]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/radix-tree.c
radix-tree: add radix_tree_split_preload()
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
e157b555 25#include <linux/cpu.h>
1da177e4
LT
26#include <linux/errno.h>
27#include <linux/init.h>
28#include <linux/kernel.h>
8bc3bcc9 29#include <linux/export.h>
1da177e4
LT
30#include <linux/radix-tree.h>
31#include <linux/percpu.h>
32#include <linux/slab.h>
ce80b067 33#include <linux/kmemleak.h>
1da177e4
LT
34#include <linux/notifier.h>
35#include <linux/cpu.h>
1da177e4
LT
36#include <linux/string.h>
37#include <linux/bitops.h>
7cf9c2c7 38#include <linux/rcupdate.h>
92cf2118 39#include <linux/preempt.h> /* in_interrupt() */
1da177e4
LT
40
41
c78c66d1
KS
42/* Number of nodes in fully populated tree of given height */
43static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44
1da177e4
LT
45/*
46 * Radix tree node cache.
47 */
e18b890b 48static struct kmem_cache *radix_tree_node_cachep;
1da177e4 49
55368052
NP
50/*
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
55 *
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
60 */
61#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62
1da177e4
LT
63/*
64 * Per-cpu pool of preloaded nodes
65 */
66struct radix_tree_preload {
2fcd9005 67 unsigned nr;
9d2a8da0
KS
68 /* nodes->private_data points to next preallocated node */
69 struct radix_tree_node *nodes;
1da177e4 70};
8cef7d57 71static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 72
148deab2
MW
73static inline struct radix_tree_node *entry_to_node(void *ptr)
74{
75 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
76}
77
a4db4dce 78static inline void *node_to_entry(void *ptr)
27d20fdd 79{
30ff46cc 80 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
81}
82
a4db4dce 83#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 84
db050f29
MW
85#ifdef CONFIG_RADIX_TREE_MULTIORDER
86/* Sibling slots point directly to another slot in the same node */
87static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
88{
89 void **ptr = node;
90 return (parent->slots <= ptr) &&
91 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
92}
93#else
94static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
95{
96 return false;
97}
98#endif
99
100static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
101 void **slot)
102{
103 return slot - parent->slots;
104}
105
9e85d811
MW
106static unsigned int radix_tree_descend(struct radix_tree_node *parent,
107 struct radix_tree_node **nodep, unsigned long index)
db050f29 108{
9e85d811 109 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
db050f29
MW
110 void **entry = rcu_dereference_raw(parent->slots[offset]);
111
112#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 113 if (radix_tree_is_internal_node(entry)) {
8d2c0d36
LT
114 if (is_sibling_entry(parent, entry)) {
115 void **sibentry = (void **) entry_to_node(entry);
116 offset = get_slot_offset(parent, sibentry);
117 entry = rcu_dereference_raw(*sibentry);
db050f29
MW
118 }
119 }
120#endif
121
122 *nodep = (void *)entry;
123 return offset;
124}
125
612d6c19
NP
126static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
127{
128 return root->gfp_mask & __GFP_BITS_MASK;
129}
130
643b52b9
NP
131static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
132 int offset)
133{
134 __set_bit(offset, node->tags[tag]);
135}
136
137static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
138 int offset)
139{
140 __clear_bit(offset, node->tags[tag]);
141}
142
143static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
144 int offset)
145{
146 return test_bit(offset, node->tags[tag]);
147}
148
149static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
150{
151 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
152}
153
2fcd9005 154static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9
NP
155{
156 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
157}
158
159static inline void root_tag_clear_all(struct radix_tree_root *root)
160{
161 root->gfp_mask &= __GFP_BITS_MASK;
162}
163
164static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
165{
2fcd9005 166 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
643b52b9
NP
167}
168
7b60e9ad
MW
169static inline unsigned root_tags_get(struct radix_tree_root *root)
170{
171 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
172}
173
643b52b9
NP
174/*
175 * Returns 1 if any slot in the node has this tag set.
176 * Otherwise returns 0.
177 */
178static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
179{
2fcd9005 180 unsigned idx;
643b52b9
NP
181 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
182 if (node->tags[tag][idx])
183 return 1;
184 }
185 return 0;
186}
78c1d784
KK
187
188/**
189 * radix_tree_find_next_bit - find the next set bit in a memory region
190 *
191 * @addr: The address to base the search on
192 * @size: The bitmap size in bits
193 * @offset: The bitnumber to start searching at
194 *
195 * Unrollable variant of find_next_bit() for constant size arrays.
196 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
197 * Returns next bit offset, or size if nothing found.
198 */
199static __always_inline unsigned long
bc412fca
MW
200radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
201 unsigned long offset)
78c1d784 202{
bc412fca 203 const unsigned long *addr = node->tags[tag];
78c1d784 204
bc412fca 205 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
206 unsigned long tmp;
207
208 addr += offset / BITS_PER_LONG;
209 tmp = *addr >> (offset % BITS_PER_LONG);
210 if (tmp)
211 return __ffs(tmp) + offset;
212 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 213 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
214 tmp = *++addr;
215 if (tmp)
216 return __ffs(tmp) + offset;
217 offset += BITS_PER_LONG;
218 }
219 }
bc412fca 220 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
221}
222
268f42de
MW
223static unsigned int iter_offset(const struct radix_tree_iter *iter)
224{
225 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
226}
227
218ed750
MW
228/*
229 * The maximum index which can be stored in a radix tree
230 */
231static inline unsigned long shift_maxindex(unsigned int shift)
232{
233 return (RADIX_TREE_MAP_SIZE << shift) - 1;
234}
235
236static inline unsigned long node_maxindex(struct radix_tree_node *node)
237{
238 return shift_maxindex(node->shift);
239}
240
0796c583 241#ifndef __KERNEL__
d0891265 242static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 243{
0796c583 244 unsigned long i;
7cf19af4 245
218ed750
MW
246 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
247 node, node->offset, index, index | node_maxindex(node),
248 node->parent,
0796c583 249 node->tags[0][0], node->tags[1][0], node->tags[2][0],
218ed750 250 node->shift, node->count, node->exceptional);
0796c583
RZ
251
252 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
253 unsigned long first = index | (i << node->shift);
254 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
255 void *entry = node->slots[i];
256 if (!entry)
257 continue;
218ed750
MW
258 if (entry == RADIX_TREE_RETRY) {
259 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
260 i, first, last, node);
b194d16c 261 } else if (!radix_tree_is_internal_node(entry)) {
218ed750
MW
262 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
263 entry, i, first, last, node);
264 } else if (is_sibling_entry(node, entry)) {
265 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
266 entry, i, first, last, node,
267 *(void **)entry_to_node(entry));
0796c583 268 } else {
4dd6c098 269 dump_node(entry_to_node(entry), first);
0796c583
RZ
270 }
271 }
7cf19af4
MW
272}
273
274/* For debug */
275static void radix_tree_dump(struct radix_tree_root *root)
276{
d0891265
MW
277 pr_debug("radix root: %p rnode %p tags %x\n",
278 root, root->rnode,
7cf19af4 279 root->gfp_mask >> __GFP_BITS_SHIFT);
b194d16c 280 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 281 return;
4dd6c098 282 dump_node(entry_to_node(root->rnode), 0);
7cf19af4
MW
283}
284#endif
285
1da177e4
LT
286/*
287 * This assumes that the caller has performed appropriate preallocation, and
288 * that the caller has pinned this thread of control to the current CPU.
289 */
290static struct radix_tree_node *
291radix_tree_node_alloc(struct radix_tree_root *root)
292{
e2848a0e 293 struct radix_tree_node *ret = NULL;
612d6c19 294 gfp_t gfp_mask = root_gfp_mask(root);
1da177e4 295
5e4c0d97 296 /*
2fcd9005
MW
297 * Preload code isn't irq safe and it doesn't make sense to use
298 * preloading during an interrupt anyway as all the allocations have
299 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 300 */
d0164adc 301 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
302 struct radix_tree_preload *rtp;
303
58e698af
VD
304 /*
305 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
306 * cache first for the new node to get accounted to the memory
307 * cgroup.
