]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/crypto/aes_s390.c
s390/crypto: Don't panic after crypto instruction failures
[mirror_ubuntu-artful-kernel.git] / arch / s390 / crypto / aes_s390.c
1 /*
2 * Cryptographic API.
3 *
4 * s390 implementation of the AES Cipher Algorithm.
5 *
6 * s390 Version:
7 * Copyright IBM Corp. 2005, 2007
8 * Author(s): Jan Glauber (jang@de.ibm.com)
9 * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
10 *
11 * Derived from "crypto/aes_generic.c"
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
17 *
18 */
19
20 #define KMSG_COMPONENT "aes_s390"
21 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include "crypt_s390.h"
29
30 #define AES_KEYLEN_128 1
31 #define AES_KEYLEN_192 2
32 #define AES_KEYLEN_256 4
33
34 static u8 *ctrblk;
35 static char keylen_flag;
36
37 struct s390_aes_ctx {
38 u8 iv[AES_BLOCK_SIZE];
39 u8 key[AES_MAX_KEY_SIZE];
40 long enc;
41 long dec;
42 int key_len;
43 union {
44 struct crypto_blkcipher *blk;
45 struct crypto_cipher *cip;
46 } fallback;
47 };
48
49 struct pcc_param {
50 u8 key[32];
51 u8 tweak[16];
52 u8 block[16];
53 u8 bit[16];
54 u8 xts[16];
55 };
56
57 struct s390_xts_ctx {
58 u8 key[32];
59 u8 xts_param[16];
60 struct pcc_param pcc;
61 long enc;
62 long dec;
63 int key_len;
64 struct crypto_blkcipher *fallback;
65 };
66
67 /*
68 * Check if the key_len is supported by the HW.
69 * Returns 0 if it is, a positive number if it is not and software fallback is
70 * required or a negative number in case the key size is not valid
71 */
72 static int need_fallback(unsigned int key_len)
73 {
74 switch (key_len) {
75 case 16:
76 if (!(keylen_flag & AES_KEYLEN_128))
77 return 1;
78 break;
79 case 24:
80 if (!(keylen_flag & AES_KEYLEN_192))
81 return 1;
82 break;
83 case 32:
84 if (!(keylen_flag & AES_KEYLEN_256))
85 return 1;
86 break;
87 default:
88 return -1;
89 break;
90 }
91 return 0;
92 }
93
94 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
95 unsigned int key_len)
96 {
97 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
98 int ret;
99
100 sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
101 sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
102 CRYPTO_TFM_REQ_MASK);
103
104 ret = crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
105 if (ret) {
106 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
107 tfm->crt_flags |= (sctx->fallback.cip->base.crt_flags &
108 CRYPTO_TFM_RES_MASK);
109 }
110 return ret;
111 }
112
113 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
114 unsigned int key_len)
115 {
116 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
117 u32 *flags = &tfm->crt_flags;
118 int ret;
119
120 ret = need_fallback(key_len);
121 if (ret < 0) {
122 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
123 return -EINVAL;
124 }
125
126 sctx->key_len = key_len;
127 if (!ret) {
128 memcpy(sctx->key, in_key, key_len);
129 return 0;
130 }
131
132 return setkey_fallback_cip(tfm, in_key, key_len);
133 }
134
135 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
136 {
137 const struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
138
139 if (unlikely(need_fallback(sctx->key_len))) {
140 crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
141 return;
