]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kernel/cpufeature.c
arm64: Take into account ID_AA64PFR0_EL1.CSV3
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT \
41 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46 COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53
54 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
55 {
56 /* file-wide pr_fmt adds "CPU features: " prefix */
57 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
58 return 0;
59 }
60
61 static struct notifier_block cpu_hwcaps_notifier = {
62 .notifier_call = dump_cpu_hwcaps
63 };
64
65 static int __init register_cpu_hwcaps_dumper(void)
66 {
67 atomic_notifier_chain_register(&panic_notifier_list,
68 &cpu_hwcaps_notifier);
69 return 0;
70 }
71 __initcall(register_cpu_hwcaps_dumper);
72
73 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
74 EXPORT_SYMBOL(cpu_hwcap_keys);
75
76 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
77 { \
78 .sign = SIGNED, \
79 .visible = VISIBLE, \
80 .strict = STRICT, \
81 .type = TYPE, \
82 .shift = SHIFT, \
83 .width = WIDTH, \
84 .safe_val = SAFE_VAL, \
85 }
86
87 /* Define a feature with unsigned values */
88 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
89 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
90
91 /* Define a feature with a signed value */
92 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
94
95 #define ARM64_FTR_END \
96 { \
97 .width = 0, \
98 }
99
100 /* meta feature for alternatives */
101 static bool __maybe_unused
102 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
103
104
105 /*
106 * NOTE: Any changes to the visibility of features should be kept in
107 * sync with the documentation of the CPU feature register ABI.
108 */
109 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
110 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
111 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
112 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
114 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
115 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
116 ARM64_FTR_END,
117 };
118
119 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
120 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
121 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
122 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
123 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
124 ARM64_FTR_END,
125 };
126
127 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
128 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
130 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
131 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
132 /* Linux doesn't care about the EL3 */
133 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
136 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
137 ARM64_FTR_END,
138 };
139
140 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
141 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
142 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
143 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
144 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
145 /* Linux shouldn't care about secure memory */
146 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
147 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
148 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
149 /*
150 * Differing PARange is fine as long as all peripherals and memory are mapped
151 * within the minimum PARange of all CPUs
152 */
153 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
154 ARM64_FTR_END,
155 };
156
157 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
158 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
159 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
160 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
161 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
162 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
163 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
164 ARM64_FTR_END,
165 };
166
167 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
169 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
171 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
172 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
173 ARM64_FTR_END,
174 };
175
176 static const struct arm64_ftr_bits ftr_ctr[] = {
177 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
178 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
179 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
180 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
181 /*
182 * Linux can handle differing I-cache policies. Userspace JITs will
183 * make use of *minLine.
184 * If we have differing I-cache policies, report it as the weakest - VIPT.
185 */
186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
187 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
188 ARM64_FTR_END,
189 };
190
191 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
192 .name = "SYS_CTR_EL0",
193 .ftr_bits = ftr_ctr
194 };
195
196 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
197 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
199 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
200 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
201 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
202 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
203 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
204 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
205 ARM64_FTR_END,
206 };
207
208 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
209 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
210 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
214 /*
215 * We can instantiate multiple PMU instances with different levels
216 * of support.
