapping to @src, placing the result in
635 * @dst, clearing any bits previously set in @dst.
636 *
fb5eeeee
PJ
637 * For example, lets say that @old has bits 4 through 7 set, and
638 * @new has bits 12 through 15 set. This defines the mapping of bit
639 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
640 * bit positions unchanged. So if say @src comes into this routine
641 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
642 * 13 and 15 set.
fb5eeeee
PJ
643 */
644void bitmap_remap(unsigned long *dst, const unsigned long *src,
645 const unsigned long *old, const unsigned long *new,
646 int bits)
647{
96b7f341 648 int oldbit, w;
fb5eeeee 649
fb5eeeee
PJ
650 if (dst == src) /* following doesn't handle inplace remaps */
651 return;
fb5eeeee 652 bitmap_zero(dst, bits);
96b7f341
PJ
653
654 w = bitmap_weight(new, bits);
655 for (oldbit = find_first_bit(src, bits);
656 oldbit < bits;
657 oldbit = find_next_bit(src, bits, oldbit + 1)) {
658 int n = bitmap_pos_to_ord(old, oldbit, bits);
659 if (n < 0 || w == 0)
660 set_bit(oldbit, dst); /* identity map */
661 else
662 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
fb5eeeee
PJ
663 }
664}
665EXPORT_SYMBOL(bitmap_remap);
666
667/**
668 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
669 * @oldbit: bit position to be mapped
670 * @old: defines domain of map
671 * @new: defines range of map
672 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
673 *
674 * Let @old and @new define a mapping of bit positions, such that
675 * whatever position is held by the n-th set bit in @old is mapped
676 * to the n-th set bit in @new. In the more general case, allowing
677 * for the possibility that the weight 'w' of @new is less than the
678 * weight of @old, map the position of the n-th set bit in @old to
679 * the position of the m-th set bit in @new, where m == n % w.
680 *
96b7f341
PJ
681 * The positions of unset bits in @old are mapped to themselves
682 * (the identify map).
fb5eeeee
PJ
683 *
684 * Apply the above specified mapping to bit position @oldbit, returning
685 * the new bit position.
686 *
687 * For example, lets say that @old has bits 4 through 7 set, and
688 * @new has bits 12 through 15 set. This defines the mapping of bit
689 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
690 * bit positions unchanged. So if say @oldbit is 5, then this routine
691 * returns 13.
fb5eeeee
PJ
692 */
693int bitmap_bitremap(int oldbit, const unsigned long *old,
694 const unsigned long *new, int bits)
695{
96b7f341
PJ
696 int w = bitmap_weight(new, bits);
697 int n = bitmap_pos_to_ord(old, oldbit, bits);
698 if (n < 0 || w == 0)
699 return oldbit;
700 else
701 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee
PJ
702}
703EXPORT_SYMBOL(bitmap_bitremap);
704
7ea931c9
PJ
705/**
706 * bitmap_onto - translate one bitmap relative to another
707 * @dst: resulting translated bitmap
708 * @orig: original untranslated bitmap
709 * @relmap: bitmap relative to which translated
710 * @bits: number of bits in each of these bitmaps
711 *
712 * Set the n-th bit of @dst iff there exists some m such that the
713 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
714 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
715 * (If you understood the previous sentence the first time your
716 * read it, you're overqualified for your current job.)
717 *
718 * In other words, @orig is mapped onto (surjectively) @dst,
719 * using the the map { <n, m> | the n-th bit of @relmap is the
720 * m-th set bit of @relmap }.
721 *
722 * Any set bits in @orig above bit number W, where W is the
723 * weight of (number of set bits in) @relmap are mapped nowhere.
724 * In particular, if for all bits m set in @orig, m >= W, then
725 * @dst will end up empty. In situations where the possibility
726 * of such an empty result is not desired, one way to avoid it is
727 * to use the bitmap_fold() operator, below, to first fold the
728 * @orig bitmap over itself so that all its set bits x are in the
729 * range 0 <= x < W. The bitmap_fold() operator does this by
730 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
731 *
732 * Example [1] for bitmap_onto():
733 * Let's say @relmap has bits 30-39 set, and @orig has bits
734 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
735 * @dst will have bits 31, 33, 35, 37 and 39 set.
736 *
737 * When bit 0 is set in @orig, it means turn on the bit in
738 * @dst corresponding to whatever is the first bit (if any)
739 * that is turned on in @relmap. Since bit 0 was off in the
740 * above example, we leave off that bit (bit 30) in @dst.
741 *
742 * When bit 1 is set in @orig (as in the above example), it
743 * means turn on the bit in @dst corresponding to whatever
744 * is the second bit that is turned on in @relmap. The second
745 * bit in @relmap that was turned on in the above example was
746 * bit 31, so we turned on bit 31 in @dst.
