]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ia64/kernel/ptrace.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / arch / ia64 / kernel / ptrace.c
1 /*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 *
7 * Derived from the x86 and Alpha versions.
8 */
9 #include <linux/config.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/errno.h>
15 #include <linux/ptrace.h>
16 #include <linux/smp_lock.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20
21 #include <asm/pgtable.h>
22 #include <asm/processor.h>
23 #include <asm/ptrace_offsets.h>
24 #include <asm/rse.h>
25 #include <asm/system.h>
26 #include <asm/uaccess.h>
27 #include <asm/unwind.h>
28 #ifdef CONFIG_PERFMON
29 #include <asm/perfmon.h>
30 #endif
31
32 #include "entry.h"
33
34 /*
35 * Bits in the PSR that we allow ptrace() to change:
36 * be, up, ac, mfl, mfh (the user mask; five bits total)
37 * db (debug breakpoint fault; one bit)
38 * id (instruction debug fault disable; one bit)
39 * dd (data debug fault disable; one bit)
40 * ri (restart instruction; two bits)
41 * is (instruction set; one bit)
42 */
43 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
44 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
45
46 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
47 #define PFM_MASK MASK(38)
48
49 #define PTRACE_DEBUG 0
50
51 #if PTRACE_DEBUG
52 # define dprintk(format...) printk(format)
53 # define inline
54 #else
55 # define dprintk(format...)
56 #endif
57
58 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
59
60 static inline int
61 in_syscall (struct pt_regs *pt)
62 {
63 return (long) pt->cr_ifs >= 0;
64 }
65
66 /*
67 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
68 * bitset where bit i is set iff the NaT bit of register i is set.
69 */
70 unsigned long
71 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
72 {
73 # define GET_BITS(first, last, unat) \
74 ({ \
75 unsigned long bit = ia64_unat_pos(&pt->r##first); \
76 unsigned long nbits = (last - first + 1); \
77 unsigned long mask = MASK(nbits) << first; \
78 unsigned long dist; \
79 if (bit < first) \
80 dist = 64 + bit - first; \
81 else \
82 dist = bit - first; \
83 ia64_rotr(unat, dist) & mask; \
84 })
85 unsigned long val;
86
87 /*
88 * Registers that are stored consecutively in struct pt_regs
89 * can be handled in parallel. If the register order in
90 * struct_pt_regs changes, this code MUST be updated.
91 */
92 val = GET_BITS( 1, 1, scratch_unat);
93 val |= GET_BITS( 2, 3, scratch_unat);
94 val |= GET_BITS(12, 13, scratch_unat);
95 val |= GET_BITS(14, 14, scratch_unat);
96 val |= GET_BITS(15, 15, scratch_unat);
97 val |= GET_BITS( 8, 11, scratch_unat);
98 val |= GET_BITS(16, 31, scratch_unat);
99 return val;
100
101 # undef GET_BITS
102 }
103
104 /*
105 * Set the NaT bits for the scratch registers according to NAT and
106 * return the resulting unat (assuming the scratch registers are
107 * stored in PT).
108 */
109 unsigned long
110 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
111 {
112 # define PUT_BITS(first, last, nat) \
113 ({ \
114 unsigned long bit = ia64_unat_pos(&pt->r##first); \
115 unsigned long nbits = (last - first + 1); \
116 unsigned long mask = MASK(nbits) << first; \
117 long dist; \
118 if (bit < first) \
119 dist = 64 + bit - first; \
120 else \
121 dist = bit - first; \
122 ia64_rotl(nat & mask, dist); \
123 })
124 unsigned long scratch_unat;
125
126 /*
127 * Registers that are stored consecutively in struct pt_regs
128 * can be handled in parallel. If the register order in
129 * struct_pt_regs changes, this code MUST be updated.
130 */
131 scratch_unat = PUT_BITS( 1, 1, nat);
132 scratch_unat |= PUT_BITS( 2, 3, nat);
133 scratch_unat |= PUT_BITS(12, 13, nat);
134 scratch_unat |= PUT_BITS(14, 14, nat);
135 scratch_unat |= PUT_BITS(15, 15, nat);
136 scratch_unat |= PUT_BITS( 8, 11, nat);
137 scratch_unat |= PUT_BITS(16, 31, nat);
138
139 return scratch_unat;
140
141 # undef PUT_BITS
142 }
143
144 #define IA64_MLX_TEMPLATE 0x2
145 #define IA64_MOVL_OPCODE 6
146
147 void
148 ia64_increment_ip (struct pt_regs *regs)
149 {
150 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
151
152 if (ri > 2) {
153 ri = 0;
154 regs->cr_iip += 16;
155 } else if (ri == 2) {
156 get_user(w0, (char __user *) regs->cr_iip + 0);
157 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
158 /*
159 * rfi'ing to slot 2 of an MLX bundle causes
160 * an illegal operation fault. We don't want
161 * that to happen...
162 */
163 ri = 0;
164 regs->cr_iip += 16;
165 }
166 }
167 ia64_psr(regs)->ri = ri;
168 }
169
170 void
171 ia64_decrement_ip (struct pt_regs *regs)
172 {
173 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
174
175 if (ia64_psr(regs)->ri == 0) {
176 regs->cr_iip -= 16;
177 ri = 2;
178 get_user(w0, (char __user *) regs->cr_iip + 0);
179 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
180 /*
181 * rfi'ing to slot 2 of an MLX bundle causes
182 * an illegal operation fault. We don't want
183 * that to happen...
184 */
185 ri = 1;
186 }
187 }
188 ia64_psr(regs)->ri = ri;
189 }
190
191 /*
192 * This routine is used to read an rnat bits that are stored on the
193 * kernel backing store. Since, in general, the alignment of the user
194 * and kernel are different, this is not completely trivial. In
195 * essence, we need to construct the user RNAT based on up to two
196 * kernel RNAT values and/or the RNAT value saved in the child's
197 * pt_regs.