217 */
218 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
221 ARM64_FTR_END,
222 };
223
224 static const struct arm64_ftr_bits ftr_mvfr2[] = {
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
226 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
227 ARM64_FTR_END,
228 };
229
230 static const struct arm64_ftr_bits ftr_dczid[] = {
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
233 ARM64_FTR_END,
234 };
235
236
237 static const struct arm64_ftr_bits ftr_id_isar5[] = {
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
244 ARM64_FTR_END,
245 };
246
247 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
248 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
249 ARM64_FTR_END,
250 };
251
252 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
253 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
254 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
255 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
256 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
257 ARM64_FTR_END,
258 };
259
260 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
262 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
265 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
266 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
267 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
269 ARM64_FTR_END,
270 };
271
272 /*
273 * Common ftr bits for a 32bit register with all hidden, strict
274 * attributes, with 4bit feature fields and a default safe value of
275 * 0. Covers the following 32bit registers:
276 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
277 */
278 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
280 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
287 ARM64_FTR_END,
288 };
289
290 /* Table for a single 32bit feature value */
291 static const struct arm64_ftr_bits ftr_single32[] = {
292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
293 ARM64_FTR_END,
294 };
295
296 static const struct arm64_ftr_bits ftr_raz[] = {
297 ARM64_FTR_END,
298 };
299
300 #define ARM64_FTR_REG(id, table) { \
301 .sys_id = id, \
302 .reg = &(struct arm64_ftr_reg){ \
303 .name = #id, \
304 .ftr_bits = &((table)[0]), \
305 }}
306
307 static const struct __ftr_reg_entry {
308 u32 sys_id;
309 struct arm64_ftr_reg *reg;
310 } arm64_ftr_regs[] = {
311
312 /* Op1 = 0, CRn = 0, CRm = 1 */
313 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
314 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
315 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
316 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
317 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
318 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
319 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
320
321 /* Op1 = 0, CRn = 0, CRm = 2 */
322 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
323 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
324 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
325 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
326 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
327 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
328 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
329
330 /* Op1 = 0, CRn = 0, CRm = 3 */
331 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
332 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
333 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
334
335 /* Op1 = 0, CRn = 0, CRm = 4 */
336 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
337 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
338
339 /* Op1 = 0, CRn = 0, CRm = 5 */
340 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
341 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
342
343 /* Op1 = 0, CRn = 0, CRm = 6 */
344 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
345 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
346
347 /* Op1 = 0, CRn = 0, CRm = 7 */
348 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
349 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
350 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
351
352 /* Op1 = 3, CRn = 0, CRm = 0 */
353 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
354 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
355
356 /* Op1 = 3, CRn = 14, CRm = 0 */
357 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
358 };
359
360 static int search_cmp_ftr_reg(const void *id, const void *regp)
361 {
362 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
363 }
364
365 /*
366 * get_arm64_ftr_reg - Lookup a feature register entry using its
367 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
368 * ascending order of sys_id , we use binary search to find a matching
369 * entry.
370 *
371 * returns - Upon success, matching ftr_reg entry for id.
372 * - NULL on failure. It is upto the caller to decide
373 * the impact of a failure.
374 */
375 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
376 {
377 const struct __ftr_reg_entry *ret;
378
379 ret = bsearch((const void *)(unsigned long)sys_id,
380 arm64_ftr_regs,
381 ARRAY_SIZE(arm64_ftr_regs),
382 sizeof(arm64_ftr_regs[0]),
383 search_cmp_ftr_reg);
384 if (ret)
385 return ret->reg;
386 return NULL;
387 }
388
389 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
390 s64 ftr_val)
391 {
392 u64 mask = arm64_ftr_mask(ftrp);
393
394 reg &= ~mask;
395 reg |= (ftr_val << ftrp->shift) & mask;
396 return reg;
397 }
398
399 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
400 s64 cur)
401 {
402 s64 ret = 0;
403
404 switch (ftrp->type) {
405 case FTR_EXACT:
406 ret = ftrp->safe_val;
407 break;
408 case FTR_LOWER_SAFE:
409 ret = new < cur ? new : cur;
410 break;
411 case FTR_HIGHER_SAFE:
412 ret = new > cur ? new : cur;
413 break;
414 default:
415 BUG();
416 }
417
418 return ret;
419 }
420
421 static void __init sort_ftr_regs(void)
422 {
423 int i;
424
425 /* Check that the array is sorted so that we can do the binary search */
426 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
427 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
428 }
429
430 /*
431 * Initialise the CPU feature register from Boot CPU values.
432 * Also initiliases the strict_mask for the register.
433 * Any bits that are not covered by an arm64_ftr_bits entry are considered
434 * RES0 for the system-wide value, and must strictly match.
