]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kvm/mips.c
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched...
[mirror_ubuntu-artful-kernel.git] / arch / mips / kvm / mips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/bootmem.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100 /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
45 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
46 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
47 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
48 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
54 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
56 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
57 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
59 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
63 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
64 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
65 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
66 {NULL}
67 };
68
69 /*
70 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
71 * Config7, so we are "runnable" if interrupts are pending
72 */
73 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
74 {
75 return !!(vcpu->arch.pending_exceptions);
76 }
77
78 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
79 {
80 return 1;
81 }
82
83 int kvm_arch_hardware_enable(void)
84 {
85 return 0;
86 }
87
88 int kvm_arch_hardware_setup(void)
89 {
90 return 0;
91 }
92
93 void kvm_arch_check_processor_compat(void *rtn)
94 {
95 *(int *)rtn = 0;
96 }
97
98 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
99 {
100 /* Allocate page table to map GPA -> RPA */
101 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
102 if (!kvm->arch.gpa_mm.pgd)
103 return -ENOMEM;
104
105 return 0;
106 }
107
108 bool kvm_arch_has_vcpu_debugfs(void)
109 {
110 return false;
111 }
112
113 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
114 {
115 return 0;
116 }
117
118 void kvm_mips_free_vcpus(struct kvm *kvm)
119 {
120 unsigned int i;
121 struct kvm_vcpu *vcpu;
122
123 kvm_for_each_vcpu(i, vcpu, kvm) {
124 kvm_arch_vcpu_free(vcpu);
125 }
126
127 mutex_lock(&kvm->lock);
128
129 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
130 kvm->vcpus[i] = NULL;
131
132 atomic_set(&kvm->online_vcpus, 0);
133
134 mutex_unlock(&kvm->lock);
135 }
136
137 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
138 {
139 /* It should always be safe to remove after flushing the whole range */
140 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
141 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
142 }
143
144 void kvm_arch_destroy_vm(struct kvm *kvm)
145 {
146 kvm_mips_free_vcpus(kvm);
147 kvm_mips_free_gpa_pt(kvm);
148 }
149
150 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
151 unsigned long arg)
152 {
153 return -ENOIOCTLCMD;
154 }
155
156 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
157 unsigned long npages)
158 {
159 return 0;
160 }
161
162 void kvm_arch_flush_shadow_all(struct kvm *kvm)
163 {
164 /* Flush whole GPA */
165 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
166
167 /* Let implementation do the rest */
168 kvm_mips_callbacks->flush_shadow_all(kvm);
169 }
170
171 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
172 struct kvm_memory_slot *slot)
173 {
174 /*
175 * The slot has been made invalid (ready for moving or deletion), so we
176 * need to ensure that it can no longer be accessed by any guest VCPUs.
177 */
178
179 spin_lock(&kvm->mmu_lock);
180 /* Flush slot from GPA */
181 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
182 slot->base_gfn + slot->npages - 1);
183 /* Let implementation do the rest */
184 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
185 spin_unlock(&kvm->mmu_lock);
186 }
187
188 int kvm_arch_prepare_memory_region(struct kvm *kvm,
189 struct kvm_memory_slot *memslot,
190 const struct kvm_userspace_memory_region *mem,
191 enum kvm_mr_change change)
192 {
193 return 0;
194 }
195
196 void kvm_arch_commit_memory_region(struct kvm *kvm,
197 const struct kvm_userspace_memory_region *mem,
198 const struct kvm_memory_slot *old,
199 const struct kvm_memory_slot *new,
200 enum kvm_mr_change change)
201 {
202 int needs_flush;
203
204 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
205 __func__, kvm, mem->slot, mem->guest_phys_addr,
206 mem->memory_size, mem->userspace_addr);
207
208 /*
209 * If dirty page logging is enabled, write protect all pages in the slot
210 * ready for dirty logging.
211 *
212 * There is no need to do this in any of the following cases:
213 * CREATE: No dirty mappings will already exist.
214 * MOVE/DELETE: The old mappings will already have been cleaned up by
215 * kvm_arch_flush_shadow_memslot()
216 */
217 if (change == KVM_MR_FLAGS_ONLY &&
218 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
219 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
220 spin_lock(&kvm->mmu_lock);
221 /* Write protect GPA page table entries */
222 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
223 new->base_gfn + new->npages - 1);
224 /* Let implementation do the rest */
225 if (needs_flush)
226 kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
227 spin_unlock(&kvm->mmu_lock);
228 }
229 }
230
231 static inline void dump_handler(const char *symbol, void *start, void *end)
232 {
233 u32 *p;
234
235 pr_debug("LEAF(%s)\n", symbol);
236
237 pr_debug("\t.set push\n");
238 pr_debug("\t.set noreorder\n");
239
240 for (p = start; p < (u32 *)end; ++p)
241 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
242
243 pr_debug("\t.set\tpop\n");
244
245 pr_debug("\tEND(%s)\n", symbol);
246 }
247
248 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
249 {
250 int err, size;
251 void *gebase, *p, *handler, *refill_start, *refill_end;
252 int i;
253
254 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
255
256 if (!vcpu) {
257 err = -ENOMEM;
258 goto out;
259 }
260
261 err = kvm_vcpu_init(vcpu, kvm, id);
262
263 if (err)
264 goto out_free_cpu;
265
266 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
267
268 /*
269 * Allocate space for host mode exception handlers that handle
270 * guest mode exits
271 */
272 if (cpu_has_veic || cpu_has_vint)
273 size = 0x200 + VECTORSPACING * 64;
274 else
275 size = 0x4000;
276
277 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
278
279 if (!gebase) {
280 err = -ENOMEM;
281 goto out_uninit_cpu;
282 }
283 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
284 ALIGN(size, PAGE_SIZE), gebase);
285
286 /*
287 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
288 * limits us to the low 512MB of physical address space. If the memory
289 * we allocate is out of range, just give up now.