58e698af
VD
308 */
309 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 310 gfp_mask | __GFP_NOWARN);
58e698af
VD
311 if (ret)
312 goto out;
313
e2848a0e
NP
314 /*
315 * Provided the caller has preloaded here, we will always
316 * succeed in getting a node here (and never reach
317 * kmem_cache_alloc)
318 */
7c8e0181 319 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 320 if (rtp->nr) {
9d2a8da0
KS
321 ret = rtp->nodes;
322 rtp->nodes = ret->private_data;
323 ret->private_data = NULL;
1da177e4
LT
324 rtp->nr--;
325 }
ce80b067
CM
326 /*
327 * Update the allocation stack trace as this is more useful
328 * for debugging.
329 */
330 kmemleak_update_trace(ret);
58e698af 331 goto out;
1da177e4 332 }
05eb6e72 333 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 334out:
b194d16c 335 BUG_ON(radix_tree_is_internal_node(ret));
1da177e4
LT
336 return ret;
337}
338
7cf9c2c7
NP
339static void radix_tree_node_rcu_free(struct rcu_head *head)
340{
341 struct radix_tree_node *node =
342 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
343
344 /*
175542f5
MW
345 * Must only free zeroed nodes into the slab. We can be left with
346 * non-NULL entries by radix_tree_free_nodes, so clear the entries
347 * and tags here.
643b52b9 348 */
175542f5
MW
349 memset(node->slots, 0, sizeof(node->slots));
350 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 351 INIT_LIST_HEAD(&node->private_list);
643b52b9 352
7cf9c2c7
NP
353 kmem_cache_free(radix_tree_node_cachep, node);
354}
355
1da177e4
LT
356static inline void
357radix_tree_node_free(struct radix_tree_node *node)
358{
7cf9c2c7 359 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
360}
361
362/*
363 * Load up this CPU's radix_tree_node buffer with sufficient objects to
364 * ensure that the addition of a single element in the tree cannot fail. On
365 * success, return zero, with preemption disabled. On error, return -ENOMEM
366 * with preemption not disabled.
b34df792
DH
367 *
368 * To make use of this facility, the radix tree must be initialised without
d0164adc 369 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 370 */
2791653a 371static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
1da177e4
LT
372{
373 struct radix_tree_preload *rtp;
374 struct radix_tree_node *node;
375 int ret = -ENOMEM;
376
05eb6e72
VD
377 /*
378 * Nodes preloaded by one cgroup can be be used by another cgroup, so
379 * they should never be accounted to any particular memory cgroup.
380 */
381 gfp_mask &= ~__GFP_ACCOUNT;
382
1da177e4 383 preempt_disable();
7c8e0181 384 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 385 while (rtp->nr < nr) {
1da177e4 386 preempt_enable();
488514d1 387 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
388 if (node == NULL)
389 goto out;
390 preempt_disable();
7c8e0181 391 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 392 if (rtp->nr < nr) {
9d2a8da0
KS
393 node->private_data = rtp->nodes;
394 rtp->nodes = node;
395 rtp->nr++;
396 } else {
1da177e4 397 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 398 }
1da177e4
LT
399 }
400 ret = 0;
401out:
402 return ret;
403}
5e4c0d97
JK
404
405/*
406 * Load up this CPU's radix_tree_node buffer with sufficient objects to
407 * ensure that the addition of a single element in the tree cannot fail. On
408 * success, return zero, with preemption disabled. On error, return -ENOMEM
409 * with preemption not disabled.
410 *
411 * To make use of this facility, the radix tree must be initialised without
d0164adc 412 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
413 */
414int radix_tree_preload(gfp_t gfp_mask)
415{
416 /* Warn on non-sensical use... */
d0164adc 417 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 418 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 419}
d7f0923d 420EXPORT_SYMBOL(radix_tree_preload);
1da177e4 421
5e4c0d97
JK
422/*
423 * The same as above function, except we don't guarantee preloading happens.
424 * We do it, if we decide it helps. On success, return zero with preemption
425 * disabled. On error, return -ENOMEM with preemption not disabled.
426 */
427int radix_tree_maybe_preload(gfp_t gfp_mask)
428{
d0164adc 429 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 430 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
431 /* Preloading doesn't help anything with this gfp mask, skip it */
432 preempt_disable();
433 return 0;
434}
435EXPORT_SYMBOL(radix_tree_maybe_preload);
436
2791653a
MW
437#ifdef CONFIG_RADIX_TREE_MULTIORDER
438/*
439 * Preload with enough objects to ensure that we can split a single entry
440 * of order @old_order into many entries of size @new_order
441 */
442int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
443 gfp_t gfp_mask)
444{
445 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
446 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
447 (new_order / RADIX_TREE_MAP_SHIFT);
448 unsigned nr = 0;
449
450 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
451 BUG_ON(new_order >= old_order);
452
453 while (layers--)
454 nr = nr * RADIX_TREE_MAP_SIZE + 1;
455 return __radix_tree_preload(gfp_mask, top * nr);
456}
457#endif
458
c78c66d1
KS
459/*
460 * The same as function above, but preload number of nodes required to insert
461 * (1 << order) continuous naturally-aligned elements.
462 */
463int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
464{
465 unsigned long nr_subtrees;
466 int nr_nodes, subtree_height;
467
468 /* Preloading doesn't help anything with this gfp mask, skip it */
469 if (!gfpflags_allow_blocking(gfp_mask)) {
470 preempt_disable();
471 return 0;
472 }
473
474 /*
475 * Calculate number and height of fully populated subtrees it takes to
476 * store (1 << order) elements.
477 */
478 nr_subtrees = 1 << order;
479 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
480 subtree_height++)
481 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
482
483 /*
484 * The worst case is zero height tree with a single item at index 0 and
485 * then inserting items starting at ULONG_MAX - (1 << order).
486 *
487 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
488 * 0-index item.
489 */
490 nr_nodes = RADIX_TREE_MAX_PATH;
491
492 /* Plus branch to fully populated subtrees. */
493 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
494
495 /* Root node is shared. */
496 nr_nodes--;
497
498 /* Plus nodes required to build subtrees. */
499 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
500
501 return __radix_tree_preload(gfp_mask, nr_nodes);
502}
503
1456a439
MW
504static unsigned radix_tree_load_root(struct radix_tree_root *root,
505 struct radix_tree_node **nodep, unsigned long *maxindex)
506{
507 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
508
509 *nodep = node;
510
b194d16c 511 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 512 node = entry_to_node(node);
1456a439 513 *maxindex = node_maxindex(node);
c12e51b0 514 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
515 }
516
517 *maxindex = 0;
518 return 0;
519}
520
1da177e4
LT
521/*
522 * Extend a radix tree so it can store key @index.