435 */
436 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
437 {
438 u64 val = 0;
439 u64 strict_mask = ~0x0ULL;
440 u64 user_mask = 0;
441 u64 valid_mask = 0;
442
443 const struct arm64_ftr_bits *ftrp;
444 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
445
446 BUG_ON(!reg);
447
448 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
449 u64 ftr_mask = arm64_ftr_mask(ftrp);
450 s64 ftr_new = arm64_ftr_value(ftrp, new);
451
452 val = arm64_ftr_set_value(ftrp, val, ftr_new);
453
454 valid_mask |= ftr_mask;
455 if (!ftrp->strict)
456 strict_mask &= ~ftr_mask;
457 if (ftrp->visible)
458 user_mask |= ftr_mask;
459 else
460 reg->user_val = arm64_ftr_set_value(ftrp,
461 reg->user_val,
462 ftrp->safe_val);
463 }
464
465 val &= valid_mask;
466
467 reg->sys_val = val;
468 reg->strict_mask = strict_mask;
469 reg->user_mask = user_mask;
470 }
471
472 void __init init_cpu_features(struct cpuinfo_arm64 *info)
473 {
474 /* Before we start using the tables, make sure it is sorted */
475 sort_ftr_regs();
476
477 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
478 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
479 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
480 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
481 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
482 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
483 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
484 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
485 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
486 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
487 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
488 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
489
490 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
491 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
492 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
493 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
494 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
495 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
496 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
497 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
498 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
499 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
500 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
501 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
502 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
503 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
504 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
505 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
506 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
507 }
508
509 }
510
511 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
512 {
513 const struct arm64_ftr_bits *ftrp;
514
515 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
516 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
517 s64 ftr_new = arm64_ftr_value(ftrp, new);
518
519 if (ftr_cur == ftr_new)
520 continue;
521 /* Find a safe value */
522 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
523 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
524 }
525
526 }
527
528 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
529 {
530 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
531
532 BUG_ON(!regp);
533 update_cpu_ftr_reg(regp, val);
534 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
535 return 0;
536 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
537 regp->name, boot, cpu, val);
538 return 1;
539 }
540
541 /*
542 * Update system wide CPU feature registers with the values from a
543 * non-boot CPU. Also performs SANITY checks to make sure that there
544 * aren't any insane variations from that of the boot CPU.
545 */
546 void update_cpu_features(int cpu,
547 struct cpuinfo_arm64 *info,
548 struct cpuinfo_arm64 *boot)
549 {
550 int taint = 0;
551
552 /*
553 * The kernel can handle differing I-cache policies, but otherwise
554 * caches should look identical. Userspace JITs will make use of
555 * *minLine.
556 */
557 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
558 info->reg_ctr, boot->reg_ctr);
559
560 /*
561 * Userspace may perform DC ZVA instructions. Mismatched block sizes
562 * could result in too much or too little memory being zeroed if a
563 * process is preempted and migrated between CPUs.
564 */
565 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
566 info->reg_dczid, boot->reg_dczid);
567
568 /* If different, timekeeping will be broken (especially with KVM) */
569 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
570 info->reg_cntfrq, boot->reg_cntfrq);
571
572 /*
573 * The kernel uses self-hosted debug features and expects CPUs to
574 * support identical debug features. We presently need CTX_CMPs, WRPs,
575 * and BRPs to be identical.
576 * ID_AA64DFR1 is currently RES0.
577 */
578 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
579 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
580 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
581 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
582 /*
583 * Even in big.LITTLE, processors should be identical instruction-set
584 * wise.
585 */
586 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
587 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
588 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
589 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
590
591 /*
592 * Differing PARange support is fine as long as all peripherals and
593 * memory are mapped within the minimum PARange of all CPUs.
594 * Linux should not care about secure memory.
595 */
596 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
597 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
598 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
599 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
600 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
601 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
602
603 /*
604 * EL3 is not our concern.
605 * ID_AA64PFR1 is currently RES0.
606 */
607 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
608 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
609 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
610 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
611
612 /*
613 * If we have AArch32, we care about 32-bit features for compat.
614 * If the system doesn't support AArch32, don't update them.
615 */
616 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
617 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
618
619 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
620 info->reg_id_dfr0, boot->reg_id_dfr0);
621 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
622 info->reg_id_isar0, boot->reg_id_isar0);
623 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
624 info->reg_id_isar1, boot->reg_id_isar1);
625 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
626 info->reg_id_isar2, boot->reg_id_isar2);
627 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
628 info->reg_id_isar3, boot->reg_id_isar3);
629 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
630 info->reg_id_isar4, boot->reg_id_isar4);
631 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
632 info->reg_id_isar5, boot->reg_id_isar5);
633
634 /*
635 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
636 * ACTLR formats could differ across CPUs and therefore would have to
637 * be trapped for virtualization anyway.
