]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kernel/head.S
arm64: idmap: Use "awx" flags for .idmap.text .pushsection directives
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kernel / head.S
1 /*
2 * Low-level CPU initialisation
3 * Based on arch/arm/kernel/head.S
4 *
5 * Copyright (C) 1994-2002 Russell King
6 * Copyright (C) 2003-2012 ARM Ltd.
7 * Authors: Catalin Marinas <catalin.marinas@arm.com>
8 * Will Deacon <will.deacon@arm.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/linkage.h>
24 #include <linux/init.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26
27 #include <asm/assembler.h>
28 #include <asm/boot.h>
29 #include <asm/ptrace.h>
30 #include <asm/asm-offsets.h>
31 #include <asm/cache.h>
32 #include <asm/cputype.h>
33 #include <asm/elf.h>
34 #include <asm/kernel-pgtable.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/memory.h>
37 #include <asm/pgtable-hwdef.h>
38 #include <asm/pgtable.h>
39 #include <asm/page.h>
40 #include <asm/smp.h>
41 #include <asm/sysreg.h>
42 #include <asm/thread_info.h>
43 #include <asm/virt.h>
44
45 #include "efi-header.S"
46
47 #define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET)
48
49 #if (TEXT_OFFSET & 0xfff) != 0
50 #error TEXT_OFFSET must be at least 4KB aligned
51 #elif (PAGE_OFFSET & 0x1fffff) != 0
52 #error PAGE_OFFSET must be at least 2MB aligned
53 #elif TEXT_OFFSET > 0x1fffff
54 #error TEXT_OFFSET must be less than 2MB
55 #endif
56
57 /*
58 * Kernel startup entry point.
59 * ---------------------------
60 *
61 * The requirements are:
62 * MMU = off, D-cache = off, I-cache = on or off,
63 * x0 = physical address to the FDT blob.
64 *
65 * This code is mostly position independent so you call this at
66 * __pa(PAGE_OFFSET + TEXT_OFFSET).
67 *
68 * Note that the callee-saved registers are used for storing variables
69 * that are useful before the MMU is enabled. The allocations are described
70 * in the entry routines.
71 */
72 __HEAD
73 _head:
74 /*
75 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
76 */
77 #ifdef CONFIG_EFI
78 /*
79 * This add instruction has no meaningful effect except that
80 * its opcode forms the magic "MZ" signature required by UEFI.
81 */
82 add x13, x18, #0x16
83 b stext
84 #else
85 b stext // branch to kernel start, magic
86 .long 0 // reserved
87 #endif
88 le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian
89 le64sym _kernel_size_le // Effective size of kernel image, little-endian
90 le64sym _kernel_flags_le // Informative flags, little-endian
91 .quad 0 // reserved
92 .quad 0 // reserved
93 .quad 0 // reserved
94 .ascii "ARM\x64" // Magic number
95 #ifdef CONFIG_EFI
96 .long pe_header - _head // Offset to the PE header.
97
98 pe_header:
99 __EFI_PE_HEADER
100 #else
101 .long 0 // reserved
102 #endif
103
104 __INIT
105
106 /*
107 * The following callee saved general purpose registers are used on the
108 * primary lowlevel boot path:
109 *
110 * Register Scope Purpose
111 * x21 stext() .. start_kernel() FDT pointer passed at boot in x0
112 * x23 stext() .. start_kernel() physical misalignment/KASLR offset
113 * x28 __create_page_tables() callee preserved temp register
114 * x19/x20 __primary_switch() callee preserved temp registers
115 */
116 ENTRY(stext)
117 bl preserve_boot_args
118 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
119 adrp x23, __PHYS_OFFSET
120 and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
121 bl set_cpu_boot_mode_flag
122 bl __create_page_tables
123 /*
124 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
125 * details.
126 * On return, the CPU will be ready for the MMU to be turned on and
127 * the TCR will have been set.
128 */
129 bl __cpu_setup // initialise processor
130 b __primary_switch
131 ENDPROC(stext)
132
133 /*
134 * Preserve the arguments passed by the bootloader in x0 .. x3
135 */
136 preserve_boot_args:
137 mov x21, x0 // x21=FDT
138
139 adr_l x0, boot_args // record the contents of
140 stp x21, x1, [x0] // x0 .. x3 at kernel entry
141 stp x2, x3, [x0, #16]
142
143 dmb sy // needed before dc ivac with
144 // MMU off
145
146 mov x1, #0x20 // 4 x 8 bytes
147 b __inval_dcache_area // tail call
148 ENDPROC(preserve_boot_args)
149
150 /*
151 * Macro to create a table entry to the next page.