142 }
143
144 switch (sctx->key_len) {
145 case 16:
146 crypt_s390_km(KM_AES_128_ENCRYPT, &sctx->key, out, in,
147 AES_BLOCK_SIZE);
148 break;
149 case 24:
150 crypt_s390_km(KM_AES_192_ENCRYPT, &sctx->key, out, in,
151 AES_BLOCK_SIZE);
152 break;
153 case 32:
154 crypt_s390_km(KM_AES_256_ENCRYPT, &sctx->key, out, in,
155 AES_BLOCK_SIZE);
156 break;
157 }
158 }
159
160 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
161 {
162 const struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
163
164 if (unlikely(need_fallback(sctx->key_len))) {
165 crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
166 return;
167 }
168
169 switch (sctx->key_len) {
170 case 16:
171 crypt_s390_km(KM_AES_128_DECRYPT, &sctx->key, out, in,
172 AES_BLOCK_SIZE);
173 break;
174 case 24:
175 crypt_s390_km(KM_AES_192_DECRYPT, &sctx->key, out, in,
176 AES_BLOCK_SIZE);
177 break;
178 case 32:
179 crypt_s390_km(KM_AES_256_DECRYPT, &sctx->key, out, in,
180 AES_BLOCK_SIZE);
181 break;
182 }
183 }
184
185 static int fallback_init_cip(struct crypto_tfm *tfm)
186 {
187 const char *name = tfm->__crt_alg->cra_name;
188 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
189
190 sctx->fallback.cip = crypto_alloc_cipher(name, 0,
191 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
192
193 if (IS_ERR(sctx->fallback.cip)) {
194 pr_err("Allocating AES fallback algorithm %s failed\n",
195 name);
196 return PTR_ERR(sctx->fallback.cip);
197 }
198
199 return 0;
200 }
201
202 static void fallback_exit_cip(struct crypto_tfm *tfm)
203 {
204 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
205
206 crypto_free_cipher(sctx->fallback.cip);
207 sctx->fallback.cip = NULL;
208 }
209
210 static struct crypto_alg aes_alg = {
211 .cra_name = "aes",
212 .cra_driver_name = "aes-s390",
213 .cra_priority = CRYPT_S390_PRIORITY,
214 .cra_flags = CRYPTO_ALG_TYPE_CIPHER |
215 CRYPTO_ALG_NEED_FALLBACK,
216 .cra_blocksize = AES_BLOCK_SIZE,
217 .cra_ctxsize = sizeof(struct s390_aes_ctx),
218 .cra_module = THIS_MODULE,
219 .cra_init = fallback_init_cip,
220 .cra_exit = fallback_exit_cip,
221 .cra_u = {
222 .cipher = {
223 .cia_min_keysize = AES_MIN_KEY_SIZE,
224 .cia_max_keysize = AES_MAX_KEY_SIZE,
225 .cia_setkey = aes_set_key,
226 .cia_encrypt = aes_encrypt,
227 .cia_decrypt = aes_decrypt,
228 }
229 }
230 };
231
232 static int setkey_fallback_blk(struct crypto_tfm *tfm, const u8 *key,
233 unsigned int len)
234 {
235 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
236 unsigned int ret;
237
238 sctx->fallback.blk->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
239 sctx->fallback.blk->base.crt_flags |= (tfm->crt_flags &
240 CRYPTO_TFM_REQ_MASK);
241
242 ret = crypto_blkcipher_setkey(sctx->fallback.blk, key, len);
243 if (ret) {
244 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
245 tfm->crt_flags |= (sctx->fallback.blk->base.crt_flags &
246 CRYPTO_TFM_RES_MASK);
247 }
248 return ret;
249 }
250
251 static int fallback_blk_dec(struct blkcipher_desc *desc,
252 struct scatterlist *dst, struct scatterlist *src,
253 unsigned int nbytes)
254 {
255 unsigned int ret;
256 struct crypto_blkcipher *tfm;
257 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
258
259 tfm = desc->tfm;
260 desc->tfm = sctx->fallback.blk;
261