638 */
639 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
640 info->reg_id_mmfr0, boot->reg_id_mmfr0);
641 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
642 info->reg_id_mmfr1, boot->reg_id_mmfr1);
643 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
644 info->reg_id_mmfr2, boot->reg_id_mmfr2);
645 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
646 info->reg_id_mmfr3, boot->reg_id_mmfr3);
647 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
648 info->reg_id_pfr0, boot->reg_id_pfr0);
649 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
650 info->reg_id_pfr1, boot->reg_id_pfr1);
651 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
652 info->reg_mvfr0, boot->reg_mvfr0);
653 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
654 info->reg_mvfr1, boot->reg_mvfr1);
655 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
656 info->reg_mvfr2, boot->reg_mvfr2);
657 }
658
659 /*
660 * Mismatched CPU features are a recipe for disaster. Don't even
661 * pretend to support them.
662 */
663 if (taint) {
664 pr_warn_once("Unsupported CPU feature variation detected.\n");
665 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
666 }
667 }
668
669 u64 read_sanitised_ftr_reg(u32 id)
670 {
671 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
672
673 /* We shouldn't get a request for an unsupported register */
674 BUG_ON(!regp);
675 return regp->sys_val;
676 }
677
678 #define read_sysreg_case(r) \
679 case r: return read_sysreg_s(r)
680
681 /*
682 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
683 * Read the system register on the current CPU
684 */
685 static u64 __read_sysreg_by_encoding(u32 sys_id)
686 {
687 switch (sys_id) {
688 read_sysreg_case(SYS_ID_PFR0_EL1);
689 read_sysreg_case(SYS_ID_PFR1_EL1);
690 read_sysreg_case(SYS_ID_DFR0_EL1);
691 read_sysreg_case(SYS_ID_MMFR0_EL1);
692 read_sysreg_case(SYS_ID_MMFR1_EL1);
693 read_sysreg_case(SYS_ID_MMFR2_EL1);
694 read_sysreg_case(SYS_ID_MMFR3_EL1);
695 read_sysreg_case(SYS_ID_ISAR0_EL1);
696 read_sysreg_case(SYS_ID_ISAR1_EL1);
697 read_sysreg_case(SYS_ID_ISAR2_EL1);
698 read_sysreg_case(SYS_ID_ISAR3_EL1);
699 read_sysreg_case(SYS_ID_ISAR4_EL1);
700 read_sysreg_case(SYS_ID_ISAR5_EL1);
701 read_sysreg_case(SYS_MVFR0_EL1);
702 read_sysreg_case(SYS_MVFR1_EL1);
703 read_sysreg_case(SYS_MVFR2_EL1);
704
705 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
706 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
707 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
708 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
709 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
710 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
711 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
712 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
713 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
714
715 read_sysreg_case(SYS_CNTFRQ_EL0);
716 read_sysreg_case(SYS_CTR_EL0);
717 read_sysreg_case(SYS_DCZID_EL0);
718
719 default:
720 BUG();
721 return 0;
722 }
723 }
724
725 #include <linux/irqchip/arm-gic-v3.h>
726
727 static bool
728 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
729 {
730 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
731
732 return val >= entry->min_field_value;
733 }
734
735 static bool
736 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
737 {
738 u64 val;
739
740 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
741 if (scope == SCOPE_SYSTEM)
742 val = read_sanitised_ftr_reg(entry->sys_reg);
743 else
744 val = __read_sysreg_by_encoding(entry->sys_reg);
745
746 return feature_matches(val, entry);
747 }
748
749 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
750 {
751 bool has_sre;
752
753 if (!has_cpuid_feature(entry, scope))
754 return false;
755
756 has_sre = gic_enable_sre();
757 if (!has_sre)
758 pr_warn_once("%s present but disabled by higher exception level\n",
759 entry->desc);
760
761 return has_sre;
762 }
763
764 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
765 {
766 u32 midr = read_cpuid_id();
767
768 /* Cavium ThunderX pass 1.x and 2.x */
769 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
770 MIDR_CPU_VAR_REV(0, 0),
771 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
772 }
773
774 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
775 {
776 return is_kernel_in_hyp_mode();
777 }
778
779 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
780 int __unused)
781 {
782 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
783
784 /*
785 * Activate the lower HYP offset only if:
786 * - the idmap doesn't clash with it,
787 * - the kernel is not running at EL2.