152 *
153 * tbl: page table address
154 * virt: virtual address
155 * shift: #imm page table shift
156 * ptrs: #imm pointers per table page
157 *
158 * Preserves: virt
159 * Corrupts: tmp1, tmp2
160 * Returns: tbl -> next level table page address
161 */
162 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
163 lsr \tmp1, \virt, #\shift
164 and \tmp1, \tmp1, #\ptrs - 1 // table index
165 add \tmp2, \tbl, #PAGE_SIZE
166 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
167 str \tmp2, [\tbl, \tmp1, lsl #3]
168 add \tbl, \tbl, #PAGE_SIZE // next level table page
169 .endm
170
171 /*
172 * Macro to populate the PGD (and possibily PUD) for the corresponding
173 * block entry in the next level (tbl) for the given virtual address.
174 *
175 * Preserves: tbl, next, virt
176 * Corrupts: tmp1, tmp2
177 */
178 .macro create_pgd_entry, tbl, virt, tmp1, tmp2
179 create_table_entry \tbl, \virt, PGDIR_SHIFT, PTRS_PER_PGD, \tmp1, \tmp2
180 #if SWAPPER_PGTABLE_LEVELS > 3
181 create_table_entry \tbl, \virt, PUD_SHIFT, PTRS_PER_PUD, \tmp1, \tmp2
182 #endif
183 #if SWAPPER_PGTABLE_LEVELS > 2
184 create_table_entry \tbl, \virt, SWAPPER_TABLE_SHIFT, PTRS_PER_PTE, \tmp1, \tmp2
185 #endif
186 .endm
187
188 /*
189 * Macro to populate block entries in the page table for the start..end
190 * virtual range (inclusive).
191 *
192 * Preserves: tbl, flags
193 * Corrupts: phys, start, end, pstate
194 */
195 .macro create_block_map, tbl, flags, phys, start, end
196 lsr \phys, \phys, #SWAPPER_BLOCK_SHIFT
197 lsr \start, \start, #SWAPPER_BLOCK_SHIFT
198 and \start, \start, #PTRS_PER_PTE - 1 // table index
199 orr \phys, \flags, \phys, lsl #SWAPPER_BLOCK_SHIFT // table entry
200 lsr \end, \end, #SWAPPER_BLOCK_SHIFT
201 and \end, \end, #PTRS_PER_PTE - 1 // table end index
202 9999: str \phys, [\tbl, \start, lsl #3] // store the entry
203 add \start, \start, #1 // next entry
204 add \phys, \phys, #SWAPPER_BLOCK_SIZE // next block
205 cmp \start, \end
206 b.ls 9999b
207 .endm
208
209 /*
210 * Setup the initial page tables. We only setup the barest amount which is
211 * required to get the kernel running. The following sections are required:
212 * - identity mapping to enable the MMU (low address, TTBR0)
213 * - first few MB of the kernel linear mapping to jump to once the MMU has
214 * been enabled
215 */
216 __create_page_tables:
217 mov x28, lr
218
219 /*
220 * Invalidate the idmap and swapper page tables to avoid potential
221 * dirty cache lines being evicted.
222 */
223 adrp x0, idmap_pg_dir
224 ldr x1, =(IDMAP_DIR_SIZE + SWAPPER_DIR_SIZE + RESERVED_TTBR0_SIZE)
225 bl __inval_dcache_area
226
227 /*
228 * Clear the idmap and swapper page tables.
229 */
230 adrp x0, idmap_pg_dir
231 ldr x1, =(IDMAP_DIR_SIZE + SWAPPER_DIR_SIZE + RESERVED_TTBR0_SIZE)
232 1: stp xzr, xzr, [x0], #16
233 stp xzr, xzr, [x0], #16
234 stp xzr, xzr, [x0], #16
235 stp xzr, xzr, [x0], #16
236 subs x1, x1, #64
237 b.ne 1b
238
239 mov x7, SWAPPER_MM_MMUFLAGS
240
241 /*
242 * Create the identity mapping.
243 */
244 adrp x0, idmap_pg_dir
245 adrp x3, __idmap_text_start // __pa(__idmap_text_start)
246
247 #ifndef CONFIG_ARM64_VA_BITS_48
248 #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
249 #define EXTRA_PTRS (1 << (48 - EXTRA_SHIFT))
250
251 /*
252 * If VA_BITS < 48, it may be too small to allow for an ID mapping to be
253 * created that covers system RAM if that is located sufficiently high
254 * in the physical address space. So for the ID map, use an extended
255 * virtual range in that case, by configuring an additional translation
256 * level.
