]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/parisc/kernel/smp.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / arch / parisc / kernel / smp.c
1 /*
2 ** SMP Support
3 **
4 ** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
5 ** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
6 ** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
7 **
8 ** Lots of stuff stolen from arch/alpha/kernel/smp.c
9 ** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
10 **
11 ** Thanks to John Curry and Ullas Ponnadi. I learned alot from their work.
12 ** -grant (1/12/2001)
13 **
14 ** This program is free software; you can redistribute it and/or modify
15 ** it under the terms of the GNU General Public License as published by
16 ** the Free Software Foundation; either version 2 of the License, or
17 ** (at your option) any later version.
18 */
19 #undef ENTRY_SYS_CPUS /* syscall support for iCOD-like functionality */
20
21 #include <linux/autoconf.h>
22
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/smp.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/mm.h>
35 #include <linux/delay.h>
36 #include <linux/bitops.h>
37
38 #include <asm/system.h>
39 #include <asm/atomic.h>
40 #include <asm/current.h>
41 #include <asm/delay.h>
42 #include <asm/pgalloc.h> /* for flush_tlb_all() proto/macro */
43
44 #include <asm/io.h>
45 #include <asm/irq.h> /* for CPU_IRQ_REGION and friends */
46 #include <asm/mmu_context.h>
47 #include <asm/page.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/ptrace.h>
52 #include <asm/unistd.h>
53 #include <asm/cacheflush.h>
54
55 #define kDEBUG 0
56
57 DEFINE_SPINLOCK(smp_lock);
58
59 volatile struct task_struct *smp_init_current_idle_task;
60
61 static volatile int cpu_now_booting = 0; /* track which CPU is booting */
62
63 static int parisc_max_cpus = 1;
64
65 /* online cpus are ones that we've managed to bring up completely
66 * possible cpus are all valid cpu
67 * present cpus are all detected cpu
68 *
69 * On startup we bring up the "possible" cpus. Since we discover
70 * CPUs later, we add them as hotplug, so the possible cpu mask is
71 * empty in the beginning.
72 */
73
74 cpumask_t cpu_online_map = CPU_MASK_NONE; /* Bitmap of online CPUs */
75 cpumask_t cpu_possible_map = CPU_MASK_ALL; /* Bitmap of Present CPUs */
76
77 EXPORT_SYMBOL(cpu_online_map);
78 EXPORT_SYMBOL(cpu_possible_map);
79
80
81 struct smp_call_struct {
82 void (*func) (void *info);
83 void *info;
84 long wait;
85 atomic_t unstarted_count;
86 atomic_t unfinished_count;
87 };
88 static volatile struct smp_call_struct *smp_call_function_data;
89
90 enum ipi_message_type {
91 IPI_NOP=0,
92 IPI_RESCHEDULE=1,
93 IPI_CALL_FUNC,
94 IPI_CPU_START,
95 IPI_CPU_STOP,
96 IPI_CPU_TEST
97 };
98
99
100 /********** SMP inter processor interrupt and communication routines */
101
102 #undef PER_CPU_IRQ_REGION
103 #ifdef PER_CPU_IRQ_REGION
104 /* XXX REVISIT Ignore for now.
105 ** *May* need this "hook" to register IPI handler
106 ** once we have perCPU ExtIntr switch tables.
107 */
108 static void
109 ipi_init(int cpuid)
110 {
111
112 /* If CPU is present ... */
113 #ifdef ENTRY_SYS_CPUS
114 /* *and* running (not stopped) ... */
115 #error iCOD support wants state checked here.
116 #endif
117
118 #error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
119
120 if(cpu_online(cpuid) )
121 {
122 switch_to_idle_task(current);
123 }
124
125 return;
126 }
127 #endif
128
129
130 /*
131 ** Yoink this CPU from the runnable list...
132 **
133 */
134 static void
135 halt_processor(void)
136 {
137 #ifdef ENTRY_SYS_CPUS
138 #error halt_processor() needs rework
139 /*
140 ** o migrate I/O interrupts off this CPU.
141 ** o leave IPI enabled - __cli() will disable IPI.
