]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/include/asm/kvm_mmu.h
arm64: KVM: Use per-CPU vector when BP hardening is enabled
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / include / asm / kvm_mmu.h
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24
25 /*
26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27 * "negative" addresses. This makes it impossible to directly share
28 * mappings with the kernel.
29 *
30 * Instead, give the HYP mode its own VA region at a fixed offset from
31 * the kernel by just masking the top bits (which are all ones for a
32 * kernel address). We need to find out how many bits to mask.
33 *
34 * We want to build a set of page tables that cover both parts of the
35 * idmap (the trampoline page used to initialize EL2), and our normal
36 * runtime VA space, at the same time.
37 *
38 * Given that the kernel uses VA_BITS for its entire address space,
39 * and that half of that space (VA_BITS - 1) is used for the linear
40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41 *
42 * The main question is "Within the VA_BITS space, does EL2 use the
43 * top or the bottom half of that space to shadow the kernel's linear
44 * mapping?". As we need to idmap the trampoline page, this is
45 * determined by the range in which this page lives.
46 *
47 * If the page is in the bottom half, we have to use the top half. If
48 * the page is in the top half, we have to use the bottom half:
49 *
50 * T = __pa_symbol(__hyp_idmap_text_start)
51 * if (T & BIT(VA_BITS - 1))
52 * HYP_VA_MIN = 0 //idmap in upper half
53 * else
54 * HYP_VA_MIN = 1 << (VA_BITS - 1)
55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56 *
57 * This of course assumes that the trampoline page exists within the
58 * VA_BITS range. If it doesn't, then it means we're in the odd case
59 * where the kernel idmap (as well as HYP) uses more levels than the
60 * kernel runtime page tables (as seen when the kernel is configured
61 * for 4k pages, 39bits VA, and yet memory lives just above that
62 * limit, forcing the idmap to use 4 levels of page tables while the
63 * kernel itself only uses 3). In this particular case, it doesn't
64 * matter which side of VA_BITS we use, as we're guaranteed not to
65 * conflict with anything.
66 *
67 * When using VHE, there are no separate hyp mappings and all KVM
68 * functionality is already mapped as part of the main kernel
69 * mappings, and none of this applies in that case.
70 */
71
72 #define HYP_PAGE_OFFSET_HIGH_MASK ((UL(1) << VA_BITS) - 1)
73 #define HYP_PAGE_OFFSET_LOW_MASK ((UL(1) << (VA_BITS - 1)) - 1)
74
75 #ifdef __ASSEMBLY__
76
77 #include <asm/alternative.h>
78 #include <asm/cpufeature.h>
79
80 /*
81 * Convert a kernel VA into a HYP VA.
82 * reg: VA to be converted.
83 *
84 * This generates the following sequences:
85 * - High mask:
86 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
87 * nop
88 * - Low mask:
89 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
90 * and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK
91 * - VHE:
92 * nop
93 * nop
94 *
95 * The "low mask" version works because the mask is a strict subset of
96 * the "high mask", hence performing the first mask for nothing.
97 * Should be completely invisible on any viable CPU.
98 */
99 .macro kern_hyp_va reg
100 alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
101 and \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK
102 alternative_else_nop_endif
103 alternative_if ARM64_HYP_OFFSET_LOW
104 and \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK
105 alternative_else_nop_endif
106 .endm
107
108 #else
109
110 #include <asm/pgalloc.h>
111 #include <asm/cache.h>
112 #include <asm/cacheflush.h>
113 #include <asm/mmu_context.h>
114 #include <asm/pgtable.h>
115
116 static inline unsigned long __kern_hyp_va(unsigned long v)
117 {
118 asm volatile(ALTERNATIVE("and %0, %0, %1",
119 "nop",
120 ARM64_HAS_VIRT_HOST_EXTN)
121 : "+r" (v)
122 : "i" (HYP_PAGE_OFFSET_HIGH_MASK));
123 asm volatile(ALTERNATIVE("nop",
124 "and %0, %0, %1",
125 ARM64_HYP_OFFSET_LOW)
126 : "+r" (v)
127 : "i" (HYP_PAGE_OFFSET_LOW_MASK));
128 return v;
129 }
130
131 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
132
133 /*
134 * We currently only support a 40bit IPA.