198 *
199 * user rbs
200 *
201 * +--------+ <-- lowest address
202 * | slot62 |
203 * +--------+
204 * | rnat | 0x....1f8
205 * +--------+
206 * | slot00 | \
207 * +--------+ |
208 * | slot01 | > child_regs->ar_rnat
209 * +--------+ |
210 * | slot02 | / kernel rbs
211 * +--------+ +--------+
212 * <- child_regs->ar_bspstore | slot61 | <-- krbs
213 * +- - - - + +--------+
214 * | slot62 |
215 * +- - - - + +--------+
216 * | rnat |
217 * +- - - - + +--------+
218 * vrnat | slot00 |
219 * +- - - - + +--------+
220 * = =
221 * +--------+
222 * | slot00 | \
223 * +--------+ |
224 * | slot01 | > child_stack->ar_rnat
225 * +--------+ |
226 * | slot02 | /
227 * +--------+
228 * <--- child_stack->ar_bspstore
229 *
230 * The way to think of this code is as follows: bit 0 in the user rnat
231 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
232 * value. The kernel rnat value holding this bit is stored in
233 * variable rnat0. rnat1 is loaded with the kernel rnat value that
234 * form the upper bits of the user rnat value.
235 *
236 * Boundary cases:
237 *
238 * o when reading the rnat "below" the first rnat slot on the kernel
239 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
240 * merged in from pt->ar_rnat.
241 *
242 * o when reading the rnat "above" the last rnat slot on the kernel
243 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
244 */
245 static unsigned long
246 get_rnat (struct task_struct *task, struct switch_stack *sw,
247 unsigned long *krbs, unsigned long *urnat_addr,
248 unsigned long *urbs_end)
249 {
250 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
251 unsigned long umask = 0, mask, m;
252 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
253 long num_regs, nbits;
254 struct pt_regs *pt;
255
256 pt = ia64_task_regs(task);
257 kbsp = (unsigned long *) sw->ar_bspstore;
258 ubspstore = (unsigned long *) pt->ar_bspstore;
259
260 if (urbs_end < urnat_addr)
261 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
262 else
263 nbits = 63;
264 mask = MASK(nbits);
265 /*
266 * First, figure out which bit number slot 0 in user-land maps
267 * to in the kernel rnat. Do this by figuring out how many
268 * register slots we're beyond the user's backingstore and
269 * then computing the equivalent address in kernel space.
270 */
271 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
272 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
273 shift = ia64_rse_slot_num(slot0_kaddr);
274 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
275 rnat0_kaddr = rnat1_kaddr - 64;
276
277 if (ubspstore + 63 > urnat_addr) {
278 /* some bits need to be merged in from pt->ar_rnat */
279 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
280 urnat = (pt->ar_rnat & umask);
281 mask &= ~umask;
282 if (!mask)
283 return urnat;
284 }
285
286 m = mask << shift;
287 if (rnat0_kaddr >= kbsp)
288 rnat0 = sw->ar_rnat;
289 else if (rnat0_kaddr > krbs)
290 rnat0 = *rnat0_kaddr;
291 urnat |= (rnat0 & m) >> shift;
292
293 m = mask >> (63 - shift);
294 if (rnat1_kaddr >= kbsp)
295 rnat1 = sw->ar_rnat;
296 else if (rnat1_kaddr > krbs)
297 rnat1 = *rnat1_kaddr;
298 urnat |= (rnat1 & m) << (63 - shift);
299 return urnat;
300 }
301
302 /*
303 * The reverse of get_rnat.
304 */
305 static void
306 put_rnat (struct task_struct *task, struct switch_stack *sw,
307 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
308 unsigned long *urbs_end)
309 {
310 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
311 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
312 long num_regs, nbits;
313 struct pt_regs *pt;
314 unsigned long cfm, *urbs_kargs;
315
316 pt = ia64_task_regs(task);
317 kbsp = (unsigned long *) sw->ar_bspstore;
318 ubspstore = (unsigned long *) pt->ar_bspstore;
319
320 urbs_kargs = urbs_end;
321 if (in_syscall(pt)) {
322 /*
323 * If entered via syscall, don't allow user to set rnat bits
324 * for syscall args.
325 */
326 cfm = pt->cr_ifs;
327 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
328 }
329
330 if (urbs_kargs >= urnat_addr)
331 nbits = 63;
332 else {
333 if ((urnat_addr - 63) >= urbs_kargs)
334 return;
335 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
336 }
337 mask = MASK(nbits);
338
339 /*
340 * First, figure out which bit number slot 0 in user-land maps
341 * to in the kernel rnat. Do this by figuring out how many
342 * register slots we're beyond the user's backingstore and
343 * then computing the equivalent address in kernel space.
344 */
345 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
346 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
347 shift = ia64_rse_slot_num(slot0_kaddr);
348 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
349 rnat0_kaddr = rnat1_kaddr - 64;
350
351 if (ubspstore + 63 > urnat_addr) {
352 /* some bits need to be place in pt->ar_rnat: */
353 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
354 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
355 mask &= ~umask;
356 if (!mask)
357 return;
358 }
359 /*
360 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
361 * rnat slot is ignored. so we don't have to clear it here.
362 */
363 rnat0 = (urnat << shift);
364 m = mask << shift;
365 if (rnat0_kaddr >= kbsp)
366 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
367 else if (rnat0_kaddr > krbs)
368 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
369
370 rnat1 = (urnat >> (63 - shift));
371 m = mask >> (63 - shift);
372 if (rnat1_kaddr >= kbsp)
373 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
374 else if (rnat1_kaddr > krbs)
375 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
376 }
377
378 static inline int
379 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
380 unsigned long urbs_end)
381 {
382 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
383 urbs_end);
384 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
385 }
386
387 /*
388 * Read a word from the user-level backing store of task CHILD. ADDR
389 * is the user-level address to read the word from, VAL a pointer to
390 * the return value, and USER_BSP gives the end of the user-level
391 * backing store (i.e., it's the address that would be in ar.bsp after
392 * the user executed a "cover" instruction).
393 *
394 * This routine takes care of accessing the kernel register backing
395 * store for those registers that got spilled there. It also takes
396 * care of calculating the appropriate RNaT collection words.