290 */
291 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
292 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
293 gebase);
294 err = -ENOMEM;
295 goto out_free_gebase;
296 }
297
298 /* Save new ebase */
299 vcpu->arch.guest_ebase = gebase;
300
301 /* Build guest exception vectors dynamically in unmapped memory */
302 handler = gebase + 0x2000;
303
304 /* TLB refill */
305 refill_start = gebase;
306 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
307
308 /* General Exception Entry point */
309 kvm_mips_build_exception(gebase + 0x180, handler);
310
311 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
312 for (i = 0; i < 8; i++) {
313 kvm_debug("L1 Vectored handler @ %p\n",
314 gebase + 0x200 + (i * VECTORSPACING));
315 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
316 handler);
317 }
318
319 /* General exit handler */
320 p = handler;
321 p = kvm_mips_build_exit(p);
322
323 /* Guest entry routine */
324 vcpu->arch.vcpu_run = p;
325 p = kvm_mips_build_vcpu_run(p);
326
327 /* Dump the generated code */
328 pr_debug("#include <asm/asm.h>\n");
329 pr_debug("#include <asm/regdef.h>\n");
330 pr_debug("\n");
331 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
332 dump_handler("kvm_tlb_refill", refill_start, refill_end);
333 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
334 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
335
336 /* Invalidate the icache for these ranges */
337 flush_icache_range((unsigned long)gebase,
338 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
339
340 /*
341 * Allocate comm page for guest kernel, a TLB will be reserved for
342 * mapping GVA @ 0xFFFF8000 to this page
343 */
344 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
345
346 if (!vcpu->arch.kseg0_commpage) {
347 err = -ENOMEM;
348 goto out_free_gebase;
349 }
350
351 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
352 kvm_mips_commpage_init(vcpu);
353
354 /* Init */
355 vcpu->arch.last_sched_cpu = -1;
356
357 /* Start off the timer */
358 kvm_mips_init_count(vcpu);
359
360 return vcpu;
361
362 out_free_gebase:
363 kfree(gebase);
364
365 out_uninit_cpu:
366 kvm_vcpu_uninit(vcpu);
367
368 out_free_cpu:
369 kfree(vcpu);
370
371 out:
372 return ERR_PTR(err);
373 }
374
375 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
376 {
377 hrtimer_cancel(&vcpu->arch.comparecount_timer);
378
379 kvm_vcpu_uninit(vcpu);
380
381 kvm_mips_dump_stats(vcpu);
382
383 kvm_mmu_free_memory_caches(vcpu);
384 kfree(vcpu->arch.guest_ebase);
385 kfree(vcpu->arch.kseg0_commpage);
386 kfree(vcpu);
387 }
388
389 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
390 {
391 kvm_arch_vcpu_free(vcpu);
392 }
393
394 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
395 struct kvm_guest_debug *dbg)
396 {
397 return -ENOIOCTLCMD;
398 }
399
400 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
401 {
402 int r = -EINTR;
403 sigset_t sigsaved;
404
405 if (vcpu->sigset_active)
406 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
407
408 if (vcpu->mmio_needed) {
409 if (!vcpu->mmio_is_write)
410 kvm_mips_complete_mmio_load(vcpu, run);
411 vcpu->mmio_needed = 0;
412 }
413
414 if (run->immediate_exit)
415 goto out;
416
417 lose_fpu(1);
418
419 local_irq_disable();
420 guest_enter_irqoff();
421 trace_kvm_enter(vcpu);
422
423 /*
424 * Make sure the read of VCPU requests in vcpu_run() callback is not
425 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
426 * flush request while the requester sees the VCPU as outside of guest
427 * mode and not needing an IPI.