788 */
789 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
790 }
791
792 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
793 {
794 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
795
796 return cpuid_feature_extract_signed_field(pfr0,
797 ID_AA64PFR0_FP_SHIFT) < 0;
798 }
799
800 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
801 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
802
803 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
804 int __unused)
805 {
806 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
807
808 /* Forced on command line? */
809 if (__kpti_forced) {
810 pr_info_once("kernel page table isolation forced %s by command line option\n",
811 __kpti_forced > 0 ? "ON" : "OFF");
812 return __kpti_forced > 0;
813 }
814
815 /* Useful for KASLR robustness */
816 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
817 return true;
818
819 /* Defer to CPU feature registers */
820 return !cpuid_feature_extract_unsigned_field(pfr0,
821 ID_AA64PFR0_CSV3_SHIFT);
822 }
823
824 static int __init parse_kpti(char *str)
825 {
826 bool enabled;
827 int ret = strtobool(str, &enabled);
828
829 if (ret)
830 return ret;
831
832 __kpti_forced = enabled ? 1 : -1;
833 return 0;
834 }
835 __setup("kpti=", parse_kpti);
836 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
837
838 static const struct arm64_cpu_capabilities arm64_features[] = {
839 {
840 .desc = "GIC system register CPU interface",
841 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
842 .def_scope = SCOPE_SYSTEM,
843 .matches = has_useable_gicv3_cpuif,
844 .sys_reg = SYS_ID_AA64PFR0_EL1,
845 .field_pos = ID_AA64PFR0_GIC_SHIFT,
846 .sign = FTR_UNSIGNED,
847 .min_field_value = 1,
848 },
849 #ifdef CONFIG_ARM64_PAN
850 {
851 .desc = "Privileged Access Never",
852 .capability = ARM64_HAS_PAN,
853 .def_scope = SCOPE_SYSTEM,
854 .matches = has_cpuid_feature,
855 .sys_reg = SYS_ID_AA64MMFR1_EL1,
856 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
857 .sign = FTR_UNSIGNED,
858 .min_field_value = 1,
859 .enable = cpu_enable_pan,
860 },
861 #endif /* CONFIG_ARM64_PAN */
862 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
863 {
864 .desc = "LSE atomic instructions",
865 .capability = ARM64_HAS_LSE_ATOMICS,
866 .def_scope = SCOPE_SYSTEM,
867 .matches = has_cpuid_feature,
868 .sys_reg = SYS_ID_AA64ISAR0_EL1,
869 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
870 .sign = FTR_UNSIGNED,
871 .min_field_value = 2,
872 },
873 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
874 {
875 .desc = "Software prefetching using PRFM",
876 .capability = ARM64_HAS_NO_HW_PREFETCH,
877 .def_scope = SCOPE_SYSTEM,
878 .matches = has_no_hw_prefetch,
879 },
880 #ifdef CONFIG_ARM64_UAO
881 {
882 .desc = "User Access Override",
883 .capability = ARM64_HAS_UAO,
884 .def_scope = SCOPE_SYSTEM,
885 .matches = has_cpuid_feature,
886 .sys_reg = SYS_ID_AA64MMFR2_EL1,
887 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
888 .min_field_value = 1,
889 /*
890 * We rely on stop_machine() calling uao_thread_switch() to set
891 * UAO immediately after patching.