397 */
398 long
399 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
400 unsigned long user_rbs_end, unsigned long addr, long *val)
401 {
402 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
403 struct pt_regs *child_regs;
404 size_t copied;
405 long ret;
406
407 urbs_end = (long *) user_rbs_end;
408 laddr = (unsigned long *) addr;
409 child_regs = ia64_task_regs(child);
410 bspstore = (unsigned long *) child_regs->ar_bspstore;
411 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
412 if (on_kernel_rbs(addr, (unsigned long) bspstore,
413 (unsigned long) urbs_end))
414 {
415 /*
416 * Attempt to read the RBS in an area that's actually
417 * on the kernel RBS => read the corresponding bits in
418 * the kernel RBS.
419 */
420 rnat_addr = ia64_rse_rnat_addr(laddr);
421 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
422
423 if (laddr == rnat_addr) {
424 /* return NaT collection word itself */
425 *val = ret;
426 return 0;
427 }
428
429 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
430 /*
431 * It is implementation dependent whether the
432 * data portion of a NaT value gets saved on a
433 * st8.spill or RSE spill (e.g., see EAS 2.6,
434 * 4.4.4.6 Register Spill and Fill). To get
435 * consistent behavior across all possible
436 * IA-64 implementations, we return zero in
437 * this case.
438 */
439 *val = 0;
440 return 0;
441 }
442
443 if (laddr < urbs_end) {
444 /*
445 * The desired word is on the kernel RBS and
446 * is not a NaT.
447 */
448 regnum = ia64_rse_num_regs(bspstore, laddr);
449 *val = *ia64_rse_skip_regs(krbs, regnum);
450 return 0;
451 }
452 }
453 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
454 if (copied != sizeof(ret))
455 return -EIO;
456 *val = ret;
457 return 0;
458 }
459
460 long
461 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
462 unsigned long user_rbs_end, unsigned long addr, long val)
463 {
464 unsigned long *bspstore, *krbs, regnum, *laddr;
465 unsigned long *urbs_end = (long *) user_rbs_end;
466 struct pt_regs *child_regs;
467
468 laddr = (unsigned long *) addr;
469 child_regs = ia64_task_regs(child);
470 bspstore = (unsigned long *) child_regs->ar_bspstore;
471 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
472 if (on_kernel_rbs(addr, (unsigned long) bspstore,
473 (unsigned long) urbs_end))
474 {
475 /*
476 * Attempt to write the RBS in an area that's actually
477 * on the kernel RBS => write the corresponding bits
478 * in the kernel RBS.
479 */
480 if (ia64_rse_is_rnat_slot(laddr))
481 put_rnat(child, child_stack, krbs, laddr, val,
482 urbs_end);
483 else {
484 if (laddr < urbs_end) {
485 regnum = ia64_rse_num_regs(bspstore, laddr);
486 *ia64_rse_skip_regs(krbs, regnum) = val;
487 }
488 }
489 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
490 != sizeof(val))
491 return -EIO;
492 return 0;
493 }
494
495 /*
496 * Calculate the address of the end of the user-level register backing
497 * store. This is the address that would have been stored in ar.bsp
498 * if the user had executed a "cover" instruction right before
499 * entering the kernel. If CFMP is not NULL, it is used to return the
500 * "current frame mask" that was active at the time the kernel was
501 * entered.
502 */
503 unsigned long
504 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
505 unsigned long *cfmp)
506 {
507 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
508 long ndirty;
509
510 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
511 bspstore = (unsigned long *) pt->ar_bspstore;
512 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
513
514 if (in_syscall(pt))
515 ndirty += (cfm & 0x7f);
516 else
517 cfm &= ~(1UL << 63); /* clear valid bit */
518
519 if (cfmp)
520 *cfmp = cfm;
521 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
522 }
523
524 /*
525 * Synchronize (i.e, write) the RSE backing store living in kernel
526 * space to the VM of the CHILD task. SW and PT are the pointers to
527 * the switch_stack and pt_regs structures, respectively.
528 * USER_RBS_END is the user-level address at which the backing store
529 * ends.
530 */
531 long
532 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
533 unsigned long user_rbs_start, unsigned long user_rbs_end)
534 {
535 unsigned long addr, val;
536 long ret;
537
538 /* now copy word for word from kernel rbs to user rbs: */
539 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
540 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
541 if (ret < 0)
542 return ret;
543 if (access_process_vm(child, addr, &val, sizeof(val), 1)
544 != sizeof(val))
545 return -EIO;
546 }
547 return 0;
548 }
549
550 static inline int
551 thread_matches (struct task_struct *thread, unsigned long addr)
552 {
553 unsigned long thread_rbs_end;
554 struct pt_regs *thread_regs;
555
556 if (ptrace_check_attach(thread, 0) < 0)
557 /*
558 * If the thread is not in an attachable state, we'll
559 * ignore it. The net effect is that if ADDR happens
560 * to overlap with the portion of the thread's
561 * register backing store that is currently residing
562 * on the thread's kernel stack, then ptrace() may end
563 * up accessing a stale value. But if the thread
564 * isn't stopped, that's a problem anyhow, so we're
565 * doing as well as we can...
566 */
567 return 0;
568
569 thread_regs = ia64_task_regs(thread);
570 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
571 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
572 return 0;
573
574 return 1; /* looks like we've got a winner */
575 }
576
577 /*
578 * GDB apparently wants to be able to read the register-backing store
579 * of any thread when attached to a given process. If we are peeking
580 * or poking an address that happens to reside in the kernel-backing
581 * store of another thread, we need to attach to that thread, because
582 * otherwise we end up accessing stale data.
583 *
584 * task_list_lock must be read-locked before calling this routine!
585 */
586 static struct task_struct *
587 find_thread_for_addr (struct task_struct *child, unsigned long addr)
588 {
589 struct task_struct *g, *p;
590 struct mm_struct *mm;
591 int mm_users;
592
593 if (!(mm = get_task_mm(child)))
594 return child;
595
596 /* -1 because of our get_task_mm(): */
597 mm_users = atomic_read(&mm->mm_users) - 1;
598 if (mm_users <= 1)
599 goto out; /* not multi-threaded */
600
601 /*
602 * First, traverse the child's thread-list. Good for scalability with
603 * NPTL-threads.