523 */
e6145236 524static int radix_tree_extend(struct radix_tree_root *root,
d0891265 525 unsigned long index, unsigned int shift)
1da177e4 526{
e2bdb933 527 struct radix_tree_node *slot;
d0891265 528 unsigned int maxshift;
1da177e4
LT
529 int tag;
530
d0891265
MW
531 /* Figure out what the shift should be. */
532 maxshift = shift;
533 while (index > shift_maxindex(maxshift))
534 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 535
d0891265
MW
536 slot = root->rnode;
537 if (!slot)
1da177e4 538 goto out;
1da177e4 539
1da177e4 540 do {
2fcd9005
MW
541 struct radix_tree_node *node = radix_tree_node_alloc(root);
542
543 if (!node)
1da177e4
LT
544 return -ENOMEM;
545
1da177e4 546 /* Propagate the aggregated tag info into the new root */
daff89f3 547 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
612d6c19 548 if (root_tag_get(root, tag))
1da177e4
LT
549 tag_set(node, tag, 0);
550 }
551
d0891265
MW
552 BUG_ON(shift > BITS_PER_LONG);
553 node->shift = shift;
0c7fa0a8 554 node->offset = 0;
1da177e4 555 node->count = 1;
e2bdb933 556 node->parent = NULL;
f7942430 557 if (radix_tree_is_internal_node(slot)) {
4dd6c098 558 entry_to_node(slot)->parent = node;
f7942430
JW
559 } else {
560 /* Moving an exceptional root->rnode to a node */
561 if (radix_tree_exceptional_entry(slot))
562 node->exceptional = 1;
563 }
e2bdb933 564 node->slots[0] = slot;
a4db4dce
MW
565 slot = node_to_entry(node);
566 rcu_assign_pointer(root->rnode, slot);
d0891265 567 shift += RADIX_TREE_MAP_SHIFT;
d0891265 568 } while (shift <= maxshift);
1da177e4 569out:
d0891265 570 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
571}
572
f4b109c6
JW
573/**
574 * radix_tree_shrink - shrink radix tree to minimum height
575 * @root radix tree root
576 */
14b46879 577static inline void radix_tree_shrink(struct radix_tree_root *root,
4d693d08
JW
578 radix_tree_update_node_t update_node,
579 void *private)
f4b109c6 580{
f4b109c6
JW
581 for (;;) {
582 struct radix_tree_node *node = root->rnode;
583 struct radix_tree_node *child;
584
585 if (!radix_tree_is_internal_node(node))
586 break;
587 node = entry_to_node(node);
588
589 /*
590 * The candidate node has more than one child, or its child
591 * is not at the leftmost slot, or the child is a multiorder
592 * entry, we cannot shrink.
593 */
594 if (node->count != 1)
595 break;
596 child = node->slots[0];
597 if (!child)
598 break;
599 if (!radix_tree_is_internal_node(child) && node->shift)
600 break;
601
602 if (radix_tree_is_internal_node(child))
603 entry_to_node(child)->parent = NULL;
604
605 /*
606 * We don't need rcu_assign_pointer(), since we are simply
607 * moving the node from one part of the tree to another: if it
608 * was safe to dereference the old pointer to it
609 * (node->slots[0]), it will be safe to dereference the new
610 * one (root->rnode) as far as dependent read barriers go.
611 */
612 root->rnode = child;
613
614 /*
615 * We have a dilemma here. The node's slot[0] must not be
616 * NULLed in case there are concurrent lookups expecting to
617 * find the item. However if this was a bottom-level node,
618 * then it may be subject to the slot pointer being visible
619 * to callers dereferencing it. If item corresponding to
620 * slot[0] is subsequently deleted, these callers would expect
621 * their slot to become empty sooner or later.
622 *
623 * For example, lockless pagecache will look up a slot, deref
624 * the page pointer, and if the page has 0 refcount it means it
625 * was concurrently deleted from pagecache so try the deref
626 * again. Fortunately there is already a requirement for logic
627 * to retry the entire slot lookup -- the indirect pointer
628 * problem (replacing direct root node with an indirect pointer
629 * also results in a stale slot). So tag the slot as indirect
630 * to force callers to retry.
631 */
4d693d08
JW
632 node->count = 0;
633 if (!radix_tree_is_internal_node(child)) {
f4b109c6 634 node->slots[0] = RADIX_TREE_RETRY;
4d693d08
JW
635 if (update_node)
636 update_node(node, private);
637 }
f4b109c6
JW
638
639 radix_tree_node_free(node);
f4b109c6 640 }
f4b109c6
JW
641}
642
14b46879 643static void delete_node(struct radix_tree_root *root,
4d693d08
JW
644 struct radix_tree_node *node,
645 radix_tree_update_node_t update_node, void *private)
f4b109c6 646{
f4b109c6
JW
647 do {
648 struct radix_tree_node *parent;
649
650 if (node->count) {
651 if (node == entry_to_node(root->rnode))
14b46879
JW
652 radix_tree_shrink(root, update_node, private);
653 return;
f4b109c6
JW
654 }
655
656 parent = node->parent;
657 if (parent) {
658 parent->slots[node->offset] = NULL;
659 parent->count--;
660 } else {
661 root_tag_clear_all(root);
662 root->rnode = NULL;
663 }
664
665 radix_tree_node_free(node);
f4b109c6
JW
666
667 node = parent;
668 } while (node);
f4b109c6
JW
669}
670
1da177e4 671/**
139e5616 672 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
673 * @root: radix tree root
674 * @index: index key
e6145236 675 * @order: index occupies 2^order aligned slots
139e5616
JW
676 * @nodep: returns node
677 * @slotp: returns slot
1da177e4 678 *
139e5616
JW
679 * Create, if necessary, and return the node and slot for an item
680 * at position @index in the radix tree @root.
681 *
682 * Until there is more than one item in the tree, no nodes are
683 * allocated and @root->rnode is used as a direct slot instead of
684 * pointing to a node, in which case *@nodep will be NULL.
685 *
686 * Returns -ENOMEM, or 0 for success.
1da177e4 687 */
139e5616 688int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
689 unsigned order, struct radix_tree_node **nodep,
690 void ***slotp)
1da177e4 691{
89148aa4
MW
692 struct radix_tree_node *node = NULL, *child;
693 void **slot = (void **)&root->rnode;
49ea6ebc 694 unsigned long maxindex;
89148aa4 695 unsigned int shift, offset = 0;
49ea6ebc
MW
696 unsigned long max = index | ((1UL << order) - 1);
697
89148aa4 698 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
699
700 /* Make sure the tree is high enough. */
175542f5
MW
701 if (order > 0 && max == ((1UL << order) - 1))
702 max++;
49ea6ebc 703 if (max > maxindex) {
d0891265 704 int error = radix_tree_extend(root, max, shift);
49ea6ebc 705 if (error < 0)
1da177e4 706 return error;
49ea6ebc 707 shift = error;
89148aa4 708 child = root->rnode;
1da177e4
LT
709 }
710
e6145236 711 while (shift > order) {
c12e51b0 712 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 713 if (child == NULL) {
1da177e4 714 /* Have to add a child node. */
89148aa4
MW
715 child = radix_tree_node_alloc(root);
716 if (!child)
1da177e4 717 return -ENOMEM;
89148aa4
MW
718 child->shift = shift;
719 child->offset = offset;
175542f5
MW
720 child->count = 0;
721 child->exceptional = 0;
89148aa4
MW
722 child->parent = node;
723 rcu_assign_pointer(*slot, node_to_entry(child));
724 if (node)
1da177e4 725 node->count++;
89148aa4 726 } else if (!radix_tree_is_internal_node(child))
e6145236 727 break;
1da177e4
LT
728
729 /* Go a level down */
89148aa4 730 node = entry_to_node(child);
9e85d811 731 offset = radix_tree_descend(node, &child, index);
89148aa4 732 slot = &node->slots[offset];
e6145236
MW
733 }
734
175542f5
MW
735 if (nodep)
736 *nodep = node;
737 if (slotp)
738 *slotp = slot;
739 return 0;
740}
741
57578c2e 742#ifdef CONFIG_RADIX_TREE_MULTIORDER
175542f5
MW
743/*
744 * Free any nodes below this node. The tree is presumed to not need
745 * shrinking, and any user data in the tree is presumed to not need a
746 * destructor called on it. If we need to add a destructor, we can
747 * add that functionality later. Note that we may not clear tags or
748 * slots from the tree as an RCU walker may still have a pointer into
749 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
750 * but we'll still have to clear those in rcu_free.
