]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
powerpc: add dma_capable() to replace is_buffer_dma_capable()
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/module.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
1da177e4
LT
31
32#include <asm/io.h>
1da177e4 33#include <asm/dma.h>
17e5ad6c 34#include <asm/scatterlist.h>
1da177e4
LT
35
36#include <linux/init.h>
37#include <linux/bootmem.h>
a8522509 38#include <linux/iommu-helper.h>
1da177e4
LT
39
40#define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
42
0b9afede
AW
43#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
44
45/*
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
49 */
50#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
51
de69e0f0
JL
52/*
53 * Enumeration for sync targets
54 */
55enum dma_sync_target {
56 SYNC_FOR_CPU = 0,
57 SYNC_FOR_DEVICE = 1,
58};
59
1da177e4
LT
60int swiotlb_force;
61
62/*
ceb5ac32
BB
63 * Used to do a quick range check in unmap_single and
64 * sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
65 * API.
66 */
67static char *io_tlb_start, *io_tlb_end;
68
69/*
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 */
73static unsigned long io_tlb_nslabs;
74
75/*
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 */
78static unsigned long io_tlb_overflow = 32*1024;
79
80void *io_tlb_overflow_buffer;
81
82/*
83 * This is a free list describing the number of free entries available from
84 * each index
85 */
86static unsigned int *io_tlb_list;
87static unsigned int io_tlb_index;
88
89/*
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
92 */
bc40ac66 93static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
94
95/*
96 * Protect the above data structures in the map and unmap calls
97 */
98static DEFINE_SPINLOCK(io_tlb_lock);
99
100static int __init
101setup_io_tlb_npages(char *str)
102{
103 if (isdigit(*str)) {
e8579e72 104 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
105 /* avoid tail segment of size < IO_TLB_SEGSIZE */
106 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
107 }
108 if (*str == ',')
109 ++str;
110 if (!strcmp(str, "force"))
111 swiotlb_force = 1;
112 return 1;
113}
114__setup("swiotlb=", setup_io_tlb_npages);
115/* make io_tlb_overflow tunable too? */
116
70a7d3cc 117dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
e08e1f7a
IC
118{
119 return paddr;
120}
121
42d7c5e3 122phys_addr_t __weak swiotlb_bus_to_phys(struct device *hwdev, dma_addr_t baddr)
e08e1f7a
IC
123{
124 return baddr;
125}
126
02ca646e 127/* Note that this doesn't work with highmem page */
70a7d3cc
JF
128static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
129 volatile void *address)
e08e1f7a 130{
70a7d3cc 131 return swiotlb_phys_to_bus(hwdev, virt_to_phys(address));
e08e1f7a
IC
132}
133
ef5722f6
BB
134int __weak swiotlb_arch_address_needs_mapping(struct device *hwdev,
135 dma_addr_t addr, size_t size)
136{
137 return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
138}
139
2e5b2b86
IC
140static void swiotlb_print_info(unsigned long bytes)
141{
142 phys_addr_t pstart, pend;
2e5b2b86
IC
143
144 pstart = virt_to_phys(io_tlb_start);
145 pend = virt_to_phys(io_tlb_end);
146
2e5b2b86
IC
147 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
148 bytes >> 20, io_tlb_start, io_tlb_end);
70a7d3cc
JF
149 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
150 (unsigned long long)pstart,
151 (unsigned long long)pend);
2e5b2b86
IC
152}
153
1da177e4
LT
154/*
155 * Statically reserve bounce buffer space and initialize bounce buffer data
17e5ad6c 156 * structures for the software IO TLB used to implement the DMA API.
1da177e4 157 */
563aaf06
JB
158void __init
159swiotlb_init_with_default_size(size_t default_size)
1da177e4 160{
563aaf06 161 unsigned long i, bytes;
1da177e4
LT
162
163 if (!io_tlb_nslabs) {
e8579e72 164 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
1da177e4
LT
165 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
166 }
167
563aaf06
JB
168 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
169
1da177e4
LT
170 /*
171 * Get IO TLB memory from the low pages
172 */
3885123d 173 io_tlb_start = alloc_bootmem_low_pages(bytes);
1da177e4
LT
174 if (!io_tlb_start)
175 panic("Cannot allocate SWIOTLB buffer");
563aaf06 176 io_tlb_end = io_tlb_start + bytes;
1da177e4
LT
177
178 /*
179 * Allocate and initialize the free list array. This array is used
180 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
181 * between io_tlb_start and io_tlb_end.
