]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/rmap.c
mm: memcontrol: fix missed end-writeback page accounting
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
3d48ae45 26 * mapping->i_mmap_mutex
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 38 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 39 *
5a505085 40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 41 * ->tasklist_lock
6a46079c 42 * pte map lock
1da177e4
LT
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
5ad64688 51#include <linux/ksm.h>
1da177e4
LT
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
b95f1b31 54#include <linux/export.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
64cdd548 57#include <linux/migrate.h>
0fe6e20b 58#include <linux/hugetlb.h>
ef5d437f 59#include <linux/backing-dev.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
01d8b20d
PZ
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
fdd2e5f8
AB
83}
84
01d8b20d 85static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 86{
01d8b20d 87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
88
89 /*
4fc3f1d6 90 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 97 *
4fc3f1d6
IM
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
88c22088 100 * LOCK MB
4fc3f1d6 101 * atomic_read() rwsem_is_locked()
88c22088
PZ
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
7f39dda9 106 might_sleep();
5a505085 107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 108 anon_vma_lock_write(anon_vma);
08b52706 109 anon_vma_unlock_write(anon_vma);
88c22088
PZ
110 }
111
fdd2e5f8
AB
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113}
1da177e4 114
dd34739c 115static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 116{
dd34739c 117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
118}
119
e574b5fd 120static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
121{
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123}
124
6583a843
KC
125static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
128{
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
133}
134
d9d332e0
LT
135/**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
23a0790a 144 * not we either need to find an adjacent mapping that we
d9d332e0
LT
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
1da177e4
LT
162int anon_vma_prepare(struct vm_area_struct *vma)
163{
164 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 165 struct anon_vma_chain *avc;
1da177e4
LT
166
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
d9d332e0 170 struct anon_vma *allocated;
1da177e4 171
dd34739c 172 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
173 if (!avc)
174 goto out_enomem;
175
1da177e4 176 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
177 allocated = NULL;
178 if (!anon_vma) {
1da177e4
LT
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
5beb4930 181 goto out_enomem_free_avc;
1da177e4 182 allocated = anon_vma;
1da177e4
LT
183 }
184
4fc3f1d6 185 anon_vma_lock_write(anon_vma);
1da177e4
LT
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
6583a843 190 anon_vma_chain_link(vma, avc, anon_vma);
1da177e4 191 allocated = NULL;
31f2b0eb 192 avc = NULL;
1da177e4
LT
193 }
194 spin_unlock(&mm->page_table_lock);
08b52706 195 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
196
197 if (unlikely(allocated))
01d8b20d 198 put_anon_vma(allocated);
31f2b0eb 199 if (unlikely(avc))
5beb4930 200 anon_vma_chain_free(avc);
1da177e4
LT
201 }
202 return 0;
5beb4930
RR
203
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
1da177e4
LT
208}
209
bb4aa396
LT
210/*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219{
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
5a505085 223 up_write(&root->rwsem);
bb4aa396 224 root = new_root;
5a505085 225 down_write(&root->rwsem);
bb4aa396
LT
226 }
227 return root;
228}
229
230static inline void unlock_anon_vma_root(struct anon_vma *root)
231{
232 if (root)
5a505085 233 up_write(&root->rwsem);
bb4aa396
LT
234}
235
5beb4930
RR
236/*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 241{
5beb4930 242 struct anon_vma_chain *avc, *pavc;
bb4aa396 243 struct anon_vma *root = NULL;
5beb4930 244
646d87b4 245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
246 struct anon_vma *anon_vma;
247
dd34739c
LT
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
255 }
bb4aa396
LT
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 259 }
bb4aa396 260 unlock_anon_vma_root(root);
5beb4930 261 return 0;
1da177e4 262
5beb4930
RR
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
1da177e4
LT
266}
267
5beb4930
RR
268/*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 274{
5beb4930
RR
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
1da177e4 277
5beb4930
RR
278 /* Don't bother if the parent process has no anon_vma here. */
279 if (!pvma->anon_vma)
280 return 0;
281
282 /*
283 * First, attach the new VMA to the parent VMA's anon_vmas,
284 * so rmap can find non-COWed pages in child processes.
285 */
286 if (anon_vma_clone(vma, pvma))
287 return -ENOMEM;
288
289 /* Then add our own anon_vma. */
290 anon_vma = anon_vma_alloc();
291 if (!anon_vma)
292 goto out_error;
dd34739c 293 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
294 if (!avc)
295 goto out_error_free_anon_vma;
5c341ee1
RR
296
297 /*
298 * The root anon_vma's spinlock is the lock actually used when we
299 * lock any of the anon_vmas in this anon_vma tree.
300 */
301 anon_vma->root = pvma->anon_vma->root;
76545066 302 /*
01d8b20d
PZ
303 * With refcounts, an anon_vma can stay around longer than the
304 * process it belongs to. The root anon_vma needs to be pinned until
305 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
306 */
307 get_anon_vma(anon_vma->root);
5beb4930
RR
308 /* Mark this anon_vma as the one where our new (COWed) pages go. */
309 vma->anon_vma = anon_vma;
4fc3f1d6 310 anon_vma_lock_write(anon_vma);
5c341ee1 311 anon_vma_chain_link(vma, avc, anon_vma);
08b52706 312 anon_vma_unlock_write(anon_vma);
5beb4930
RR
313
314 return 0;
315
316 out_error_free_anon_vma:
01d8b20d 317 put_anon_vma(anon_vma);
5beb4930 318 out_error:
4946d54c 319 unlink_anon_vmas(vma);
5beb4930 320 return -ENOMEM;
1da177e4
LT
321}
322
5beb4930
RR
323void unlink_anon_vmas(struct vm_area_struct *vma)
324{
325 struct anon_vma_chain *avc, *next;
eee2acba 326 struct anon_vma *root = NULL;
5beb4930 327
5c341ee1
RR
328 /*
329 * Unlink each anon_vma chained to the VMA. This list is ordered
330 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 */
5beb4930 332 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
333 struct anon_vma *anon_vma = avc->anon_vma;
334
335 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 336 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
337
338 /*
339 * Leave empty anon_vmas on the list - we'll need
340 * to free them outside the lock.
341 */
bf181b9f 342 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
eee2acba
PZ
343 continue;
344
345 list_del(&avc->same_vma);
346 anon_vma_chain_free(avc);
347 }
348 unlock_anon_vma_root(root);
349
350 /*
351 * Iterate the list once more, it now only contains empty and unlinked
352 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 353 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
354 */
355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 struct anon_vma *anon_vma = avc->anon_vma;
357
358 put_anon_vma(anon_vma);
359
5beb4930
RR
360 list_del(&avc->same_vma);
361 anon_vma_chain_free(avc);
362 }
363}
364
51cc5068 365static void anon_vma_ctor(void *data)
1da177e4 366{
a35afb83 367 struct anon_vma *anon_vma = data;
1da177e4 368
5a505085 369 init_rwsem(&anon_vma->rwsem);
83813267 370 atomic_set(&anon_vma->refcount, 0);
bf181b9f 371 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
372}
373
374void __init anon_vma_init(void)
375{
376 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 377 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 378 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
379}
380
381/*
6111e4ca
PZ
382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 *
384 * Since there is no serialization what so ever against page_remove_rmap()
385 * the best this function can do is return a locked anon_vma that might
386 * have been relevant to this page.