257 * First, we have to verify our assumption that the current value of
258 * VA_BITS was chosen such that all translation levels are fully
259 * utilised, and that lowering T0SZ will always result in an additional
260 * translation level to be configured.
261 */
262 #if VA_BITS != EXTRA_SHIFT
263 #error "Mismatch between VA_BITS and page size/number of translation levels"
264 #endif
265
266 /*
267 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
268 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
269 * this number conveniently equals the number of leading zeroes in
270 * the physical address of __idmap_text_end.
271 */
272 adrp x5, __idmap_text_end
273 clz x5, x5
274 cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough?
275 b.ge 1f // .. then skip additional level
276
277 adr_l x6, idmap_t0sz
278 str x5, [x6]
279 dmb sy
280 dc ivac, x6 // Invalidate potentially stale cache line
281
282 create_table_entry x0, x3, EXTRA_SHIFT, EXTRA_PTRS, x5, x6
283 1:
284 #endif
285
286 create_pgd_entry x0, x3, x5, x6
287 mov x5, x3 // __pa(__idmap_text_start)
288 adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
289 create_block_map x0, x7, x3, x5, x6
290
291 /*
292 * Map the kernel image (starting with PHYS_OFFSET).
293 */
294 adrp x0, swapper_pg_dir
295 mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text)
296 add x5, x5, x23 // add KASLR displacement
297 create_pgd_entry x0, x5, x3, x6
298 adrp x6, _end // runtime __pa(_end)
299 adrp x3, _text // runtime __pa(_text)
300 sub x6, x6, x3 // _end - _text
301 add x6, x6, x5 // runtime __va(_end)
302 create_block_map x0, x7, x3, x5, x6
303
304 /*
305 * Since the page tables have been populated with non-cacheable
306 * accesses (MMU disabled), invalidate the idmap and swapper page
307 * tables again to remove any speculatively loaded cache lines.
308 */
309 adrp x0, idmap_pg_dir
310 ldr x1, =(IDMAP_DIR_SIZE + SWAPPER_DIR_SIZE + RESERVED_TTBR0_SIZE)
311 dmb sy
312 bl __inval_dcache_area
313
314 ret x28
315 ENDPROC(__create_page_tables)
316 .ltorg
317
318 /*
319 * The following fragment of code is executed with the MMU enabled.
320 *
321 * x0 = __PHYS_OFFSET
322 */
323 __primary_switched:
324 adrp x4, init_thread_union
325 add sp, x4, #THREAD_SIZE
326 adr_l x5, init_task
327 msr sp_el0, x5 // Save thread_info
328
329 adr_l x8, vectors // load VBAR_EL1 with virtual
330 msr vbar_el1, x8 // vector table address
331 isb
332
333 stp xzr, x30, [sp, #-16]!
334 mov x29, sp
335
336 str_l x21, __fdt_pointer, x5 // Save FDT pointer
337
338 ldr_l x4, kimage_vaddr // Save the offset between
339 sub x4, x4, x0 // the kernel virtual and
340 str_l x4, kimage_voffset, x5 // physical mappings
341
342 // Clear BSS
343 adr_l x0, __bss_start
344 mov x1, xzr
345 adr_l x2, __bss_stop
346 sub x2, x2, x0
347 bl __pi_memset
348 dsb ishst // Make zero page visible to PTW
349
350 #ifdef CONFIG_KASAN
351 bl kasan_early_init
352 #endif
353 #ifdef CONFIG_RANDOMIZE_BASE
354 tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized?
355 b.ne 0f
356 mov x0, x21 // pass FDT address in x0
357 bl kaslr_early_init // parse FDT for KASLR options
358 cbz x0, 0f // KASLR disabled? just proceed
359 orr x23, x23, x0 // record KASLR offset
360 ldp x29, x30, [sp], #16 // we must enable KASLR, return
361 ret // to __primary_switch()
362 0:
363 #endif
364 add sp, sp, #16
365 mov x29, #0
366 mov x30, #0
367 b start_kernel
368 ENDPROC(__primary_switched)
369
370 /*
371 * end early head section, begin head code that is also used for
372 * hotplug and needs to have the same protections as the text region
373 */
374 .section ".idmap.text","awx"
375
376 ENTRY(kimage_vaddr)
377 .quad _text - TEXT_OFFSET
378
379 /*
380 * If we're fortunate enough to boot at EL2, ensure that the world is
381 * sane before dropping to EL1.
