]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
49e30d6b90f8e1603f9d0368ddc0b11c525b5df6
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56
57 #include "cpu.h"
58
59 u32 elf_hwcap2 __read_mostly;
60
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68
69 /* correctly size the local cpu masks */
70 void __init setup_cpu_local_masks(void)
71 {
72 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
73 alloc_bootmem_cpumask_var(&cpu_callin_mask);
74 alloc_bootmem_cpumask_var(&cpu_callout_mask);
75 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
76 }
77
78 static void default_init(struct cpuinfo_x86 *c)
79 {
80 #ifdef CONFIG_X86_64
81 cpu_detect_cache_sizes(c);
82 #else
83 /* Not much we can do here... */
84 /* Check if at least it has cpuid */
85 if (c->cpuid_level == -1) {
86 /* No cpuid. It must be an ancient CPU */
87 if (c->x86 == 4)
88 strcpy(c->x86_model_id, "486");
89 else if (c->x86 == 3)
90 strcpy(c->x86_model_id, "386");
91 }
92 #endif
93 }
94
95 static const struct cpu_dev default_cpu = {
96 .c_init = default_init,
97 .c_vendor = "Unknown",
98 .c_x86_vendor = X86_VENDOR_UNKNOWN,
99 };
100
101 static const struct cpu_dev *this_cpu = &default_cpu;
102
103 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
104 #ifdef CONFIG_X86_64
105 /*
106 * We need valid kernel segments for data and code in long mode too
107 * IRET will check the segment types kkeil 2000/10/28
108 * Also sysret mandates a special GDT layout
109 *
110 * TLS descriptors are currently at a different place compared to i386.
111 * Hopefully nobody expects them at a fixed place (Wine?)
112 */
113 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
114 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
115 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
117 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
118 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
119 #else
120 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
121 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
122 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
123 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
124 /*
125 * Segments used for calling PnP BIOS have byte granularity.
126 * They code segments and data segments have fixed 64k limits,
127 * the transfer segment sizes are set at run time.
128 */
129 /* 32-bit code */
130 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
131 /* 16-bit code */
132 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /* 16-bit data */
138 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
139 /*
140 * The APM segments have byte granularity and their bases
141 * are set at run time. All have 64k limits.
142 */
143 /* 32-bit code */
144 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
145 /* 16-bit code */
146 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
147 /* data */
148 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
149
150 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
151 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
152 GDT_STACK_CANARY_INIT
153 #endif
154 } };
155 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
156
157 static int __init x86_mpx_setup(char *s)
158 {
159 /* require an exact match without trailing characters */
160 if (strlen(s))
161 return 0;
162
163 /* do not emit a message if the feature is not present */
164 if (!boot_cpu_has(X86_FEATURE_MPX))
165 return 1;
166
167 setup_clear_cpu_cap(X86_FEATURE_MPX);
168 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
169 return 1;
170 }
171 __setup("nompx", x86_mpx_setup);
172
173 #ifdef CONFIG_X86_64
174 static int __init x86_nopcid_setup(char *s)
175 {
176 /* nopcid doesn't accept parameters */
177 if (s)
178 return -EINVAL;
179
180 /* do not emit a message if the feature is not present */
181 if (!boot_cpu_has(X86_FEATURE_PCID))
182 return 0;
183
184 setup_clear_cpu_cap(X86_FEATURE_PCID);
185 pr_info("nopcid: PCID feature disabled\n");
186 return 0;
187 }
188 early_param("nopcid", x86_nopcid_setup);
189 #endif
190
191 static int __init x86_noinvpcid_setup(char *s)
192 {
193 /* noinvpcid doesn't accept parameters */
194 if (s)
195 return -EINVAL;
196
197 /* do not emit a message if the feature is not present */
198 if (!boot_cpu_has(X86_FEATURE_INVPCID))
199 return 0;
200
201 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
202 pr_info("noinvpcid: INVPCID feature disabled\n");
203 return 0;
204 }
205 early_param("noinvpcid", x86_noinvpcid_setup);
206
207 #ifdef CONFIG_X86_32
208 static int cachesize_override = -1;
209 static int disable_x86_serial_nr = 1;
210
211 static int __init cachesize_setup(char *str)
212 {
213 get_option(&str, &cachesize_override);
214 return 1;
215 }
216 __setup("cachesize=", cachesize_setup);
217
218 static int __init x86_sep_setup(char *s)
219 {
220 setup_clear_cpu_cap(X86_FEATURE_SEP);
221 return 1;
222 }
223 __setup("nosep", x86_sep_setup);
224
225 /* Standard macro to see if a specific flag is changeable */
226 static inline int flag_is_changeable_p(u32 flag)
227 {
228 u32 f1, f2;
229
230 /*
231 * Cyrix and IDT cpus allow disabling of CPUID
232 * so the code below may return different results
233 * when it is executed before and after enabling
234 * the CPUID. Add "volatile" to not allow gcc to
235 * optimize the subsequent calls to this function.