428 */
429 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
430
431 r = kvm_mips_callbacks->vcpu_run(run, vcpu);
432
433 trace_kvm_out(vcpu);
434 guest_exit_irqoff();
435 local_irq_enable();
436
437 out:
438 if (vcpu->sigset_active)
439 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
440
441 return r;
442 }
443
444 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
445 struct kvm_mips_interrupt *irq)
446 {
447 int intr = (int)irq->irq;
448 struct kvm_vcpu *dvcpu = NULL;
449
450 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
451 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
452 (int)intr);
453
454 if (irq->cpu == -1)
455 dvcpu = vcpu;
456 else
457 dvcpu = vcpu->kvm->vcpus[irq->cpu];
458
459 if (intr == 2 || intr == 3 || intr == 4) {
460 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
461
462 } else if (intr == -2 || intr == -3 || intr == -4) {
463 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
464 } else {
465 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
466 irq->cpu, irq->irq);
467 return -EINVAL;
468 }
469
470 dvcpu->arch.wait = 0;
471
472 if (swait_active(&dvcpu->wq))
473 swake_up(&dvcpu->wq);
474
475 return 0;
476 }
477
478 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
479 struct kvm_mp_state *mp_state)
480 {
481 return -ENOIOCTLCMD;
482 }
483
484 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
485 struct kvm_mp_state *mp_state)
486 {
487 return -ENOIOCTLCMD;
488 }
489
490 static u64 kvm_mips_get_one_regs[] = {
491 KVM_REG_MIPS_R0,
492 KVM_REG_MIPS_R1,
493 KVM_REG_MIPS_R2,
494 KVM_REG_MIPS_R3,
495 KVM_REG_MIPS_R4,
496 KVM_REG_MIPS_R5,
497 KVM_REG_MIPS_R6,
498 KVM_REG_MIPS_R7,
499 KVM_REG_MIPS_R8,
500 KVM_REG_MIPS_R9,
501 KVM_REG_MIPS_R10,
502 KVM_REG_MIPS_R11,
503 KVM_REG_MIPS_R12,
504 KVM_REG_MIPS_R13,
505 KVM_REG_MIPS_R14,
506 KVM_REG_MIPS_R15,
507 KVM_REG_MIPS_R16,
508 KVM_REG_MIPS_R17,
509 KVM_REG_MIPS_R18,
510 KVM_REG_MIPS_R19,
511 KVM_REG_MIPS_R20,
512 KVM_REG_MIPS_R21,
513 KVM_REG_MIPS_R22,
514 KVM_REG_MIPS_R23,
515 KVM_REG_MIPS_R24,
516 KVM_REG_MIPS_R25,
517 KVM_REG_MIPS_R26,
518 KVM_REG_MIPS_R27,
519 KVM_REG_MIPS_R28,
520 KVM_REG_MIPS_R29,
521 KVM_REG_MIPS_R30,
522 KVM_REG_MIPS_R31,
523
524 #ifndef CONFIG_CPU_MIPSR6
525 KVM_REG_MIPS_HI,
526 KVM_REG_MIPS_LO,
527 #endif
528 KVM_REG_MIPS_PC,
529 };
530
531 static u64 kvm_mips_get_one_regs_fpu[] = {
532 KVM_REG_MIPS_FCR_IR,
533 KVM_REG_MIPS_FCR_CSR,
534 };
535
536 static u64 kvm_mips_get_one_regs_msa[] = {
537 KVM_REG_MIPS_MSA_IR,
538 KVM_REG_MIPS_MSA_CSR,
539 };
540
541 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
542 {
543 unsigned long ret;
544
545 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
546 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
547 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
548 /* odd doubles */
549 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
550 ret += 16;
551 }
552 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
553 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
554 ret += kvm_mips_callbacks->num_regs(vcpu);
555
556 return ret;
557 }
558
559 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
560 {
561 u64 index;
562 unsigned int i;
563
564 if (copy_to_user(indices, kvm_mips_get_one_regs,
565 sizeof(kvm_mips_get_one_regs)))
566 return -EFAULT;
567 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
568
569 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
570 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
571 sizeof(kvm_mips_get_one_regs_fpu)))
572 return -EFAULT;
573 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
574
575 for (i = 0; i < 32; ++i) {
576 index = KVM_REG_MIPS_FPR_32(i);
577 if (copy_to_user(indices, &index, sizeof(index)))
578 return -EFAULT;
579 ++indices;
580
581 /* skip odd doubles if no F64 */
582 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
583 continue;
584
585 index = KVM_REG_MIPS_FPR_64(i);
586 if (copy_to_user(indices, &index, sizeof(index)))
587 return -EFAULT;
588 ++indices;
589 }
590 }
591
592 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
593 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
594 sizeof(kvm_mips_get_one_regs_msa)))
595 return -EFAULT;
596 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
597
598 for (i = 0; i < 32; ++i) {
599 index = KVM_REG_MIPS_VEC_128(i);
600 if (copy_to_user(indices, &index, sizeof(index)))
601 return -EFAULT;
602 ++indices;
603 }
604 }
605
606 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
607 }
608
609 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
610 const struct kvm_one_reg *reg)
611 {
612 struct mips_coproc *cop0 = vcpu->arch.cop0;
613 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
614 int ret;
615 s64 v;
616 s64 vs[2];
617 unsigned int idx;
618
619 switch (reg->id) {
620 /* General purpose registers */
621 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
622 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
623 break;
624 #ifndef CONFIG_CPU_MIPSR6
625 case KVM_REG_MIPS_HI:
626 v = (long)vcpu->arch.hi;
627 break;
628 case KVM_REG_MIPS_LO:
629 v = (long)vcpu->arch.lo;
630 break;
631 #endif
632 case KVM_REG_MIPS_PC:
633 v = (long)vcpu->arch.pc;
634 break;
635
636 /* Floating point registers */
637 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
638 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
639 return -EINVAL;
640 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
641 /* Odd singles in top of even double when FR=0 */
642 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
643 v = get_fpr32(&fpu->fpr[idx], 0);
644 else
645 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
646 break;
647 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
648 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