382 *
383 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
384 * booted in EL1 or EL2 respectively.
385 */
386 ENTRY(el2_setup)
387 msr SPsel, #1 // We want to use SP_EL{1,2}
388 mrs x0, CurrentEL
389 cmp x0, #CurrentEL_EL2
390 b.eq 1f
391 mrs x0, sctlr_el1
392 CPU_BE( orr x0, x0, #(3 << 24) ) // Set the EE and E0E bits for EL1
393 CPU_LE( bic x0, x0, #(3 << 24) ) // Clear the EE and E0E bits for EL1
394 msr sctlr_el1, x0
395 mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1
396 isb
397 ret
398
399 1: mrs x0, sctlr_el2
400 CPU_BE( orr x0, x0, #(1 << 25) ) // Set the EE bit for EL2
401 CPU_LE( bic x0, x0, #(1 << 25) ) // Clear the EE bit for EL2
402 msr sctlr_el2, x0
403
404 #ifdef CONFIG_ARM64_VHE
405 /*
406 * Check for VHE being present. For the rest of the EL2 setup,
407 * x2 being non-zero indicates that we do have VHE, and that the
408 * kernel is intended to run at EL2.
409 */
410 mrs x2, id_aa64mmfr1_el1
411 ubfx x2, x2, #8, #4
412 #else
413 mov x2, xzr
414 #endif
415
416 /* Hyp configuration. */
417 mov x0, #HCR_RW // 64-bit EL1
418 cbz x2, set_hcr
419 orr x0, x0, #HCR_TGE // Enable Host Extensions
420 orr x0, x0, #HCR_E2H
421 set_hcr:
422 msr hcr_el2, x0
423 isb
424
425 /*
426 * Allow Non-secure EL1 and EL0 to access physical timer and counter.
427 * This is not necessary for VHE, since the host kernel runs in EL2,
428 * and EL0 accesses are configured in the later stage of boot process.
429 * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
430 * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
431 * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
432 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
433 * EL2.
434 */
435 cbnz x2, 1f
436 mrs x0, cnthctl_el2
437 orr x0, x0, #3 // Enable EL1 physical timers
438 msr cnthctl_el2, x0
439 1:
440 msr cntvoff_el2, xzr // Clear virtual offset
441
442 #ifdef CONFIG_ARM_GIC_V3
443 /* GICv3 system register access */
444 mrs x0, id_aa64pfr0_el1
445 ubfx x0, x0, #24, #4
446 cmp x0, #1
447 b.ne 3f
448
449 mrs_s x0, SYS_ICC_SRE_EL2
450 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1
451 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1
452 msr_s SYS_ICC_SRE_EL2, x0
453 isb // Make sure SRE is now set
454 mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back,
455 tbz x0, #0, 3f // and check that it sticks
456 msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
457
458 3:
459 #endif
460
461 /* Populate ID registers. */
462 mrs x0, midr_el1
463 mrs x1, mpidr_el1
464 msr vpidr_el2, x0
465 msr vmpidr_el2, x1
466
467 #ifdef CONFIG_COMPAT
468 msr hstr_el2, xzr // Disable CP15 traps to EL2
469 #endif
470
471 /* EL2 debug */
472 mrs x1, id_aa64dfr0_el1 // Check ID_AA64DFR0_EL1 PMUVer
473 sbfx x0, x1, #8, #4
474 cmp x0, #1
475 b.lt 4f // Skip if no PMU present
476 mrs x0, pmcr_el0 // Disable debug access traps
477 ubfx x0, x0, #11, #5 // to EL2 and allow access to
478 4:
479 csel x3, xzr, x0, lt // all PMU counters from EL1
480
481 /* Statistical profiling */
482 ubfx x0, x1, #32, #4 // Check ID_AA64DFR0_EL1 PMSVer
483 cbz x0, 6f // Skip if SPE not present
484 cbnz x2, 5f // VHE?
485 mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
486 orr x3, x3, x1 // If we don't have VHE, then
487 b 6f // use EL1&0 translation.