236 */
237 asm volatile ("pushfl \n\t"
238 "pushfl \n\t"
239 "popl %0 \n\t"
240 "movl %0, %1 \n\t"
241 "xorl %2, %0 \n\t"
242 "pushl %0 \n\t"
243 "popfl \n\t"
244 "pushfl \n\t"
245 "popl %0 \n\t"
246 "popfl \n\t"
247
248 : "=&r" (f1), "=&r" (f2)
249 : "ir" (flag));
250
251 return ((f1^f2) & flag) != 0;
252 }
253
254 /* Probe for the CPUID instruction */
255 int have_cpuid_p(void)
256 {
257 return flag_is_changeable_p(X86_EFLAGS_ID);
258 }
259
260 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
261 {
262 unsigned long lo, hi;
263
264 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
265 return;
266
267 /* Disable processor serial number: */
268
269 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
270 lo |= 0x200000;
271 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272
273 pr_notice("CPU serial number disabled.\n");
274 clear_cpu_cap(c, X86_FEATURE_PN);
275
276 /* Disabling the serial number may affect the cpuid level */
277 c->cpuid_level = cpuid_eax(0);
278 }
279
280 static int __init x86_serial_nr_setup(char *s)
281 {
282 disable_x86_serial_nr = 0;
283 return 1;
284 }
285 __setup("serialnumber", x86_serial_nr_setup);
286 #else
287 static inline int flag_is_changeable_p(u32 flag)
288 {
289 return 1;
290 }
291 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
292 {
293 }
294 #endif
295
296 static __init int setup_disable_smep(char *arg)
297 {
298 setup_clear_cpu_cap(X86_FEATURE_SMEP);
299 /* Check for things that depend on SMEP being enabled: */
300 check_mpx_erratum(&boot_cpu_data);
301 return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307 if (cpu_has(c, X86_FEATURE_SMEP))
308 cr4_set_bits(X86_CR4_SMEP);
309 }
310
311 static __init int setup_disable_smap(char *arg)
312 {
313 setup_clear_cpu_cap(X86_FEATURE_SMAP);
314 return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320 unsigned long eflags = native_save_fl();
321
322 /* This should have been cleared long ago */
323 BUG_ON(eflags & X86_EFLAGS_AC);
324
325 if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327 cr4_set_bits(X86_CR4_SMAP);
328 #else
329 cr4_clear_bits(X86_CR4_SMAP);
330 #endif
331 }
332 }
333
334 /*
335 * Protection Keys are not available in 32-bit mode.
336 */
337 static bool pku_disabled;
338
339 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
340 {
341 /* check the boot processor, plus compile options for PKU: */
342 if (!cpu_feature_enabled(X86_FEATURE_PKU))
343 return;
344 /* checks the actual processor's cpuid bits: */
345 if (!cpu_has(c, X86_FEATURE_PKU))
346 return;
347 if (pku_disabled)
348 return;
349
350 cr4_set_bits(X86_CR4_PKE);
351 /*
352 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
353 * cpuid bit to be set. We need to ensure that we
354 * update that bit in this CPU's "cpu_info".
355 */
356 get_cpu_cap(c);
357 }
358
359 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
360 static __init int setup_disable_pku(char *arg)
361 {
362 /*
363 * Do not clear the X86_FEATURE_PKU bit. All of the
364 * runtime checks are against OSPKE so clearing the
365 * bit does nothing.
366 *
367 * This way, we will see "pku" in cpuinfo, but not
368 * "ospke", which is exactly what we want. It shows
369 * that the CPU has PKU, but the OS has not enabled it.
370 * This happens to be exactly how a system would look
371 * if we disabled the config option.
372 */
373 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
374 pku_disabled = true;
375 return 1;
376 }
377 __setup("nopku", setup_disable_pku);
378 #endif /* CONFIG_X86_64 */
379
380 /*
381 * Some CPU features depend on higher CPUID levels, which may not always
382 * be available due to CPUID level capping or broken virtualization
383 * software. Add those features to this table to auto-disable them.
384 */
385 struct cpuid_dependent_feature {
386 u32 feature;
387 u32 level;
388 };
389
390 static const struct cpuid_dependent_feature
391 cpuid_dependent_features[] = {
392 { X86_FEATURE_MWAIT, 0x00000005 },
393 { X86_FEATURE_DCA, 0x00000009 },
394 { X86_FEATURE_XSAVE, 0x0000000d },
395 { 0, 0 }
396 };
397
398 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
399 {
400 const struct cpuid_dependent_feature *df;
401
402 for (df = cpuid_dependent_features; df->feature; df++) {
403
404 if (!cpu_has(c, df->feature))
405 continue;
406 /*
407 * Note: cpuid_level is set to -1 if unavailable, but
408 * extended_extended_level is set to 0 if unavailable
409 * and the legitimate extended levels are all negative
410 * when signed; hence the weird messing around with
411 * signs here...