751 */
752static void radix_tree_free_nodes(struct radix_tree_node *node)
753{
754 unsigned offset = 0;
755 struct radix_tree_node *child = entry_to_node(node);
756
757 for (;;) {
758 void *entry = child->slots[offset];
759 if (radix_tree_is_internal_node(entry) &&
760 !is_sibling_entry(child, entry)) {
761 child = entry_to_node(entry);
762 offset = 0;
763 continue;
764 }
765 offset++;
766 while (offset == RADIX_TREE_MAP_SIZE) {
767 struct radix_tree_node *old = child;
768 offset = child->offset + 1;
769 child = child->parent;
770 radix_tree_node_free(old);
771 if (old == entry_to_node(node))
772 return;
773 }
774 }
775}
776
777static inline int insert_entries(struct radix_tree_node *node, void **slot,
778 void *item, unsigned order, bool replace)
779{
780 struct radix_tree_node *child;
781 unsigned i, n, tag, offset, tags = 0;
782
783 if (node) {
e157b555
MW
784 if (order > node->shift)
785 n = 1 << (order - node->shift);
786 else
787 n = 1;
175542f5
MW
788 offset = get_slot_offset(node, slot);
789 } else {
790 n = 1;
791 offset = 0;
792 }
793
794 if (n > 1) {
e6145236 795 offset = offset & ~(n - 1);
89148aa4 796 slot = &node->slots[offset];
175542f5
MW
797 }
798 child = node_to_entry(slot);
799
800 for (i = 0; i < n; i++) {
801 if (slot[i]) {
802 if (replace) {
803 node->count--;
804 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
805 if (tag_get(node, tag, offset + i))
806 tags |= 1 << tag;
807 } else
e6145236
MW
808 return -EEXIST;
809 }
175542f5 810 }
e6145236 811
175542f5
MW
812 for (i = 0; i < n; i++) {
813 struct radix_tree_node *old = slot[i];
814 if (i) {
89148aa4 815 rcu_assign_pointer(slot[i], child);
175542f5
MW
816 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
817 if (tags & (1 << tag))
818 tag_clear(node, tag, offset + i);
819 } else {
820 rcu_assign_pointer(slot[i], item);
821 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
822 if (tags & (1 << tag))
823 tag_set(node, tag, offset);
e6145236 824 }
175542f5 825 if (radix_tree_is_internal_node(old) &&
e157b555
MW
826 !is_sibling_entry(node, old) &&
827 (old != RADIX_TREE_RETRY))
175542f5
MW
828 radix_tree_free_nodes(old);
829 if (radix_tree_exceptional_entry(old))
830 node->exceptional--;
612d6c19 831 }
175542f5
MW
832 if (node) {
833 node->count += n;
834 if (radix_tree_exceptional_entry(item))
835 node->exceptional += n;
836 }
837 return n;
139e5616 838}
175542f5
MW
839#else
840static inline int insert_entries(struct radix_tree_node *node, void **slot,
841 void *item, unsigned order, bool replace)
842{
843 if (*slot)
844 return -EEXIST;
845 rcu_assign_pointer(*slot, item);
846 if (node) {
847 node->count++;
848 if (radix_tree_exceptional_entry(item))
849 node->exceptional++;
850 }
851 return 1;
852}
853#endif
139e5616
JW
854
855/**
e6145236 856 * __radix_tree_insert - insert into a radix tree
139e5616
JW
857 * @root: radix tree root
858 * @index: index key
e6145236 859 * @order: key covers the 2^order indices around index
139e5616
JW
860 * @item: item to insert
861 *
862 * Insert an item into the radix tree at position @index.
863 */
e6145236
MW
864int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
865 unsigned order, void *item)
139e5616
JW
866{
867 struct radix_tree_node *node;
868 void **slot;
869 int error;
870
b194d16c 871 BUG_ON(radix_tree_is_internal_node(item));
139e5616 872
e6145236 873 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
874 if (error)
875 return error;
175542f5
MW
876
877 error = insert_entries(node, slot, item, order, false);
878 if (error < 0)
879 return error;
201b6264 880
612d6c19 881 if (node) {
7b60e9ad 882 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
883 BUG_ON(tag_get(node, 0, offset));
884 BUG_ON(tag_get(node, 1, offset));
885 BUG_ON(tag_get(node, 2, offset));
612d6c19 886 } else {
7b60e9ad 887 BUG_ON(root_tags_get(root));
612d6c19 888 }
1da177e4 889
1da177e4
LT
890 return 0;
891}
e6145236 892EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 893
139e5616
JW
894/**
895 * __radix_tree_lookup - lookup an item in a radix tree
896 * @root: radix tree root
897 * @index: index key
898 * @nodep: returns node
899 * @slotp: returns slot
900 *
901 * Lookup and return the item at position @index in the radix
902 * tree @root.
903 *
904 * Until there is more than one item in the tree, no nodes are
905 * allocated and @root->rnode is used as a direct slot instead of
906 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 907 */
139e5616
JW
908void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
909 struct radix_tree_node **nodep, void ***slotp)
1da177e4 910{
139e5616 911 struct radix_tree_node *node, *parent;
85829954 912 unsigned long maxindex;
139e5616 913 void **slot;
612d6c19 914
85829954
MW
915 restart:
916 parent = NULL;
917 slot = (void **)&root->rnode;
9e85d811 918 radix_tree_load_root(root, &node, &maxindex);
85829954 919 if (index > maxindex)
1da177e4
LT
920 return NULL;
921
b194d16c 922 while (radix_tree_is_internal_node(node)) {
85829954 923 unsigned offset;
1da177e4 924
85829954
MW
925 if (node == RADIX_TREE_RETRY)
926 goto restart;
4dd6c098 927 parent = entry_to_node(node);
9e85d811 928 offset = radix_tree_descend(parent, &node, index);
85829954
MW
929 slot = parent->slots + offset;
930 }
1da177e4 931
139e5616
JW
932 if (nodep)
933 *nodep = parent;
934 if (slotp)
935 *slotp = slot;
936 return node;
b72b71c6
HS
937}
938
939/**
940 * radix_tree_lookup_slot - lookup a slot in a radix tree
941 * @root: radix tree root
942 * @index: index key
943 *
944 * Returns: the slot corresponding to the position @index in the
945 * radix tree @root. This is useful for update-if-exists operations.
946 *
947 * This function can be called under rcu_read_lock iff the slot is not
948 * modified by radix_tree_replace_slot, otherwise it must be called
949 * exclusive from other writers. Any dereference of the slot must be done
950 * using radix_tree_deref_slot.
951 */
952void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
953{
139e5616
JW
954 void **slot;
955
956 if (!__radix_tree_lookup(root, index, NULL, &slot))
957 return NULL;
958 return slot;
a4331366 959}
a4331366
HR
960EXPORT_SYMBOL(radix_tree_lookup_slot);
961
962/**
963 * radix_tree_lookup - perform lookup operation on a radix tree
964 * @root: radix tree root
965 * @index: index key
966 *
967 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
968 *
969 * This function can be called under rcu_read_lock, however the caller
970 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
971 * them safely). No RCU barriers are required to access or modify the
972 * returned item, however.
a4331366
HR
973 */
974void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
975{
139e5616 976 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
977}
978EXPORT_SYMBOL(radix_tree_lookup);
979
6d75f366
JW
980static void replace_slot(struct radix_tree_root *root,
981 struct radix_tree_node *node,
982 void **slot, void *item,
983 bool warn_typeswitch)
f7942430
JW
984{
985 void *old = rcu_dereference_raw(*slot);
f4b109c6 986 int count, exceptional;
f7942430
JW
987
988 WARN_ON_ONCE(radix_tree_is_internal_node(item));
f7942430 989
f4b109c6 990 count = !!item - !!old;
f7942430
JW
991 exceptional = !!radix_tree_exceptional_entry(item) -
992 !!radix_tree_exceptional_entry(old);
993
f4b109c6 994 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
f7942430 995
f4b109c6
JW
996 if (node) {
997 node->count += count;
f7942430 998 node->exceptional += exceptional;
f4b109c6 999 }
f7942430
JW
1000
1001 rcu_assign_pointer(*slot, item);
1002}
1003
6d75f366
JW
1004/**
1005 * __radix_tree_replace - replace item in a slot
4d693d08
JW
1006 * @root: radix tree root
1007 * @node: pointer to tree node
1008 * @slot: pointer to slot in @node
1009 * @item: new item to store in the slot.