182 */
183 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
25667d67 184 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
185 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
186 io_tlb_index = 0;
bc40ac66 187 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
1da177e4
LT
188
189 /*
190 * Get the overflow emergency buffer
191 */
192 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
563aaf06
JB
193 if (!io_tlb_overflow_buffer)
194 panic("Cannot allocate SWIOTLB overflow buffer!\n");
195
2e5b2b86 196 swiotlb_print_info(bytes);
1da177e4
LT
197}
198
563aaf06
JB
199void __init
200swiotlb_init(void)
1da177e4 201{
25667d67 202 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
1da177e4
LT
203}
204
0b9afede
AW
205/*
206 * Systems with larger DMA zones (those that don't support ISA) can
207 * initialize the swiotlb later using the slab allocator if needed.
208 * This should be just like above, but with some error catching.
209 */
210int
563aaf06 211swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 212{
563aaf06 213 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
0b9afede
AW
214 unsigned int order;
215
216 if (!io_tlb_nslabs) {
217 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
218 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
219 }
220
221 /*
222 * Get IO TLB memory from the low pages
223 */
563aaf06 224 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 225 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 226 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
227
228 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
bb52196b
FT
229 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
230 order);
0b9afede
AW
231 if (io_tlb_start)
232 break;
233 order--;
234 }
235
236 if (!io_tlb_start)
237 goto cleanup1;
238
563aaf06 239 if (order != get_order(bytes)) {
0b9afede
AW
240 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
241 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
242 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 243 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede 244 }
563aaf06
JB
245 io_tlb_end = io_tlb_start + bytes;
246 memset(io_tlb_start, 0, bytes);
0b9afede
AW
247
248 /*
249 * Allocate and initialize the free list array. This array is used
250 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
251 * between io_tlb_start and io_tlb_end.
252 */
253 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
254 get_order(io_tlb_nslabs * sizeof(int)));
255 if (!io_tlb_list)
256 goto cleanup2;
257
258 for (i = 0; i < io_tlb_nslabs; i++)
259 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
260 io_tlb_index = 0;
261
bc40ac66
BB
262 io_tlb_orig_addr = (phys_addr_t *)
263 __get_free_pages(GFP_KERNEL,
264 get_order(io_tlb_nslabs *
265 sizeof(phys_addr_t)));
0b9afede
AW
266 if (!io_tlb_orig_addr)
267 goto cleanup3;
268
bc40ac66 269 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede
AW
270
271 /*
272 * Get the overflow emergency buffer
273 */
274 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
275 get_order(io_tlb_overflow));
276 if (!io_tlb_overflow_buffer)
277 goto cleanup4;
278
2e5b2b86 279 swiotlb_print_info(bytes);
0b9afede
AW
280
281 return 0;
282
283cleanup4:
bc40ac66
BB
284 free_pages((unsigned long)io_tlb_orig_addr,
285 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
0b9afede
AW
286 io_tlb_orig_addr = NULL;
287cleanup3:
25667d67
TL
288 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
289 sizeof(int)));
0b9afede 290 io_tlb_list = NULL;
0b9afede 291cleanup2:
563aaf06 292 io_tlb_end = NULL;
0b9afede
AW
293 free_pages((unsigned long)io_tlb_start, order);
294 io_tlb_start = NULL;
295cleanup1:
296 io_tlb_nslabs = req_nslabs;
297 return -ENOMEM;
298}
299
ef5722f6 300static inline int
2797982e 301address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
1da177e4 302{
ef5722f6 303 return swiotlb_arch_address_needs_mapping(hwdev, addr, size);
1da177e4
LT
304}
305
02ca646e 306static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 307{
02ca646e
FT
308 return paddr >= virt_to_phys(io_tlb_start) &&
309 paddr < virt_to_phys(io_tlb_end);
640aebfe
FT
310}
311
fb05a379
BB
312/*
313 * Bounce: copy the swiotlb buffer back to the original dma location
314 */
315static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
316 enum dma_data_direction dir)
317{
318 unsigned long pfn = PFN_DOWN(phys);
319
320 if (PageHighMem(pfn_to_page(pfn))) {
321 /* The buffer does not have a mapping. Map it in and copy */
322 unsigned int offset = phys & ~PAGE_MASK;
323 char *buffer;
324 unsigned int sz = 0;
325 unsigned long flags;
326
327 while (size) {
67131ad0 328 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
329
330 local_irq_save(flags);
331 buffer = kmap_atomic(pfn_to_page(pfn),
332 KM_BOUNCE_READ);
333 if (dir == DMA_TO_DEVICE)
334 memcpy(dma_addr, buffer + offset, sz);
ef9b1893 335 else
fb05a379
BB
336 memcpy(buffer + offset, dma_addr, sz);
337 kunmap_atomic(buffer, KM_BOUNCE_READ);
ef9b1893 338 local_irq_restore(flags);
fb05a379
BB
339
340 size -= sz;
341 pfn++;
342 dma_addr += sz;
343 offset = 0;
ef9b1893
JF
344 }
345 } else {
ef9b1893 346 if (dir == DMA_TO_DEVICE)
fb05a379 347 memcpy(dma_addr, phys_to_virt(phys), size);
ef9b1893 348 else
fb05a379 349 memcpy(phys_to_virt(phys), dma_addr, size);
ef9b1893 350 }
1b548f66
JF
351}
352
1da177e4
LT
353/*
354 * Allocates bounce buffer and returns its kernel virtual address.