604 */
605 p = child;
606 do {
607 if (thread_matches(p, addr)) {
608 child = p;
609 goto out;
610 }
611 if (mm_users-- <= 1)
612 goto out;
613 } while ((p = next_thread(p)) != child);
614
615 do_each_thread(g, p) {
616 if (child->mm != mm)
617 continue;
618
619 if (thread_matches(p, addr)) {
620 child = p;
621 goto out;
622 }
623 } while_each_thread(g, p);
624 out:
625 mmput(mm);
626 return child;
627 }
628
629 /*
630 * Write f32-f127 back to task->thread.fph if it has been modified.
631 */
632 inline void
633 ia64_flush_fph (struct task_struct *task)
634 {
635 struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
636
637 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
638 psr->mfh = 0;
639 task->thread.flags |= IA64_THREAD_FPH_VALID;
640 ia64_save_fpu(&task->thread.fph[0]);
641 }
642 }
643
644 /*
645 * Sync the fph state of the task so that it can be manipulated
646 * through thread.fph. If necessary, f32-f127 are written back to
647 * thread.fph or, if the fph state hasn't been used before, thread.fph
648 * is cleared to zeroes. Also, access to f32-f127 is disabled to
649 * ensure that the task picks up the state from thread.fph when it
650 * executes again.
651 */
652 void
653 ia64_sync_fph (struct task_struct *task)
654 {
655 struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
656
657 ia64_flush_fph(task);
658 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
659 task->thread.flags |= IA64_THREAD_FPH_VALID;
660 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
661 }
662 ia64_drop_fpu(task);
663 psr->dfh = 1;
664 }
665
666 static int
667 access_fr (struct unw_frame_info *info, int regnum, int hi,
668 unsigned long *data, int write_access)
669 {
670 struct ia64_fpreg fpval;
671 int ret;
672
673 ret = unw_get_fr(info, regnum, &fpval);
674 if (ret < 0)
675 return ret;
676
677 if (write_access) {
678 fpval.u.bits[hi] = *data;
679 ret = unw_set_fr(info, regnum, fpval);
680 } else
681 *data = fpval.u.bits[hi];
682 return ret;
683 }
684
685 /*
686 * Change the machine-state of CHILD such that it will return via the normal
687 * kernel exit-path, rather than the syscall-exit path.
688 */
689 static void
690 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
691 unsigned long cfm)
692 {
693 struct unw_frame_info info, prev_info;
694 unsigned long ip, pr;
695
696 unw_init_from_blocked_task(&info, child);
697 while (1) {
698 prev_info = info;
699 if (unw_unwind(&info) < 0)
700 return;
701 if (unw_get_rp(&info, &ip) < 0)
702 return;
703 if (ip < FIXADDR_USER_END)
704 break;
705 }
706
707 unw_get_pr(&prev_info, &pr);
708 pr &= ~(1UL << PRED_SYSCALL);
709 pr |= (1UL << PRED_NON_SYSCALL);
710 unw_set_pr(&prev_info, pr);
711
712 pt->cr_ifs = (1UL << 63) | cfm;
713 }
714
715 static int
716 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
717 struct unw_frame_info *info,
718 unsigned long *data, int write_access)
719 {
720 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
721 char nat = 0;
722
723 if (write_access) {
724 nat_bits = *data;
725 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
726 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
727 dprintk("ptrace: failed to set ar.unat\n");
728 return -1;
729 }
730 for (regnum = 4; regnum <= 7; ++regnum) {
731 unw_get_gr(info, regnum, &dummy, &nat);
732 unw_set_gr(info, regnum, dummy,
733 (nat_bits >> regnum) & 1);
734 }
735 } else {
736 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
737 dprintk("ptrace: failed to read ar.unat\n");
738 return -1;
739 }
740 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
741 for (regnum = 4; regnum <= 7; ++regnum) {
742 unw_get_gr(info, regnum, &dummy, &nat);
743 nat_bits |= (nat != 0) << regnum;
744 }
745 *data = nat_bits;
746 }
747 return 0;
748 }
749
750 static int
751 access_uarea (struct task_struct *child, unsigned long addr,
752 unsigned long *data, int write_access)
753 {
754 unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
755 struct switch_stack *sw;
756 struct pt_regs *pt;
757 # define pt_reg_addr(pt, reg) ((void *) \
758 ((unsigned long) (pt) \
759 + offsetof(struct pt_regs, reg)))
760
761
762 pt = ia64_task_regs(child);
763 sw = (struct switch_stack *) (child->thread.ksp + 16);
764
765 if ((addr & 0x7) != 0) {
766 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
767 return -1;
768 }
769
770 if (addr < PT_F127 + 16) {
771 /* accessing fph */
772 if (write_access)
773 ia64_sync_fph(child);
774 else
775 ia64_flush_fph(child);
776 ptr = (unsigned long *)
777 ((unsigned long) &child->thread.fph + addr);
778 } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
779 /* scratch registers untouched by kernel (saved in pt_regs) */
780 ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
781 } else if (addr >= PT_F12 && addr < PT_F15 + 16) {
782 /*
783 * Scratch registers untouched by kernel (saved in
784 * switch_stack).