1010 * @update_node: callback for changing leaf nodes
1011 * @private: private data to pass to @update_node
6d75f366
JW
1012 *
1013 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1014 * across slot lookup and replacement.
1015 */
1016void __radix_tree_replace(struct radix_tree_root *root,
1017 struct radix_tree_node *node,
4d693d08
JW
1018 void **slot, void *item,
1019 radix_tree_update_node_t update_node, void *private)
6d75f366
JW
1020{
1021 /*
f4b109c6
JW
1022 * This function supports replacing exceptional entries and
1023 * deleting entries, but that needs accounting against the
1024 * node unless the slot is root->rnode.
6d75f366
JW
1025 */
1026 replace_slot(root, node, slot, item,
1027 !node && slot != (void **)&root->rnode);
f4b109c6 1028
4d693d08
JW
1029 if (!node)
1030 return;
1031
1032 if (update_node)
1033 update_node(node, private);
1034
1035 delete_node(root, node, update_node, private);
6d75f366
JW
1036}
1037
1038/**
1039 * radix_tree_replace_slot - replace item in a slot
1040 * @root: radix tree root
1041 * @slot: pointer to slot
1042 * @item: new item to store in the slot.
1043 *
1044 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1045 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1046 * across slot lookup and replacement.
1047 *
1048 * NOTE: This cannot be used to switch between non-entries (empty slots),
1049 * regular entries, and exceptional entries, as that requires accounting
f4b109c6 1050 * inside the radix tree node. When switching from one type of entry or
e157b555
MW
1051 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1052 * radix_tree_iter_replace().
6d75f366
JW
1053 */
1054void radix_tree_replace_slot(struct radix_tree_root *root,
1055 void **slot, void *item)
1056{
1057 replace_slot(root, NULL, slot, item, true);
1058}
1059
e157b555
MW
1060/**
1061 * radix_tree_iter_replace - replace item in a slot
1062 * @root: radix tree root
1063 * @slot: pointer to slot
1064 * @item: new item to store in the slot.
1065 *
1066 * For use with radix_tree_split() and radix_tree_for_each_slot().
1067 * Caller must hold tree write locked across split and replacement.
1068 */
1069void radix_tree_iter_replace(struct radix_tree_root *root,
1070 const struct radix_tree_iter *iter, void **slot, void *item)
1071{
1072 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1073}
1074
175542f5
MW
1075#ifdef CONFIG_RADIX_TREE_MULTIORDER
1076/**
1077 * radix_tree_join - replace multiple entries with one multiorder entry
1078 * @root: radix tree root
1079 * @index: an index inside the new entry
1080 * @order: order of the new entry
1081 * @item: new entry
1082 *
1083 * Call this function to replace several entries with one larger entry.
1084 * The existing entries are presumed to not need freeing as a result of
1085 * this call.
1086 *
1087 * The replacement entry will have all the tags set on it that were set
1088 * on any of the entries it is replacing.
1089 */
1090int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1091 unsigned order, void *item)
1092{
1093 struct radix_tree_node *node;
1094 void **slot;
1095 int error;
1096
1097 BUG_ON(radix_tree_is_internal_node(item));
1098
1099 error = __radix_tree_create(root, index, order, &node, &slot);
1100 if (!error)
1101 error = insert_entries(node, slot, item, order, true);
1102 if (error > 0)
1103 error = 0;
1104
1105 return error;
1106}
e157b555
MW
1107
1108/**
1109 * radix_tree_split - Split an entry into smaller entries
1110 * @root: radix tree root
1111 * @index: An index within the large entry
1112 * @order: Order of new entries
1113 *
1114 * Call this function as the first step in replacing a multiorder entry
1115 * with several entries of lower order. After this function returns,
1116 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1117 * and call radix_tree_iter_replace() to set up each new entry.
1118 *
1119 * The tags from this entry are replicated to all the new entries.
1120 *
1121 * The radix tree should be locked against modification during the entire
1122 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1123 * should prompt RCU walkers to restart the lookup from the root.
1124 */
1125int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1126 unsigned order)
1127{
1128 struct radix_tree_node *parent, *node, *child;
1129 void **slot;
1130 unsigned int offset, end;
1131 unsigned n, tag, tags = 0;
1132
1133 if (!__radix_tree_lookup(root, index, &parent, &slot))
1134 return -ENOENT;
1135 if (!parent)
1136 return -ENOENT;
1137
1138 offset = get_slot_offset(parent, slot);
1139
1140 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1141 if (tag_get(parent, tag, offset))
1142 tags |= 1 << tag;
1143
1144 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1145 if (!is_sibling_entry(parent, parent->slots[end]))
1146 break;
1147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1148 if (tags & (1 << tag))
1149 tag_set(parent, tag, end);
1150 /* rcu_assign_pointer ensures tags are set before RETRY */
1151 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1152 }
1153 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1154 parent->exceptional -= (end - offset);
1155
1156 if (order == parent->shift)
1157 return 0;
1158 if (order > parent->shift) {
1159 while (offset < end)
1160 offset += insert_entries(parent, &parent->slots[offset],
1161 RADIX_TREE_RETRY, order, true);
1162 return 0;
1163 }
1164
1165 node = parent;
1166
1167 for (;;) {
1168 if (node->shift > order) {
1169 child = radix_tree_node_alloc(root);
1170 if (!child)
1171 goto nomem;
1172 child->shift = node->shift - RADIX_TREE_MAP_SHIFT;
1173 child->offset = offset;
1174 child->count = 0;
1175 child->parent = node;
1176 if (node != parent) {
1177 node->count++;
1178 node->slots[offset] = node_to_entry(child);
1179 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1180 if (tags & (1 << tag))
1181 tag_set(node, tag, offset);
1182 }
1183
1184 node = child;
1185 offset = 0;
1186 continue;
1187 }
1188
1189 n = insert_entries(node, &node->slots[offset],
1190 RADIX_TREE_RETRY, order, false);
1191 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1192
1193 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1194 if (tags & (1 << tag))
1195 tag_set(node, tag, offset);
1196 offset += n;
1197
1198 while (offset == RADIX_TREE_MAP_SIZE) {
1199 if (node == parent)
1200 break;
1201 offset = node->offset;
1202 child = node;
1203 node = node->parent;
1204 rcu_assign_pointer(node->slots[offset],
1205 node_to_entry(child));
1206 offset++;
1207 }
1208 if ((node == parent) && (offset == end))
1209 return 0;
1210 }
1211
1212 nomem:
1213 /* Shouldn't happen; did user forget to preload? */
1214 /* TODO: free all the allocated nodes */
1215 WARN_ON(1);
1216 return -ENOMEM;
1217}
175542f5
MW
1218#endif
1219
1da177e4
LT
1220/**
1221 * radix_tree_tag_set - set a tag on a radix tree node
1222 * @root: radix tree root
1223 * @index: index key
2fcd9005 1224 * @tag: tag index
1da177e4 1225 *
daff89f3
JC
1226 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1227 * corresponding to @index in the radix tree. From
1da177e4
LT
1228 * the root all the way down to the leaf node.
1229 *
2fcd9005 1230 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
1231 * item is a bug.