892 */
893 },
894 #endif /* CONFIG_ARM64_UAO */
895 #ifdef CONFIG_ARM64_PAN
896 {
897 .capability = ARM64_ALT_PAN_NOT_UAO,
898 .def_scope = SCOPE_SYSTEM,
899 .matches = cpufeature_pan_not_uao,
900 },
901 #endif /* CONFIG_ARM64_PAN */
902 {
903 .desc = "Virtualization Host Extensions",
904 .capability = ARM64_HAS_VIRT_HOST_EXTN,
905 .def_scope = SCOPE_SYSTEM,
906 .matches = runs_at_el2,
907 },
908 {
909 .desc = "32-bit EL0 Support",
910 .capability = ARM64_HAS_32BIT_EL0,
911 .def_scope = SCOPE_SYSTEM,
912 .matches = has_cpuid_feature,
913 .sys_reg = SYS_ID_AA64PFR0_EL1,
914 .sign = FTR_UNSIGNED,
915 .field_pos = ID_AA64PFR0_EL0_SHIFT,
916 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
917 },
918 {
919 .desc = "Reduced HYP mapping offset",
920 .capability = ARM64_HYP_OFFSET_LOW,
921 .def_scope = SCOPE_SYSTEM,
922 .matches = hyp_offset_low,
923 },
924 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
925 {
926 .desc = "Kernel page table isolation (KPTI)",
927 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
928 .def_scope = SCOPE_SYSTEM,
929 .matches = unmap_kernel_at_el0,
930 },
931 #endif
932 {
933 /* FP/SIMD is not implemented */
934 .capability = ARM64_HAS_NO_FPSIMD,
935 .def_scope = SCOPE_SYSTEM,
936 .min_field_value = 0,
937 .matches = has_no_fpsimd,
938 },
939 #ifdef CONFIG_ARM64_PMEM
940 {
941 .desc = "Data cache clean to Point of Persistence",
942 .capability = ARM64_HAS_DCPOP,
943 .def_scope = SCOPE_SYSTEM,
944 .matches = has_cpuid_feature,
945 .sys_reg = SYS_ID_AA64ISAR1_EL1,
946 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
947 .min_field_value = 1,
948 },
949 #endif
950 {},
951 };
952
953 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
954 { \
955 .desc = #cap, \
956 .def_scope = SCOPE_SYSTEM, \
957 .matches = has_cpuid_feature, \
958 .sys_reg = reg, \
959 .field_pos = field, \
960 .sign = s, \
961 .min_field_value = min_value, \
962 .hwcap_type = type, \
963 .hwcap = cap, \
964 }
965
966 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
967 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
968 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
969 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
970 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
971 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
972 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
973 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
974 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
975 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
976 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
977 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
978 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
979 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
980 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
981 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
982 {},
983 };
984
985 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
986 #ifdef CONFIG_COMPAT
987 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
988 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
989 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
990 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
991 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
992 #endif
993 {},
994 };
995
996 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
997 {
998 switch (cap->hwcap_type) {
999 case CAP_HWCAP:
1000 elf_hwcap |= cap->hwcap;
1001 break;
1002 #ifdef CONFIG_COMPAT
1003 case CAP_COMPAT_HWCAP:
1004 compat_elf_hwcap |= (u32)cap->hwcap;
1005 break;
1006 case CAP_COMPAT_HWCAP2:
1007 compat_elf_hwcap2 |= (u32)cap->hwcap;
1008 break;
1009 #endif
1010 default:
1011 WARN_ON(1);
1012 break;
1013 }
1014 }
1015
1016 /* Check if we have a particular HWCAP enabled */
1017 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1018 {
1019 bool rc;
1020
1021 switch (cap->hwcap_type) {
1022 case CAP_HWCAP:
1023 rc = (elf_hwcap & cap->hwcap) != 0;
1024 break;
1025 #ifdef CONFIG_COMPAT
1026 case CAP_COMPAT_HWCAP:
1027 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1028 break;
1029 case CAP_COMPAT_HWCAP2:
1030 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1031 break;
1032 #endif
1033 default:
1034 WARN_ON(1);
1035 rc = false;
1036 }
1037
1038 return rc;
1039 }
1040
1041 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1042 {
1043 /* We support emulation of accesses to CPU ID feature registers */
1044 elf_hwcap |= HWCAP_CPUID;
1045 for (; hwcaps->matches; hwcaps++)
1046 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1047 cap_set_elf_hwcap(hwcaps);
1048 }
1049
1050 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1051 const char *info)
1052 {
1053 for (; caps->matches; caps++) {
1054 if (!caps->matches(caps, caps->def_scope))
1055 continue;
1056
1057 if (!cpus_have_cap(caps->capability) && caps->desc)
1058 pr_info("%s %s\n", info, caps->desc);
1059 cpus_set_cap(caps->capability);
1060 }
1061 }
1062
1063 /*
1064 * Run through the enabled capabilities and enable() it on all active
1065 * CPUs
1066 */
1067 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1068 {
1069 for (; caps->matches; caps++) {
1070 unsigned int num = caps->capability;
1071
1072 if (!cpus_have_cap(num))
1073 continue;
1074
1075 /* Ensure cpus_have_const_cap(num) works */
1076 static_branch_enable(&cpu_hwcap_keys[num]);
1077
1078 if (caps->enable) {
1079 /*
1080 * Use stop_machine() as it schedules the work allowing
1081 * us to modify PSTATE, instead of on_each_cpu() which
1082 * uses an IPI, giving us a PSTATE that disappears when
1083 * we return.