785 */
786 ptr = (unsigned long *) ((long) sw
787 + (addr - PT_NAT_BITS - 32));
788 } else if (addr < PT_AR_LC + 8) {
789 /* preserved state: */
790 struct unw_frame_info info;
791 char nat = 0;
792 int ret;
793
794 unw_init_from_blocked_task(&info, child);
795 if (unw_unwind_to_user(&info) < 0)
796 return -1;
797
798 switch (addr) {
799 case PT_NAT_BITS:
800 return access_nat_bits(child, pt, &info,
801 data, write_access);
802
803 case PT_R4: case PT_R5: case PT_R6: case PT_R7:
804 if (write_access) {
805 /* read NaT bit first: */
806 unsigned long dummy;
807
808 ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
809 &dummy, &nat);
810 if (ret < 0)
811 return ret;
812 }
813 return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
814 &nat, write_access);
815
816 case PT_B1: case PT_B2: case PT_B3:
817 case PT_B4: case PT_B5:
818 return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
819 write_access);
820
821 case PT_AR_EC:
822 return unw_access_ar(&info, UNW_AR_EC, data,
823 write_access);
824
825 case PT_AR_LC:
826 return unw_access_ar(&info, UNW_AR_LC, data,
827 write_access);
828
829 default:
830 if (addr >= PT_F2 && addr < PT_F5 + 16)
831 return access_fr(&info, (addr - PT_F2)/16 + 2,
832 (addr & 8) != 0, data,
833 write_access);
834 else if (addr >= PT_F16 && addr < PT_F31 + 16)
835 return access_fr(&info,
836 (addr - PT_F16)/16 + 16,
837 (addr & 8) != 0,
838 data, write_access);
839 else {
840 dprintk("ptrace: rejecting access to register "
841 "address 0x%lx\n", addr);
842 return -1;
843 }
844 }
845 } else if (addr < PT_F9+16) {
846 /* scratch state */
847 switch (addr) {
848 case PT_AR_BSP:
849 /*
850 * By convention, we use PT_AR_BSP to refer to
851 * the end of the user-level backing store.
852 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
853 * to get the real value of ar.bsp at the time
854 * the kernel was entered.
855 *
856 * Furthermore, when changing the contents of
857 * PT_AR_BSP (or PT_CFM) we MUST copy any
858 * users-level stacked registers that are
859 * stored on the kernel stack back to
860 * user-space because otherwise, we might end
861 * up clobbering kernel stacked registers.
862 * Also, if this happens while the task is
863 * blocked in a system call, which convert the
864 * state such that the non-system-call exit
865 * path is used. This ensures that the proper
866 * state will be picked up when resuming
867 * execution. However, it *also* means that
868 * once we write PT_AR_BSP/PT_CFM, it won't be
869 * possible to modify the syscall arguments of
870 * the pending system call any longer. This
871 * shouldn't be an issue because modifying
872 * PT_AR_BSP/PT_CFM generally implies that
873 * we're either abandoning the pending system
874 * call or that we defer it's re-execution
875 * (e.g., due to GDB doing an inferior
876 * function call).
877 */
878 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
879 if (write_access) {
880 if (*data != urbs_end) {
881 if (ia64_sync_user_rbs(child, sw,
882 pt->ar_bspstore,
883 urbs_end) < 0)
884 return -1;
885 if (in_syscall(pt))
886 convert_to_non_syscall(child,
887 pt,
888 cfm);
889 /*
890 * Simulate user-level write
891 * of ar.bsp:
892 */
893 pt->loadrs = 0;
894 pt->ar_bspstore = *data;
895 }
896 } else
897 *data = urbs_end;
898 return 0;
899
900 case PT_CFM:
901 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
902 if (write_access) {
903 if (((cfm ^ *data) & PFM_MASK) != 0) {
904 if (ia64_sync_user_rbs(child, sw,
905 pt->ar_bspstore,
906 urbs_end) < 0)
907 return -1;
908 if (in_syscall(pt))
909 convert_to_non_syscall(child,
910 pt,
911 cfm);
912 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
913 | (*data & PFM_MASK));
914 }
915 } else
916 *data = cfm;
917 return 0;
918
919 case PT_CR_IPSR:
920 if (write_access)
921 pt->cr_ipsr = ((*data & IPSR_MASK)
922 | (pt->cr_ipsr & ~IPSR_MASK));
923 else
924 *data = (pt->cr_ipsr & IPSR_MASK);
925 return 0;
926
927 case PT_AR_RNAT:
928 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
929 rnat_addr = (long) ia64_rse_rnat_addr((long *)
930 urbs_end);
931 if (write_access)
932 return ia64_poke(child, sw, urbs_end,
933 rnat_addr, *data);
934 else
935 return ia64_peek(child, sw, urbs_end,
936 rnat_addr, data);
937
938 case PT_R1:
939 ptr = pt_reg_addr(pt, r1);
940 break;
941 case PT_R2: case PT_R3:
942 ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
943 break;
944 case PT_R8: case PT_R9: case PT_R10: case PT_R11:
945 ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
946 break;
947 case PT_R12: case PT_R13:
948 ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
949 break;
950 case PT_R14:
951 ptr = pt_reg_addr(pt, r14);
952 break;
953 case PT_R15:
954 ptr = pt_reg_addr(pt, r15);
955 break;
956 case PT_R16: case PT_R17: case PT_R18: case PT_R19:
957 case PT_R20: case PT_R21: case PT_R22: case PT_R23:
958 case PT_R24: case PT_R25: case PT_R26: case PT_R27:
959 case PT_R28: case PT_R29: case PT_R30: case PT_R31:
960 ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
961 break;
962 case PT_B0:
963 ptr = pt_reg_addr(pt, b0);
964 break;
965 case PT_B6:
966 ptr = pt_reg_addr(pt, b6);
967 break;
968 case PT_B7:
969 ptr = pt_reg_addr(pt, b7);
970 break;
971 case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
972 case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
973 ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
974 break;
975 case PT_AR_BSPSTORE:
976 ptr = pt_reg_addr(pt, ar_bspstore);
977 break;
978 case PT_AR_RSC:
979 ptr = pt_reg_addr(pt, ar_rsc);
980 break;
981 case PT_AR_UNAT:
982 ptr = pt_reg_addr(pt, ar_unat);
983 break;
984 case PT_AR_PFS:
985 ptr = pt_reg_addr(pt, ar_pfs);
986 break;
987 case PT_AR_CCV:
988 ptr = pt_reg_addr(pt, ar_ccv);
989 break;
990 case PT_AR_FPSR:
991 ptr = pt_reg_addr(pt, ar_fpsr);
992 break;
993 case PT_CR_IIP:
994 ptr = pt_reg_addr(pt, cr_iip);
995 break;
996 case PT_PR:
997 ptr = pt_reg_addr(pt, pr);
998 break;
999 /* scratch register */
1000
1001 default:
1002 /* disallow accessing anything else... */
1003 dprintk("ptrace: rejecting access to register "
1004 "address 0x%lx\n", addr);
1005 return -1;
1006 }
1007 } else if (addr <= PT_AR_SSD) {
1008 ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1009 } else {
1010 /* access debug registers */
1011
1012 if (addr >= PT_IBR) {
1013 regnum = (addr - PT_IBR) >> 3;
1014 ptr = &child->thread.ibr[0];
1015 } else {
1016 regnum = (addr - PT_DBR) >> 3;
1017 ptr = &child->thread.dbr[0];
1018 }
1019
1020 if (regnum >= 8) {
1021 dprintk("ptrace: rejecting access to register "
1022 "address 0x%lx\n", addr);
1023 return -1;
1024 }
1025 #ifdef CONFIG_PERFMON
1026 /*
1027 * Check if debug registers are used by perfmon. This
1028 * test must be done once we know that we can do the
1029 * operation, i.e. the arguments are all valid, but
1030 * before we start modifying the state.