747 *
748 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
749 * because they were the 4th, 6th, 8th and 10th set bits
750 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
751 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
752 *
753 * When bit 11 is set in @orig, it means turn on the bit in
754 * @dst corresponding to whatever is the twelth bit that is
755 * turned on in @relmap. In the above example, there were
756 * only ten bits turned on in @relmap (30..39), so that bit
757 * 11 was set in @orig had no affect on @dst.
758 *
759 * Example [2] for bitmap_fold() + bitmap_onto():
760 * Let's say @relmap has these ten bits set:
761 * 40 41 42 43 45 48 53 61 74 95
762 * (for the curious, that's 40 plus the first ten terms of the
763 * Fibonacci sequence.)
764 *
765 * Further lets say we use the following code, invoking
766 * bitmap_fold() then bitmap_onto, as suggested above to
767 * avoid the possitility of an empty @dst result:
768 *
769 * unsigned long *tmp; // a temporary bitmap's bits
770 *
771 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
772 * bitmap_onto(dst, tmp, relmap, bits);
773 *
774 * Then this table shows what various values of @dst would be, for
775 * various @orig's. I list the zero-based positions of each set bit.
776 * The tmp column shows the intermediate result, as computed by
777 * using bitmap_fold() to fold the @orig bitmap modulo ten
778 * (the weight of @relmap).
779 *
780 * @orig tmp @dst
781 * 0 0 40
782 * 1 1 41
783 * 9 9 95
784 * 10 0 40 (*)
785 * 1 3 5 7 1 3 5 7 41 43 48 61
786 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
787 * 0 9 18 27 0 9 8 7 40 61 74 95
788 * 0 10 20 30 0 40
789 * 0 11 22 33 0 1 2 3 40 41 42 43
790 * 0 12 24 36 0 2 4 6 40 42 45 53
791 * 78 102 211 1 2 8 41 42 74 (*)
792 *
793 * (*) For these marked lines, if we hadn't first done bitmap_fold()
794 * into tmp, then the @dst result would have been empty.
795 *
796 * If either of @orig or @relmap is empty (no set bits), then @dst
797 * will be returned empty.
798 *
799 * If (as explained above) the only set bits in @orig are in positions
800 * m where m >= W, (where W is the weight of @relmap) then @dst will
801 * once again be returned empty.
802 *
803 * All bits in @dst not set by the above rule are cleared.
804 */
805void bitmap_onto(unsigned long *dst, const unsigned long *orig,
806 const unsigned long *relmap, int bits)
807{
808 int n, m; /* same meaning as in above comment */
809
810 if (dst == orig) /* following doesn't handle inplace mappings */
811 return;
812 bitmap_zero(dst, bits);
813
814 /*
815 * The following code is a more efficient, but less
816 * obvious, equivalent to the loop:
817 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
818 * n = bitmap_ord_to_pos(orig, m, bits);
819 * if (test_bit(m, orig))
820 * set_bit(n, dst);
821 * }
822 */
823
824 m = 0;
825 for (n = find_first_bit(relmap, bits);
826 n < bits;
827 n = find_next_bit(relmap, bits, n + 1)) {
828 /* m == bitmap_pos_to_ord(relmap, n, bits) */
829 if (test_bit(m, orig))
830 set_bit(n, dst);
831 m++;
832 }
833}
834EXPORT_SYMBOL(bitmap_onto);
835
836/**
837 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
838 * @dst: resulting smaller bitmap
839 * @orig: original larger bitmap
840 * @sz: specified size
841 * @bits: number of bits in each of these bitmaps
842 *
843 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
844 * Clear all other bits in @dst. See further the comment and
845 * Example [2] for bitmap_onto() for why and how to use this.
846 */
847void bitmap_fold(unsigned long *dst, const unsigned long *orig,
848 int sz, int bits)
849{
850 int oldbit;
851
852 if (dst == orig) /* following doesn't handle inplace mappings */
853 return;
854 bitmap_zero(dst, bits);
855
856 for (oldbit = find_first_bit(orig, bits);
857 oldbit < bits;
858 oldbit = find_next_bit(orig, bits, oldbit + 1))
859 set_bit(oldbit % sz, dst);
860}
861EXPORT_SYMBOL(bitmap_fold);
862
3cf64b93
PJ
863/*
864 * Common code for bitmap_*_region() routines.
865 * bitmap: array of unsigned longs corresponding to the bitmap
866 * pos: the beginning of the region
867 * order: region size (log base 2 of number of bits)
868 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 869 *
3cf64b93
PJ
870 * Can set, verify and/or release a region of bits in a bitmap,
871 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 872 *
3cf64b93
PJ
873 * A region of a bitmap is a sequence of bits in the bitmap, of
874 * some size '1 << order' (a power of two), aligned to that same
875 * '1 << order' power of two.