142 ** o leave CPU in online map - just change the state
143 */
144 cpu_data[this_cpu].state = STATE_STOPPED;
145 mark_bh(IPI_BH);
146 #else
147 /* REVISIT : redirect I/O Interrupts to another CPU? */
148 /* REVISIT : does PM *know* this CPU isn't available? */
149 cpu_clear(smp_processor_id(), cpu_online_map);
150 local_irq_disable();
151 for (;;)
152 ;
153 #endif
154 }
155
156
157 irqreturn_t
158 ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs)
159 {
160 int this_cpu = smp_processor_id();
161 struct cpuinfo_parisc *p = &cpu_data[this_cpu];
162 unsigned long ops;
163 unsigned long flags;
164
165 /* Count this now; we may make a call that never returns. */
166 p->ipi_count++;
167
168 mb(); /* Order interrupt and bit testing. */
169
170 for (;;) {
171 spin_lock_irqsave(&(p->lock),flags);
172 ops = p->pending_ipi;
173 p->pending_ipi = 0;
174 spin_unlock_irqrestore(&(p->lock),flags);
175
176 mb(); /* Order bit clearing and data access. */
177
178 if (!ops)
179 break;
180
181 while (ops) {
182 unsigned long which = ffz(~ops);
183
184 switch (which) {
185 case IPI_RESCHEDULE:
186 #if (kDEBUG>=100)
187 printk(KERN_DEBUG "CPU%d IPI_RESCHEDULE\n",this_cpu);
188 #endif /* kDEBUG */
189 ops &= ~(1 << IPI_RESCHEDULE);
190 /*
191 * Reschedule callback. Everything to be
192 * done is done by the interrupt return path.
193 */
194 break;
195
196 case IPI_CALL_FUNC:
197 #if (kDEBUG>=100)
198 printk(KERN_DEBUG "CPU%d IPI_CALL_FUNC\n",this_cpu);
199 #endif /* kDEBUG */
200 ops &= ~(1 << IPI_CALL_FUNC);
201 {
202 volatile struct smp_call_struct *data;
203 void (*func)(void *info);
204 void *info;
205 int wait;
206
207 data = smp_call_function_data;
208 func = data->func;
209 info = data->info;
210 wait = data->wait;
211
212 mb();
213 atomic_dec ((atomic_t *)&data->unstarted_count);
214
215 /* At this point, *data can't
216 * be relied upon.
217 */
218
219 (*func)(info);
220
221 /* Notify the sending CPU that the
222 * task is done.
223 */
224 mb();
225 if (wait)
226 atomic_dec ((atomic_t *)&data->unfinished_count);
227 }
228 break;
229
230 case IPI_CPU_START:
231 #if (kDEBUG>=100)
232 printk(KERN_DEBUG "CPU%d IPI_CPU_START\n",this_cpu);
233 #endif /* kDEBUG */
234 ops &= ~(1 << IPI_CPU_START);
235 #ifdef ENTRY_SYS_CPUS
236 p->state = STATE_RUNNING;
237 #endif
238 break;
239
240 case IPI_CPU_STOP:
241 #if (kDEBUG>=100)
242 printk(KERN_DEBUG "CPU%d IPI_CPU_STOP\n",this_cpu);
243 #endif /* kDEBUG */
244 ops &= ~(1 << IPI_CPU_STOP);
245 #ifdef ENTRY_SYS_CPUS
246 #else
247 halt_processor();
248 #endif
249 break;
250
251 case IPI_CPU_TEST:
252 #if (kDEBUG>=100)
253 printk(KERN_DEBUG "CPU%d is alive!\n",this_cpu);
254 #endif /* kDEBUG */
255 ops &= ~(1 << IPI_CPU_TEST);
256 break;
257
258 default:
259 printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
260 this_cpu, which);
261 ops &= ~(1 << which);
262 return IRQ_NONE;
263 } /* Switch */
264 } /* while (ops) */
265 }
266 return IRQ_HANDLED;
267 }
268
269
270 static inline void
271 ipi_send(int cpu, enum ipi_message_type op)
272 {
273 struct cpuinfo_parisc *p = &cpu_data[cpu];
274 unsigned long flags;
275
276 spin_lock_irqsave(&(p->lock),flags);
277 p->pending_ipi |= 1 << op;
278 gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa);
279 spin_unlock_irqrestore(&(p->lock),flags);
280 }
281
282
283 static inline void
284 send_IPI_single(int dest_cpu, enum ipi_message_type op)
285 {
286 if (dest_cpu == NO_PROC_ID) {
287 BUG();
288 return;
289 }
290
291 ipi_send(dest_cpu, op);
292 }
293
294 static inline void
295 send_IPI_allbutself(enum ipi_message_type op)
296 {
297 int i;
298
299 for (i = 0; i < NR_CPUS; i++) {
300 if (cpu_online(i) && i != smp_processor_id())
301 send_IPI_single(i, op);
302 }
303 }
304
305
306 inline void
307 smp_send_stop(void) { send_IPI_allbutself(IPI_CPU_STOP); }
308
309 static inline void
310 smp_send_start(void) { send_IPI_allbutself(IPI_CPU_START); }
311
312 void
313 smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
314
315
316 /**
317 * Run a function on all other CPUs.