1232 */
1233void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 1234 unsigned long index, unsigned int tag)
1da177e4 1235{
fb969909
RZ
1236 struct radix_tree_node *node, *parent;
1237 unsigned long maxindex;
1da177e4 1238
9e85d811 1239 radix_tree_load_root(root, &node, &maxindex);
fb969909 1240 BUG_ON(index > maxindex);
1da177e4 1241
b194d16c 1242 while (radix_tree_is_internal_node(node)) {
fb969909 1243 unsigned offset;
1da177e4 1244
4dd6c098 1245 parent = entry_to_node(node);
9e85d811 1246 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
1247 BUG_ON(!node);
1248
1249 if (!tag_get(parent, tag, offset))
1250 tag_set(parent, tag, offset);
1da177e4
LT
1251 }
1252
612d6c19 1253 /* set the root's tag bit */
fb969909 1254 if (!root_tag_get(root, tag))
612d6c19
NP
1255 root_tag_set(root, tag);
1256
fb969909 1257 return node;
1da177e4
LT
1258}
1259EXPORT_SYMBOL(radix_tree_tag_set);
1260
d604c324
MW
1261static void node_tag_clear(struct radix_tree_root *root,
1262 struct radix_tree_node *node,
1263 unsigned int tag, unsigned int offset)
1264{
1265 while (node) {
1266 if (!tag_get(node, tag, offset))
1267 return;
1268 tag_clear(node, tag, offset);
1269 if (any_tag_set(node, tag))
1270 return;
1271
1272 offset = node->offset;
1273 node = node->parent;
1274 }
1275
1276 /* clear the root's tag bit */
1277 if (root_tag_get(root, tag))
1278 root_tag_clear(root, tag);
1279}
1280
9498d2bb
MW
1281static void node_tag_set(struct radix_tree_root *root,
1282 struct radix_tree_node *node,
1283 unsigned int tag, unsigned int offset)
1284{
1285 while (node) {
1286 if (tag_get(node, tag, offset))
1287 return;
1288 tag_set(node, tag, offset);
1289 offset = node->offset;
1290 node = node->parent;
1291 }
1292
1293 if (!root_tag_get(root, tag))
1294 root_tag_set(root, tag);
1295}
1296
268f42de
MW
1297/**
1298 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1299 * @root: radix tree root
1300 * @iter: iterator state
1301 * @tag: tag to set
1302 */
1303void radix_tree_iter_tag_set(struct radix_tree_root *root,
1304 const struct radix_tree_iter *iter, unsigned int tag)
1305{
1306 node_tag_set(root, iter->node, tag, iter_offset(iter));
1307}
1308
1da177e4
LT
1309/**
1310 * radix_tree_tag_clear - clear a tag on a radix tree node
1311 * @root: radix tree root
1312 * @index: index key
2fcd9005 1313 * @tag: tag index
1da177e4 1314 *
daff89f3 1315 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1316 * corresponding to @index in the radix tree. If this causes
1317 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1318 * next-to-leaf node, etc.
1319 *
1320 * Returns the address of the tagged item on success, else NULL. ie:
1321 * has the same return value and semantics as radix_tree_lookup().
1322 */
1323void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1324 unsigned long index, unsigned int tag)
1da177e4 1325{
00f47b58
RZ
1326 struct radix_tree_node *node, *parent;
1327 unsigned long maxindex;
e2bdb933 1328 int uninitialized_var(offset);
1da177e4 1329
9e85d811 1330 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1331 if (index > maxindex)
1332 return NULL;
1da177e4 1333
00f47b58 1334 parent = NULL;
1da177e4 1335
b194d16c 1336 while (radix_tree_is_internal_node(node)) {
4dd6c098 1337 parent = entry_to_node(node);
9e85d811 1338 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1339 }
1340
d604c324
MW
1341 if (node)
1342 node_tag_clear(root, parent, tag, offset);
1da177e4 1343
00f47b58 1344 return node;
1da177e4
LT
1345}
1346EXPORT_SYMBOL(radix_tree_tag_clear);
1347
1da177e4 1348/**
32605a18
MT
1349 * radix_tree_tag_get - get a tag on a radix tree node
1350 * @root: radix tree root
1351 * @index: index key
2fcd9005 1352 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1353 *
32605a18 1354 * Return values:
1da177e4 1355 *
612d6c19
NP
1356 * 0: tag not present or not set
1357 * 1: tag set
ce82653d
DH
1358 *
1359 * Note that the return value of this function may not be relied on, even if
1360 * the RCU lock is held, unless tag modification and node deletion are excluded
1361 * from concurrency.
1da177e4
LT
1362 */
1363int radix_tree_tag_get(struct radix_tree_root *root,
daff89f3 1364 unsigned long index, unsigned int tag)
1da177e4 1365{
4589ba6d
RZ
1366 struct radix_tree_node *node, *parent;
1367 unsigned long maxindex;
1da177e4 1368
612d6c19
NP
1369 if (!root_tag_get(root, tag))
1370 return 0;
1371
9e85d811 1372 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1373 if (index > maxindex)
1374 return 0;
7cf9c2c7
NP
1375 if (node == NULL)
1376 return 0;
1377
b194d16c 1378 while (radix_tree_is_internal_node(node)) {
9e85d811 1379 unsigned offset;
1da177e4 1380
4dd6c098 1381 parent = entry_to_node(node);
9e85d811 1382 offset = radix_tree_descend(parent, &node, index);
1da177e4 1383
4589ba6d 1384 if (!node)
1da177e4 1385 return 0;
4589ba6d 1386 if (!tag_get(parent, tag, offset))
3fa36acb 1387 return 0;
4589ba6d
RZ
1388 if (node == RADIX_TREE_RETRY)
1389 break;
1da177e4 1390 }
4589ba6d
RZ
1391
1392 return 1;
1da177e4
LT
1393}
1394EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1395
21ef5339
RZ
1396static inline void __set_iter_shift(struct radix_tree_iter *iter,
1397 unsigned int shift)
1398{
1399#ifdef CONFIG_RADIX_TREE_MULTIORDER
1400 iter->shift = shift;
1401#endif
1402}
1403
148deab2
MW
1404/* Construct iter->tags bit-mask from node->tags[tag] array */
1405static void set_iter_tags(struct radix_tree_iter *iter,
1406 struct radix_tree_node *node, unsigned offset,
1407 unsigned tag)
1408{
1409 unsigned tag_long = offset / BITS_PER_LONG;
1410 unsigned tag_bit = offset % BITS_PER_LONG;
1411
1412 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1413
1414 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1415 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1416 /* Pick tags from next element */
1417 if (tag_bit)
1418 iter->tags |= node->tags[tag][tag_long + 1] <<
1419 (BITS_PER_LONG - tag_bit);
1420 /* Clip chunk size, here only BITS_PER_LONG tags */
1421 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1422 }
1423}
1424
1425#ifdef CONFIG_RADIX_TREE_MULTIORDER
1426static void **skip_siblings(struct radix_tree_node **nodep,
1427 void **slot, struct radix_tree_iter *iter)
1428{
1429 void *sib = node_to_entry(slot - 1);
1430
1431 while (iter->index < iter->next_index) {
1432 *nodep = rcu_dereference_raw(*slot);
1433 if (*nodep && *nodep != sib)
1434 return slot;
1435 slot++;
1436 iter->index = __radix_tree_iter_add(iter, 1);
1437 iter->tags >>= 1;
1438 }
1439
1440 *nodep = NULL;
1441 return NULL;
1442}
1443
1444void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1445 unsigned flags)
1446{
1447 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1448 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1449
1450 slot = skip_siblings(&node, slot, iter);
1451
1452 while (radix_tree_is_internal_node(node)) {
1453 unsigned offset;
1454 unsigned long next_index;
1455
1456 if (node == RADIX_TREE_RETRY)
1457 return slot;
1458 node = entry_to_node(node);
268f42de 1459 iter->node = node;
148deab2
MW
1460 iter->shift = node->shift;
1461
1462 if (flags & RADIX_TREE_ITER_TAGGED) {
1463 offset = radix_tree_find_next_bit(node, tag, 0);
1464 if (offset == RADIX_TREE_MAP_SIZE)
1465 return NULL;
1466 slot = &node->slots[offset];
1467 iter->index = __radix_tree_iter_add(iter, offset);
1468 set_iter_tags(iter, node, offset, tag);
1469 node = rcu_dereference_raw(*slot);
1470 } else {
1471 offset = 0;
1472 slot = &node->slots[0];
1473 for (;;) {
1474 node = rcu_dereference_raw(*slot);
1475 if (node)
1476 break;
1477 slot++;
1478 offset++;
1479 if (offset == RADIX_TREE_MAP_SIZE)
1480 return NULL;
1481 }
1482 iter->index = __radix_tree_iter_add(iter, offset);
1483 }
1484 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1485 goto none;
1486 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1487 if (next_index < iter->next_index)
1488 iter->next_index = next_index;
1489 }
1490
1491 return slot;
1492 none:
1493 iter->next_index = 0;
1494 return NULL;
1495}
1496EXPORT_SYMBOL(__radix_tree_next_slot);
1497#else
1498static void **skip_siblings(struct radix_tree_node **nodep,
1499 void **slot, struct radix_tree_iter *iter)
1500{
1501 return slot;
1502}
1503#endif
1504
1505void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1506{
1507 struct radix_tree_node *node;
1508
1509 slot++;
1510 iter->index = __radix_tree_iter_add(iter, 1);
1511 node = rcu_dereference_raw(*slot);
1512 skip_siblings(&node, slot, iter);
1513 iter->next_index = iter->index;
1514 iter->tags = 0;
1515 return NULL;
1516}
1517EXPORT_SYMBOL(radix_tree_iter_resume);
1518
78c1d784
KK
1519/**
1520 * radix_tree_next_chunk - find next chunk of slots for iteration
1521 *
1522 * @root: radix tree root
1523 * @iter: iterator state
1524 * @flags: RADIX_TREE_ITER_* flags and tag index
1525 * Returns: pointer to chunk first slot, or NULL if iteration is over
1526 */
1527void **radix_tree_next_chunk(struct radix_tree_root *root,
1528 struct radix_tree_iter *iter, unsigned flags)
1529{
9e85d811 1530 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1531 struct radix_tree_node *node, *child;
21ef5339 1532 unsigned long index, offset, maxindex;
78c1d784
KK
1533
1534 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1535 return NULL;
1536
1537 /*
1538 * Catch next_index overflow after ~0UL. iter->index never overflows
1539 * during iterating; it can be zero only at the beginning.