412 */
413 if (!((s32)df->level < 0 ?
414 (u32)df->level > (u32)c->extended_cpuid_level :
415 (s32)df->level > (s32)c->cpuid_level))
416 continue;
417
418 clear_cpu_cap(c, df->feature);
419 if (!warn)
420 continue;
421
422 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
423 x86_cap_flag(df->feature), df->level);
424 }
425 }
426
427 /*
428 * Naming convention should be: <Name> [(<Codename>)]
429 * This table only is used unless init_<vendor>() below doesn't set it;
430 * in particular, if CPUID levels 0x80000002..4 are supported, this
431 * isn't used
432 */
433
434 /* Look up CPU names by table lookup. */
435 static const char *table_lookup_model(struct cpuinfo_x86 *c)
436 {
437 #ifdef CONFIG_X86_32
438 const struct legacy_cpu_model_info *info;
439
440 if (c->x86_model >= 16)
441 return NULL; /* Range check */
442
443 if (!this_cpu)
444 return NULL;
445
446 info = this_cpu->legacy_models;
447
448 while (info->family) {
449 if (info->family == c->x86)
450 return info->model_names[c->x86_model];
451 info++;
452 }
453 #endif
454 return NULL; /* Not found */
455 }
456
457 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
458 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
459
460 void load_percpu_segment(int cpu)
461 {
462 #ifdef CONFIG_X86_32
463 loadsegment(fs, __KERNEL_PERCPU);
464 #else
465 __loadsegment_simple(gs, 0);
466 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
467 #endif
468 load_stack_canary_segment();
469 }
470
471 #ifdef CONFIG_X86_32
472 /* The 32-bit entry code needs to find cpu_entry_area. */
473 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
474 #endif
475
476 #ifdef CONFIG_X86_64
477 /*
478 * Special IST stacks which the CPU switches to when it calls
479 * an IST-marked descriptor entry. Up to 7 stacks (hardware
480 * limit), all of them are 4K, except the debug stack which
481 * is 8K.
482 */
483 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
484 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
485 [DEBUG_STACK - 1] = DEBUG_STKSZ
486 };
487 #endif
488
489 /* Load the original GDT from the per-cpu structure */
490 void load_direct_gdt(int cpu)
491 {
492 struct desc_ptr gdt_descr;
493
494 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
495 gdt_descr.size = GDT_SIZE - 1;
496 load_gdt(&gdt_descr);
497 }
498 EXPORT_SYMBOL_GPL(load_direct_gdt);
499
500 /* Load a fixmap remapping of the per-cpu GDT */
501 void load_fixmap_gdt(int cpu)
502 {
503 struct desc_ptr gdt_descr;
504
505 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
506 gdt_descr.size = GDT_SIZE - 1;
507 load_gdt(&gdt_descr);
508 }
509 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
510
511 /*
512 * Current gdt points %fs at the "master" per-cpu area: after this,
513 * it's on the real one.