318 * <func> The function to run. This must be fast and non-blocking.
319 * <info> An arbitrary pointer to pass to the function.
320 * <retry> If true, keep retrying until ready.
321 * <wait> If true, wait until function has completed on other CPUs.
322 * [RETURNS] 0 on success, else a negative status code.
323 *
324 * Does not return until remote CPUs are nearly ready to execute <func>
325 * or have executed.
326 */
327
328 int
329 smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
330 {
331 struct smp_call_struct data;
332 unsigned long timeout;
333 static DEFINE_SPINLOCK(lock);
334 int retries = 0;
335
336 if (num_online_cpus() < 2)
337 return 0;
338
339 /* Can deadlock when called with interrupts disabled */
340 WARN_ON(irqs_disabled());
341
342 data.func = func;
343 data.info = info;
344 data.wait = wait;
345 atomic_set(&data.unstarted_count, num_online_cpus() - 1);
346 atomic_set(&data.unfinished_count, num_online_cpus() - 1);
347
348 if (retry) {
349 spin_lock (&lock);
350 while (smp_call_function_data != 0)
351 barrier();
352 }
353 else {
354 spin_lock (&lock);
355 if (smp_call_function_data) {
356 spin_unlock (&lock);
357 return -EBUSY;
358 }
359 }
360
361 smp_call_function_data = &data;
362 spin_unlock (&lock);
363
364 /* Send a message to all other CPUs and wait for them to respond */
365 send_IPI_allbutself(IPI_CALL_FUNC);
366
367 retry:
368 /* Wait for response */
369 timeout = jiffies + HZ;
370 while ( (atomic_read (&data.unstarted_count) > 0) &&
371 time_before (jiffies, timeout) )
372 barrier ();
373
374 if (atomic_read (&data.unstarted_count) > 0) {
375 printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n",
376 smp_processor_id(), ++retries);
377 goto retry;
378 }
379 /* We either got one or timed out. Release the lock */
380
381 mb();
382 smp_call_function_data = NULL;
383
384 while (wait && atomic_read (&data.unfinished_count) > 0)
385 barrier ();
386
387 return 0;
388 }
389
390 EXPORT_SYMBOL(smp_call_function);
391
392 /*
393 * Flush all other CPU's tlb and then mine. Do this with on_each_cpu()
394 * as we want to ensure all TLB's flushed before proceeding.
395 */
396
397 extern void flush_tlb_all_local(void);
398
399 void
400 smp_flush_tlb_all(void)
401 {
402 on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
403 }
404
405
406 void
407 smp_do_timer(struct pt_regs *regs)
408 {
409 int cpu = smp_processor_id();
410 struct cpuinfo_parisc *data = &cpu_data[cpu];
411
412 if (!--data->prof_counter) {
413 data->prof_counter = data->prof_multiplier;
414 update_process_times(user_mode(regs));
415 }
416 }
417
418 /*
419 * Called by secondaries to update state and initialize CPU registers.
420 */
421 static void __init
422 smp_cpu_init(int cpunum)
423 {
424 extern int init_per_cpu(int); /* arch/parisc/kernel/setup.c */
425 extern void init_IRQ(void); /* arch/parisc/kernel/irq.c */
426
427 /* Set modes and Enable floating point coprocessor */
428 (void) init_per_cpu(cpunum);
429
430 disable_sr_hashing();
431
432 mb();
433
434 /* Well, support 2.4 linux scheme as well. */
435 if (cpu_test_and_set(cpunum, cpu_online_map))
436 {
437 extern void machine_halt(void); /* arch/parisc.../process.c */
438
439 printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
440 machine_halt();
441 }
442
443 /* Initialise the idle task for this CPU */
444 atomic_inc(&init_mm.mm_count);
445 current->active_mm = &init_mm;
446 if(current->mm)
447 BUG();
448 enter_lazy_tlb(&init_mm, current);
449
450 init_IRQ(); /* make sure no IRQ's are enabled or pending */
451 }
452
453
454 /*
455 * Slaves start using C here. Indirectly called from smp_slave_stext.