1540 * And we cannot overflow iter->next_index in a single step,
1541 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1542 *
1543 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1544 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1545 */
1546 index = iter->next_index;
1547 if (!index && iter->index)
1548 return NULL;
1549
21ef5339 1550 restart:
9e85d811 1551 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1552 if (index > maxindex)
1553 return NULL;
8c1244de
MW
1554 if (!child)
1555 return NULL;
21ef5339 1556
8c1244de 1557 if (!radix_tree_is_internal_node(child)) {
78c1d784 1558 /* Single-slot tree */
21ef5339
RZ
1559 iter->index = index;
1560 iter->next_index = maxindex + 1;
78c1d784 1561 iter->tags = 1;
268f42de 1562 iter->node = NULL;
8c1244de 1563 __set_iter_shift(iter, 0);
78c1d784 1564 return (void **)&root->rnode;
8c1244de 1565 }
21ef5339 1566
8c1244de
MW
1567 do {
1568 node = entry_to_node(child);
9e85d811 1569 offset = radix_tree_descend(node, &child, index);
21ef5339 1570
78c1d784 1571 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1572 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1573 /* Hole detected */
1574 if (flags & RADIX_TREE_ITER_CONTIG)
1575 return NULL;
1576
1577 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1578 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1579 offset + 1);
1580 else
1581 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
1582 void *slot = node->slots[offset];
1583 if (is_sibling_entry(node, slot))
1584 continue;
1585 if (slot)
78c1d784
KK
1586 break;
1587 }
8c1244de 1588 index &= ~node_maxindex(node);
9e85d811 1589 index += offset << node->shift;
78c1d784
KK
1590 /* Overflow after ~0UL */
1591 if (!index)
1592 return NULL;
1593 if (offset == RADIX_TREE_MAP_SIZE)
1594 goto restart;
8c1244de 1595 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1596 }
1597
e157b555 1598 if (!child)
78c1d784 1599 goto restart;
e157b555
MW
1600 if (child == RADIX_TREE_RETRY)
1601 break;
8c1244de 1602 } while (radix_tree_is_internal_node(child));
78c1d784
KK
1603
1604 /* Update the iterator state */
8c1244de
MW
1605 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1606 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1607 iter->node = node;
9e85d811 1608 __set_iter_shift(iter, node->shift);
78c1d784 1609
148deab2
MW
1610 if (flags & RADIX_TREE_ITER_TAGGED)
1611 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1612
1613 return node->slots + offset;
1614}
1615EXPORT_SYMBOL(radix_tree_next_chunk);
1616
1da177e4
LT
1617/**
1618 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1619 * @root: radix tree root
1620 * @results: where the results of the lookup are placed
1621 * @first_index: start the lookup from this key
1622 * @max_items: place up to this many items at *results
1623 *
1624 * Performs an index-ascending scan of the tree for present items. Places
1625 * them at *@results and returns the number of items which were placed at
1626 * *@results.
1627 *
1628 * The implementation is naive.
7cf9c2c7
NP
1629 *
1630 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1631 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1632 * an atomic snapshot of the tree at a single point in time, the
1633 * semantics of an RCU protected gang lookup are as though multiple
1634 * radix_tree_lookups have been issued in individual locks, and results
1635 * stored in 'results'.
1da177e4
LT
1636 */
1637unsigned int
1638radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1639 unsigned long first_index, unsigned int max_items)
1640{
cebbd29e
KK
1641 struct radix_tree_iter iter;
1642 void **slot;
1643 unsigned int ret = 0;
7cf9c2c7 1644
cebbd29e 1645 if (unlikely(!max_items))
7cf9c2c7 1646 return 0;
1da177e4 1647
cebbd29e 1648 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1649 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1650 if (!results[ret])
1651 continue;
b194d16c 1652 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1653 slot = radix_tree_iter_retry(&iter);
1654 continue;
1655 }
cebbd29e 1656 if (++ret == max_items)
1da177e4 1657 break;
1da177e4 1658 }
7cf9c2c7 1659
1da177e4
LT
1660 return ret;
1661}
1662EXPORT_SYMBOL(radix_tree_gang_lookup);
1663
47feff2c
NP
1664/**
1665 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1666 * @root: radix tree root
1667 * @results: where the results of the lookup are placed
6328650b 1668 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1669 * @first_index: start the lookup from this key
1670 * @max_items: place up to this many items at *results
1671 *
1672 * Performs an index-ascending scan of the tree for present items. Places
1673 * their slots at *@results and returns the number of items which were
1674 * placed at *@results.
1675 *
1676 * The implementation is naive.
1677 *
1678 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1679 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1680 * protection, radix_tree_deref_slot may fail requiring a retry.
1681 */
1682unsigned int
6328650b
HD
1683radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1684 void ***results, unsigned long *indices,
47feff2c
NP
1685 unsigned long first_index, unsigned int max_items)
1686{
cebbd29e
KK
1687 struct radix_tree_iter iter;
1688 void **slot;
1689 unsigned int ret = 0;
47feff2c 1690
cebbd29e 1691 if (unlikely(!max_items))
47feff2c
NP
1692 return 0;
1693
cebbd29e
KK
1694 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1695 results[ret] = slot;
6328650b 1696 if (indices)
cebbd29e
KK
1697 indices[ret] = iter.index;
1698 if (++ret == max_items)
47feff2c 1699 break;
47feff2c
NP
1700 }
1701
1702 return ret;
1703}
1704EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1705
1da177e4
LT
1706/**
1707 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1708 * based on a tag
1709 * @root: radix tree root
1710 * @results: where the results of the lookup are placed
1711 * @first_index: start the lookup from this key
1712 * @max_items: place up to this many items at *results
daff89f3 1713 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1714 *
1715 * Performs an index-ascending scan of the tree for present items which
1716 * have the tag indexed by @tag set. Places the items at *@results and
1717 * returns the number of items which were placed at *@results.