514 */
515 void switch_to_new_gdt(int cpu)
516 {
517 /* Load the original GDT */
518 load_direct_gdt(cpu);
519 /* Reload the per-cpu base */
520 load_percpu_segment(cpu);
521 }
522
523 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
524
525 static void get_model_name(struct cpuinfo_x86 *c)
526 {
527 unsigned int *v;
528 char *p, *q, *s;
529
530 if (c->extended_cpuid_level < 0x80000004)
531 return;
532
533 v = (unsigned int *)c->x86_model_id;
534 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
535 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
536 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
537 c->x86_model_id[48] = 0;
538
539 /* Trim whitespace */
540 p = q = s = &c->x86_model_id[0];
541
542 while (*p == ' ')
543 p++;
544
545 while (*p) {
546 /* Note the last non-whitespace index */
547 if (!isspace(*p))
548 s = q;
549
550 *q++ = *p++;
551 }
552
553 *(s + 1) = '\0';
554 }
555
556 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
557 {
558 unsigned int n, dummy, ebx, ecx, edx, l2size;
559
560 n = c->extended_cpuid_level;
561
562 if (n >= 0x80000005) {
563 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
564 c->x86_cache_size = (ecx>>24) + (edx>>24);
565 #ifdef CONFIG_X86_64
566 /* On K8 L1 TLB is inclusive, so don't count it */
567 c->x86_tlbsize = 0;
568 #endif
569 }
570
571 if (n < 0x80000006) /* Some chips just has a large L1. */
572 return;
573
574 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
575 l2size = ecx >> 16;
576
577 #ifdef CONFIG_X86_64
578 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
579 #else
580 /* do processor-specific cache resizing */
581 if (this_cpu->legacy_cache_size)
582 l2size = this_cpu->legacy_cache_size(c, l2size);
583
584 /* Allow user to override all this if necessary. */
585 if (cachesize_override != -1)
586 l2size = cachesize_override;
587
588 if (l2size == 0)
589 return; /* Again, no L2 cache is possible */
590 #endif
591
592 c->x86_cache_size = l2size;
593 }
594
595 u16 __read_mostly tlb_lli_4k[NR_INFO];
596 u16 __read_mostly tlb_lli_2m[NR_INFO];
597 u16 __read_mostly tlb_lli_4m[NR_INFO];
598 u16 __read_mostly tlb_lld_4k[NR_INFO];
599 u16 __read_mostly tlb_lld_2m[NR_INFO];
600 u16 __read_mostly tlb_lld_4m[NR_INFO];
601 u16 __read_mostly tlb_lld_1g[NR_INFO];
602
603 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
604 {
605 if (this_cpu->c_detect_tlb)
606 this_cpu->c_detect_tlb(c);
607
608 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
609 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
610 tlb_lli_4m[ENTRIES]);
611
612 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
613 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
614 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
615 }
616
617 void detect_ht(struct cpuinfo_x86 *c)
618 {
619 #ifdef CONFIG_SMP
620 u32 eax, ebx, ecx, edx;
621 int index_msb, core_bits;
622 static bool printed;
623
624 if (!cpu_has(c, X86_FEATURE_HT))
625 return;
626
627 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
628 goto out;
629
630 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
631 return;
632
633 cpuid(1, &eax, &ebx, &ecx, &edx);
634
635 smp_num_siblings = (ebx & 0xff0000) >> 16;
636
637 if (smp_num_siblings == 1) {
638 pr_info_once("CPU0: Hyper-Threading is disabled\n");
639 goto out;
640 }
641
642 if (smp_num_siblings <= 1)
643 goto out;
644
645 index_msb = get_count_order(smp_num_siblings);
646 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
647
648 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
649
650 index_msb = get_count_order(smp_num_siblings);
651
652 core_bits = get_count_order(c->x86_max_cores);
653
654 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
655 ((1 << core_bits) - 1);
656
657 out:
658 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
659 pr_info("CPU: Physical Processor ID: %d\n",
660 c->phys_proc_id);
661 pr_info("CPU: Processor Core ID: %d\n",
662 c->cpu_core_id);
663 printed = 1;
664 }
665 #endif
666 }
667
668 static void get_cpu_vendor(struct cpuinfo_x86 *c)
669 {
670 char *v = c->x86_vendor_id;
671 int i;
672
673 for (i = 0; i < X86_VENDOR_NUM; i++) {
674 if (!cpu_devs[i])
675 break;
676
677 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
678 (cpu_devs[i]->c_ident[1] &&
679 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
680
681 this_cpu = cpu_devs[i];
682 c->x86_vendor = this_cpu->c_x86_vendor;
683 return;
684 }
685 }
686
687 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
688 "CPU: Your system may be unstable.\n", v);
689
690 c->x86_vendor = X86_VENDOR_UNKNOWN;
691 this_cpu = &default_cpu;
692 }
693
694 void cpu_detect(struct cpuinfo_x86 *c)
695 {
696 /* Get vendor name */
697 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
698 (unsigned int *)&c->x86_vendor_id[0],
699 (unsigned int *)&c->x86_vendor_id[8],
700 (unsigned int *)&c->x86_vendor_id[4]);
701
702 c->x86 = 4;
703 /* Intel-defined flags: level 0x00000001 */
704 if (c->cpuid_level >= 0x00000001) {
705 u32 junk, tfms, cap0, misc;
706
707 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
708 c->x86 = x86_family(tfms);
709 c->x86_model = x86_model(tfms);
710 c->x86_mask = x86_stepping(tfms);
711
712 if (cap0 & (1<<19)) {
713 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
714 c->x86_cache_alignment = c->x86_clflush_size;
715 }
716 }
717 }
718
719 static void apply_forced_caps(struct cpuinfo_x86 *c)
720 {
721 int i;
722
723 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
724 c->x86_capability[i] &= ~cpu_caps_cleared[i];
725 c->x86_capability[i] |= cpu_caps_set[i];
726 }
727 }
728
729 void get_cpu_cap(struct cpuinfo_x86 *c)
730 {
731 u32 eax, ebx, ecx, edx;
732
733 /* Intel-defined flags: level 0x00000001 */
734 if (c->cpuid_level >= 0x00000001) {
735 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
736
737 c->x86_capability[CPUID_1_ECX] = ecx;
738 c->x86_capability[CPUID_1_EDX] = edx;
739 }
740