135 */
136 #define KVM_PHYS_SHIFT (40)
137 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
138 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
139
140 #include <asm/stage2_pgtable.h>
141
142 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
143 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
144 void free_hyp_pgds(void);
145
146 void stage2_unmap_vm(struct kvm *kvm);
147 int kvm_alloc_stage2_pgd(struct kvm *kvm);
148 void kvm_free_stage2_pgd(struct kvm *kvm);
149 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
150 phys_addr_t pa, unsigned long size, bool writable);
151
152 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
153
154 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
155
156 phys_addr_t kvm_mmu_get_httbr(void);
157 phys_addr_t kvm_get_idmap_vector(void);
158 int kvm_mmu_init(void);
159 void kvm_clear_hyp_idmap(void);
160
161 #define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
162 #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
163
164 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
165 {
166 pte_val(pte) |= PTE_S2_RDWR;
167 return pte;
168 }
169
170 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
171 {
172 pmd_val(pmd) |= PMD_S2_RDWR;
173 return pmd;
174 }
175
176 static inline void kvm_set_s2pte_readonly(pte_t *pte)
177 {
178 pteval_t old_pteval, pteval;
179
180 pteval = READ_ONCE(pte_val(*pte));
181 do {
182 old_pteval = pteval;
183 pteval &= ~PTE_S2_RDWR;
184 pteval |= PTE_S2_RDONLY;
185 pteval = cmpxchg_relaxed(&pte_val(*pte), old_pteval, pteval);
186 } while (pteval != old_pteval);
187 }
188
189 static inline bool kvm_s2pte_readonly(pte_t *pte)
190 {
191 return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
192 }
193
194 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
195 {
196 kvm_set_s2pte_readonly((pte_t *)pmd);
197 }
198
199 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
200 {
201 return kvm_s2pte_readonly((pte_t *)pmd);
202 }
203
204 static inline bool kvm_page_empty(void *ptr)
205 {
206 struct page *ptr_page = virt_to_page(ptr);
207 return page_count(ptr_page) == 1;
208 }
209
210 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
211
212 #ifdef __PAGETABLE_PMD_FOLDED
213 #define hyp_pmd_table_empty(pmdp) (0)
214 #else
215 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
216 #endif
217
218 #ifdef __PAGETABLE_PUD_FOLDED
219 #define hyp_pud_table_empty(pudp) (0)
220 #else
221 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
222 #endif
223
224 struct kvm;
225
226 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
227
228 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
229 {
230 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
231 }
232
233 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
234 kvm_pfn_t pfn,
235 unsigned long size)
236 {
237 void *va = page_address(pfn_to_page(pfn));
238
239 kvm_flush_dcache_to_poc(va, size);
240
241 if (icache_is_aliasing()) {
242 /* any kind of VIPT cache */
243 __flush_icache_all();
244 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
245 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
246 flush_icache_range((unsigned long)va,
247 (unsigned long)va + size);
248 }
249 }
250
251 static inline void __kvm_flush_dcache_pte(pte_t pte)
252 {
253 struct page *page = pte_page(pte);
254 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
255 }
256
257 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
258 {
259 struct page *page = pmd_page(pmd);
260 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
261 }
262
263 static inline void __kvm_flush_dcache_pud(pud_t pud)
264 {
265 struct page *page = pud_page(pud);
266 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
267 }
268
269 #define kvm_virt_to_phys(x) __pa_symbol(x)
270
271 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
272 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
273
274 static inline bool __kvm_cpu_uses_extended_idmap(void)
275 {
276 return __cpu_uses_extended_idmap();
277 }
278
279 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
280 pgd_t *hyp_pgd,
281 pgd_t *merged_hyp_pgd,
282 unsigned long hyp_idmap_start)
283 {
284 int idmap_idx;
285
286 /*
287 * Use the first entry to access the HYP mappings. It is
288 * guaranteed to be free, otherwise we wouldn't use an
289 * extended idmap.
290 */
291 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
292 merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
293
294 /*
295 * Create another extended level entry that points to the boot HYP map,
296 * which contains an ID mapping of the HYP init code. We essentially
297 * merge the boot and runtime HYP maps by doing so, but they don't
298 * overlap anyway, so this is fine.
299 */
300 idmap_idx = hyp_idmap_start >> VA_BITS;
301 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
302 merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
303 }
304
305 static inline unsigned int kvm_get_vmid_bits(void)
306 {
307 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
308
309 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
310 }
311
312 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
313 #include <asm/mmu.h>
314
315 static inline void *kvm_get_hyp_vector(void)
316 {
317 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
318 void *vect = kvm_ksym_ref(__kvm_hyp_vector);
319
320 if (data->fn) {
321 vect = __bp_harden_hyp_vecs_start +
322 data->hyp_vectors_slot * SZ_2K;
323
324 if (!has_vhe())
325 vect = lm_alias(vect);
326 }
327
328 return vect;
329 }
330
331 static inline int kvm_map_vectors(void)
332 {
333 return create_hyp_mappings(kvm_ksym_ref(__bp_harden_hyp_vecs_start),
334 kvm_ksym_ref(__bp_harden_hyp_vecs_end),
335 PAGE_HYP_EXEC);
336 }
337
338 #else
339 static inline void *kvm_get_hyp_vector(void)
340 {
341 return kvm_ksym_ref(__kvm_hyp_vector);
342 }
343
344 static inline int kvm_map_vectors(void)
345 {
346 return 0;
347 }
348 #endif
349
350 #endif /* __ASSEMBLY__ */
351 #endif /* __ARM64_KVM_MMU_H__ */