1031 *
1032 * Perfmon needs to keep a count of how many processes
1033 * are trying to modify the debug registers for system
1034 * wide monitoring sessions.
1035 *
1036 * We also include read access here, because they may
1037 * cause the PMU-installed debug register state
1038 * (dbr[], ibr[]) to be reset. The two arrays are also
1039 * used by perfmon, but we do not use
1040 * IA64_THREAD_DBG_VALID. The registers are restored
1041 * by the PMU context switch code.
1042 */
1043 if (pfm_use_debug_registers(child)) return -1;
1044 #endif
1045
1046 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1047 child->thread.flags |= IA64_THREAD_DBG_VALID;
1048 memset(child->thread.dbr, 0,
1049 sizeof(child->thread.dbr));
1050 memset(child->thread.ibr, 0,
1051 sizeof(child->thread.ibr));
1052 }
1053
1054 ptr += regnum;
1055
1056 if ((regnum & 1) && write_access) {
1057 /* don't let the user set kernel-level breakpoints: */
1058 *ptr = *data & ~(7UL << 56);
1059 return 0;
1060 }
1061 }
1062 if (write_access)
1063 *ptr = *data;
1064 else
1065 *data = *ptr;
1066 return 0;
1067 }
1068
1069 static long
1070 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1071 {
1072 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
1073 struct unw_frame_info info;
1074 struct ia64_fpreg fpval;
1075 struct switch_stack *sw;
1076 struct pt_regs *pt;
1077 long ret, retval = 0;
1078 char nat = 0;
1079 int i;
1080
1081 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
1082 return -EIO;
1083
1084 pt = ia64_task_regs(child);
1085 sw = (struct switch_stack *) (child->thread.ksp + 16);
1086 unw_init_from_blocked_task(&info, child);
1087 if (unw_unwind_to_user(&info) < 0) {
1088 return -EIO;
1089 }
1090
1091 if (((unsigned long) ppr & 0x7) != 0) {
1092 dprintk("ptrace:unaligned register address %p\n", ppr);
1093 return -EIO;
1094 }
1095
1096 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
1097 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
1098 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
1099 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
1100 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
1101 || access_uarea(child, PT_CFM, &cfm, 0)
1102 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
1103 return -EIO;
1104
1105 /* control regs */
1106
1107 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
1108 retval |= __put_user(psr, &ppr->cr_ipsr);
1109
1110 /* app regs */
1111
1112 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1113 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1114 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1115 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1116 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1117 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1118
1119 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
1120 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
1121 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1122 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
1123 retval |= __put_user(cfm, &ppr->cfm);
1124
1125 /* gr1-gr3 */
1126
1127 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
1128 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
1129
1130 /* gr4-gr7 */
1131
1132 for (i = 4; i < 8; i++) {
1133 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
1134 return -EIO;
1135 retval |= __put_user(val, &ppr->gr[i]);
1136 }
1137
1138 /* gr8-gr11 */
1139
1140 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
1141
1142 /* gr12-gr15 */
1143
1144 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
1145 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
1146 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
1147
1148 /* gr16-gr31 */
1149
1150 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
1151
1152 /* b0 */
1153
1154 retval |= __put_user(pt->b0, &ppr->br[0]);
1155
1156 /* b1-b5 */
1157
1158 for (i = 1; i < 6; i++) {
1159 if (unw_access_br(&info, i, &val, 0) < 0)
1160 return -EIO;
1161 __put_user(val, &ppr->br[i]);
1162 }
1163
1164 /* b6-b7 */
1165
1166 retval |= __put_user(pt->b6, &ppr->br[6]);
1167 retval |= __put_user(pt->b7, &ppr->br[7]);
1168
1169 /* fr2-fr5 */
1170
1171 for (i = 2; i < 6; i++) {
1172 if (unw_get_fr(&info, i, &fpval) < 0)
1173 return -EIO;
1174 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1175 }
1176
1177 /* fr6-fr11 */
1178
1179 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
1180 sizeof(struct ia64_fpreg) * 6);
1181
1182 /* fp scratch regs(12-15) */
1183
1184 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
1185 sizeof(struct ia64_fpreg) * 4);
1186
1187 /* fr16-fr31 */
1188
1189 for (i = 16; i < 32; i++) {
1190 if (unw_get_fr(&info, i, &fpval) < 0)
1191 return -EIO;
1192 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1193 }
1194
1195 /* fph */
1196
1197 ia64_flush_fph(child);
1198 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
1199 sizeof(ppr->fr[32]) * 96);
1200
1201 /* preds */
1202
1203 retval |= __put_user(pt->pr, &ppr->pr);
1204
1205 /* nat bits */
1206
1207 retval |= __put_user(nat_bits, &ppr->nat);
1208
1209 ret = retval ? -EIO : 0;
1210 return ret;
1211 }
1212
1213 static long
1214 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1215 {
1216 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
1217 struct unw_frame_info info;
1218 struct switch_stack *sw;
1219 struct ia64_fpreg fpval;
1220 struct pt_regs *pt;
1221 long ret, retval = 0;
1222 int i;