741 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
742 if (c->cpuid_level >= 0x00000006)
743 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
744
745 /* Additional Intel-defined flags: level 0x00000007 */
746 if (c->cpuid_level >= 0x00000007) {
747 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
748 c->x86_capability[CPUID_7_0_EBX] = ebx;
749 c->x86_capability[CPUID_7_ECX] = ecx;
750 }
751
752 /* Extended state features: level 0x0000000d */
753 if (c->cpuid_level >= 0x0000000d) {
754 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
755
756 c->x86_capability[CPUID_D_1_EAX] = eax;
757 }
758
759 /* Additional Intel-defined flags: level 0x0000000F */
760 if (c->cpuid_level >= 0x0000000F) {
761
762 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
763 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
764 c->x86_capability[CPUID_F_0_EDX] = edx;
765
766 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
767 /* will be overridden if occupancy monitoring exists */
768 c->x86_cache_max_rmid = ebx;
769
770 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
771 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
772 c->x86_capability[CPUID_F_1_EDX] = edx;
773
774 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
775 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
776 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
777 c->x86_cache_max_rmid = ecx;
778 c->x86_cache_occ_scale = ebx;
779 }
780 } else {
781 c->x86_cache_max_rmid = -1;
782 c->x86_cache_occ_scale = -1;
783 }
784 }
785
786 /* AMD-defined flags: level 0x80000001 */
787 eax = cpuid_eax(0x80000000);
788 c->extended_cpuid_level = eax;
789
790 if ((eax & 0xffff0000) == 0x80000000) {
791 if (eax >= 0x80000001) {
792 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
793
794 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
795 c->x86_capability[CPUID_8000_0001_EDX] = edx;
796 }
797 }
798
799 if (c->extended_cpuid_level >= 0x80000007) {
800 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
801
802 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
803 c->x86_power = edx;
804 }
805
806 if (c->extended_cpuid_level >= 0x80000008) {
807 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
808
809 c->x86_virt_bits = (eax >> 8) & 0xff;
810 c->x86_phys_bits = eax & 0xff;
811 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
812 }
813 #ifdef CONFIG_X86_32
814 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
815 c->x86_phys_bits = 36;
816 #endif
817
818 if (c->extended_cpuid_level >= 0x8000000a)
819 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
820
821 init_scattered_cpuid_features(c);
822
823 /*
824 * Clear/Set all flags overridden by options, after probe.
825 * This needs to happen each time we re-probe, which may happen
826 * several times during CPU initialization.
827 */
828 apply_forced_caps(c);
829 }
830
831 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
832 {
833 #ifdef CONFIG_X86_32
834 int i;
835
836 /*
837 * First of all, decide if this is a 486 or higher
838 * It's a 486 if we can modify the AC flag
839 */
840 if (flag_is_changeable_p(X86_EFLAGS_AC))
841 c->x86 = 4;
842 else
843 c->x86 = 3;
844
845 for (i = 0; i < X86_VENDOR_NUM; i++)
846 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
847 c->x86_vendor_id[0] = 0;
848 cpu_devs[i]->c_identify(c);
849 if (c->x86_vendor_id[0]) {
850 get_cpu_vendor(c);
851 break;
852 }
853 }
854 #endif
855 }
856
857 static const __initdata struct x86_cpu_id cpu_no_speculation[] = {
858 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW, X86_FEATURE_ANY },
859 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW, X86_FEATURE_ANY },
860 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT, X86_FEATURE_ANY },
861 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL, X86_FEATURE_ANY },
862 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW, X86_FEATURE_ANY },
863 { X86_VENDOR_CENTAUR, 5 },
864 { X86_VENDOR_INTEL, 5 },
865 { X86_VENDOR_NSC, 5 },
866 { X86_VENDOR_ANY, 4 },
867 {}
868 };
869
870 static const __initdata struct x86_cpu_id cpu_no_meltdown[] = {
871 { X86_VENDOR_AMD },
872 {}
873 };
874
875 static const __initconst struct x86_cpu_id cpu_no_spec_store_bypass[] = {
876 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PINEVIEW },
877 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_LINCROFT },
878 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_PENWELL },
879 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CLOVERVIEW },
880 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_CEDARVIEW },
881 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT1 },
882 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_AIRMONT },
883 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_SILVERMONT2 },
884 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_MERRIFIELD },
885 { X86_VENDOR_INTEL, 6, INTEL_FAM6_CORE_YONAH },
886 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNL },
887 { X86_VENDOR_INTEL, 6, INTEL_FAM6_XEON_PHI_KNM },
888 { X86_VENDOR_CENTAUR, 5, },
889 { X86_VENDOR_INTEL, 5, },
890 { X86_VENDOR_NSC, 5, },
891 { X86_VENDOR_ANY, 4, },
892 {}
893 };
894
895 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
896 {
897 u64 ia32_cap = 0;
898
899 if (!x86_match_cpu(cpu_no_spec_store_bypass))
900 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
901
902 if (x86_match_cpu(cpu_no_speculation))
903 return;
904
905 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
906 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
907
908 if (x86_match_cpu(cpu_no_meltdown))
909 return;
910
911 if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
912 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
913
914 /* Rogue Data Cache Load? No! */
915 if (ia32_cap & ARCH_CAP_RDCL_NO)
916 return;
917
918 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
919 }
920
921 /*
922 * Do minimum CPU detection early.