355 */
356static void *
bc40ac66 357map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
1da177e4
LT
358{
359 unsigned long flags;
360 char *dma_addr;
361 unsigned int nslots, stride, index, wrap;
362 int i;
681cc5cd
FT
363 unsigned long start_dma_addr;
364 unsigned long mask;
365 unsigned long offset_slots;
366 unsigned long max_slots;
367
368 mask = dma_get_seg_boundary(hwdev);
70a7d3cc 369 start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
681cc5cd
FT
370
371 offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
372
373 /*
374 * Carefully handle integer overflow which can occur when mask == ~0UL.
375 */
b15a3891
JB
376 max_slots = mask + 1
377 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
378 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
379
380 /*
381 * For mappings greater than a page, we limit the stride (and
382 * hence alignment) to a page size.
383 */
384 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
385 if (size > PAGE_SIZE)
386 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
387 else
388 stride = 1;
389
34814545 390 BUG_ON(!nslots);
1da177e4
LT
391
392 /*
393 * Find suitable number of IO TLB entries size that will fit this
394 * request and allocate a buffer from that IO TLB pool.
395 */
396 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
397 index = ALIGN(io_tlb_index, stride);
398 if (index >= io_tlb_nslabs)
399 index = 0;
400 wrap = index;
401
402 do {
a8522509
FT
403 while (iommu_is_span_boundary(index, nslots, offset_slots,
404 max_slots)) {
b15a3891
JB
405 index += stride;
406 if (index >= io_tlb_nslabs)
407 index = 0;
a7133a15
AM
408 if (index == wrap)
409 goto not_found;
410 }
411
412 /*
413 * If we find a slot that indicates we have 'nslots' number of
414 * contiguous buffers, we allocate the buffers from that slot
415 * and mark the entries as '0' indicating unavailable.
416 */
417 if (io_tlb_list[index] >= nslots) {
418 int count = 0;
419
420 for (i = index; i < (int) (index + nslots); i++)
421 io_tlb_list[i] = 0;
422 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
423 io_tlb_list[i] = ++count;
424 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 425
a7133a15
AM
426 /*
427 * Update the indices to avoid searching in the next
428 * round.
429 */
430 io_tlb_index = ((index + nslots) < io_tlb_nslabs
431 ? (index + nslots) : 0);
432
433 goto found;
434 }
435 index += stride;
436 if (index >= io_tlb_nslabs)
437 index = 0;
438 } while (index != wrap);
439
440not_found:
441 spin_unlock_irqrestore(&io_tlb_lock, flags);
442 return NULL;
443found:
1da177e4
LT
444 spin_unlock_irqrestore(&io_tlb_lock, flags);
445
446 /*
447 * Save away the mapping from the original address to the DMA address.
448 * This is needed when we sync the memory. Then we sync the buffer if
449 * needed.
450 */
bc40ac66
BB
451 for (i = 0; i < nslots; i++)
452 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
1da177e4 453 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
fb05a379 454 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
1da177e4
LT
455
456 return dma_addr;
457}
458
459/*
460 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
461 */
462static void
7fcebbd2 463do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
1da177e4
LT
464{
465 unsigned long flags;
466 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
467 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
bc40ac66 468 phys_addr_t phys = io_tlb_orig_addr[index];
1da177e4
LT
469
470 /*
471 * First, sync the memory before unmapping the entry
472 */
bc40ac66 473 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
fb05a379 474 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
475
476 /*
477 * Return the buffer to the free list by setting the corresponding
478 * entries to indicate the number of contigous entries available.