387 *
388 * The page might have been remapped to a different anon_vma or the anon_vma
389 * returned may already be freed (and even reused).
390 *
bc658c96
PZ
391 * In case it was remapped to a different anon_vma, the new anon_vma will be a
392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
393 * ensure that any anon_vma obtained from the page will still be valid for as
394 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 *
6111e4ca
PZ
396 * All users of this function must be very careful when walking the anon_vma
397 * chain and verify that the page in question is indeed mapped in it
398 * [ something equivalent to page_mapped_in_vma() ].
399 *
400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
401 * that the anon_vma pointer from page->mapping is valid if there is a
402 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 403 */
746b18d4 404struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 405{
746b18d4 406 struct anon_vma *anon_vma = NULL;
1da177e4
LT
407 unsigned long anon_mapping;
408
409 rcu_read_lock();
80e14822 410 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 411 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
412 goto out;
413 if (!page_mapped(page))
414 goto out;
415
416 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
417 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
418 anon_vma = NULL;
419 goto out;
420 }
f1819427
HD
421
422 /*
423 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
424 * freed. But if it has been unmapped, we have no security against the
425 * anon_vma structure being freed and reused (for another anon_vma:
426 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
427 * above cannot corrupt).
f1819427 428 */
746b18d4 429 if (!page_mapped(page)) {
7f39dda9 430 rcu_read_unlock();
746b18d4 431 put_anon_vma(anon_vma);
7f39dda9 432 return NULL;
746b18d4 433 }
1da177e4
LT
434out:
435 rcu_read_unlock();
746b18d4
PZ
436
437 return anon_vma;
438}
439
88c22088
PZ
440/*
441 * Similar to page_get_anon_vma() except it locks the anon_vma.
442 *
443 * Its a little more complex as it tries to keep the fast path to a single
444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
445 * reference like with page_get_anon_vma() and then block on the mutex.
446 */
4fc3f1d6 447struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 448{
88c22088 449 struct anon_vma *anon_vma = NULL;
eee0f252 450 struct anon_vma *root_anon_vma;
88c22088 451 unsigned long anon_mapping;
746b18d4 452
88c22088
PZ
453 rcu_read_lock();
454 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
455 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
456 goto out;
457 if (!page_mapped(page))
458 goto out;
459
460 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252 461 root_anon_vma = ACCESS_ONCE(anon_vma->root);
4fc3f1d6 462 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 463 /*
eee0f252
HD
464 * If the page is still mapped, then this anon_vma is still
465 * its anon_vma, and holding the mutex ensures that it will
bc658c96 466 * not go away, see anon_vma_free().
88c22088 467 */
eee0f252 468 if (!page_mapped(page)) {
4fc3f1d6 469 up_read(&root_anon_vma->rwsem);
88c22088
PZ
470 anon_vma = NULL;
471 }
472 goto out;
473 }
746b18d4 474
88c22088
PZ
475 /* trylock failed, we got to sleep */
476 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 anon_vma = NULL;
478 goto out;
479 }
480
481 if (!page_mapped(page)) {
7f39dda9 482 rcu_read_unlock();
88c22088 483 put_anon_vma(anon_vma);
7f39dda9 484 return NULL;
88c22088
PZ
485 }
486
487 /* we pinned the anon_vma, its safe to sleep */
488 rcu_read_unlock();
4fc3f1d6 489 anon_vma_lock_read(anon_vma);
88c22088
PZ
490
491 if (atomic_dec_and_test(&anon_vma->refcount)) {
492 /*
493 * Oops, we held the last refcount, release the lock
494 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 495 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 496 */
4fc3f1d6 497 anon_vma_unlock_read(anon_vma);
88c22088
PZ
498 __put_anon_vma(anon_vma);
499 anon_vma = NULL;
500 }
501
502 return anon_vma;
503
504out:
505 rcu_read_unlock();
746b18d4 506 return anon_vma;
34bbd704
ON
507}
508
4fc3f1d6 509void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 510{
4fc3f1d6 511 anon_vma_unlock_read(anon_vma);
1da177e4
LT
512}
513
514/*
3ad33b24 515 * At what user virtual address is page expected in @vma?
1da177e4 516 */
86c2ad19
ML
517static inline unsigned long
518__vma_address(struct page *page, struct vm_area_struct *vma)
1da177e4 519{
a0f7a756 520 pgoff_t pgoff = page_to_pgoff(page);
86c2ad19
ML
521 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
522}
523
524inline unsigned long
525vma_address(struct page *page, struct vm_area_struct *vma)
526{
527 unsigned long address = __vma_address(page, vma);
528
529 /* page should be within @vma mapping range */
81d1b09c 530 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
86c2ad19 531
1da177e4
LT
532 return address;
533}
534
535/*
bf89c8c8 536 * At what user virtual address is page expected in vma?
ab941e0f 537 * Caller should check the page is actually part of the vma.
1da177e4
LT
538 */
539unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
540{
86c2ad19 541 unsigned long address;
21d0d443 542 if (PageAnon(page)) {
4829b906
HD
543 struct anon_vma *page__anon_vma = page_anon_vma(page);
544 /*
545 * Note: swapoff's unuse_vma() is more efficient with this
546 * check, and needs it to match anon_vma when KSM is active.
547 */
548 if (!vma->anon_vma || !page__anon_vma ||
549 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
550 return -EFAULT;
551 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
552 if (!vma->vm_file ||
553 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
554 return -EFAULT;
555 } else
556 return -EFAULT;
86c2ad19
ML
557 address = __vma_address(page, vma);
558 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
559 return -EFAULT;
560 return address;
1da177e4
LT
561}
562
6219049a
BL
563pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
564{
565 pgd_t *pgd;
566 pud_t *pud;
567 pmd_t *pmd = NULL;
f72e7dcd 568 pmd_t pmde;
6219049a
BL
569
570 pgd = pgd_offset(mm, address);
571 if (!pgd_present(*pgd))
572 goto out;
573
574 pud = pud_offset(pgd, address);
575 if (!pud_present(*pud))
576 goto out;
577
578 pmd = pmd_offset(pud, address);
f72e7dcd
HD
579 /*
580 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
581 * without holding anon_vma lock for write. So when looking for a
582 * genuine pmde (in which to find pte), test present and !THP together.