1223
1224 memset(&fpval, 0, sizeof(fpval));
1225
1226 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1227 return -EIO;
1228
1229 pt = ia64_task_regs(child);
1230 sw = (struct switch_stack *) (child->thread.ksp + 16);
1231 unw_init_from_blocked_task(&info, child);
1232 if (unw_unwind_to_user(&info) < 0) {
1233 return -EIO;
1234 }
1235
1236 if (((unsigned long) ppr & 0x7) != 0) {
1237 dprintk("ptrace:unaligned register address %p\n", ppr);
1238 return -EIO;
1239 }
1240
1241 /* control regs */
1242
1243 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1244 retval |= __get_user(psr, &ppr->cr_ipsr);
1245
1246 /* app regs */
1247
1248 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1249 retval |= __get_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1250 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1251 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1252 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1253 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1254
1255 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1256 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1257 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1258 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1259 retval |= __get_user(cfm, &ppr->cfm);
1260
1261 /* gr1-gr3 */
1262
1263 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1264 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1265
1266 /* gr4-gr7 */
1267
1268 for (i = 4; i < 8; i++) {
1269 retval |= __get_user(val, &ppr->gr[i]);
1270 /* NaT bit will be set via PT_NAT_BITS: */
1271 if (unw_set_gr(&info, i, val, 0) < 0)
1272 return -EIO;
1273 }
1274
1275 /* gr8-gr11 */
1276
1277 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1278
1279 /* gr12-gr15 */
1280
1281 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1282 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1283 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1284
1285 /* gr16-gr31 */
1286
1287 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1288
1289 /* b0 */
1290
1291 retval |= __get_user(pt->b0, &ppr->br[0]);
1292
1293 /* b1-b5 */
1294
1295 for (i = 1; i < 6; i++) {
1296 retval |= __get_user(val, &ppr->br[i]);
1297 unw_set_br(&info, i, val);
1298 }
1299
1300 /* b6-b7 */
1301
1302 retval |= __get_user(pt->b6, &ppr->br[6]);
1303 retval |= __get_user(pt->b7, &ppr->br[7]);
1304
1305 /* fr2-fr5 */
1306
1307 for (i = 2; i < 6; i++) {
1308 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1309 if (unw_set_fr(&info, i, fpval) < 0)
1310 return -EIO;
1311 }
1312
1313 /* fr6-fr11 */
1314
1315 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1316 sizeof(ppr->fr[6]) * 6);
1317
1318 /* fp scratch regs(12-15) */
1319
1320 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1321 sizeof(ppr->fr[12]) * 4);
1322
1323 /* fr16-fr31 */
1324
1325 for (i = 16; i < 32; i++) {
1326 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1327 sizeof(fpval));
1328 if (unw_set_fr(&info, i, fpval) < 0)
1329 return -EIO;
1330 }
1331
1332 /* fph */
1333
1334 ia64_sync_fph(child);
1335 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1336 sizeof(ppr->fr[32]) * 96);
1337
1338 /* preds */
1339
1340 retval |= __get_user(pt->pr, &ppr->pr);
1341
1342 /* nat bits */
1343
1344 retval |= __get_user(nat_bits, &ppr->nat);
1345
1346 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1347 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1348 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1349 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1350 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1351 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1352 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1353
1354 ret = retval ? -EIO : 0;
1355 return ret;
1356 }
1357
1358 /*
1359 * Called by kernel/ptrace.c when detaching..
1360 *
1361 * Make sure the single step bit is not set.
1362 */
1363 void
1364 ptrace_disable (struct task_struct *child)
1365 {
1366 struct ia64_psr *child_psr = ia64_psr(ia64_task_regs(child));
1367
1368 /* make sure the single step/taken-branch trap bits are not set: */
1369 child_psr->ss = 0;
1370 child_psr->tb = 0;
1371 }
1372
1373 asmlinkage long
1374 sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
1375 {
1376 struct pt_regs *pt;
1377 unsigned long urbs_end, peek_or_poke;
1378 struct task_struct *child;
1379 struct switch_stack *sw;
1380 long ret;
1381
1382 lock_kernel();
1383 ret = -EPERM;
1384 if (request == PTRACE_TRACEME) {
1385 /* are we already being traced? */
1386 if (current->ptrace & PT_PTRACED)
1387 goto out;
1388 ret = security_ptrace(current->parent, current);
1389 if (ret)
1390 goto out;
1391 current->ptrace |= PT_PTRACED;
1392 ret = 0;
1393 goto out;
1394 }
1395
1396 peek_or_poke = (request == PTRACE_PEEKTEXT
1397 || request == PTRACE_PEEKDATA
1398 || request == PTRACE_POKETEXT
1399 || request == PTRACE_POKEDATA);
1400 ret = -ESRCH;
1401 read_lock(&tasklist_lock);
1402 {
1403 child = find_task_by_pid(pid);
1404 if (child) {
1405 if (peek_or_poke)
1406 child = find_thread_for_addr(child, addr);
1407 get_task_struct(child);
1408 }
1409 }
1410 read_unlock(&tasklist_lock);
1411 if (!child)
1412 goto out;
1413 ret = -EPERM;
1414 if (pid == 1) /* no messing around with init! */
1415 goto out_tsk;
1416
1417 if (request == PTRACE_ATTACH) {
1418 ret = ptrace_attach(child);
1419 goto out_tsk;
1420 }
1421
1422 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1423 if (ret < 0)