262 ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
263
264 desc->tfm = tfm;
265 return ret;
266 }
267
268 static int fallback_blk_enc(struct blkcipher_desc *desc,
269 struct scatterlist *dst, struct scatterlist *src,
270 unsigned int nbytes)
271 {
272 unsigned int ret;
273 struct crypto_blkcipher *tfm;
274 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
275
276 tfm = desc->tfm;
277 desc->tfm = sctx->fallback.blk;
278
279 ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
280
281 desc->tfm = tfm;
282 return ret;
283 }
284
285 static int ecb_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
286 unsigned int key_len)
287 {
288 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
289 int ret;
290
291 ret = need_fallback(key_len);
292 if (ret > 0) {
293 sctx->key_len = key_len;
294 return setkey_fallback_blk(tfm, in_key, key_len);
295 }
296
297 switch (key_len) {
298 case 16:
299 sctx->enc = KM_AES_128_ENCRYPT;
300 sctx->dec = KM_AES_128_DECRYPT;
301 break;
302 case 24:
303 sctx->enc = KM_AES_192_ENCRYPT;
304 sctx->dec = KM_AES_192_DECRYPT;
305 break;
306 case 32:
307 sctx->enc = KM_AES_256_ENCRYPT;
308 sctx->dec = KM_AES_256_DECRYPT;
309 break;
310 }
311
312 return aes_set_key(tfm, in_key, key_len);
313 }
314
315 static int ecb_aes_crypt(struct blkcipher_desc *desc, long func, void *param,
316 struct blkcipher_walk *walk)
317 {
318 int ret = blkcipher_walk_virt(desc, walk);
319 unsigned int nbytes;
320
321 while ((nbytes = walk->nbytes)) {
322 /* only use complete blocks */
323 unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
324 u8 *out = walk->dst.virt.addr;
325 u8 *in = walk->src.virt.addr;
326
327 ret = crypt_s390_km(func, param, out, in, n);
328 if (ret < 0 || ret != n)
329 return -EIO;
330
331 nbytes &= AES_BLOCK_SIZE - 1;
332 ret = blkcipher_walk_done(desc, walk, nbytes);
333 }
334
335 return ret;
336 }
337
338 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
339 struct scatterlist *dst, struct scatterlist *src,
340 unsigned int nbytes)
341 {
342 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
343 struct blkcipher_walk walk;
344
345 if (unlikely(need_fallback(sctx->key_len)))
346 return fallback_blk_enc(desc, dst, src, nbytes);
347
348 blkcipher_walk_init(&walk, dst, src, nbytes);
349 return ecb_aes_crypt(desc, sctx->enc, sctx->key, &walk);
350 }
351
352 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
353 struct scatterlist *dst, struct scatterlist *src,
354 unsigned int nbytes)
355 {
356 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
357 struct blkcipher_walk walk;
358
359 if (unlikely(need_fallback(sctx->key_len)))
360 return fallback_blk_dec(desc, dst, src, nbytes);
361
362 blkcipher_walk_init(&walk, dst, src, nbytes);
363 return ecb_aes_crypt(desc, sctx->dec, sctx->key, &walk);
364 }
365
366 static int fallback_init_blk(struct crypto_tfm *tfm)
367 {
368 const char *name = tfm->__crt_alg->cra_name;
369 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
370
371 sctx->fallback.blk = crypto_alloc_blkcipher(name, 0,
372 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
373
374 if (IS_ERR(sctx->fallback.blk)) {
375 pr_err("Allocating AES fallback algorithm %s failed\n",
376 name);
377 return PTR_ERR(sctx->fallback.blk);