479 * While returning the entries to the free list, we merge the entries
480 * with slots below and above the pool being returned.
481 */
482 spin_lock_irqsave(&io_tlb_lock, flags);
483 {
484 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
485 io_tlb_list[index + nslots] : 0);
486 /*
487 * Step 1: return the slots to the free list, merging the
488 * slots with superceeding slots
489 */
490 for (i = index + nslots - 1; i >= index; i--)
491 io_tlb_list[i] = ++count;
492 /*
493 * Step 2: merge the returned slots with the preceding slots,
494 * if available (non zero)
495 */
496 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
497 io_tlb_list[i] = ++count;
498 }
499 spin_unlock_irqrestore(&io_tlb_lock, flags);
500}
501
502static void
de69e0f0
JL
503sync_single(struct device *hwdev, char *dma_addr, size_t size,
504 int dir, int target)
1da177e4 505{
bc40ac66
BB
506 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
507 phys_addr_t phys = io_tlb_orig_addr[index];
508
509 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
df336d1c 510
de69e0f0
JL
511 switch (target) {
512 case SYNC_FOR_CPU:
513 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 514 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
34814545
ES
515 else
516 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
517 break;
518 case SYNC_FOR_DEVICE:
519 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 520 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
34814545
ES
521 else
522 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
523 break;
524 default:
1da177e4 525 BUG();
de69e0f0 526 }
1da177e4
LT
527}
528
529void *
530swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 531 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 532{
563aaf06 533 dma_addr_t dev_addr;
1da177e4
LT
534 void *ret;
535 int order = get_order(size);
284901a9 536 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
537
538 if (hwdev && hwdev->coherent_dma_mask)
539 dma_mask = hwdev->coherent_dma_mask;
1da177e4 540
25667d67 541 ret = (void *)__get_free_pages(flags, order);
70a7d3cc
JF
542 if (ret &&
543 !is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(hwdev, ret),
544 size)) {
1da177e4
LT
545 /*
546 * The allocated memory isn't reachable by the device.
1da177e4
LT
547 */
548 free_pages((unsigned long) ret, order);
549 ret = NULL;
550 }
551 if (!ret) {
552 /*
553 * We are either out of memory or the device can't DMA
ceb5ac32
BB
554 * to GFP_DMA memory; fall back on map_single(), which
555 * will grab memory from the lowest available address range.
1da177e4 556 */
bc40ac66 557 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
9dfda12b 558 if (!ret)
1da177e4 559 return NULL;
1da177e4
LT
560 }
561
562 memset(ret, 0, size);
70a7d3cc 563 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
1da177e4
LT
564
565 /* Confirm address can be DMA'd by device */
1e74f300 566 if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
563aaf06 567 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
1e74f300 568 (unsigned long long)dma_mask,
563aaf06 569 (unsigned long long)dev_addr);
a2b89b59
FT
570
571 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 572 do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
a2b89b59 573 return NULL;
1da177e4
LT
574 }
575 *dma_handle = dev_addr;
576 return ret;
577}
874d6a95 578EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
579
580void
581swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 582 dma_addr_t dev_addr)
1da177e4 583{
02ca646e
FT
584 phys_addr_t paddr = swiotlb_bus_to_phys(hwdev, dev_addr);
585
aa24886e 586 WARN_ON(irqs_disabled());
02ca646e
FT
587 if (!is_swiotlb_buffer(paddr))
588 free_pages((unsigned long)vaddr, get_order(size));
1da177e4
LT
589 else
590 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 591 do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
1da177e4 592}
874d6a95 593EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
594
595static void
596swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
597{
598 /*
599 * Ran out of IOMMU space for this operation. This is very bad.
600 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 601 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
602 * When the mapping is small enough return a static buffer to limit
603 * the damage, or panic when the transfer is too big.
604 */
563aaf06 605 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 606 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4
LT
607
608 if (size > io_tlb_overflow && do_panic) {
17e5ad6c
TL
609 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
610 panic("DMA: Memory would be corrupted\n");
611 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
612 panic("DMA: Random memory would be DMAed\n");
1da177e4
LT
613 }
614}
615
616/*
617 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 618 * physical address to use is returned.