456 * Do what start_kernel() and main() do for boot strap processor (aka monarch)
457 */
458 void __init smp_callin(void)
459 {
460 int slave_id = cpu_now_booting;
461 #if 0
462 void *istack;
463 #endif
464
465 smp_cpu_init(slave_id);
466
467 #if 0 /* NOT WORKING YET - see entry.S */
468 istack = (void *)__get_free_pages(GFP_KERNEL,ISTACK_ORDER);
469 if (istack == NULL) {
470 printk(KERN_CRIT "Failed to allocate interrupt stack for cpu %d\n",slave_id);
471 BUG();
472 }
473 mtctl(istack,31);
474 #endif
475
476 flush_cache_all_local(); /* start with known state */
477 flush_tlb_all_local();
478
479 local_irq_enable(); /* Interrupts have been off until now */
480
481 cpu_idle(); /* Wait for timer to schedule some work */
482
483 /* NOTREACHED */
484 panic("smp_callin() AAAAaaaaahhhh....\n");
485 }
486
487 /*
488 * Bring one cpu online.
489 */
490 int __init smp_boot_one_cpu(int cpuid)
491 {
492 struct task_struct *idle;
493 long timeout;
494
495 /*
496 * Create an idle task for this CPU. Note the address wed* give
497 * to kernel_thread is irrelevant -- it's going to start
498 * where OS_BOOT_RENDEVZ vector in SAL says to start. But
499 * this gets all the other task-y sort of data structures set
500 * up like we wish. We need to pull the just created idle task
501 * off the run queue and stuff it into the init_tasks[] array.
502 * Sheesh . . .
503 */
504
505 idle = fork_idle(cpuid);
506 if (IS_ERR(idle))
507 panic("SMP: fork failed for CPU:%d", cpuid);
508
509 idle->thread_info->cpu = cpuid;
510
511 /* Let _start know what logical CPU we're booting
512 ** (offset into init_tasks[],cpu_data[])
513 */
514 cpu_now_booting = cpuid;
515
516 /*
517 ** boot strap code needs to know the task address since
518 ** it also contains the process stack.
519 */
520 smp_init_current_idle_task = idle ;
521 mb();
522
523 printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa);
524
525 /*
526 ** This gets PDC to release the CPU from a very tight loop.
527 **
528 ** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
529 ** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
530 ** is executed after receiving the rendezvous signal (an interrupt to
531 ** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
532 ** contents of memory are valid."
533 */
534 gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa);
535 mb();
536
537 /*
538 * OK, wait a bit for that CPU to finish staggering about.
539 * Slave will set a bit when it reaches smp_cpu_init().
540 * Once the "monarch CPU" sees the bit change, it can move on.
541 */
542 for (timeout = 0; timeout < 10000; timeout++) {
543 if(cpu_online(cpuid)) {
544 /* Which implies Slave has started up */
545 cpu_now_booting = 0;
546 smp_init_current_idle_task = NULL;
547 goto alive ;
548 }
549 udelay(100);
550 barrier();
551 }
552
553 put_task_struct(idle);
554 idle = NULL;
555
556 printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
557 return -1;
558
559 alive:
560 /* Remember the Slave data */
561 #if (kDEBUG>=100)
562 printk(KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
563 cpuid, timeout * 100);
564 #endif /* kDEBUG */
565 #ifdef ENTRY_SYS_CPUS
566 cpu_data[cpuid].state = STATE_RUNNING;
567 #endif
568 return 0;
569 }
570
571 void __devinit smp_prepare_boot_cpu(void)
572 {
573 int bootstrap_processor=cpu_data[0].cpuid; /* CPU ID of BSP */
574
575 #ifdef ENTRY_SYS_CPUS
576 cpu_data[0].state = STATE_RUNNING;
577 #endif
578
579 /* Setup BSP mappings */
580 printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor);
581
582 cpu_set(bootstrap_processor, cpu_online_map);
583 cpu_set(bootstrap_processor, cpu_present_map);
584 }
585
586
587
588 /*
589 ** inventory.c:do_inventory() hasn't yet been run and thus we
590 ** don't 'discover' the additional CPU's until later.