378 }
379
380 return 0;
381 }
382
383 static void fallback_exit_blk(struct crypto_tfm *tfm)
384 {
385 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
386
387 crypto_free_blkcipher(sctx->fallback.blk);
388 sctx->fallback.blk = NULL;
389 }
390
391 static struct crypto_alg ecb_aes_alg = {
392 .cra_name = "ecb(aes)",
393 .cra_driver_name = "ecb-aes-s390",
394 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
395 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
396 CRYPTO_ALG_NEED_FALLBACK,
397 .cra_blocksize = AES_BLOCK_SIZE,
398 .cra_ctxsize = sizeof(struct s390_aes_ctx),
399 .cra_type = &crypto_blkcipher_type,
400 .cra_module = THIS_MODULE,
401 .cra_init = fallback_init_blk,
402 .cra_exit = fallback_exit_blk,
403 .cra_u = {
404 .blkcipher = {
405 .min_keysize = AES_MIN_KEY_SIZE,
406 .max_keysize = AES_MAX_KEY_SIZE,
407 .setkey = ecb_aes_set_key,
408 .encrypt = ecb_aes_encrypt,
409 .decrypt = ecb_aes_decrypt,
410 }
411 }
412 };
413
414 static int cbc_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
415 unsigned int key_len)
416 {
417 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
418 int ret;
419
420 ret = need_fallback(key_len);
421 if (ret > 0) {
422 sctx->key_len = key_len;
423 return setkey_fallback_blk(tfm, in_key, key_len);
424 }
425
426 switch (key_len) {
427 case 16:
428 sctx->enc = KMC_AES_128_ENCRYPT;
429 sctx->dec = KMC_AES_128_DECRYPT;
430 break;
431 case 24:
432 sctx->enc = KMC_AES_192_ENCRYPT;
433 sctx->dec = KMC_AES_192_DECRYPT;
434 break;
435 case 32:
436 sctx->enc = KMC_AES_256_ENCRYPT;
437 sctx->dec = KMC_AES_256_DECRYPT;
438 break;
439 }
440
441 return aes_set_key(tfm, in_key, key_len);
442 }
443
444 static int cbc_aes_crypt(struct blkcipher_desc *desc, long func, void *param,
445 struct blkcipher_walk *walk)
446 {
447 int ret = blkcipher_walk_virt(desc, walk);
448 unsigned int nbytes = walk->nbytes;
449
450 if (!nbytes)
451 goto out;
452
453 memcpy(param, walk->iv, AES_BLOCK_SIZE);
454 do {
455 /* only use complete blocks */
456 unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
457 u8 *out = walk->dst.virt.addr;
458 u8 *in = walk->src.virt.addr;
459
460 ret = crypt_s390_kmc(func, param, out, in, n);
461 if (ret < 0 || ret != n)
462 return -EIO;
463
464 nbytes &= AES_BLOCK_SIZE - 1;
465 ret = blkcipher_walk_done(desc, walk, nbytes);
466 } while ((nbytes = walk->nbytes));
467 memcpy(walk->iv, param, AES_BLOCK_SIZE);
468
469 out:
470 return ret;
471 }
472
473 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
474 struct scatterlist *dst, struct scatterlist *src,
475 unsigned int nbytes)
476 {
477 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
478 struct blkcipher_walk walk;
479
480 if (unlikely(need_fallback(sctx->key_len)))
481 return fallback_blk_enc(desc, dst, src, nbytes);
482
483 blkcipher_walk_init(&walk, dst, src, nbytes);
484 return cbc_aes_crypt(desc, sctx->enc, sctx->iv, &walk);
485 }
486
487 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
488 struct scatterlist *dst, struct scatterlist *src,
489 unsigned int nbytes)
490 {
491 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
492 struct blkcipher_walk walk;
493
494 if (unlikely(need_fallback(sctx->key_len)))
495 return fallback_blk_dec(desc, dst, src, nbytes);