583 */
584 pmde = ACCESS_ONCE(*pmd);
585 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
586 pmd = NULL;
587out:
588 return pmd;
589}
590
81b4082d
ND
591/*
592 * Check that @page is mapped at @address into @mm.
593 *
479db0bf
NP
594 * If @sync is false, page_check_address may perform a racy check to avoid
595 * the page table lock when the pte is not present (helpful when reclaiming
596 * highly shared pages).
597 *
b8072f09 598 * On success returns with pte mapped and locked.
81b4082d 599 */
e9a81a82 600pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 601 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 602{
81b4082d
ND
603 pmd_t *pmd;
604 pte_t *pte;
c0718806 605 spinlock_t *ptl;
81b4082d 606
0fe6e20b 607 if (unlikely(PageHuge(page))) {
98398c32 608 /* when pud is not present, pte will be NULL */
0fe6e20b 609 pte = huge_pte_offset(mm, address);
98398c32
JW
610 if (!pte)
611 return NULL;
612
cb900f41 613 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
614 goto check;
615 }
616
6219049a
BL
617 pmd = mm_find_pmd(mm, address);
618 if (!pmd)
c0718806
HD
619 return NULL;
620
c0718806
HD
621 pte = pte_offset_map(pmd, address);
622 /* Make a quick check before getting the lock */
479db0bf 623 if (!sync && !pte_present(*pte)) {
c0718806
HD
624 pte_unmap(pte);
625 return NULL;
626 }
627
4c21e2f2 628 ptl = pte_lockptr(mm, pmd);
0fe6e20b 629check:
c0718806
HD
630 spin_lock(ptl);
631 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
632 *ptlp = ptl;
633 return pte;
81b4082d 634 }
c0718806
HD
635 pte_unmap_unlock(pte, ptl);
636 return NULL;
81b4082d
ND
637}
638
b291f000
NP
639/**
640 * page_mapped_in_vma - check whether a page is really mapped in a VMA
641 * @page: the page to test
642 * @vma: the VMA to test
643 *
644 * Returns 1 if the page is mapped into the page tables of the VMA, 0
645 * if the page is not mapped into the page tables of this VMA. Only
646 * valid for normal file or anonymous VMAs.
647 */
6a46079c 648int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
649{
650 unsigned long address;
651 pte_t *pte;
652 spinlock_t *ptl;
653
86c2ad19
ML
654 address = __vma_address(page, vma);
655 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
656 return 0;
657 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
658 if (!pte) /* the page is not in this mm */
659 return 0;
660 pte_unmap_unlock(pte, ptl);
661
662 return 1;
663}
664
9f32624b
JK
665struct page_referenced_arg {
666 int mapcount;
667 int referenced;
668 unsigned long vm_flags;
669 struct mem_cgroup *memcg;
670};
1da177e4 671/*
9f32624b 672 * arg: page_referenced_arg will be passed
1da177e4 673 */
ac769501 674static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
9f32624b 675 unsigned long address, void *arg)
1da177e4
LT
676{
677 struct mm_struct *mm = vma->vm_mm;
117b0791 678 spinlock_t *ptl;
1da177e4 679 int referenced = 0;
9f32624b 680 struct page_referenced_arg *pra = arg;
1da177e4 681
71e3aac0
AA
682 if (unlikely(PageTransHuge(page))) {
683 pmd_t *pmd;
684
2da28bfd
AA
685 /*
686 * rmap might return false positives; we must filter
687 * these out using page_check_address_pmd().
688 */
71e3aac0 689 pmd = page_check_address_pmd(page, mm, address,
117b0791
KS
690 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
691 if (!pmd)
9f32624b 692 return SWAP_AGAIN;
2da28bfd
AA
693
694 if (vma->vm_flags & VM_LOCKED) {
117b0791 695 spin_unlock(ptl);
9f32624b
JK
696 pra->vm_flags |= VM_LOCKED;
697 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
698 }
699
700 /* go ahead even if the pmd is pmd_trans_splitting() */
701 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0 702 referenced++;
117b0791 703 spin_unlock(ptl);
71e3aac0
AA
704 } else {
705 pte_t *pte;
71e3aac0 706
2da28bfd
AA
707 /*
708 * rmap might return false positives; we must filter
709 * these out using page_check_address().
710 */
71e3aac0
AA
711 pte = page_check_address(page, mm, address, &ptl, 0);
712 if (!pte)
9f32624b 713 return SWAP_AGAIN;
71e3aac0 714
2da28bfd
AA
715 if (vma->vm_flags & VM_LOCKED) {
716 pte_unmap_unlock(pte, ptl);
9f32624b
JK
717 pra->vm_flags |= VM_LOCKED;
718 return SWAP_FAIL; /* To break the loop */
2da28bfd
AA
719 }
720
71e3aac0
AA
721 if (ptep_clear_flush_young_notify(vma, address, pte)) {
722 /*
723 * Don't treat a reference through a sequentially read
724 * mapping as such. If the page has been used in
725 * another mapping, we will catch it; if this other
726 * mapping is already gone, the unmap path will have
727 * set PG_referenced or activated the page.
728 */
64363aad 729 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
71e3aac0
AA
730 referenced++;
731 }
732 pte_unmap_unlock(pte, ptl);
733 }
734
9f32624b
JK
735 if (referenced) {
736 pra->referenced++;
737 pra->vm_flags |= vma->vm_flags;
1da177e4 738 }
34bbd704 739
9f32624b
JK
740 pra->mapcount--;
741 if (!pra->mapcount)
742 return SWAP_SUCCESS; /* To break the loop */
743
744 return SWAP_AGAIN;
1da177e4
LT
745}
746
9f32624b 747static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 748{
9f32624b
JK
749 struct page_referenced_arg *pra = arg;
750 struct mem_cgroup *memcg = pra->memcg;
1da177e4 751
9f32624b
JK
752 if (!mm_match_cgroup(vma->vm_mm, memcg))
753 return true;
1da177e4 754
9f32624b 755 return false;
1da177e4
LT
756}
757
758/**
759 * page_referenced - test if the page was referenced
760 * @page: the page to test
761 * @is_locked: caller holds lock on the page
72835c86 762 * @memcg: target memory cgroup
6fe6b7e3 763 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
764 *
765 * Quick test_and_clear_referenced for all mappings to a page,
766 * returns the number of ptes which referenced the page.