1084 */
1085 stop_machine(caps->enable, NULL, cpu_online_mask);
1086 }
1087 }
1088 }
1089
1090 /*
1091 * Flag to indicate if we have computed the system wide
1092 * capabilities based on the boot time active CPUs. This
1093 * will be used to determine if a new booting CPU should
1094 * go through the verification process to make sure that it
1095 * supports the system capabilities, without using a hotplug
1096 * notifier.
1097 */
1098 static bool sys_caps_initialised;
1099
1100 static inline void set_sys_caps_initialised(void)
1101 {
1102 sys_caps_initialised = true;
1103 }
1104
1105 /*
1106 * Check for CPU features that are used in early boot
1107 * based on the Boot CPU value.
1108 */
1109 static void check_early_cpu_features(void)
1110 {
1111 verify_cpu_run_el();
1112 verify_cpu_asid_bits();
1113 }
1114
1115 static void
1116 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1117 {
1118
1119 for (; caps->matches; caps++)
1120 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1121 pr_crit("CPU%d: missing HWCAP: %s\n",
1122 smp_processor_id(), caps->desc);
1123 cpu_die_early();
1124 }
1125 }
1126
1127 static void
1128 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1129 {
1130 for (; caps->matches; caps++) {
1131 if (!cpus_have_cap(caps->capability))
1132 continue;
1133 /*
1134 * If the new CPU misses an advertised feature, we cannot proceed
1135 * further, park the cpu.
1136 */
1137 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1138 pr_crit("CPU%d: missing feature: %s\n",
1139 smp_processor_id(), caps->desc);
1140 cpu_die_early();
1141 }
1142 if (caps->enable)
1143 caps->enable(NULL);
1144 }
1145 }
1146
1147 /*
1148 * Run through the enabled system capabilities and enable() it on this CPU.
1149 * The capabilities were decided based on the available CPUs at the boot time.
1150 * Any new CPU should match the system wide status of the capability. If the
1151 * new CPU doesn't have a capability which the system now has enabled, we
1152 * cannot do anything to fix it up and could cause unexpected failures. So
1153 * we park the CPU.
1154 */
1155 static void verify_local_cpu_capabilities(void)
1156 {
1157 verify_local_cpu_errata_workarounds();
1158 verify_local_cpu_features(arm64_features);
1159 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1160 if (system_supports_32bit_el0())
1161 verify_local_elf_hwcaps(compat_elf_hwcaps);
1162 }
1163
1164 void check_local_cpu_capabilities(void)
1165 {
1166 /*
1167 * All secondary CPUs should conform to the early CPU features
1168 * in use by the kernel based on boot CPU.
1169 */
1170 check_early_cpu_features();
1171
1172 /*
1173 * If we haven't finalised the system capabilities, this CPU gets
1174 * a chance to update the errata work arounds.
1175 * Otherwise, this CPU should verify that it has all the system
1176 * advertised capabilities.
1177 */
1178 if (!sys_caps_initialised)
1179 update_cpu_errata_workarounds();
1180 else
1181 verify_local_cpu_capabilities();
1182 }
1183
1184 static void __init setup_feature_capabilities(void)
1185 {
1186 update_cpu_capabilities(arm64_features, "detected feature:");
1187 enable_cpu_capabilities(arm64_features);
1188 }
1189
1190 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1191 EXPORT_SYMBOL(arm64_const_caps_ready);
1192
1193 static void __init mark_const_caps_ready(void)
1194 {
1195 static_branch_enable(&arm64_const_caps_ready);
1196 }
1197
1198 /*
1199 * Check if the current CPU has a given feature capability.
1200 * Should be called from non-preemptible context.