496
497 blkcipher_walk_init(&walk, dst, src, nbytes);
498 return cbc_aes_crypt(desc, sctx->dec, sctx->iv, &walk);
499 }
500
501 static struct crypto_alg cbc_aes_alg = {
502 .cra_name = "cbc(aes)",
503 .cra_driver_name = "cbc-aes-s390",
504 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
505 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
506 CRYPTO_ALG_NEED_FALLBACK,
507 .cra_blocksize = AES_BLOCK_SIZE,
508 .cra_ctxsize = sizeof(struct s390_aes_ctx),
509 .cra_type = &crypto_blkcipher_type,
510 .cra_module = THIS_MODULE,
511 .cra_init = fallback_init_blk,
512 .cra_exit = fallback_exit_blk,
513 .cra_u = {
514 .blkcipher = {
515 .min_keysize = AES_MIN_KEY_SIZE,
516 .max_keysize = AES_MAX_KEY_SIZE,
517 .ivsize = AES_BLOCK_SIZE,
518 .setkey = cbc_aes_set_key,
519 .encrypt = cbc_aes_encrypt,
520 .decrypt = cbc_aes_decrypt,
521 }
522 }
523 };
524
525 static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
526 unsigned int len)
527 {
528 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
529 unsigned int ret;
530
531 xts_ctx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
532 xts_ctx->fallback->base.crt_flags |= (tfm->crt_flags &
533 CRYPTO_TFM_REQ_MASK);
534
535 ret = crypto_blkcipher_setkey(xts_ctx->fallback, key, len);
536 if (ret) {
537 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
538 tfm->crt_flags |= (xts_ctx->fallback->base.crt_flags &
539 CRYPTO_TFM_RES_MASK);
540 }
541 return ret;
542 }
543
544 static int xts_fallback_decrypt(struct blkcipher_desc *desc,
545 struct scatterlist *dst, struct scatterlist *src,
546 unsigned int nbytes)
547 {
548 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
549 struct crypto_blkcipher *tfm;
550 unsigned int ret;
551
552 tfm = desc->tfm;
553 desc->tfm = xts_ctx->fallback;
554
555 ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
556
557 desc->tfm = tfm;
558 return ret;
559 }
560
561 static int xts_fallback_encrypt(struct blkcipher_desc *desc,
562 struct scatterlist *dst, struct scatterlist *src,
563 unsigned int nbytes)
564 {
565 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
566 struct crypto_blkcipher *tfm;
567 unsigned int ret;
568
569 tfm = desc->tfm;
570 desc->tfm = xts_ctx->fallback;
571
572 ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
573
574 desc->tfm = tfm;
575 return ret;
576 }
577
578 static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
579 unsigned int key_len)
580 {
581 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
582 u32 *flags = &tfm->crt_flags;
583
584 switch (key_len) {
585 case 32:
586 xts_ctx->enc = KM_XTS_128_ENCRYPT;
587 xts_ctx->dec = KM_XTS_128_DECRYPT;
588 memcpy(xts_ctx->key + 16, in_key, 16);
589 memcpy(xts_ctx->pcc.key + 16, in_key + 16, 16);
590 break;
591 case 48:
592 xts_ctx->enc = 0;
593 xts_ctx->dec = 0;
594 xts_fallback_setkey(tfm, in_key, key_len);
595 break;
596 case 64:
597 xts_ctx->enc = KM_XTS_256_ENCRYPT;
598 xts_ctx->dec = KM_XTS_256_DECRYPT;
599 memcpy(xts_ctx->key, in_key, 32);
600 memcpy(xts_ctx->pcc.key, in_key + 32, 32);
601 break;
602 default:
603 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
604 return -EINVAL;
605 }
606 xts_ctx->key_len = key_len;
607 return 0;
608 }
609
610 static int xts_aes_crypt(struct blkcipher_desc *desc, long func,