923 * Fields really needed: vendor, cpuid_level, family, model, mask,
924 * cache alignment.
925 * The others are not touched to avoid unwanted side effects.
926 *
927 * WARNING: this function is only called on the BP. Don't add code here
928 * that is supposed to run on all CPUs.
929 */
930 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
931 {
932 #ifdef CONFIG_X86_64
933 c->x86_clflush_size = 64;
934 c->x86_phys_bits = 36;
935 c->x86_virt_bits = 48;
936 #else
937 c->x86_clflush_size = 32;
938 c->x86_phys_bits = 32;
939 c->x86_virt_bits = 32;
940 #endif
941 c->x86_cache_alignment = c->x86_clflush_size;
942
943 memset(&c->x86_capability, 0, sizeof c->x86_capability);
944 c->extended_cpuid_level = 0;
945
946 /* cyrix could have cpuid enabled via c_identify()*/
947 if (have_cpuid_p()) {
948 cpu_detect(c);
949 get_cpu_vendor(c);
950 get_cpu_cap(c);
951 setup_force_cpu_cap(X86_FEATURE_CPUID);
952
953 if (this_cpu->c_early_init)
954 this_cpu->c_early_init(c);
955
956 c->cpu_index = 0;
957 filter_cpuid_features(c, false);
958
959 if (this_cpu->c_bsp_init)
960 this_cpu->c_bsp_init(c);
961 } else {
962 identify_cpu_without_cpuid(c);
963 setup_clear_cpu_cap(X86_FEATURE_CPUID);
964 }
965
966 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
967
968 cpu_set_bug_bits(c);
969
970 fpu__init_system(c);
971 }
972
973 void __init early_cpu_init(void)
974 {
975 const struct cpu_dev *const *cdev;
976 int count = 0;
977
978 #ifdef CONFIG_PROCESSOR_SELECT
979 pr_info("KERNEL supported cpus:\n");
980 #endif
981
982 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
983 const struct cpu_dev *cpudev = *cdev;
984
985 if (count >= X86_VENDOR_NUM)
986 break;
987 cpu_devs[count] = cpudev;
988 count++;
989
990 #ifdef CONFIG_PROCESSOR_SELECT
991 {
992 unsigned int j;
993
994 for (j = 0; j < 2; j++) {
995 if (!cpudev->c_ident[j])
996 continue;
997 pr_info(" %s %s\n", cpudev->c_vendor,
998 cpudev->c_ident[j]);
999 }
1000 }
1001 #endif
1002 }
1003 early_identify_cpu(&boot_cpu_data);
1004 }
1005
1006 /*
1007 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1008 * unfortunately, that's not true in practice because of early VIA
1009 * chips and (more importantly) broken virtualizers that are not easy
1010 * to detect. In the latter case it doesn't even *fail* reliably, so
1011 * probing for it doesn't even work. Disable it completely on 32-bit
1012 * unless we can find a reliable way to detect all the broken cases.
1013 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1014 */
1015 static void detect_nopl(struct cpuinfo_x86 *c)
1016 {
1017 #ifdef CONFIG_X86_32
1018 clear_cpu_cap(c, X86_FEATURE_NOPL);
1019 #else
1020 set_cpu_cap(c, X86_FEATURE_NOPL);
1021 #endif
1022 }
1023
1024 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1025 {
1026 #ifdef CONFIG_X86_64
1027 /*
1028 * Empirically, writing zero to a segment selector on AMD does
1029 * not clear the base, whereas writing zero to a segment
1030 * selector on Intel does clear the base. Intel's behavior
1031 * allows slightly faster context switches in the common case
1032 * where GS is unused by the prev and next threads.
1033 *
1034 * Since neither vendor documents this anywhere that I can see,
1035 * detect it directly instead of hardcoding the choice by
1036 * vendor.