649 return -EINVAL;
650 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
651 /* Can't access odd doubles in FR=0 mode */
652 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
653 return -EINVAL;
654 v = get_fpr64(&fpu->fpr[idx], 0);
655 break;
656 case KVM_REG_MIPS_FCR_IR:
657 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
658 return -EINVAL;
659 v = boot_cpu_data.fpu_id;
660 break;
661 case KVM_REG_MIPS_FCR_CSR:
662 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
663 return -EINVAL;
664 v = fpu->fcr31;
665 break;
666
667 /* MIPS SIMD Architecture (MSA) registers */
668 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
669 if (!kvm_mips_guest_has_msa(&vcpu->arch))
670 return -EINVAL;
671 /* Can't access MSA registers in FR=0 mode */
672 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
673 return -EINVAL;
674 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
675 #ifdef CONFIG_CPU_LITTLE_ENDIAN
676 /* least significant byte first */
677 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
678 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
679 #else
680 /* most significant byte first */
681 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
682 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
683 #endif
684 break;
685 case KVM_REG_MIPS_MSA_IR:
686 if (!kvm_mips_guest_has_msa(&vcpu->arch))
687 return -EINVAL;
688 v = boot_cpu_data.msa_id;
689 break;
690 case KVM_REG_MIPS_MSA_CSR:
691 if (!kvm_mips_guest_has_msa(&vcpu->arch))
692 return -EINVAL;
693 v = fpu->msacsr;
694 break;
695
696 /* registers to be handled specially */
697 default:
698 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
699 if (ret)
700 return ret;
701 break;
702 }
703 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
704 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
705
706 return put_user(v, uaddr64);
707 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
708 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
709 u32 v32 = (u32)v;
710
711 return put_user(v32, uaddr32);
712 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
713 void __user *uaddr = (void __user *)(long)reg->addr;
714
715 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
716 } else {
717 return -EINVAL;
718 }
719 }
720
721 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
722 const struct kvm_one_reg *reg)
723 {
724 struct mips_coproc *cop0 = vcpu->arch.cop0;
725 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
726 s64 v;
727 s64 vs[2];
728 unsigned int idx;
729
730 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
731 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
732
733 if (get_user(v, uaddr64) != 0)
734 return -EFAULT;
735 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
736 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
737 s32 v32;
738
739 if (get_user(v32, uaddr32) != 0)
740 return -EFAULT;
741 v = (s64)v32;
742 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
743 void __user *uaddr = (void __user *)(long)reg->addr;
744
745 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
746 } else {
747 return -EINVAL;
748 }
749
750 switch (reg->id) {
751 /* General purpose registers */
752 case KVM_REG_MIPS_R0:
753 /* Silently ignore requests to set $0 */
754 break;
755 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
756 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
757 break;
758 #ifndef CONFIG_CPU_MIPSR6
759 case KVM_REG_MIPS_HI:
760 vcpu->arch.hi = v;
761 break;
762 case KVM_REG_MIPS_LO:
763 vcpu->arch.lo = v;
764 break;
765 #endif
766 case KVM_REG_MIPS_PC:
767 vcpu->arch.pc = v;
768 break;
769
770 /* Floating point registers */
771 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
772 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
773 return -EINVAL;
774 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
775 /* Odd singles in top of even double when FR=0 */
776 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
777 set_fpr32(&fpu->fpr[idx], 0, v);
778 else
779 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
780 break;
781 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
782 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
783 return -EINVAL;
784 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
785 /* Can't access odd doubles in FR=0 mode */
786 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
787 return -EINVAL;
788 set_fpr64(&fpu->fpr[idx], 0, v);
789 break;
790 case KVM_REG_MIPS_FCR_IR:
791 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
792 return -EINVAL;
793 /* Read-only */
794 break;
795 case KVM_REG_MIPS_FCR_CSR:
796 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
797 return -EINVAL;
798 fpu->fcr31 = v;
799 break;
800
801 /* MIPS SIMD Architecture (MSA) registers */
802 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
803 if (!kvm_mips_guest_has_msa(&vcpu->arch))
804 return -EINVAL;
805 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
806 #ifdef CONFIG_CPU_LITTLE_ENDIAN
807 /* least significant byte first */
808 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
809 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
810 #else
811 /* most significant byte first */
812 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
813 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
814 #endif
815 break;
816 case KVM_REG_MIPS_MSA_IR:
817 if (!kvm_mips_guest_has_msa(&vcpu->arch))
818 return -EINVAL;
819 /* Read-only */
820 break;
821 case KVM_REG_MIPS_MSA_CSR:
822 if (!kvm_mips_guest_has_msa(&vcpu->arch))
823 return -EINVAL;
824 fpu->msacsr = v;
825 break;
826
827 /* registers to be handled specially */
828 default:
829 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
830 }