611 struct s390_xts_ctx *xts_ctx,
612 struct blkcipher_walk *walk)
613 {
614 unsigned int offset = (xts_ctx->key_len >> 1) & 0x10;
615 int ret = blkcipher_walk_virt(desc, walk);
616 unsigned int nbytes = walk->nbytes;
617 unsigned int n;
618 u8 *in, *out;
619 void *param;
620
621 if (!nbytes)
622 goto out;
623
624 memset(xts_ctx->pcc.block, 0, sizeof(xts_ctx->pcc.block));
625 memset(xts_ctx->pcc.bit, 0, sizeof(xts_ctx->pcc.bit));
626 memset(xts_ctx->pcc.xts, 0, sizeof(xts_ctx->pcc.xts));
627 memcpy(xts_ctx->pcc.tweak, walk->iv, sizeof(xts_ctx->pcc.tweak));
628 param = xts_ctx->pcc.key + offset;
629 ret = crypt_s390_pcc(func, param);
630 if (ret < 0)
631 return -EIO;
632
633 memcpy(xts_ctx->xts_param, xts_ctx->pcc.xts, 16);
634 param = xts_ctx->key + offset;
635 do {
636 /* only use complete blocks */
637 n = nbytes & ~(AES_BLOCK_SIZE - 1);
638 out = walk->dst.virt.addr;
639 in = walk->src.virt.addr;
640
641 ret = crypt_s390_km(func, param, out, in, n);
642 if (ret < 0 || ret != n)
643 return -EIO;
644
645 nbytes &= AES_BLOCK_SIZE - 1;
646 ret = blkcipher_walk_done(desc, walk, nbytes);
647 } while ((nbytes = walk->nbytes));
648 out:
649 return ret;
650 }
651
652 static int xts_aes_encrypt(struct blkcipher_desc *desc,
653 struct scatterlist *dst, struct scatterlist *src,
654 unsigned int nbytes)
655 {
656 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
657 struct blkcipher_walk walk;
658
659 if (unlikely(xts_ctx->key_len == 48))
660 return xts_fallback_encrypt(desc, dst, src, nbytes);
661
662 blkcipher_walk_init(&walk, dst, src, nbytes);
663 return xts_aes_crypt(desc, xts_ctx->enc, xts_ctx, &walk);
664 }
665
666 static int xts_aes_decrypt(struct blkcipher_desc *desc,
667 struct scatterlist *dst, struct scatterlist *src,
668 unsigned int nbytes)
669 {
670 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
671 struct blkcipher_walk walk;
672
673 if (unlikely(xts_ctx->key_len == 48))
674 return xts_fallback_decrypt(desc, dst, src, nbytes);
675
676 blkcipher_walk_init(&walk, dst, src, nbytes);
677 return xts_aes_crypt(desc, xts_ctx->dec, xts_ctx, &walk);
678 }
679
680 static int xts_fallback_init(struct crypto_tfm *tfm)
681 {
682 const char *name = tfm->__crt_alg->cra_name;
683 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
684
685 xts_ctx->fallback = crypto_alloc_blkcipher(name, 0,
686 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
687
688 if (IS_ERR(xts_ctx->fallback)) {
689 pr_err("Allocating XTS fallback algorithm %s failed\n",
690 name);
691 return PTR_ERR(xts_ctx->fallback);
692 }
693 return 0;
694 }
695
696 static void xts_fallback_exit(struct crypto_tfm *tfm)
697 {
698 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
699
700 crypto_free_blkcipher(xts_ctx->fallback);
701 xts_ctx->fallback = NULL;
702 }
703
704 static struct crypto_alg xts_aes_alg = {
705 .cra_name = "xts(aes)",
706 .cra_driver_name = "xts-aes-s390",
707 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
708 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
709 CRYPTO_ALG_NEED_FALLBACK,
710 .cra_blocksize = AES_BLOCK_SIZE,
711 .cra_ctxsize = sizeof(struct s390_xts_ctx),
712 .cra_type = &crypto_blkcipher_type,
713 .cra_module = THIS_MODULE,