1424 goto out_tsk;
1425
1426 pt = ia64_task_regs(child);
1427 sw = (struct switch_stack *) (child->thread.ksp + 16);
1428
1429 switch (request) {
1430 case PTRACE_PEEKTEXT:
1431 case PTRACE_PEEKDATA:
1432 /* read word at location addr */
1433 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1434 ret = ia64_peek(child, sw, urbs_end, addr, &data);
1435 if (ret == 0) {
1436 ret = data;
1437 /* ensure "ret" is not mistaken as an error code: */
1438 force_successful_syscall_return();
1439 }
1440 goto out_tsk;
1441
1442 case PTRACE_POKETEXT:
1443 case PTRACE_POKEDATA:
1444 /* write the word at location addr */
1445 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1446 ret = ia64_poke(child, sw, urbs_end, addr, data);
1447 goto out_tsk;
1448
1449 case PTRACE_PEEKUSR:
1450 /* read the word at addr in the USER area */
1451 if (access_uarea(child, addr, &data, 0) < 0) {
1452 ret = -EIO;
1453 goto out_tsk;
1454 }
1455 ret = data;
1456 /* ensure "ret" is not mistaken as an error code */
1457 force_successful_syscall_return();
1458 goto out_tsk;
1459
1460 case PTRACE_POKEUSR:
1461 /* write the word at addr in the USER area */
1462 if (access_uarea(child, addr, &data, 1) < 0) {
1463 ret = -EIO;
1464 goto out_tsk;
1465 }
1466 ret = 0;
1467 goto out_tsk;
1468
1469 case PTRACE_OLD_GETSIGINFO:
1470 /* for backwards-compatibility */
1471 ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1472 goto out_tsk;
1473
1474 case PTRACE_OLD_SETSIGINFO:
1475 /* for backwards-compatibility */
1476 ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1477 goto out_tsk;
1478
1479 case PTRACE_SYSCALL:
1480 /* continue and stop at next (return from) syscall */
1481 case PTRACE_CONT:
1482 /* restart after signal. */
1483 ret = -EIO;
1484 if (data > _NSIG)
1485 goto out_tsk;
1486 if (request == PTRACE_SYSCALL)
1487 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1488 else
1489 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1490 child->exit_code = data;
1491
1492 /*
1493 * Make sure the single step/taken-branch trap bits
1494 * are not set:
1495 */
1496 ia64_psr(pt)->ss = 0;
1497 ia64_psr(pt)->tb = 0;
1498
1499 wake_up_process(child);
1500 ret = 0;
1501 goto out_tsk;
1502
1503 case PTRACE_KILL:
1504 /*
1505 * Make the child exit. Best I can do is send it a
1506 * sigkill. Perhaps it should be put in the status
1507 * that it wants to exit.
1508 */
1509 if (child->exit_state == EXIT_ZOMBIE)
1510 /* already dead */
1511 goto out_tsk;
1512 child->exit_code = SIGKILL;
1513
1514 ptrace_disable(child);
1515 wake_up_process(child);
1516 ret = 0;
1517 goto out_tsk;
1518
1519 case PTRACE_SINGLESTEP:
1520 /* let child execute for one instruction */
1521 case PTRACE_SINGLEBLOCK:
1522 ret = -EIO;
1523 if (data > _NSIG)
1524 goto out_tsk;
1525
1526 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1527 if (request == PTRACE_SINGLESTEP) {
1528 ia64_psr(pt)->ss = 1;
1529 } else {
1530 ia64_psr(pt)->tb = 1;
1531 }
1532 child->exit_code = data;
1533
1534 /* give it a chance to run. */
1535 wake_up_process(child);
1536 ret = 0;
1537 goto out_tsk;
1538
1539 case PTRACE_DETACH:
1540 /* detach a process that was attached. */
1541 ret = ptrace_detach(child, data);
1542 goto out_tsk;
1543
1544 case PTRACE_GETREGS:
1545 ret = ptrace_getregs(child,
1546 (struct pt_all_user_regs __user *) data);
1547 goto out_tsk;
1548
1549 case PTRACE_SETREGS:
1550 ret = ptrace_setregs(child,
1551 (struct pt_all_user_regs __user *) data);
1552 goto out_tsk;
1553
1554 default:
1555 ret = ptrace_request(child, request, addr, data);
1556 goto out_tsk;
1557 }
1558 out_tsk:
1559 put_task_struct(child);
1560 out:
1561 unlock_kernel();
1562 return ret;
1563 }
1564
1565
1566 void
1567 syscall_trace (void)
1568 {
1569 if (!test_thread_flag(TIF_SYSCALL_TRACE))
1570 return;
1571 if (!(current->ptrace & PT_PTRACED))
1572 return;
1573 /*
1574 * The 0x80 provides a way for the tracing parent to
1575 * distinguish between a syscall stop and SIGTRAP delivery.
1576 */
1577 ptrace_notify(SIGTRAP
1578 | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1579
1580 /*
1581 * This isn't the same as continuing with a signal, but it
1582 * will do for normal use. strace only continues with a
1583 * signal if the stopping signal is not SIGTRAP. -brl
1584 */
1585 if (current->exit_code) {
1586 send_sig(current->exit_code, current, 1);
1587 current->exit_code = 0;
1588 }
1589 }
1590
1591 /* "asmlinkage" so the input arguments are preserved... */
1592
1593 asmlinkage void
1594 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1595 long arg4, long arg5, long arg6, long arg7,
1596 struct pt_regs regs)
1597 {
1598 long syscall;
1599
1600 if (unlikely(current->audit_context)) {
1601 if (IS_IA32_PROCESS(&regs))
1602 syscall = regs.r1;
1603 else
1604 syscall = regs.r15;
1605
1606 audit_syscall_entry(current, syscall, arg0, arg1, arg2, arg3);
1607 }
1608
1609 if (test_thread_flag(TIF_SYSCALL_TRACE)
1610 && (current->ptrace & PT_PTRACED))
1611 syscall_trace();
1612 }
1613
1614 /* "asmlinkage" so the input arguments are preserved... */
1615
1616 asmlinkage void
1617 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1618 long arg4, long arg5, long arg6, long arg7,
1619 struct pt_regs regs)
1620 {
1621 if (unlikely(current->audit_context))
1622 audit_syscall_exit(current, regs.r8);
1623
1624 if (test_thread_flag(TIF_SYSCALL_TRACE)
1625 && (current->ptrace & PT_PTRACED))
1626 syscall_trace();
1627 }