767 */
6fe6b7e3
WF
768int page_referenced(struct page *page,
769 int is_locked,
72835c86 770 struct mem_cgroup *memcg,
6fe6b7e3 771 unsigned long *vm_flags)
1da177e4 772{
9f32624b 773 int ret;
5ad64688 774 int we_locked = 0;
9f32624b
JK
775 struct page_referenced_arg pra = {
776 .mapcount = page_mapcount(page),
777 .memcg = memcg,
778 };
779 struct rmap_walk_control rwc = {
780 .rmap_one = page_referenced_one,
781 .arg = (void *)&pra,
782 .anon_lock = page_lock_anon_vma_read,
783 };
1da177e4 784
6fe6b7e3 785 *vm_flags = 0;
9f32624b
JK
786 if (!page_mapped(page))
787 return 0;
788
789 if (!page_rmapping(page))
790 return 0;
791
792 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
793 we_locked = trylock_page(page);
794 if (!we_locked)
795 return 1;
1da177e4 796 }
9f32624b
JK
797
798 /*
799 * If we are reclaiming on behalf of a cgroup, skip
800 * counting on behalf of references from different
801 * cgroups
802 */
803 if (memcg) {
804 rwc.invalid_vma = invalid_page_referenced_vma;
805 }
806
807 ret = rmap_walk(page, &rwc);
808 *vm_flags = pra.vm_flags;
809
810 if (we_locked)
811 unlock_page(page);
812
813 return pra.referenced;
1da177e4
LT
814}
815
1cb1729b 816static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 817 unsigned long address, void *arg)
d08b3851
PZ
818{
819 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 820 pte_t *pte;
d08b3851
PZ
821 spinlock_t *ptl;
822 int ret = 0;
9853a407 823 int *cleaned = arg;
d08b3851 824
479db0bf 825 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
826 if (!pte)
827 goto out;
828
c2fda5fe
PZ
829 if (pte_dirty(*pte) || pte_write(*pte)) {
830 pte_t entry;
d08b3851 831
c2fda5fe 832 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 833 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
834 entry = pte_wrprotect(entry);
835 entry = pte_mkclean(entry);
d6e88e67 836 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
837 ret = 1;
838 }
d08b3851 839
d08b3851 840 pte_unmap_unlock(pte, ptl);
2ec74c3e 841
9853a407 842 if (ret) {
2ec74c3e 843 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
844 (*cleaned)++;
845 }
d08b3851 846out:
9853a407 847 return SWAP_AGAIN;
d08b3851
PZ
848}
849
9853a407 850static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 851{
9853a407 852 if (vma->vm_flags & VM_SHARED)
871beb8c 853 return false;
d08b3851 854
871beb8c 855 return true;
d08b3851
PZ
856}
857
858int page_mkclean(struct page *page)
859{
9853a407
JK
860 int cleaned = 0;
861 struct address_space *mapping;
862 struct rmap_walk_control rwc = {
863 .arg = (void *)&cleaned,
864 .rmap_one = page_mkclean_one,
865 .invalid_vma = invalid_mkclean_vma,
866 };
d08b3851
PZ
867
868 BUG_ON(!PageLocked(page));
869
9853a407
JK
870 if (!page_mapped(page))
871 return 0;
872
873 mapping = page_mapping(page);
874 if (!mapping)
875 return 0;
876
877 rmap_walk(page, &rwc);
d08b3851 878
9853a407 879 return cleaned;
d08b3851 880}
60b59bea 881EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 882
c44b6743
RR
883/**
884 * page_move_anon_rmap - move a page to our anon_vma
885 * @page: the page to move to our anon_vma
886 * @vma: the vma the page belongs to
887 * @address: the user virtual address mapped
888 *
889 * When a page belongs exclusively to one process after a COW event,
890 * that page can be moved into the anon_vma that belongs to just that
891 * process, so the rmap code will not search the parent or sibling
892 * processes.
893 */
894void page_move_anon_rmap(struct page *page,
895 struct vm_area_struct *vma, unsigned long address)
896{
897 struct anon_vma *anon_vma = vma->anon_vma;
898
309381fe 899 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 900 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 901 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
902
903 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
904 page->mapping = (struct address_space *) anon_vma;
905}
906
9617d95e 907/**
4e1c1975
AK
908 * __page_set_anon_rmap - set up new anonymous rmap
909 * @page: Page to add to rmap
910 * @vma: VM area to add page to.
911 * @address: User virtual address of the mapping
e8a03feb 912 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
913 */
914static void __page_set_anon_rmap(struct page *page,
e8a03feb 915 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 916{
e8a03feb 917 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 918
e8a03feb 919 BUG_ON(!anon_vma);
ea90002b 920
4e1c1975
AK
921 if (PageAnon(page))
922 return;
923
ea90002b 924 /*
e8a03feb
RR
925 * If the page isn't exclusively mapped into this vma,
926 * we must use the _oldest_ possible anon_vma for the
927 * page mapping!
ea90002b 928 */
4e1c1975 929 if (!exclusive)
288468c3 930 anon_vma = anon_vma->root;
9617d95e 931
9617d95e
NP
932 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
933 page->mapping = (struct address_space *) anon_vma;
9617d95e 934 page->index = linear_page_index(vma, address);
9617d95e
NP
935}
936
c97a9e10 937/**
43d8eac4 938 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
939 * @page: the page to add the mapping to
940 * @vma: the vm area in which the mapping is added
941 * @address: the user virtual address mapped
942 */
943static void __page_check_anon_rmap(struct page *page,
944 struct vm_area_struct *vma, unsigned long address)
945{
946#ifdef CONFIG_DEBUG_VM
947 /*
948 * The page's anon-rmap details (mapping and index) are guaranteed to
949 * be set up correctly at this point.
950 *
951 * We have exclusion against page_add_anon_rmap because the caller
952 * always holds the page locked, except if called from page_dup_rmap,
953 * in which case the page is already known to be setup.
954 *
955 * We have exclusion against page_add_new_anon_rmap because those pages
956 * are initially only visible via the pagetables, and the pte is locked
957 * over the call to page_add_new_anon_rmap.
958 */
44ab57a0 959 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
960 BUG_ON(page->index != linear_page_index(vma, address));
961#endif
962}
963
1da177e4
LT
964/**
965 * page_add_anon_rmap - add pte mapping to an anonymous page
966 * @page: the page to add the mapping to
967 * @vma: the vm area in which the mapping is added
968 * @address: the user virtual address mapped
969 *
5ad64688 970 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
971 * the anon_vma case: to serialize mapping,index checking after setting,
972 * and to ensure that PageAnon is not being upgraded racily to PageKsm
973 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
974 */
975void page_add_anon_rmap(struct page *page,
976 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
977{
978 do_page_add_anon_rmap(page, vma, address, 0);
979}
980
981/*
982 * Special version of the above for do_swap_page, which often runs
983 * into pages that are exclusively owned by the current process.
984 * Everybody else should continue to use page_add_anon_rmap above.
985 */
986void do_page_add_anon_rmap(struct page *page,
987 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 988{
5ad64688 989 int first = atomic_inc_and_test(&page->_mapcount);
79134171 990 if (first) {
bea04b07
JZ
991 /*
992 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
993 * these counters are not modified in interrupt context, and
994 * pte lock(a spinlock) is held, which implies preemption
995 * disabled.