1718 */
1719unsigned int
1720radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
daff89f3
JC
1721 unsigned long first_index, unsigned int max_items,
1722 unsigned int tag)
1da177e4 1723{
cebbd29e
KK
1724 struct radix_tree_iter iter;
1725 void **slot;
1726 unsigned int ret = 0;
612d6c19 1727
cebbd29e 1728 if (unlikely(!max_items))
7cf9c2c7
NP
1729 return 0;
1730
cebbd29e 1731 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1732 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1733 if (!results[ret])
1734 continue;
b194d16c 1735 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1736 slot = radix_tree_iter_retry(&iter);
1737 continue;
1738 }
cebbd29e 1739 if (++ret == max_items)
1da177e4 1740 break;
1da177e4 1741 }
7cf9c2c7 1742
1da177e4
LT
1743 return ret;
1744}
1745EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1746
47feff2c
NP
1747/**
1748 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1749 * radix tree based on a tag
1750 * @root: radix tree root
1751 * @results: where the results of the lookup are placed
1752 * @first_index: start the lookup from this key
1753 * @max_items: place up to this many items at *results
1754 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1755 *
1756 * Performs an index-ascending scan of the tree for present items which
1757 * have the tag indexed by @tag set. Places the slots at *@results and
1758 * returns the number of slots which were placed at *@results.
1759 */
1760unsigned int
1761radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1762 unsigned long first_index, unsigned int max_items,
1763 unsigned int tag)
1764{
cebbd29e
KK
1765 struct radix_tree_iter iter;
1766 void **slot;
1767 unsigned int ret = 0;
47feff2c 1768
cebbd29e 1769 if (unlikely(!max_items))
47feff2c
NP
1770 return 0;
1771
cebbd29e
KK
1772 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1773 results[ret] = slot;
1774 if (++ret == max_items)
47feff2c 1775 break;
47feff2c
NP
1776 }
1777
1778 return ret;
1779}
1780EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1781
139e5616
JW
1782/**
1783 * __radix_tree_delete_node - try to free node after clearing a slot
1784 * @root: radix tree root
139e5616
JW
1785 * @node: node containing @index
1786 *
1787 * After clearing the slot at @index in @node from radix tree
1788 * rooted at @root, call this function to attempt freeing the
1789 * node and shrinking the tree.
139e5616 1790 */
14b46879 1791void __radix_tree_delete_node(struct radix_tree_root *root,
139e5616
JW
1792 struct radix_tree_node *node)
1793{
14b46879 1794 delete_node(root, node, NULL, NULL);
139e5616
JW
1795}
1796
57578c2e
MW
1797static inline void delete_sibling_entries(struct radix_tree_node *node,
1798 void *ptr, unsigned offset)
1799{
1800#ifdef CONFIG_RADIX_TREE_MULTIORDER
1801 int i;
1802 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1803 if (node->slots[offset + i] != ptr)
1804 break;
1805 node->slots[offset + i] = NULL;
1806 node->count--;
1807 }
1808#endif
1809}
1810
1da177e4 1811/**
53c59f26 1812 * radix_tree_delete_item - delete an item from a radix tree
1da177e4
LT
1813 * @root: radix tree root
1814 * @index: index key
53c59f26 1815 * @item: expected item
1da177e4 1816 *
53c59f26 1817 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1818 *
53c59f26
JW
1819 * Returns the address of the deleted item, or NULL if it was not present
1820 * or the entry at the given @index was not @item.
1da177e4 1821 */
53c59f26
JW
1822void *radix_tree_delete_item(struct radix_tree_root *root,
1823 unsigned long index, void *item)
1da177e4 1824{
139e5616 1825 struct radix_tree_node *node;
57578c2e 1826 unsigned int offset;
139e5616
JW
1827 void **slot;
1828 void *entry;
d5274261 1829 int tag;
1da177e4 1830
139e5616
JW
1831 entry = __radix_tree_lookup(root, index, &node, &slot);
1832 if (!entry)
1833 return NULL;
1da177e4 1834
139e5616
JW
1835 if (item && entry != item)
1836 return NULL;
1837
1838 if (!node) {
612d6c19
NP
1839 root_tag_clear_all(root);
1840 root->rnode = NULL;
139e5616 1841 return entry;
612d6c19 1842 }
1da177e4 1843
29e0967c 1844 offset = get_slot_offset(node, slot);
53c59f26 1845
d604c324
MW
1846 /* Clear all tags associated with the item to be deleted. */
1847 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1848 node_tag_clear(root, node, tag, offset);
1da177e4 1849
a4db4dce 1850 delete_sibling_entries(node, node_to_entry(slot), offset);
4d693d08 1851 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
612d6c19 1852
139e5616 1853 return entry;
1da177e4 1854}
53c59f26
JW
1855EXPORT_SYMBOL(radix_tree_delete_item);
1856
1857/**
1858 * radix_tree_delete - delete an item from a radix tree
1859 * @root: radix tree root
1860 * @index: index key
1861 *
1862 * Remove the item at @index from the radix tree rooted at @root.
1863 *
1864 * Returns the address of the deleted item, or NULL if it was not present.
1865 */
1866void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1867{
1868 return radix_tree_delete_item(root, index, NULL);
1869}
1da177e4
LT
1870EXPORT_SYMBOL(radix_tree_delete);
1871
d3798ae8
JW
1872void radix_tree_clear_tags(struct radix_tree_root *root,
1873 struct radix_tree_node *node,
1874 void **slot)
d604c324 1875{
d604c324
MW
1876 if (node) {
1877 unsigned int tag, offset = get_slot_offset(node, slot);
1878 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1879 node_tag_clear(root, node, tag, offset);
1880 } else {
1881 /* Clear root node tags */
1882 root->gfp_mask &= __GFP_BITS_MASK;
1883 }
d604c324
MW
1884}
1885
1da177e4
LT
1886/**
1887 * radix_tree_tagged - test whether any items in the tree are tagged
1888 * @root: radix tree root
1889 * @tag: tag to test
1890 */
daff89f3 1891int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1da177e4 1892{
612d6c19 1893 return root_tag_get(root, tag);
1da177e4
LT
1894}
1895EXPORT_SYMBOL(radix_tree_tagged);
1896
1897static void
449dd698 1898radix_tree_node_ctor(void *arg)
1da177e4 1899{
449dd698
JW
1900 struct radix_tree_node *node = arg;
1901
1902 memset(node, 0, sizeof(*node));
1903 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1904}
1905
c78c66d1
KS
1906static __init unsigned long __maxindex(unsigned int height)
1907{
1908 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1909 int shift = RADIX_TREE_INDEX_BITS - width;
1910
1911 if (shift < 0)
1912 return ~0UL;
1913 if (shift >= BITS_PER_LONG)
1914 return 0UL;
1915 return ~0UL >> shift;
1916}
1917
1918static __init void radix_tree_init_maxnodes(void)
1919{
1920 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1921 unsigned int i, j;
1922
1923 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1924 height_to_maxindex[i] = __maxindex(i);
1925 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1926 for (j = i; j > 0; j--)
1927 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1928 }
1929}
1930
d544abd5 1931static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 1932{
2fcd9005
MW
1933 struct radix_tree_preload *rtp;
1934 struct radix_tree_node *node;
1935
1936 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
1937 rtp = &per_cpu(radix_tree_preloads, cpu);
1938 while (rtp->nr) {
1939 node = rtp->nodes;
1940 rtp->nodes = node->private_data;
1941 kmem_cache_free(radix_tree_node_cachep, node);
1942 rtp->nr--;
2fcd9005 1943 }
d544abd5 1944 return 0;
1da177e4 1945}
1da177e4
LT
1946
1947void __init radix_tree_init(void)
1948{
d544abd5 1949 int ret;
1da177e4
LT
1950 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1951 sizeof(struct radix_tree_node), 0,
488514d1
CL
1952 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1953 radix_tree_node_ctor);
c78c66d1 1954 radix_tree_init_maxnodes();
d544abd5
SAS
1955 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1956 NULL, radix_tree_cpu_dead);
1957 WARN_ON(ret < 0);
1da177e4 1958}