1da177e4
LT
619 *
620 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 621 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 622 */
f98eee8e
FT
623dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
624 unsigned long offset, size_t size,
625 enum dma_data_direction dir,
626 struct dma_attrs *attrs)
1da177e4 627{
f98eee8e 628 phys_addr_t phys = page_to_phys(page) + offset;
f98eee8e 629 dma_addr_t dev_addr = swiotlb_phys_to_bus(dev, phys);
1da177e4
LT
630 void *map;
631
34814545 632 BUG_ON(dir == DMA_NONE);
1da177e4 633 /*
ceb5ac32 634 * If the address happens to be in the device's DMA window,
1da177e4
LT
635 * we can safely return the device addr and not worry about bounce
636 * buffering it.
637 */
cf56e3f2 638 if (!address_needs_mapping(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
639 return dev_addr;
640
641 /*
642 * Oh well, have to allocate and map a bounce buffer.
643 */
f98eee8e 644 map = map_single(dev, phys, size, dir);
1da177e4 645 if (!map) {
f98eee8e 646 swiotlb_full(dev, size, dir, 1);
1da177e4
LT
647 map = io_tlb_overflow_buffer;
648 }
649
f98eee8e 650 dev_addr = swiotlb_virt_to_bus(dev, map);
1da177e4
LT
651
652 /*
653 * Ensure that the address returned is DMA'ble
654 */
f98eee8e 655 if (address_needs_mapping(dev, dev_addr, size))
1da177e4
LT
656 panic("map_single: bounce buffer is not DMA'ble");
657
658 return dev_addr;
659}
f98eee8e 660EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 661
1da177e4
LT
662/*
663 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 664 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
665 * other usages are undefined.
666 *
667 * After this call, reads by the cpu to the buffer are guaranteed to see
668 * whatever the device wrote there.
669 */
7fcebbd2
BB
670static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
671 size_t size, int dir)
1da177e4 672{
02ca646e 673 phys_addr_t paddr = swiotlb_bus_to_phys(hwdev, dev_addr);
1da177e4 674
34814545 675 BUG_ON(dir == DMA_NONE);
7fcebbd2 676
02ca646e
FT
677 if (is_swiotlb_buffer(paddr)) {
678 do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
7fcebbd2
BB
679 return;
680 }
681
682 if (dir != DMA_FROM_DEVICE)
683 return;
684
02ca646e
FT
685 /*
686 * phys_to_virt doesn't work with hihgmem page but we could
687 * call dma_mark_clean() with hihgmem page here. However, we
688 * are fine since dma_mark_clean() is null on POWERPC. We can
689 * make dma_mark_clean() take a physical address if necessary.
690 */
691 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
692}
693
694void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
695 size_t size, enum dma_data_direction dir,
696 struct dma_attrs *attrs)
697{
698 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 699}
f98eee8e 700EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 701
1da177e4
LT
702/*
703 * Make physical memory consistent for a single streaming mode DMA translation
704 * after a transfer.
705 *
ceb5ac32 706 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
707 * using the cpu, yet do not wish to teardown the dma mapping, you must
708 * call this function before doing so. At the next point you give the dma
1da177e4
LT
709 * address back to the card, you must first perform a
710 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
711 */
be6b0267 712static void
8270f3f1 713swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0 714 size_t size, int dir, int target)
1da177e4 715{
02ca646e 716 phys_addr_t paddr = swiotlb_bus_to_phys(hwdev, dev_addr);
1da177e4 717
34814545 718 BUG_ON(dir == DMA_NONE);
380d6878 719
02ca646e
FT
720 if (is_swiotlb_buffer(paddr)) {
721 sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
380d6878
BB
722 return;
723 }
724
725 if (dir != DMA_FROM_DEVICE)
726 return;
727
02ca646e 728 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
729}
730
8270f3f1
JL
731void
732swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 733 size_t size, enum dma_data_direction dir)
8270f3f1 734{
de69e0f0 735 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 736}
874d6a95 737EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 738
1da177e4
LT
739void
740swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 741 size_t size, enum dma_data_direction dir)
1da177e4 742{
de69e0f0 743 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 744}
874d6a95 745EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4 746
878a97cf
JL
747/*
748 * Same as above, but for a sub-range of the mapping.