1037 *
1038 * I've designated AMD's behavior as the "bug" because it's
1039 * counterintuitive and less friendly.
1040 */
1041
1042 unsigned long old_base, tmp;
1043 rdmsrl(MSR_FS_BASE, old_base);
1044 wrmsrl(MSR_FS_BASE, 1);
1045 loadsegment(fs, 0);
1046 rdmsrl(MSR_FS_BASE, tmp);
1047 if (tmp != 0)
1048 set_cpu_bug(c, X86_BUG_NULL_SEG);
1049 wrmsrl(MSR_FS_BASE, old_base);
1050 #endif
1051 }
1052
1053 static void generic_identify(struct cpuinfo_x86 *c)
1054 {
1055 c->extended_cpuid_level = 0;
1056
1057 if (!have_cpuid_p())
1058 identify_cpu_without_cpuid(c);
1059
1060 /* cyrix could have cpuid enabled via c_identify()*/
1061 if (!have_cpuid_p())
1062 return;
1063
1064 cpu_detect(c);
1065
1066 get_cpu_vendor(c);
1067
1068 get_cpu_cap(c);
1069
1070 if (c->cpuid_level >= 0x00000001) {
1071 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1072 #ifdef CONFIG_X86_32
1073 # ifdef CONFIG_SMP
1074 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1075 # else
1076 c->apicid = c->initial_apicid;
1077 # endif
1078 #endif
1079 c->phys_proc_id = c->initial_apicid;
1080 }
1081
1082 get_model_name(c); /* Default name */
1083
1084 detect_nopl(c);
1085
1086 detect_null_seg_behavior(c);
1087
1088 /*
1089 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1090 * systems that run Linux at CPL > 0 may or may not have the
1091 * issue, but, even if they have the issue, there's absolutely
1092 * nothing we can do about it because we can't use the real IRET
1093 * instruction.
1094 *
1095 * NB: For the time being, only 32-bit kernels support
1096 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1097 * whether to apply espfix using paravirt hooks. If any
1098 * non-paravirt system ever shows up that does *not* have the
1099 * ESPFIX issue, we can change this.
1100 */
1101 #ifdef CONFIG_X86_32
1102 # ifdef CONFIG_PARAVIRT
1103 do {
1104 extern void native_iret(void);
1105 if (pv_cpu_ops.iret == native_iret)
1106 set_cpu_bug(c, X86_BUG_ESPFIX);
1107 } while (0);
1108 # else
1109 set_cpu_bug(c, X86_BUG_ESPFIX);
1110 # endif
1111 #endif
1112 }
1113
1114 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1115 {
1116 /*
1117 * The heavy lifting of max_rmid and cache_occ_scale are handled
1118 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1119 * in case CQM bits really aren't there in this CPU.
1120 */
1121 if (c != &boot_cpu_data) {
1122 boot_cpu_data.x86_cache_max_rmid =
1123 min(boot_cpu_data.x86_cache_max_rmid,
1124 c->x86_cache_max_rmid);
1125 }
1126 }
1127
1128 /*
1129 * Validate that ACPI/mptables have the same information about the
1130 * effective APIC id and update the package map.
1131 */
1132 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1133 {
1134 #ifdef CONFIG_SMP
1135 unsigned int apicid, cpu = smp_processor_id();
1136
1137 apicid = apic->cpu_present_to_apicid(cpu);
1138
1139 if (apicid != c->apicid) {
1140 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1141 cpu, apicid, c->initial_apicid);
1142 }
1143 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1144 #else
1145 c->logical_proc_id = 0;
1146 #endif
1147 }
1148
1149 /*
1150 * This does the hard work of actually picking apart the CPU stuff...
1151 */
1152 static void identify_cpu(struct cpuinfo_x86 *c)
1153 {
1154 int i;
1155
1156 c->loops_per_jiffy = loops_per_jiffy;
1157 c->x86_cache_size = -1;
1158 c->x86_vendor = X86_VENDOR_UNKNOWN;
1159 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1160 c->x86_vendor_id[0] = '\0'; /* Unset */
1161 c->x86_model_id[0] = '\0'; /* Unset */
1162 c->x86_max_cores = 1;
1163 c->x86_coreid_bits = 0;
1164 c->cu_id = 0xff;
1165 #ifdef CONFIG_X86_64
1166 c->x86_clflush_size = 64;
1167 c->x86_phys_bits = 36;
1168 c->x86_virt_bits = 48;
1169 #else
1170 c->cpuid_level = -1; /* CPUID not detected */
1171 c->x86_clflush_size = 32;
1172 c->x86_phys_bits = 32;
1173 c->x86_virt_bits = 32;
1174 #endif
1175 c->x86_cache_alignment = c->x86_clflush_size;
1176 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1177
1178 generic_identify(c);
1179
1180 if (this_cpu->c_identify)
1181 this_cpu->c_identify(c);
1182
1183 /* Clear/Set all flags overridden by options, after probe */
1184 apply_forced_caps(c);
1185
1186 #ifdef CONFIG_X86_64
1187 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1188 #endif
1189
1190 /*
1191 * Vendor-specific initialization. In this section we
1192 * canonicalize the feature flags, meaning if there are
1193 * features a certain CPU supports which CPUID doesn't
1194 * tell us, CPUID claiming incorrect flags, or other bugs,
1195 * we handle them here.