488 5: // For VHE, use EL2 translation
489 orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1
490 6:
491 msr mdcr_el2, x3 // Configure debug traps
492
493 /* Stage-2 translation */
494 msr vttbr_el2, xzr
495
496 cbz x2, install_el2_stub
497
498 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
499 isb
500 ret
501
502 install_el2_stub:
503 /*
504 * When VHE is not in use, early init of EL2 and EL1 needs to be
505 * done here.
506 * When VHE _is_ in use, EL1 will not be used in the host and
507 * requires no configuration, and all non-hyp-specific EL2 setup
508 * will be done via the _EL1 system register aliases in __cpu_setup.
509 */
510 /* sctlr_el1 */
511 mov x0, #0x0800 // Set/clear RES{1,0} bits
512 CPU_BE( movk x0, #0x33d0, lsl #16 ) // Set EE and E0E on BE systems
513 CPU_LE( movk x0, #0x30d0, lsl #16 ) // Clear EE and E0E on LE systems
514 msr sctlr_el1, x0
515
516 /* Coprocessor traps. */
517 mov x0, #0x33ff
518 msr cptr_el2, x0 // Disable copro. traps to EL2
519
520 /* Hypervisor stub */
521 adr_l x0, __hyp_stub_vectors
522 msr vbar_el2, x0
523
524 /* spsr */
525 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
526 PSR_MODE_EL1h)
527 msr spsr_el2, x0
528 msr elr_el2, lr
529 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
530 eret
531 ENDPROC(el2_setup)
532
533 /*
534 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
535 * in w0. See arch/arm64/include/asm/virt.h for more info.
536 */
537 set_cpu_boot_mode_flag:
538 adr_l x1, __boot_cpu_mode
539 cmp w0, #BOOT_CPU_MODE_EL2
540 b.ne 1f
541 add x1, x1, #4
542 1: str w0, [x1] // This CPU has booted in EL1
543 dmb sy
544 dc ivac, x1 // Invalidate potentially stale cache line
545 ret
546 ENDPROC(set_cpu_boot_mode_flag)
547
548 /*
549 * These values are written with the MMU off, but read with the MMU on.
550 * Writers will invalidate the corresponding address, discarding up to a
551 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
552 * sufficient alignment that the CWG doesn't overlap another section.
553 */
554 .pushsection ".mmuoff.data.write", "aw"
555 /*
556 * We need to find out the CPU boot mode long after boot, so we need to
557 * store it in a writable variable.
558 *
559 * This is not in .bss, because we set it sufficiently early that the boot-time
560 * zeroing of .bss would clobber it.
561 */
562 ENTRY(__boot_cpu_mode)
563 .long BOOT_CPU_MODE_EL2
564 .long BOOT_CPU_MODE_EL1
565 /*
566 * The booting CPU updates the failed status @__early_cpu_boot_status,
567 * with MMU turned off.
568 */
569 ENTRY(__early_cpu_boot_status)
570 .long 0
571
572 .popsection
573
574 /*
575 * This provides a "holding pen" for platforms to hold all secondary
576 * cores are held until we're ready for them to initialise.
577 */
578 ENTRY(secondary_holding_pen)
579 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
580 bl set_cpu_boot_mode_flag
581 mrs x0, mpidr_el1
582 mov_q x1, MPIDR_HWID_BITMASK
583 and x0, x0, x1
584 adr_l x3, secondary_holding_pen_release
585 pen: ldr x4, [x3]
586 cmp x4, x0
587 b.eq secondary_startup
588 wfe
589 b pen
590 ENDPROC(secondary_holding_pen)
591
592 /*
593 * Secondary entry point that jumps straight into the kernel. Only to
594 * be used where CPUs are brought online dynamically by the kernel.
595 */
596 ENTRY(secondary_entry)
597 bl el2_setup // Drop to EL1
598 bl set_cpu_boot_mode_flag
599 b secondary_startup
600 ENDPROC(secondary_entry)
601
602 secondary_startup:
603 /*
604 * Common entry point for secondary CPUs.
605 */
606 bl __cpu_setup // initialise processor
607 bl __enable_mmu
608 ldr x8, =__secondary_switched
609 br x8
610 ENDPROC(secondary_startup)
611
612 __secondary_switched:
613 adr_l x5, vectors
614 msr vbar_el1, x5
615 isb
616
617 adr_l x0, secondary_data
618 ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack
619 mov sp, x1
620 ldr x2, [x0, #CPU_BOOT_TASK]
621 msr sp_el0, x2
622 mov x29, #0
623 mov x30, #0
624 b secondary_start_kernel
625 ENDPROC(__secondary_switched)
626
627 /*
628 * The booting CPU updates the failed status @__early_cpu_boot_status,
629 * with MMU turned off.