996 */
3cd14fcd 997 if (PageTransHuge(page))
79134171
AA
998 __inc_zone_page_state(page,
999 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1000 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1001 hpage_nr_pages(page));
79134171 1002 }
5ad64688
HD
1003 if (unlikely(PageKsm(page)))
1004 return;
1005
309381fe 1006 VM_BUG_ON_PAGE(!PageLocked(page), page);
5dbe0af4 1007 /* address might be in next vma when migration races vma_adjust */
5ad64688 1008 if (first)
ad8c2ee8 1009 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1010 else
c97a9e10 1011 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1012}
1013
43d8eac4 1014/**
9617d95e
NP
1015 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1016 * @page: the page to add the mapping to
1017 * @vma: the vm area in which the mapping is added
1018 * @address: the user virtual address mapped
1019 *
1020 * Same as page_add_anon_rmap but must only be called on *new* pages.
1021 * This means the inc-and-test can be bypassed.
c97a9e10 1022 * Page does not have to be locked.
9617d95e
NP
1023 */
1024void page_add_new_anon_rmap(struct page *page,
1025 struct vm_area_struct *vma, unsigned long address)
1026{
81d1b09c 1027 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a
HD
1028 SetPageSwapBacked(page);
1029 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
3cd14fcd 1030 if (PageTransHuge(page))
79134171 1031 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1032 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1033 hpage_nr_pages(page));
e8a03feb 1034 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1035}
1036
1da177e4
LT
1037/**
1038 * page_add_file_rmap - add pte mapping to a file page
1039 * @page: the page to add the mapping to
1040 *
b8072f09 1041 * The caller needs to hold the pte lock.
1da177e4
LT
1042 */
1043void page_add_file_rmap(struct page *page)
1044{
d7365e78 1045 struct mem_cgroup *memcg;
89c06bd5 1046 unsigned long flags;
d7365e78 1047 bool locked;
89c06bd5 1048
d7365e78 1049 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
d69b042f 1050 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1051 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1052 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1053 }
d7365e78 1054 mem_cgroup_end_page_stat(memcg, locked, flags);
1da177e4
LT
1055}
1056
1057/**
1058 * page_remove_rmap - take down pte mapping from a page
1059 * @page: page to remove mapping from
1060 *
b8072f09 1061 * The caller needs to hold the pte lock.
1da177e4 1062 */
edc315fd 1063void page_remove_rmap(struct page *page)
1da177e4 1064{
d7365e78 1065 struct mem_cgroup *uninitialized_var(memcg);
89c06bd5 1066 bool anon = PageAnon(page);
89c06bd5 1067 unsigned long flags;
d7365e78 1068 bool locked;
89c06bd5
KH
1069
1070 /*
1071 * The anon case has no mem_cgroup page_stat to update; but may
1072 * uncharge_page() below, where the lock ordering can deadlock if
1073 * we hold the lock against page_stat move: so avoid it on anon.
1074 */
1075 if (!anon)
d7365e78 1076 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
89c06bd5 1077
b904dcfe
KM
1078 /* page still mapped by someone else? */
1079 if (!atomic_add_negative(-1, &page->_mapcount))
89c06bd5 1080 goto out;
b904dcfe 1081
0fe6e20b
NH
1082 /*
1083 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1084 * and not charged by memcg for now.
bea04b07
JZ
1085 *
1086 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1087 * these counters are not modified in interrupt context, and
1088 * these counters are not modified in interrupt context, and
1089 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b
NH
1090 */
1091 if (unlikely(PageHuge(page)))
89c06bd5
KH
1092 goto out;
1093 if (anon) {
3cd14fcd 1094 if (PageTransHuge(page))
79134171
AA
1095 __dec_zone_page_state(page,
1096 NR_ANON_TRANSPARENT_HUGEPAGES);
3cd14fcd
KS
1097 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1098 -hpage_nr_pages(page));
b904dcfe
KM
1099 } else {
1100 __dec_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1101 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
b904dcfe 1102 }
e6c509f8
HD
1103 if (unlikely(PageMlocked(page)))
1104 clear_page_mlock(page);
b904dcfe
KM
1105 /*
1106 * It would be tidy to reset the PageAnon mapping here,
1107 * but that might overwrite a racing page_add_anon_rmap
1108 * which increments mapcount after us but sets mapping
1109 * before us: so leave the reset to free_hot_cold_page,
1110 * and remember that it's only reliable while mapped.
1111 * Leaving it set also helps swapoff to reinstate ptes
1112 * faster for those pages still in swapcache.
1113 */
89c06bd5
KH
1114out:
1115 if (!anon)
d7365e78 1116 mem_cgroup_end_page_stat(memcg, locked, flags);
1da177e4
LT
1117}
1118
1119/*
52629506 1120 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1121 */
ac769501 1122static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1123 unsigned long address, void *arg)
1da177e4
LT
1124{
1125 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1126 pte_t *pte;
1127 pte_t pteval;
c0718806 1128 spinlock_t *ptl;
1da177e4 1129 int ret = SWAP_AGAIN;
52629506 1130 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1131
479db0bf 1132 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1133 if (!pte)
81b4082d 1134 goto out;
1da177e4
LT
1135
1136 /*
1137 * If the page is mlock()d, we cannot swap it out.
1138 * If it's recently referenced (perhaps page_referenced
1139 * skipped over this mm) then we should reactivate it.
1140 */
14fa31b8 1141 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1142 if (vma->vm_flags & VM_LOCKED)
1143 goto out_mlock;
1144
daa5ba76 1145 if (flags & TTU_MUNLOCK)
53f79acb 1146 goto out_unmap;
14fa31b8
AK
1147 }
1148 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1149 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1150 ret = SWAP_FAIL;
1151 goto out_unmap;
1152 }
1153 }
1da177e4 1154
1da177e4
LT
1155 /* Nuke the page table entry. */
1156 flush_cache_page(vma, address, page_to_pfn(page));
2ec74c3e 1157 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1158
1159 /* Move the dirty bit to the physical page now the pte is gone. */
1160 if (pte_dirty(pteval))
1161 set_page_dirty(page);
1162
365e9c87
HD
1163 /* Update high watermark before we lower rss */
1164 update_hiwater_rss(mm);
1165
888b9f7c 1166 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5f24ae58
NH
1167 if (!PageHuge(page)) {
1168 if (PageAnon(page))
1169 dec_mm_counter(mm, MM_ANONPAGES);
1170 else
1171 dec_mm_counter(mm, MM_FILEPAGES);
1172 }
888b9f7c 1173 set_pte_at(mm, address, pte,
5f24ae58 1174 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1175 } else if (pte_unused(pteval)) {
1176 /*
1177 * The guest indicated that the page content is of no
1178 * interest anymore. Simply discard the pte, vmscan
1179 * will take care of the rest.