591 */
592 void __init smp_prepare_cpus(unsigned int max_cpus)
593 {
594 cpus_clear(cpu_present_map);
595 cpu_set(0, cpu_present_map);
596
597 parisc_max_cpus = max_cpus;
598 if (!max_cpus)
599 printk(KERN_INFO "SMP mode deactivated.\n");
600 }
601
602
603 void smp_cpus_done(unsigned int cpu_max)
604 {
605 return;
606 }
607
608
609 int __devinit __cpu_up(unsigned int cpu)
610 {
611 if (cpu != 0 && cpu < parisc_max_cpus)
612 smp_boot_one_cpu(cpu);
613
614 return cpu_online(cpu) ? 0 : -ENOSYS;
615 }
616
617
618
619 #ifdef ENTRY_SYS_CPUS
620 /* Code goes along with:
621 ** entry.s: ENTRY_NAME(sys_cpus) / * 215, for cpu stat * /
622 */
623 int sys_cpus(int argc, char **argv)
624 {
625 int i,j=0;
626 extern int current_pid(int cpu);
627
628 if( argc > 2 ) {
629 printk("sys_cpus:Only one argument supported\n");
630 return (-1);
631 }
632 if ( argc == 1 ){
633
634 #ifdef DUMP_MORE_STATE
635 for(i=0; i<NR_CPUS; i++) {
636 int cpus_per_line = 4;
637 if(cpu_online(i)) {
638 if (j++ % cpus_per_line)
639 printk(" %3d",i);
640 else
641 printk("\n %3d",i);
642 }
643 }
644 printk("\n");
645 #else
646 printk("\n 0\n");
647 #endif
648 } else if((argc==2) && !(strcmp(argv[1],"-l"))) {
649 printk("\nCPUSTATE TASK CPUNUM CPUID HARDCPU(HPA)\n");
650 #ifdef DUMP_MORE_STATE
651 for(i=0;i<NR_CPUS;i++) {
652 if (!cpu_online(i))
653 continue;
654 if (cpu_data[i].cpuid != NO_PROC_ID) {
655 switch(cpu_data[i].state) {
656 case STATE_RENDEZVOUS:
657 printk("RENDEZVS ");
658 break;
659 case STATE_RUNNING:
660 printk((current_pid(i)!=0) ? "RUNNING " : "IDLING ");
661 break;
662 case STATE_STOPPED:
663 printk("STOPPED ");
664 break;
665 case STATE_HALTED:
666 printk("HALTED ");
667 break;
668 default:
669 printk("%08x?", cpu_data[i].state);
670 break;
671 }
672 if(cpu_online(i)) {
673 printk(" %4d",current_pid(i));
674 }
675 printk(" %6d",cpu_number_map(i));
676 printk(" %5d",i);
677 printk(" 0x%lx\n",cpu_data[i].hpa);
678 }
679 }
680 #else
681 printk("\n%s %4d 0 0 --------",
682 (current->pid)?"RUNNING ": "IDLING ",current->pid);
683 #endif
684 } else if ((argc==2) && !(strcmp(argv[1],"-s"))) {
685 #ifdef DUMP_MORE_STATE
686 printk("\nCPUSTATE CPUID\n");
687 for (i=0;i<NR_CPUS;i++) {
688 if (!cpu_online(i))
689 continue;
690 if (cpu_data[i].cpuid != NO_PROC_ID) {
691 switch(cpu_data[i].state) {
692 case STATE_RENDEZVOUS:
693 printk("RENDEZVS");break;
694 case STATE_RUNNING:
695 printk((current_pid(i)!=0) ? "RUNNING " : "IDLING");
696 break;
697 case STATE_STOPPED:
698 printk("STOPPED ");break;
699 case STATE_HALTED:
700 printk("HALTED ");break;
701 default:
702 }
703 printk(" %5d\n",i);
704 }
705 }
706 #else
707 printk("\n%s CPU0",(current->pid==0)?"RUNNING ":"IDLING ");
708 #endif
709 } else {
710 printk("sys_cpus:Unknown request\n");
711 return (-1);
712 }
713 return 0;
714 }
715 #endif /* ENTRY_SYS_CPUS */
716
717 #ifdef CONFIG_PROC_FS
718 int __init
719 setup_profiling_timer(unsigned int multiplier)
720 {
721 return -EINVAL;
722 }
723 #endif