630 *
631 * update_early_cpu_boot_status tmp, status
632 * - Corrupts tmp1, tmp2
633 * - Writes 'status' to __early_cpu_boot_status and makes sure
634 * it is committed to memory.
635 */
636
637 .macro update_early_cpu_boot_status status, tmp1, tmp2
638 mov \tmp2, #\status
639 adr_l \tmp1, __early_cpu_boot_status
640 str \tmp2, [\tmp1]
641 dmb sy
642 dc ivac, \tmp1 // Invalidate potentially stale cache line
643 .endm
644
645 /*
646 * Enable the MMU.
647 *
648 * x0 = SCTLR_EL1 value for turning on the MMU.
649 *
650 * Returns to the caller via x30/lr. This requires the caller to be covered
651 * by the .idmap.text section.
652 *
653 * Checks if the selected granule size is supported by the CPU.
654 * If it isn't, park the CPU
655 */
656 ENTRY(__enable_mmu)
657 mrs x1, ID_AA64MMFR0_EL1
658 ubfx x2, x1, #ID_AA64MMFR0_TGRAN_SHIFT, 4
659 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
660 b.ne __no_granule_support
661 update_early_cpu_boot_status 0, x1, x2
662 adrp x1, idmap_pg_dir
663 adrp x2, swapper_pg_dir
664 msr ttbr0_el1, x1 // load TTBR0
665 msr ttbr1_el1, x2 // load TTBR1
666 isb
667 msr sctlr_el1, x0
668 isb
669 /*
670 * Invalidate the local I-cache so that any instructions fetched
671 * speculatively from the PoC are discarded, since they may have
672 * been dynamically patched at the PoU.
673 */
674 ic iallu
675 dsb nsh
676 isb
677 ret
678 ENDPROC(__enable_mmu)
679
680 __no_granule_support:
681 /* Indicate that this CPU can't boot and is stuck in the kernel */
682 update_early_cpu_boot_status CPU_STUCK_IN_KERNEL, x1, x2
683 1:
684 wfe
685 wfi
686 b 1b
687 ENDPROC(__no_granule_support)
688
689 #ifdef CONFIG_RELOCATABLE
690 __relocate_kernel:
691 /*
692 * Iterate over each entry in the relocation table, and apply the
693 * relocations in place.
694 */
695 ldr w9, =__rela_offset // offset to reloc table
696 ldr w10, =__rela_size // size of reloc table
697
698 mov_q x11, KIMAGE_VADDR // default virtual offset
699 add x11, x11, x23 // actual virtual offset
700 add x9, x9, x11 // __va(.rela)
701 add x10, x9, x10 // __va(.rela) + sizeof(.rela)
702
703 0: cmp x9, x10
704 b.hs 1f
705 ldp x11, x12, [x9], #24
706 ldr x13, [x9, #-8]
707 cmp w12, #R_AARCH64_RELATIVE
708 b.ne 0b
709 add x13, x13, x23 // relocate
710 str x13, [x11, x23]
711 b 0b
712 1: ret
713 ENDPROC(__relocate_kernel)
714 #endif
715
716 __primary_switch:
717 #ifdef CONFIG_RANDOMIZE_BASE
718 mov x19, x0 // preserve new SCTLR_EL1 value
719 mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
720 #endif
721
722 bl __enable_mmu
723 #ifdef CONFIG_RELOCATABLE
724 bl __relocate_kernel
725 #ifdef CONFIG_RANDOMIZE_BASE
726 ldr x8, =__primary_switched
727 adrp x0, __PHYS_OFFSET
728 blr x8
729
730 /*
731 * If we return here, we have a KASLR displacement in x23 which we need
732 * to take into account by discarding the current kernel mapping and
733 * creating a new one.
734 */
735 pre_disable_mmu_workaround
736 msr sctlr_el1, x20 // disable the MMU
737 isb
738 bl __create_page_tables // recreate kernel mapping
739
740 tlbi vmalle1 // Remove any stale TLB entries
741 dsb nsh
742
743 msr sctlr_el1, x19 // re-enable the MMU
744 isb
745 ic iallu // flush instructions fetched
746 dsb nsh // via old mapping
747 isb
748
749 bl __relocate_kernel
750 #endif
751 #endif
752 ldr x8, =__primary_switched
753 adrp x0, __PHYS_OFFSET
754 br x8
755 ENDPROC(__primary_switch)