1180 */
1181 if (PageAnon(page))
1182 dec_mm_counter(mm, MM_ANONPAGES);
1183 else
1184 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c 1185 } else if (PageAnon(page)) {
4c21e2f2 1186 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1187 pte_t swp_pte;
0697212a
CL
1188
1189 if (PageSwapCache(page)) {
1190 /*
1191 * Store the swap location in the pte.
1192 * See handle_pte_fault() ...
1193 */
570a335b
HD
1194 if (swap_duplicate(entry) < 0) {
1195 set_pte_at(mm, address, pte, pteval);
1196 ret = SWAP_FAIL;
1197 goto out_unmap;
1198 }
0697212a
CL
1199 if (list_empty(&mm->mmlist)) {
1200 spin_lock(&mmlist_lock);
1201 if (list_empty(&mm->mmlist))
1202 list_add(&mm->mmlist, &init_mm.mmlist);
1203 spin_unlock(&mmlist_lock);
1204 }
d559db08 1205 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1206 inc_mm_counter(mm, MM_SWAPENTS);
ce1744f4 1207 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
0697212a
CL
1208 /*
1209 * Store the pfn of the page in a special migration
1210 * pte. do_swap_page() will wait until the migration
1211 * pte is removed and then restart fault handling.
1212 */
daa5ba76 1213 BUG_ON(!(flags & TTU_MIGRATION));
0697212a 1214 entry = make_migration_entry(page, pte_write(pteval));
1da177e4 1215 }
179ef71c
CG
1216 swp_pte = swp_entry_to_pte(entry);
1217 if (pte_soft_dirty(pteval))
1218 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1219 set_pte_at(mm, address, pte, swp_pte);
1da177e4 1220 BUG_ON(pte_file(*pte));
ce1744f4 1221 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
daa5ba76 1222 (flags & TTU_MIGRATION)) {
04e62a29
CL
1223 /* Establish migration entry for a file page */
1224 swp_entry_t entry;
1225 entry = make_migration_entry(page, pte_write(pteval));
1226 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1227 } else
d559db08 1228 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1229
edc315fd 1230 page_remove_rmap(page);
1da177e4
LT
1231 page_cache_release(page);
1232
1233out_unmap:
c0718806 1234 pte_unmap_unlock(pte, ptl);
daa5ba76 1235 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
2ec74c3e 1236 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1237out:
1238 return ret;
53f79acb 1239
caed0f48
KM
1240out_mlock:
1241 pte_unmap_unlock(pte, ptl);
1242
1243
1244 /*
1245 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1246 * unstable result and race. Plus, We can't wait here because
5a505085 1247 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
caed0f48
KM
1248 * if trylock failed, the page remain in evictable lru and later
1249 * vmscan could retry to move the page to unevictable lru if the
1250 * page is actually mlocked.
1251 */
1252 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1253 if (vma->vm_flags & VM_LOCKED) {
1254 mlock_vma_page(page);
1255 ret = SWAP_MLOCK;
53f79acb 1256 }
caed0f48 1257 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1258 }
1da177e4
LT
1259 return ret;
1260}
1261
1262/*
1263 * objrmap doesn't work for nonlinear VMAs because the assumption that
1264 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1265 * Consequently, given a particular page and its ->index, we cannot locate the
1266 * ptes which are mapping that page without an exhaustive linear search.
1267 *
1268 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1269 * maps the file to which the target page belongs. The ->vm_private_data field
1270 * holds the current cursor into that scan. Successive searches will circulate
1271 * around the vma's virtual address space.
1272 *
1273 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1274 * more scanning pressure is placed against them as well. Eventually pages
1275 * will become fully unmapped and are eligible for eviction.
1276 *
1277 * For very sparsely populated VMAs this is a little inefficient - chances are
1278 * there there won't be many ptes located within the scan cluster. In this case
1279 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1280 *
1281 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1282 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1283 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1284 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1285 */
1286#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1287#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1288
b291f000
NP
1289static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1290 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1291{
1292 struct mm_struct *mm = vma->vm_mm;
1da177e4 1293 pmd_t *pmd;
c0718806 1294 pte_t *pte;
1da177e4 1295 pte_t pteval;
c0718806 1296 spinlock_t *ptl;
1da177e4
LT
1297 struct page *page;
1298 unsigned long address;
2ec74c3e
SG
1299 unsigned long mmun_start; /* For mmu_notifiers */
1300 unsigned long mmun_end; /* For mmu_notifiers */
1da177e4 1301 unsigned long end;
b291f000
NP
1302 int ret = SWAP_AGAIN;
1303 int locked_vma = 0;
1da177e4 1304
1da177e4
LT
1305 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1306 end = address + CLUSTER_SIZE;
1307 if (address < vma->vm_start)
1308 address = vma->vm_start;
1309 if (end > vma->vm_end)
1310 end = vma->vm_end;
1311
6219049a
BL
1312 pmd = mm_find_pmd(mm, address);
1313 if (!pmd)
b291f000
NP
1314 return ret;
1315
2ec74c3e
SG
1316 mmun_start = address;
1317 mmun_end = end;
1318 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1319
b291f000 1320 /*
af8e3354 1321 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1322 * keep the sem while scanning the cluster for mlocking pages.
1323 */
af8e3354 1324 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1325 locked_vma = (vma->vm_flags & VM_LOCKED);
1326 if (!locked_vma)
1327 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1328 }
c0718806
HD
1329
1330 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1331
365e9c87
HD
1332 /* Update high watermark before we lower rss */
1333 update_hiwater_rss(mm);
1334
c0718806 1335 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1336 if (!pte_present(*pte))
1337 continue;
6aab341e
LT
1338 page = vm_normal_page(vma, address, *pte);
1339 BUG_ON(!page || PageAnon(page));
1da177e4 1340
b291f000 1341 if (locked_vma) {
57e68e9c
VB
1342 if (page == check_page) {
1343 /* we know we have check_page locked */
1344 mlock_vma_page(page);
b291f000 1345 ret = SWAP_MLOCK;
57e68e9c
VB
1346 } else if (trylock_page(page)) {
1347 /*
1348 * If we can lock the page, perform mlock.
1349 * Otherwise leave the page alone, it will be
1350 * eventually encountered again later.
1351 */
1352 mlock_vma_page(page);
1353 unlock_page(page);
1354 }
b291f000
NP
1355 continue; /* don't unmap */
1356 }
1357
57128468
ALC
1358 /*
1359 * No need for _notify because we're within an
1360 * mmu_notifier_invalidate_range_ {start|end} scope.