1201 */
1202 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1203 unsigned int cap)
1204 {
1205 const struct arm64_cpu_capabilities *caps;
1206
1207 if (WARN_ON(preemptible()))
1208 return false;
1209
1210 for (caps = cap_array; caps->desc; caps++)
1211 if (caps->capability == cap && caps->matches)
1212 return caps->matches(caps, SCOPE_LOCAL_CPU);
1213
1214 return false;
1215 }
1216
1217 extern const struct arm64_cpu_capabilities arm64_errata[];
1218
1219 bool this_cpu_has_cap(unsigned int cap)
1220 {
1221 return (__this_cpu_has_cap(arm64_features, cap) ||
1222 __this_cpu_has_cap(arm64_errata, cap));
1223 }
1224
1225 void __init setup_cpu_features(void)
1226 {
1227 u32 cwg;
1228 int cls;
1229
1230 /* Set the CPU feature capabilies */
1231 setup_feature_capabilities();
1232 enable_errata_workarounds();
1233 mark_const_caps_ready();
1234 setup_elf_hwcaps(arm64_elf_hwcaps);
1235
1236 if (system_supports_32bit_el0())
1237 setup_elf_hwcaps(compat_elf_hwcaps);
1238
1239 /* Advertise that we have computed the system capabilities */
1240 set_sys_caps_initialised();
1241
1242 /*
1243 * Check for sane CTR_EL0.CWG value.
1244 */
1245 cwg = cache_type_cwg();
1246 cls = cache_line_size();
1247 if (!cwg)
1248 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1249 cls);
1250 if (L1_CACHE_BYTES < cls)
1251 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1252 L1_CACHE_BYTES, cls);
1253 }
1254
1255 static bool __maybe_unused
1256 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1257 {
1258 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1259 }
1260
1261 /*
1262 * We emulate only the following system register space.
1263 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1264 * See Table C5-6 System instruction encodings for System register accesses,
1265 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1266 */
1267 static inline bool __attribute_const__ is_emulated(u32 id)
1268 {
1269 return (sys_reg_Op0(id) == 0x3 &&
1270 sys_reg_CRn(id) == 0x0 &&
1271 sys_reg_Op1(id) == 0x0 &&
1272 (sys_reg_CRm(id) == 0 ||
1273 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1274 }
1275
1276 /*
1277 * With CRm == 0, reg should be one of :
1278 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1279 */
1280 static inline int emulate_id_reg(u32 id, u64 *valp)
1281 {
1282 switch (id) {
1283 case SYS_MIDR_EL1:
1284 *valp = read_cpuid_id();
1285 break;
1286 case SYS_MPIDR_EL1:
1287 *valp = SYS_MPIDR_SAFE_VAL;
1288 break;
1289 case SYS_REVIDR_EL1:
1290 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1291 *valp = 0;
1292 break;
1293 default:
1294 return -EINVAL;
1295 }
1296
1297 return 0;
1298 }
1299
1300 static int emulate_sys_reg(u32 id, u64 *valp)
1301 {
1302 struct arm64_ftr_reg *regp;
1303
1304 if (!is_emulated(id))
1305 return -EINVAL;
1306
1307 if (sys_reg_CRm(id) == 0)
1308 return emulate_id_reg(id, valp);
1309
1310 regp = get_arm64_ftr_reg(id);
1311 if (regp)
1312 *valp = arm64_ftr_reg_user_value(regp);
1313 else
1314 /*
1315 * The untracked registers are either IMPLEMENTATION DEFINED
1316 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1317 */
1318 *valp = 0;
1319 return 0;
1320 }
1321
1322 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1323 {
1324 int rc;
1325 u32 sys_reg, dst;
1326 u64 val;
1327
1328 /*
1329 * sys_reg values are defined as used in mrs/msr instruction.
1330 * shift the imm value to get the encoding.
1331 */
1332 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1333 rc = emulate_sys_reg(sys_reg, &val);
1334 if (!rc) {
1335 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1336 pt_regs_write_reg(regs, dst, val);
1337 regs->pc += 4;
1338 }
1339
1340 return rc;
1341 }
1342
1343 static struct undef_hook mrs_hook = {
1344 .instr_mask = 0xfff00000,
1345 .instr_val = 0xd5300000,
1346 .pstate_mask = COMPAT_PSR_MODE_MASK,
1347 .pstate_val = PSR_MODE_EL0t,
1348 .fn = emulate_mrs,
1349 };
1350
1351 static int __init enable_mrs_emulation(void)
1352 {
1353 register_undef_hook(&mrs_hook);
1354 return 0;
1355 }
1356
1357 core_initcall(enable_mrs_emulation);