831 return 0;
832 }
833
834 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
835 struct kvm_enable_cap *cap)
836 {
837 int r = 0;
838
839 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
840 return -EINVAL;
841 if (cap->flags)
842 return -EINVAL;
843 if (cap->args[0])
844 return -EINVAL;
845
846 switch (cap->cap) {
847 case KVM_CAP_MIPS_FPU:
848 vcpu->arch.fpu_enabled = true;
849 break;
850 case KVM_CAP_MIPS_MSA:
851 vcpu->arch.msa_enabled = true;
852 break;
853 default:
854 r = -EINVAL;
855 break;
856 }
857
858 return r;
859 }
860
861 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
862 unsigned long arg)
863 {
864 struct kvm_vcpu *vcpu = filp->private_data;
865 void __user *argp = (void __user *)arg;
866 long r;
867
868 switch (ioctl) {
869 case KVM_SET_ONE_REG:
870 case KVM_GET_ONE_REG: {
871 struct kvm_one_reg reg;
872
873 if (copy_from_user(&reg, argp, sizeof(reg)))
874 return -EFAULT;
875 if (ioctl == KVM_SET_ONE_REG)
876 return kvm_mips_set_reg(vcpu, &reg);
877 else
878 return kvm_mips_get_reg(vcpu, &reg);
879 }
880 case KVM_GET_REG_LIST: {
881 struct kvm_reg_list __user *user_list = argp;
882 struct kvm_reg_list reg_list;
883 unsigned n;
884
885 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
886 return -EFAULT;
887 n = reg_list.n;
888 reg_list.n = kvm_mips_num_regs(vcpu);
889 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
890 return -EFAULT;
891 if (n < reg_list.n)
892 return -E2BIG;
893 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
894 }
895 case KVM_INTERRUPT:
896 {
897 struct kvm_mips_interrupt irq;
898
899 if (copy_from_user(&irq, argp, sizeof(irq)))
900 return -EFAULT;
901 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
902 irq.irq);
903
904 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
905 break;
906 }
907 case KVM_ENABLE_CAP: {
908 struct kvm_enable_cap cap;
909
910 if (copy_from_user(&cap, argp, sizeof(cap)))
911 return -EFAULT;
912 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
913 break;
914 }
915 default:
916 r = -ENOIOCTLCMD;
917 }
918 return r;
919 }
920
921 /**
922 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
923 * @kvm: kvm instance
924 * @log: slot id and address to which we copy the log
925 *
926 * Steps 1-4 below provide general overview of dirty page logging. See
927 * kvm_get_dirty_log_protect() function description for additional details.
928 *
929 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
930 * always flush the TLB (step 4) even if previous step failed and the dirty
931 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
932 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
933 * writes will be marked dirty for next log read.
934 *
935 * 1. Take a snapshot of the bit and clear it if needed.
936 * 2. Write protect the corresponding page.
937 * 3. Copy the snapshot to the userspace.
938 * 4. Flush TLB's if needed.
939 */
940 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
941 {
942 struct kvm_memslots *slots;
943 struct kvm_memory_slot *memslot;
944 bool is_dirty = false;
945 int r;
946
947 mutex_lock(&kvm->slots_lock);
948
949 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
950
951 if (is_dirty) {
952 slots = kvm_memslots(kvm);
953 memslot = id_to_memslot(slots, log->slot);
954
955 /* Let implementation handle TLB/GVA invalidation */
956 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
957 }
958
959 mutex_unlock(&kvm->slots_lock);
960 return r;
961 }
962
963 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
964 {
965 long r;
966
967 switch (ioctl) {
968 default:
969 r = -ENOIOCTLCMD;
970 }
971
972 return r;
973 }
974
975 int kvm_arch_init(void *opaque)
976 {
977 if (kvm_mips_callbacks) {
978 kvm_err("kvm: module already exists\n");
979 return -EEXIST;
980 }
981
982 return kvm_mips_emulation_init(&kvm_mips_callbacks);
983 }
984
985 void kvm_arch_exit(void)
986 {
987 kvm_mips_callbacks = NULL;
988 }
989
990 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
991 struct kvm_sregs *sregs)
992 {
993 return -ENOIOCTLCMD;
994 }
995
996 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
997 struct kvm_sregs *sregs)
998 {
999 return -ENOIOCTLCMD;
1000 }
1001
1002 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1003 {
1004 }
1005
1006 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1007 {
1008 return -ENOIOCTLCMD;
1009 }
1010
1011 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1012 {
1013 return -ENOIOCTLCMD;
1014 }
1015
1016 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1017 {
1018 return VM_FAULT_SIGBUS;
1019 }
1020
1021 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1022 {
1023 int r;
1024
1025 switch (ext) {
1026 case KVM_CAP_ONE_REG:
1027 case KVM_CAP_ENABLE_CAP:
1028 case KVM_CAP_READONLY_MEM:
1029 case KVM_CAP_SYNC_MMU:
1030 case KVM_CAP_IMMEDIATE_EXIT:
1031 r = 1;
1032 break;
1033 case KVM_CAP_COALESCED_MMIO:
1034 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1035 break;
1036 case KVM_CAP_NR_VCPUS:
1037 r = num_online_cpus();
1038 break;
1039 case KVM_CAP_MAX_VCPUS:
1040 r = KVM_MAX_VCPUS;
1041 break;
1042 case KVM_CAP_MIPS_FPU:
1043 /* We don't handle systems with inconsistent cpu_has_fpu */
1044 r = !!raw_cpu_has_fpu;
1045 break;
1046 case KVM_CAP_MIPS_MSA:
1047 /*
1048 * We don't support MSA vector partitioning yet:
1049 * 1) It would require explicit support which can't be tested
1050 * yet due to lack of support in current hardware.
1051 * 2) It extends the state that would need to be saved/restored
1052 * by e.g. QEMU for migration.
1053 *
1054 * When vector partitioning hardware becomes available, support
1055 * could be added by requiring a flag when enabling
1056 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1057 * to save/restore the appropriate extra state.