714 .cra_init = xts_fallback_init,
715 .cra_exit = xts_fallback_exit,
716 .cra_u = {
717 .blkcipher = {
718 .min_keysize = 2 * AES_MIN_KEY_SIZE,
719 .max_keysize = 2 * AES_MAX_KEY_SIZE,
720 .ivsize = AES_BLOCK_SIZE,
721 .setkey = xts_aes_set_key,
722 .encrypt = xts_aes_encrypt,
723 .decrypt = xts_aes_decrypt,
724 }
725 }
726 };
727
728 static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
729 unsigned int key_len)
730 {
731 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
732
733 switch (key_len) {
734 case 16:
735 sctx->enc = KMCTR_AES_128_ENCRYPT;
736 sctx->dec = KMCTR_AES_128_DECRYPT;
737 break;
738 case 24:
739 sctx->enc = KMCTR_AES_192_ENCRYPT;
740 sctx->dec = KMCTR_AES_192_DECRYPT;
741 break;
742 case 32:
743 sctx->enc = KMCTR_AES_256_ENCRYPT;
744 sctx->dec = KMCTR_AES_256_DECRYPT;
745 break;
746 }
747
748 return aes_set_key(tfm, in_key, key_len);
749 }
750
751 static int ctr_aes_crypt(struct blkcipher_desc *desc, long func,
752 struct s390_aes_ctx *sctx, struct blkcipher_walk *walk)
753 {
754 int ret = blkcipher_walk_virt_block(desc, walk, AES_BLOCK_SIZE);
755 unsigned int i, n, nbytes;
756 u8 buf[AES_BLOCK_SIZE];
757 u8 *out, *in;
758
759 if (!walk->nbytes)
760 return ret;
761
762 memcpy(ctrblk, walk->iv, AES_BLOCK_SIZE);
763 while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
764 out = walk->dst.virt.addr;
765 in = walk->src.virt.addr;
766 while (nbytes >= AES_BLOCK_SIZE) {
767 /* only use complete blocks, max. PAGE_SIZE */
768 n = (nbytes > PAGE_SIZE) ? PAGE_SIZE :
769 nbytes & ~(AES_BLOCK_SIZE - 1);
770 for (i = AES_BLOCK_SIZE; i < n; i += AES_BLOCK_SIZE) {
771 memcpy(ctrblk + i, ctrblk + i - AES_BLOCK_SIZE,
772 AES_BLOCK_SIZE);
773 crypto_inc(ctrblk + i, AES_BLOCK_SIZE);
774 }
775 ret = crypt_s390_kmctr(func, sctx->key, out, in, n, ctrblk);
776 if (ret < 0 || ret != n)
777 return -EIO;
778 if (n > AES_BLOCK_SIZE)
779 memcpy(ctrblk, ctrblk + n - AES_BLOCK_SIZE,
780 AES_BLOCK_SIZE);
781 crypto_inc(ctrblk, AES_BLOCK_SIZE);
782 out += n;
783 in += n;
784 nbytes -= n;
785 }
786 ret = blkcipher_walk_done(desc, walk, nbytes);
787 }
788 /*
789 * final block may be < AES_BLOCK_SIZE, copy only nbytes
790 */
791 if (nbytes) {
792 out = walk->dst.virt.addr;
793 in = walk->src.virt.addr;
794 ret = crypt_s390_kmctr(func, sctx->key, buf, in,
795 AES_BLOCK_SIZE, ctrblk);
796 if (ret < 0 || ret != AES_BLOCK_SIZE)
797 return -EIO;
798 memcpy(out, buf, nbytes);
799 crypto_inc(ctrblk, AES_BLOCK_SIZE);
800 ret = blkcipher_walk_done(desc, walk, 0);
801 }
802 memcpy(walk->iv, ctrblk, AES_BLOCK_SIZE);
803 return ret;
804 }
805
806 static int ctr_aes_encrypt(struct blkcipher_desc *desc,
807 struct scatterlist *dst, struct scatterlist *src,
808 unsigned int nbytes)
809 {
810 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
811 struct blkcipher_walk walk;
812
813 blkcipher_walk_init(&walk, dst, src, nbytes);
814 return ctr_aes_crypt(desc, sctx->enc, sctx, &walk);
815 }
816
817 static int ctr_aes_decrypt(struct blkcipher_desc *desc,
818 struct scatterlist *dst, struct scatterlist *src,
819 unsigned int nbytes)
820 {
821 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
822 struct blkcipher_walk walk;
823
824 blkcipher_walk_init(&walk, dst, src, nbytes);