876 *
877 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
878 * Returns 0 in all other cases and reg_ops.
1da177e4 879 */
3cf64b93
PJ
880
881enum {
882 REG_OP_ISFREE, /* true if region is all zero bits */
883 REG_OP_ALLOC, /* set all bits in region */
884 REG_OP_RELEASE, /* clear all bits in region */
885};
886
887static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1da177e4 888{
3cf64b93
PJ
889 int nbits_reg; /* number of bits in region */
890 int index; /* index first long of region in bitmap */
891 int offset; /* bit offset region in bitmap[index] */
892 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 893 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 894 unsigned long mask; /* bitmask for one long of region */
74373c6a 895 int i; /* scans bitmap by longs */
3cf64b93 896 int ret = 0; /* return value */
74373c6a 897
3cf64b93
PJ
898 /*
899 * Either nlongs_reg == 1 (for small orders that fit in one long)
900 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
901 */
902 nbits_reg = 1 << order;
903 index = pos / BITS_PER_LONG;
904 offset = pos - (index * BITS_PER_LONG);
905 nlongs_reg = BITS_TO_LONGS(nbits_reg);
906 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 907
3cf64b93
PJ
908 /*
909 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
910 * overflows if nbitsinlong == BITS_PER_LONG.
911 */
74373c6a 912 mask = (1UL << (nbitsinlong - 1));
1da177e4 913 mask += mask - 1;
3cf64b93 914 mask <<= offset;
1da177e4 915
3cf64b93
PJ
916 switch (reg_op) {
917 case REG_OP_ISFREE:
918 for (i = 0; i < nlongs_reg; i++) {
919 if (bitmap[index + i] & mask)
920 goto done;
921 }
922 ret = 1; /* all bits in region free (zero) */
923 break;
924
925 case REG_OP_ALLOC:
926 for (i = 0; i < nlongs_reg; i++)
927 bitmap[index + i] |= mask;
928 break;
929
930 case REG_OP_RELEASE:
931 for (i = 0; i < nlongs_reg; i++)
932 bitmap[index + i] &= ~mask;
933 break;
1da177e4 934 }
3cf64b93
PJ
935done:
936 return ret;
937}
938
939/**
940 * bitmap_find_free_region - find a contiguous aligned mem region
941 * @bitmap: array of unsigned longs corresponding to the bitmap
942 * @bits: number of bits in the bitmap
943 * @order: region size (log base 2 of number of bits) to find
944 *
945 * Find a region of free (zero) bits in a @bitmap of @bits bits and
946 * allocate them (set them to one). Only consider regions of length
947 * a power (@order) of two, aligned to that power of two, which
948 * makes the search algorithm much faster.
949 *
950 * Return the bit offset in bitmap of the allocated region,
951 * or -errno on failure.
952 */
953int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
954{
aa8e4fc6
LT
955 int pos, end; /* scans bitmap by regions of size order */
956
957 for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
958 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
959 continue;
960 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
961 return pos;
962 }
963 return -ENOMEM;
1da177e4
LT
964}
965EXPORT_SYMBOL(bitmap_find_free_region);
966
967/**
87e24802 968 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
969 * @bitmap: array of unsigned longs corresponding to the bitmap
970 * @pos: beginning of bit region to release
971 * @order: region size (log base 2 of number of bits) to release
1da177e4 972 *
72fd4a35 973 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 974 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
975 *
976 * No return value.
1da177e4
LT
977 */
978void bitmap_release_region(unsigned long *bitmap, int pos, int order)
979{
3cf64b93 980 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
981}
982EXPORT_SYMBOL(bitmap_release_region);
983
87e24802
PJ
984/**
985 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
986 * @bitmap: array of unsigned longs corresponding to the bitmap
987 * @pos: beginning of bit region to allocate
988 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
989 *
990 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 991 *
6e1907ff 992 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
993 * free (not all bits were zero).
994 */
1da177e4
LT
995int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
996{
3cf64b93
PJ
997 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
998 return -EBUSY;
999 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1000 return 0;
1001}
1002EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1003
1004/**
1005 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1006 * @dst: destination buffer
1007 * @src: bitmap to copy
1008 * @nbits: number of bits in the bitmap
1009 *
1010 * Require nbits % BITS_PER_LONG == 0.
1011 */
1012void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1013{
1014 unsigned long *d = dst;
1015 int i;
1016
1017 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1018 if (BITS_PER_LONG == 64)
1019 d[i] = cpu_to_le64(src[i]);
1020 else
1021 d[i] = cpu_to_le32(src[i]);
1022 }
1023}
1024EXPORT_SYMBOL(bitmap_copy_le);