1058 */
1059 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1060 break;
1061 default:
1062 r = 0;
1063 break;
1064 }
1065 return r;
1066 }
1067
1068 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1069 {
1070 return kvm_mips_pending_timer(vcpu);
1071 }
1072
1073 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1074 {
1075 int i;
1076 struct mips_coproc *cop0;
1077
1078 if (!vcpu)
1079 return -1;
1080
1081 kvm_debug("VCPU Register Dump:\n");
1082 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1083 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1084
1085 for (i = 0; i < 32; i += 4) {
1086 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1087 vcpu->arch.gprs[i],
1088 vcpu->arch.gprs[i + 1],
1089 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1090 }
1091 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1092 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1093
1094 cop0 = vcpu->arch.cop0;
1095 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1096 kvm_read_c0_guest_status(cop0),
1097 kvm_read_c0_guest_cause(cop0));
1098
1099 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1100
1101 return 0;
1102 }
1103
1104 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1105 {
1106 int i;
1107
1108 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1109 vcpu->arch.gprs[i] = regs->gpr[i];
1110 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1111 vcpu->arch.hi = regs->hi;
1112 vcpu->arch.lo = regs->lo;
1113 vcpu->arch.pc = regs->pc;
1114
1115 return 0;
1116 }
1117
1118 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1119 {
1120 int i;
1121
1122 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1123 regs->gpr[i] = vcpu->arch.gprs[i];
1124
1125 regs->hi = vcpu->arch.hi;
1126 regs->lo = vcpu->arch.lo;
1127 regs->pc = vcpu->arch.pc;
1128
1129 return 0;
1130 }
1131
1132 static void kvm_mips_comparecount_func(unsigned long data)
1133 {
1134 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1135
1136 kvm_mips_callbacks->queue_timer_int(vcpu);
1137
1138 vcpu->arch.wait = 0;
1139 if (swait_active(&vcpu->wq))
1140 swake_up(&vcpu->wq);
1141 }
1142
1143 /* low level hrtimer wake routine */
1144 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1145 {
1146 struct kvm_vcpu *vcpu;
1147
1148 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1149 kvm_mips_comparecount_func((unsigned long) vcpu);
1150 return kvm_mips_count_timeout(vcpu);
1151 }
1152
1153 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1154 {
1155 int err;
1156
1157 err = kvm_mips_callbacks->vcpu_init(vcpu);
1158 if (err)
1159 return err;
1160
1161 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1162 HRTIMER_MODE_REL);
1163 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1164 return 0;
1165 }
1166
1167 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1168 {
1169 kvm_mips_callbacks->vcpu_uninit(vcpu);
1170 }
1171
1172 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1173 struct kvm_translation *tr)
1174 {
1175 return 0;
1176 }
1177
1178 /* Initial guest state */
1179 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1180 {
1181 return kvm_mips_callbacks->vcpu_setup(vcpu);
1182 }
1183
1184 static void kvm_mips_set_c0_status(void)
1185 {
1186 u32 status = read_c0_status();
1187
1188 if (cpu_has_dsp)
1189 status |= (ST0_MX);
1190
1191 write_c0_status(status);
1192 ehb();
1193 }
1194
1195 /*
1196 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1197 */
1198 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1199 {
1200 u32 cause = vcpu->arch.host_cp0_cause;
1201 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1202 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1203 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1204 enum emulation_result er = EMULATE_DONE;
1205 u32 inst;
1206 int ret = RESUME_GUEST;
1207
1208 vcpu->mode = OUTSIDE_GUEST_MODE;
1209
1210 /* re-enable HTW before enabling interrupts */
1211 htw_start();
1212
1213 /* Set a default exit reason */
1214 run->exit_reason = KVM_EXIT_UNKNOWN;
1215 run->ready_for_interrupt_injection = 1;
1216
1217 /*
1218 * Set the appropriate status bits based on host CPU features,
1219 * before we hit the scheduler
1220 */
1221 kvm_mips_set_c0_status();
1222
1223 local_irq_enable();
1224
1225 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1226 cause, opc, run, vcpu);
1227 trace_kvm_exit(vcpu, exccode);
1228
1229 /*
1230 * Do a privilege check, if in UM most of these exit conditions end up
1231 * causing an exception to be delivered to the Guest Kernel
1232 */
1233 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1234 if (er == EMULATE_PRIV_FAIL) {
1235 goto skip_emul;
1236 } else if (er == EMULATE_FAIL) {
1237 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1238 ret = RESUME_HOST;
1239 goto skip_emul;
1240 }
1241
1242 switch (exccode) {
1243 case EXCCODE_INT:
1244 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1245
1246 ++vcpu->stat.int_exits;
1247
1248 if (need_resched())
1249 cond_resched();
1250
1251 ret = RESUME_GUEST;
1252 break;
1253
1254 case EXCCODE_CPU:
1255 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1256
1257 ++vcpu->stat.cop_unusable_exits;
1258 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1259 /* XXXKYMA: Might need to return to user space */
1260 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1261 ret = RESUME_HOST;
1262 break;
1263
1264 case EXCCODE_MOD:
1265 ++vcpu->stat.tlbmod_exits;
1266 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1267 break;
1268
1269 case EXCCODE_TLBS:
1270 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1271 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1272 badvaddr);