1361 */
1362 if (ptep_clear_flush_young(vma, address, pte))
1da177e4
LT
1363 continue;
1364
1365 /* Nuke the page table entry. */
eca35133 1366 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1367 pteval = ptep_clear_flush(vma, address, pte);
1da177e4
LT
1368
1369 /* If nonlinear, store the file page offset in the pte. */
41bb3476
CG
1370 if (page->index != linear_page_index(vma, address)) {
1371 pte_t ptfile = pgoff_to_pte(page->index);
1372 if (pte_soft_dirty(pteval))
b43790ee 1373 ptfile = pte_file_mksoft_dirty(ptfile);
41bb3476
CG
1374 set_pte_at(mm, address, pte, ptfile);
1375 }
1da177e4
LT
1376
1377 /* Move the dirty bit to the physical page now the pte is gone. */
1378 if (pte_dirty(pteval))
1379 set_page_dirty(page);
1380
edc315fd 1381 page_remove_rmap(page);
1da177e4 1382 page_cache_release(page);
d559db08 1383 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1384 (*mapcount)--;
1385 }
c0718806 1386 pte_unmap_unlock(pte - 1, ptl);
2ec74c3e 1387 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b291f000
NP
1388 if (locked_vma)
1389 up_read(&vma->vm_mm->mmap_sem);
1390 return ret;
1da177e4
LT
1391}
1392
0f843c6a 1393static int try_to_unmap_nonlinear(struct page *page,
7e09e738 1394 struct address_space *mapping, void *arg)
0f843c6a 1395{
7e09e738 1396 struct vm_area_struct *vma;
0f843c6a
JK
1397 int ret = SWAP_AGAIN;
1398 unsigned long cursor;
1399 unsigned long max_nl_cursor = 0;
1400 unsigned long max_nl_size = 0;
1401 unsigned int mapcount;
1402
1403 list_for_each_entry(vma,
1404 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1405
1406 cursor = (unsigned long) vma->vm_private_data;
1407 if (cursor > max_nl_cursor)
1408 max_nl_cursor = cursor;
1409 cursor = vma->vm_end - vma->vm_start;
1410 if (cursor > max_nl_size)
1411 max_nl_size = cursor;
1412 }
1413
1414 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1415 return SWAP_FAIL;
1416 }
1417
1418 /*
1419 * We don't try to search for this page in the nonlinear vmas,
1420 * and page_referenced wouldn't have found it anyway. Instead
1421 * just walk the nonlinear vmas trying to age and unmap some.
1422 * The mapcount of the page we came in with is irrelevant,
1423 * but even so use it as a guide to how hard we should try?
1424 */
1425 mapcount = page_mapcount(page);
1426 if (!mapcount)
1427 return ret;
1428
1429 cond_resched();
1430
1431 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1432 if (max_nl_cursor == 0)
1433 max_nl_cursor = CLUSTER_SIZE;
1434
1435 do {
1436 list_for_each_entry(vma,
1437 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1438
1439 cursor = (unsigned long) vma->vm_private_data;
1440 while (cursor < max_nl_cursor &&
1441 cursor < vma->vm_end - vma->vm_start) {
1442 if (try_to_unmap_cluster(cursor, &mapcount,
1443 vma, page) == SWAP_MLOCK)
1444 ret = SWAP_MLOCK;
1445 cursor += CLUSTER_SIZE;
1446 vma->vm_private_data = (void *) cursor;
1447 if ((int)mapcount <= 0)
1448 return ret;
1449 }
1450 vma->vm_private_data = (void *) max_nl_cursor;
1451 }
1452 cond_resched();
1453 max_nl_cursor += CLUSTER_SIZE;
1454 } while (max_nl_cursor <= max_nl_size);
1455
1456 /*
1457 * Don't loop forever (perhaps all the remaining pages are
1458 * in locked vmas). Reset cursor on all unreserved nonlinear
1459 * vmas, now forgetting on which ones it had fallen behind.
1460 */
1461 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1462 vma->vm_private_data = NULL;
1463
1464 return ret;
1465}
1466
71e3aac0 1467bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1468{
1469 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1470
1471 if (!maybe_stack)
1472 return false;
1473
1474 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1475 VM_STACK_INCOMPLETE_SETUP)
1476 return true;
1477
1478 return false;
1479}
1480
52629506
JK
1481static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1482{
1483 return is_vma_temporary_stack(vma);
1484}
1485
52629506
JK
1486static int page_not_mapped(struct page *page)
1487{
1488 return !page_mapped(page);
1489};
1490
1da177e4
LT
1491/**
1492 * try_to_unmap - try to remove all page table mappings to a page
1493 * @page: the page to get unmapped
14fa31b8 1494 * @flags: action and flags
1da177e4
LT
1495 *
1496 * Tries to remove all the page table entries which are mapping this
1497 * page, used in the pageout path. Caller must hold the page lock.
1498 * Return values are:
1499 *
1500 * SWAP_SUCCESS - we succeeded in removing all mappings
1501 * SWAP_AGAIN - we missed a mapping, try again later
1502 * SWAP_FAIL - the page is unswappable
b291f000 1503 * SWAP_MLOCK - page is mlocked.
1da177e4 1504 */
14fa31b8 1505int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1506{
1507 int ret;
52629506
JK
1508 struct rmap_walk_control rwc = {
1509 .rmap_one = try_to_unmap_one,
1510 .arg = (void *)flags,
1511 .done = page_not_mapped,
1512 .file_nonlinear = try_to_unmap_nonlinear,
1513 .anon_lock = page_lock_anon_vma_read,
1514 };
1da177e4 1515
309381fe 1516 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1517
52629506
JK
1518 /*
1519 * During exec, a temporary VMA is setup and later moved.
1520 * The VMA is moved under the anon_vma lock but not the
1521 * page tables leading to a race where migration cannot
1522 * find the migration ptes. Rather than increasing the
1523 * locking requirements of exec(), migration skips
1524 * temporary VMAs until after exec() completes.
1525 */
daa5ba76 1526 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1527 rwc.invalid_vma = invalid_migration_vma;
1528
1529 ret = rmap_walk(page, &rwc);
1530
b291f000 1531 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1532 ret = SWAP_SUCCESS;
1533 return ret;
1534}
81b4082d 1535
b291f000
NP
1536/**
1537 * try_to_munlock - try to munlock a page
1538 * @page: the page to be munlocked
1539 *
1540 * Called from munlock code. Checks all of the VMAs mapping the page
1541 * to make sure nobody else has this page mlocked. The page will be
1542 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1543 *
1544 * Return values are:
1545 *
53f79acb 1546 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1547 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1548 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1549 * SWAP_MLOCK - page is now mlocked.
1550 */
1551int try_to_munlock(struct page *page)
1552{
e8351ac9
JK
1553 int ret;
1554 struct rmap_walk_control rwc = {
1555 .rmap_one = try_to_unmap_one,
1556 .arg = (void *)TTU_MUNLOCK,
1557 .done = page_not_mapped,
1558 /*
1559 * We don't bother to try to find the munlocked page in
1560 * nonlinears. It's costly. Instead, later, page reclaim logic
1561 * may call try_to_unmap() and recover PG_mlocked lazily.