749 */
be6b0267 750static void
878a97cf 751swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0
JL
752 unsigned long offset, size_t size,
753 int dir, int target)
878a97cf 754{
380d6878 755 swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
878a97cf
JL
756}
757
758void
759swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e
FT
760 unsigned long offset, size_t size,
761 enum dma_data_direction dir)
878a97cf 762{
de69e0f0
JL
763 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
764 SYNC_FOR_CPU);
878a97cf 765}
874d6a95 766EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
878a97cf
JL
767
768void
769swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e
FT
770 unsigned long offset, size_t size,
771 enum dma_data_direction dir)
878a97cf 772{
de69e0f0
JL
773 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
774 SYNC_FOR_DEVICE);
878a97cf 775}
874d6a95 776EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
878a97cf 777
1da177e4
LT
778/*
779 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 780 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
781 * interface. Here the scatter gather list elements are each tagged with the
782 * appropriate dma address and length. They are obtained via
783 * sg_dma_{address,length}(SG).
784 *
785 * NOTE: An implementation may be able to use a smaller number of
786 * DMA address/length pairs than there are SG table elements.
787 * (for example via virtual mapping capabilities)
788 * The routine returns the number of addr/length pairs actually
789 * used, at most nents.
790 *
ceb5ac32 791 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
792 * same here.
793 */
794int
309df0c5 795swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 796 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 797{
dbfd49fe 798 struct scatterlist *sg;
1da177e4
LT
799 int i;
800
34814545 801 BUG_ON(dir == DMA_NONE);
1da177e4 802
dbfd49fe 803 for_each_sg(sgl, sg, nelems, i) {
961d7d0e
IC
804 phys_addr_t paddr = sg_phys(sg);
805 dma_addr_t dev_addr = swiotlb_phys_to_bus(hwdev, paddr);
bc40ac66 806
cf56e3f2 807 if (swiotlb_force ||
2797982e 808 address_needs_mapping(hwdev, dev_addr, sg->length)) {
bc40ac66
BB
809 void *map = map_single(hwdev, sg_phys(sg),
810 sg->length, dir);
7e870233 811 if (!map) {
1da177e4
LT
812 /* Don't panic here, we expect map_sg users
813 to do proper error handling. */
814 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
815 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
816 attrs);
dbfd49fe 817 sgl[0].dma_length = 0;
1da177e4
LT
818 return 0;
819 }
70a7d3cc 820 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
1da177e4
LT
821 } else
822 sg->dma_address = dev_addr;
823 sg->dma_length = sg->length;
824 }
825 return nelems;
826}
309df0c5
AK
827EXPORT_SYMBOL(swiotlb_map_sg_attrs);
828
829int
830swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
831 int dir)
832{
833 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
834}
874d6a95 835EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
836
837/*
838 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 839 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
840 */
841void
309df0c5 842swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 843 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 844{
dbfd49fe 845 struct scatterlist *sg;
1da177e4
LT
846 int i;
847
34814545 848 BUG_ON(dir == DMA_NONE);
1da177e4 849
7fcebbd2
BB
850 for_each_sg(sgl, sg, nelems, i)
851 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
852
1da177e4 853}
309df0c5
AK
854EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
855
856void
857swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
858 int dir)
859{
860 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
861}
874d6a95 862EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
863
864/*
865 * Make physical memory consistent for a set of streaming mode DMA translations
866 * after a transfer.
867 *
868 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
869 * and usage.
870 */
be6b0267 871static void
dbfd49fe 872swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
de69e0f0 873 int nelems, int dir, int target)
1da177e4 874{
dbfd49fe 875 struct scatterlist *sg;
1da177e4
LT
876 int i;
877
380d6878
BB
878 for_each_sg(sgl, sg, nelems, i)
879 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 880 sg->dma_length, dir, target);
1da177e4
LT
881}
882
8270f3f1
JL
883void
884swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 885 int nelems, enum dma_data_direction dir)
8270f3f1 886{
de69e0f0 887 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 888}
874d6a95 889EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 890
1da177e4
LT
891void
892swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 893 int nelems, enum dma_data_direction dir)
1da177e4 894{
de69e0f0 895 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 896}
874d6a95 897EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
898
899int
8d8bb39b 900swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 901{
70a7d3cc 902 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
1da177e4 903}
874d6a95 904EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
905
906/*
17e5ad6c 907 * Return whether the given device DMA address mask can be supported
1da177e4 908 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 909 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
910 * this function.
911 */
912int
563aaf06 913swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 914{
70a7d3cc 915 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
1da177e4 916}
1da177e4 917EXPORT_SYMBOL(swiotlb_dma_supported);