1273
1274 ++vcpu->stat.tlbmiss_st_exits;
1275 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1276 break;
1277
1278 case EXCCODE_TLBL:
1279 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1280 cause, opc, badvaddr);
1281
1282 ++vcpu->stat.tlbmiss_ld_exits;
1283 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1284 break;
1285
1286 case EXCCODE_ADES:
1287 ++vcpu->stat.addrerr_st_exits;
1288 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1289 break;
1290
1291 case EXCCODE_ADEL:
1292 ++vcpu->stat.addrerr_ld_exits;
1293 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1294 break;
1295
1296 case EXCCODE_SYS:
1297 ++vcpu->stat.syscall_exits;
1298 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1299 break;
1300
1301 case EXCCODE_RI:
1302 ++vcpu->stat.resvd_inst_exits;
1303 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1304 break;
1305
1306 case EXCCODE_BP:
1307 ++vcpu->stat.break_inst_exits;
1308 ret = kvm_mips_callbacks->handle_break(vcpu);
1309 break;
1310
1311 case EXCCODE_TR:
1312 ++vcpu->stat.trap_inst_exits;
1313 ret = kvm_mips_callbacks->handle_trap(vcpu);
1314 break;
1315
1316 case EXCCODE_MSAFPE:
1317 ++vcpu->stat.msa_fpe_exits;
1318 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1319 break;
1320
1321 case EXCCODE_FPE:
1322 ++vcpu->stat.fpe_exits;
1323 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1324 break;
1325
1326 case EXCCODE_MSADIS:
1327 ++vcpu->stat.msa_disabled_exits;
1328 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1329 break;
1330
1331 default:
1332 if (cause & CAUSEF_BD)
1333 opc += 1;
1334 inst = 0;
1335 kvm_get_badinstr(opc, vcpu, &inst);
1336 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1337 exccode, opc, inst, badvaddr,
1338 kvm_read_c0_guest_status(vcpu->arch.cop0));
1339 kvm_arch_vcpu_dump_regs(vcpu);
1340 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1341 ret = RESUME_HOST;
1342 break;
1343
1344 }
1345
1346 skip_emul:
1347 local_irq_disable();
1348
1349 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1350 kvm_mips_deliver_interrupts(vcpu, cause);
1351
1352 if (!(ret & RESUME_HOST)) {
1353 /* Only check for signals if not already exiting to userspace */
1354 if (signal_pending(current)) {
1355 run->exit_reason = KVM_EXIT_INTR;
1356 ret = (-EINTR << 2) | RESUME_HOST;
1357 ++vcpu->stat.signal_exits;
1358 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1359 }
1360 }
1361
1362 if (ret == RESUME_GUEST) {
1363 trace_kvm_reenter(vcpu);
1364
1365 /*
1366 * Make sure the read of VCPU requests in vcpu_reenter()
1367 * callback is not reordered ahead of the write to vcpu->mode,
1368 * or we could miss a TLB flush request while the requester sees
1369 * the VCPU as outside of guest mode and not needing an IPI.
1370 */
1371 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1372
1373 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1374
1375 /*
1376 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1377 * is live), restore FCR31 / MSACSR.
1378 *
1379 * This should be before returning to the guest exception
1380 * vector, as it may well cause an [MSA] FP exception if there
1381 * are pending exception bits unmasked. (see
1382 * kvm_mips_csr_die_notifier() for how that is handled).
1383 */
1384 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1385 read_c0_status() & ST0_CU1)
1386 __kvm_restore_fcsr(&vcpu->arch);
1387
1388 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1389 read_c0_config5() & MIPS_CONF5_MSAEN)
1390 __kvm_restore_msacsr(&vcpu->arch);
1391 }
1392
1393 /* Disable HTW before returning to guest or host */
1394 htw_stop();
1395
1396 return ret;
1397 }
1398
1399 /* Enable FPU for guest and restore context */
1400 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1401 {
1402 struct mips_coproc *cop0 = vcpu->arch.cop0;
1403 unsigned int sr, cfg5;
1404
1405 preempt_disable();
1406
1407 sr = kvm_read_c0_guest_status(cop0);
1408
1409 /*
1410 * If MSA state is already live, it is undefined how it interacts with
1411 * FR=0 FPU state, and we don't want to hit reserved instruction
1412 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1413 * play it safe and save it first.
1414 *
1415 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1416 * get called when guest CU1 is set, however we can't trust the guest
1417 * not to clobber the status register directly via the commpage.
1418 */
1419 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1420 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1421 kvm_lose_fpu(vcpu);
1422
1423 /*
1424 * Enable FPU for guest
1425 * We set FR and FRE according to guest context
1426 */
1427 change_c0_status(ST0_CU1 | ST0_FR, sr);
1428 if (cpu_has_fre) {
1429 cfg5 = kvm_read_c0_guest_config5(cop0);
1430 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1431 }
1432 enable_fpu_hazard();
1433
1434 /* If guest FPU state not active, restore it now */
1435 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1436 __kvm_restore_fpu(&vcpu->arch);
1437 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1438 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1439 } else {
1440 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1441 }
1442
1443 preempt_enable();
1444 }
1445
1446 #ifdef CONFIG_CPU_HAS_MSA
1447 /* Enable MSA for guest and restore context */
1448 void kvm_own_msa(struct kvm_vcpu *vcpu)
1449 {
1450 struct mips_coproc *cop0 = vcpu->arch.cop0;
1451 unsigned int sr, cfg5;
1452
1453 preempt_disable();
1454
1455 /*
1456 * Enable FPU if enabled in guest, since we're restoring FPU context
1457 * anyway. We set FR and FRE according to guest context.