825 return ctr_aes_crypt(desc, sctx->dec, sctx, &walk);
826 }
827
828 static struct crypto_alg ctr_aes_alg = {
829 .cra_name = "ctr(aes)",
830 .cra_driver_name = "ctr-aes-s390",
831 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
832 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
833 .cra_blocksize = 1,
834 .cra_ctxsize = sizeof(struct s390_aes_ctx),
835 .cra_type = &crypto_blkcipher_type,
836 .cra_module = THIS_MODULE,
837 .cra_u = {
838 .blkcipher = {
839 .min_keysize = AES_MIN_KEY_SIZE,
840 .max_keysize = AES_MAX_KEY_SIZE,
841 .ivsize = AES_BLOCK_SIZE,
842 .setkey = ctr_aes_set_key,
843 .encrypt = ctr_aes_encrypt,
844 .decrypt = ctr_aes_decrypt,
845 }
846 }
847 };
848
849 static int __init aes_s390_init(void)
850 {
851 int ret;
852
853 if (crypt_s390_func_available(KM_AES_128_ENCRYPT, CRYPT_S390_MSA))
854 keylen_flag |= AES_KEYLEN_128;
855 if (crypt_s390_func_available(KM_AES_192_ENCRYPT, CRYPT_S390_MSA))
856 keylen_flag |= AES_KEYLEN_192;
857 if (crypt_s390_func_available(KM_AES_256_ENCRYPT, CRYPT_S390_MSA))
858 keylen_flag |= AES_KEYLEN_256;
859
860 if (!keylen_flag)
861 return -EOPNOTSUPP;
862
863 /* z9 109 and z9 BC/EC only support 128 bit key length */
864 if (keylen_flag == AES_KEYLEN_128)
865 pr_info("AES hardware acceleration is only available for"
866 " 128-bit keys\n");
867
868 ret = crypto_register_alg(&aes_alg);
869 if (ret)
870 goto aes_err;
871
872 ret = crypto_register_alg(&ecb_aes_alg);
873 if (ret)
874 goto ecb_aes_err;
875
876 ret = crypto_register_alg(&cbc_aes_alg);
877 if (ret)
878 goto cbc_aes_err;
879
880 if (crypt_s390_func_available(KM_XTS_128_ENCRYPT,
881 CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
882 crypt_s390_func_available(KM_XTS_256_ENCRYPT,
883 CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
884 ret = crypto_register_alg(&xts_aes_alg);
885 if (ret)
886 goto xts_aes_err;
887 }
888
889 if (crypt_s390_func_available(KMCTR_AES_128_ENCRYPT,
890 CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
891 crypt_s390_func_available(KMCTR_AES_192_ENCRYPT,
892 CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
893 crypt_s390_func_available(KMCTR_AES_256_ENCRYPT,
894 CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
895 ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
896 if (!ctrblk) {
897 ret = -ENOMEM;
898 goto ctr_aes_err;
899 }
900 ret = crypto_register_alg(&ctr_aes_alg);
901 if (ret) {
902 free_page((unsigned long) ctrblk);
903 goto ctr_aes_err;
904 }
905 }
906
907 out:
908 return ret;
909
910 ctr_aes_err:
911 crypto_unregister_alg(&xts_aes_alg);
912 xts_aes_err:
913 crypto_unregister_alg(&cbc_aes_alg);
914 cbc_aes_err:
915 crypto_unregister_alg(&ecb_aes_alg);
916 ecb_aes_err:
917 crypto_unregister_alg(&aes_alg);
918 aes_err:
919 goto out;
920 }
921
922 static void __exit aes_s390_fini(void)
923 {
924 crypto_unregister_alg(&ctr_aes_alg);
925 free_page((unsigned long) ctrblk);
926 crypto_unregister_alg(&xts_aes_alg);
927 crypto_unregister_alg(&cbc_aes_alg);
928 crypto_unregister_alg(&ecb_aes_alg);
929 crypto_unregister_alg(&aes_alg);
930 }
931
932 module_init(aes_s390_init);
933 module_exit(aes_s390_fini);
934
935 MODULE_ALIAS("aes-all");
936
937 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
938 MODULE_LICENSE("GPL");