1562 */
1563 .file_nonlinear = NULL,
1564 .anon_lock = page_lock_anon_vma_read,
1565
1566 };
1567
309381fe 1568 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1569
e8351ac9
JK
1570 ret = rmap_walk(page, &rwc);
1571 return ret;
b291f000 1572}
e9995ef9 1573
01d8b20d 1574void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1575{
01d8b20d 1576 struct anon_vma *root = anon_vma->root;
76545066 1577
624483f3 1578 anon_vma_free(anon_vma);
01d8b20d
PZ
1579 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1580 anon_vma_free(root);
76545066 1581}
76545066 1582
0dd1c7bb
JK
1583static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1584 struct rmap_walk_control *rwc)
faecd8dd
JK
1585{
1586 struct anon_vma *anon_vma;
1587
0dd1c7bb
JK
1588 if (rwc->anon_lock)
1589 return rwc->anon_lock(page);
1590
faecd8dd
JK
1591 /*
1592 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1593 * because that depends on page_mapped(); but not all its usages
1594 * are holding mmap_sem. Users without mmap_sem are required to
1595 * take a reference count to prevent the anon_vma disappearing
1596 */
1597 anon_vma = page_anon_vma(page);
1598 if (!anon_vma)
1599 return NULL;
1600
1601 anon_vma_lock_read(anon_vma);
1602 return anon_vma;
1603}
1604
e9995ef9 1605/*
e8351ac9
JK
1606 * rmap_walk_anon - do something to anonymous page using the object-based
1607 * rmap method
1608 * @page: the page to be handled
1609 * @rwc: control variable according to each walk type
1610 *
1611 * Find all the mappings of a page using the mapping pointer and the vma chains
1612 * contained in the anon_vma struct it points to.
1613 *
1614 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1615 * where the page was found will be held for write. So, we won't recheck
1616 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1617 * LOCKED.
e9995ef9 1618 */
051ac83a 1619static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1620{
1621 struct anon_vma *anon_vma;
a0f7a756 1622 pgoff_t pgoff = page_to_pgoff(page);
5beb4930 1623 struct anon_vma_chain *avc;
e9995ef9
HD
1624 int ret = SWAP_AGAIN;
1625
0dd1c7bb 1626 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1627 if (!anon_vma)
1628 return ret;
faecd8dd 1629
bf181b9f 1630 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1631 struct vm_area_struct *vma = avc->vma;
e9995ef9 1632 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1633
1634 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1635 continue;
1636
051ac83a 1637 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1638 if (ret != SWAP_AGAIN)
1639 break;
0dd1c7bb
JK
1640 if (rwc->done && rwc->done(page))
1641 break;
e9995ef9 1642 }
4fc3f1d6 1643 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1644 return ret;
1645}
1646
e8351ac9
JK
1647/*
1648 * rmap_walk_file - do something to file page using the object-based rmap method
1649 * @page: the page to be handled
1650 * @rwc: control variable according to each walk type
1651 *
1652 * Find all the mappings of a page using the mapping pointer and the vma chains
1653 * contained in the address_space struct it points to.
1654 *
1655 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1656 * where the page was found will be held for write. So, we won't recheck
1657 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1658 * LOCKED.
1659 */
051ac83a 1660static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1661{
1662 struct address_space *mapping = page->mapping;
a0f7a756 1663 pgoff_t pgoff = page_to_pgoff(page);
e9995ef9 1664 struct vm_area_struct *vma;
e9995ef9
HD
1665 int ret = SWAP_AGAIN;
1666
9f32624b
JK
1667 /*
1668 * The page lock not only makes sure that page->mapping cannot
1669 * suddenly be NULLified by truncation, it makes sure that the
1670 * structure at mapping cannot be freed and reused yet,
1671 * so we can safely take mapping->i_mmap_mutex.
1672 */
81d1b09c 1673 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1674
e9995ef9
HD
1675 if (!mapping)
1676 return ret;
3d48ae45 1677 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 1678 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1679 unsigned long address = vma_address(page, vma);
0dd1c7bb
JK
1680
1681 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1682 continue;
1683
051ac83a 1684 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1685 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1686 goto done;
1687 if (rwc->done && rwc->done(page))
1688 goto done;
e9995ef9 1689 }
0dd1c7bb
JK
1690
1691 if (!rwc->file_nonlinear)
1692 goto done;
1693
1694 if (list_empty(&mapping->i_mmap_nonlinear))
1695 goto done;
1696
7e09e738 1697 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
0dd1c7bb
JK
1698
1699done:
3d48ae45 1700 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1701 return ret;
1702}
1703
051ac83a 1704int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1705{
e9995ef9 1706 if (unlikely(PageKsm(page)))
051ac83a 1707 return rmap_walk_ksm(page, rwc);
e9995ef9 1708 else if (PageAnon(page))
051ac83a 1709 return rmap_walk_anon(page, rwc);
e9995ef9 1710 else
051ac83a 1711 return rmap_walk_file(page, rwc);
e9995ef9 1712}
0fe6e20b 1713
e3390f67 1714#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1715/*
1716 * The following three functions are for anonymous (private mapped) hugepages.
1717 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1718 * and no lru code, because we handle hugepages differently from common pages.
1719 */
1720static void __hugepage_set_anon_rmap(struct page *page,
1721 struct vm_area_struct *vma, unsigned long address, int exclusive)
1722{
1723 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1724
0fe6e20b 1725 BUG_ON(!anon_vma);
433abed6
NH
1726
1727 if (PageAnon(page))
1728 return;
1729 if (!exclusive)
1730 anon_vma = anon_vma->root;
1731
0fe6e20b
NH
1732 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1733 page->mapping = (struct address_space *) anon_vma;
1734 page->index = linear_page_index(vma, address);
1735}
1736
1737void hugepage_add_anon_rmap(struct page *page,
1738 struct vm_area_struct *vma, unsigned long address)
1739{
1740 struct anon_vma *anon_vma = vma->anon_vma;
1741 int first;
a850ea30
NH
1742
1743 BUG_ON(!PageLocked(page));
0fe6e20b 1744 BUG_ON(!anon_vma);
5dbe0af4 1745 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1746 first = atomic_inc_and_test(&page->_mapcount);
1747 if (first)
1748 __hugepage_set_anon_rmap(page, vma, address, 0);
1749}
1750
1751void hugepage_add_new_anon_rmap(struct page *page,
1752 struct vm_area_struct *vma, unsigned long address)
1753{
1754 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1755 atomic_set(&page->_mapcount, 0);
1756 __hugepage_set_anon_rmap(page, vma, address, 1);
1757}
e3390f67 1758#endif /* CONFIG_HUGETLB_PAGE */