1458 */
1459 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1460 sr = kvm_read_c0_guest_status(cop0);
1461
1462 /*
1463 * If FR=0 FPU state is already live, it is undefined how it
1464 * interacts with MSA state, so play it safe and save it first.
1465 */
1466 if (!(sr & ST0_FR) &&
1467 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1468 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1469 kvm_lose_fpu(vcpu);
1470
1471 change_c0_status(ST0_CU1 | ST0_FR, sr);
1472 if (sr & ST0_CU1 && cpu_has_fre) {
1473 cfg5 = kvm_read_c0_guest_config5(cop0);
1474 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1475 }
1476 }
1477
1478 /* Enable MSA for guest */
1479 set_c0_config5(MIPS_CONF5_MSAEN);
1480 enable_fpu_hazard();
1481
1482 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1483 case KVM_MIPS_AUX_FPU:
1484 /*
1485 * Guest FPU state already loaded, only restore upper MSA state
1486 */
1487 __kvm_restore_msa_upper(&vcpu->arch);
1488 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1489 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1490 break;
1491 case 0:
1492 /* Neither FPU or MSA already active, restore full MSA state */
1493 __kvm_restore_msa(&vcpu->arch);
1494 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1495 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1496 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1497 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1498 KVM_TRACE_AUX_FPU_MSA);
1499 break;
1500 default:
1501 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1502 break;
1503 }
1504
1505 preempt_enable();
1506 }
1507 #endif
1508
1509 /* Drop FPU & MSA without saving it */
1510 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1511 {
1512 preempt_disable();
1513 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1514 disable_msa();
1515 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1516 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1517 }
1518 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1519 clear_c0_status(ST0_CU1 | ST0_FR);
1520 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1521 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1522 }
1523 preempt_enable();
1524 }
1525
1526 /* Save and disable FPU & MSA */
1527 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1528 {
1529 /*
1530 * FPU & MSA get disabled in root context (hardware) when it is disabled
1531 * in guest context (software), but the register state in the hardware
1532 * may still be in use. This is why we explicitly re-enable the hardware
1533 * before saving.
1534 */
1535
1536 preempt_disable();
1537 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1538 set_c0_config5(MIPS_CONF5_MSAEN);
1539 enable_fpu_hazard();
1540
1541 __kvm_save_msa(&vcpu->arch);
1542 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1543
1544 /* Disable MSA & FPU */
1545 disable_msa();
1546 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1547 clear_c0_status(ST0_CU1 | ST0_FR);
1548 disable_fpu_hazard();
1549 }
1550 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1551 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1552 set_c0_status(ST0_CU1);
1553 enable_fpu_hazard();
1554
1555 __kvm_save_fpu(&vcpu->arch);
1556 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1557 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1558
1559 /* Disable FPU */
1560 clear_c0_status(ST0_CU1 | ST0_FR);
1561 disable_fpu_hazard();
1562 }
1563 preempt_enable();
1564 }
1565
1566 /*
1567 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1568 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1569 * exception if cause bits are set in the value being written.
1570 */
1571 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1572 unsigned long cmd, void *ptr)
1573 {
1574 struct die_args *args = (struct die_args *)ptr;
1575 struct pt_regs *regs = args->regs;
1576 unsigned long pc;
1577
1578 /* Only interested in FPE and MSAFPE */
1579 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1580 return NOTIFY_DONE;
1581
1582 /* Return immediately if guest context isn't active */
1583 if (!(current->flags & PF_VCPU))
1584 return NOTIFY_DONE;
1585
1586 /* Should never get here from user mode */
1587 BUG_ON(user_mode(regs));
1588
1589 pc = instruction_pointer(regs);
1590 switch (cmd) {
1591 case DIE_FP:
1592 /* match 2nd instruction in __kvm_restore_fcsr */
1593 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1594 return NOTIFY_DONE;
1595 break;
1596 case DIE_MSAFP:
1597 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1598 if (!cpu_has_msa ||
1599 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1600 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1601 return NOTIFY_DONE;
1602 break;
1603 }
1604
1605 /* Move PC forward a little and continue executing */
1606 instruction_pointer(regs) += 4;
1607
1608 return NOTIFY_STOP;
1609 }
1610
1611 static struct notifier_block kvm_mips_csr_die_notifier = {
1612 .notifier_call = kvm_mips_csr_die_notify,
1613 };
1614
1615 static int __init kvm_mips_init(void)
1616 {
1617 int ret;
1618
1619 ret = kvm_mips_entry_setup();
1620 if (ret)
1621 return ret;
1622
1623 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1624
1625 if (ret)
1626 return ret;
1627
1628 register_die_notifier(&kvm_mips_csr_die_notifier);
1629
1630 return 0;
1631 }
1632
1633 static void __exit kvm_mips_exit(void)
1634 {
1635 kvm_exit();
1636
1637 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1638 }
1639
1640 module_init(kvm_mips_init);
1641 module_exit(kvm_mips_exit);
1642
1643 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);