1196 *
1197 * At the end of this section, c->x86_capability better
1198 * indicate the features this CPU genuinely supports!
1199 */
1200 if (this_cpu->c_init)
1201 this_cpu->c_init(c);
1202
1203 /* Disable the PN if appropriate */
1204 squash_the_stupid_serial_number(c);
1205
1206 /* Set up SMEP/SMAP */
1207 setup_smep(c);
1208 setup_smap(c);
1209
1210 /*
1211 * The vendor-specific functions might have changed features.
1212 * Now we do "generic changes."
1213 */
1214
1215 /* Filter out anything that depends on CPUID levels we don't have */
1216 filter_cpuid_features(c, true);
1217
1218 /* If the model name is still unset, do table lookup. */
1219 if (!c->x86_model_id[0]) {
1220 const char *p;
1221 p = table_lookup_model(c);
1222 if (p)
1223 strcpy(c->x86_model_id, p);
1224 else
1225 /* Last resort... */
1226 sprintf(c->x86_model_id, "%02x/%02x",
1227 c->x86, c->x86_model);
1228 }
1229
1230 #ifdef CONFIG_X86_64
1231 detect_ht(c);
1232 #endif
1233
1234 x86_init_rdrand(c);
1235 x86_init_cache_qos(c);
1236 setup_pku(c);
1237
1238 /*
1239 * Clear/Set all flags overridden by options, need do it
1240 * before following smp all cpus cap AND.
1241 */
1242 apply_forced_caps(c);
1243
1244 /*
1245 * On SMP, boot_cpu_data holds the common feature set between
1246 * all CPUs; so make sure that we indicate which features are
1247 * common between the CPUs. The first time this routine gets
1248 * executed, c == &boot_cpu_data.
1249 */
1250 if (c != &boot_cpu_data) {
1251 /* AND the already accumulated flags with these */
1252 for (i = 0; i < NCAPINTS; i++)
1253 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1254
1255 /* OR, i.e. replicate the bug flags */
1256 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1257 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1258 }
1259
1260 /* Init Machine Check Exception if available. */
1261 mcheck_cpu_init(c);
1262
1263 select_idle_routine(c);
1264
1265 #ifdef CONFIG_NUMA
1266 numa_add_cpu(smp_processor_id());
1267 #endif
1268 }
1269
1270 /*
1271 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1272 * on 32-bit kernels:
1273 */
1274 #ifdef CONFIG_X86_32
1275 void enable_sep_cpu(void)
1276 {
1277 struct tss_struct *tss;
1278 int cpu;
1279
1280 if (!boot_cpu_has(X86_FEATURE_SEP))
1281 return;
1282
1283 cpu = get_cpu();
1284 tss = &per_cpu(cpu_tss_rw, cpu);
1285
1286 /*
1287 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1288 * see the big comment in struct x86_hw_tss's definition.
1289 */
1290
1291 tss->x86_tss.ss1 = __KERNEL_CS;
1292 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1293 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1294 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1295
1296 put_cpu();
1297 }
1298 #endif
1299
1300 void __init identify_boot_cpu(void)
1301 {
1302 identify_cpu(&boot_cpu_data);
1303 #ifdef CONFIG_X86_32
1304 sysenter_setup();
1305 enable_sep_cpu();
1306 #endif
1307 cpu_detect_tlb(&boot_cpu_data);
1308 }
1309
1310 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1311 {
1312 BUG_ON(c == &boot_cpu_data);
1313 identify_cpu(c);
1314 #ifdef CONFIG_X86_32
1315 enable_sep_cpu();
1316 #endif
1317 mtrr_ap_init();
1318 validate_apic_and_package_id(c);
1319 }
1320
1321 static __init int setup_noclflush(char *arg)
1322 {
1323 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1324 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1325 return 1;
1326 }
1327 __setup("noclflush", setup_noclflush);
1328
1329 void print_cpu_info(struct cpuinfo_x86 *c)
1330 {
1331 const char *vendor = NULL;
1332
1333 if (c->x86_vendor < X86_VENDOR_NUM) {
1334 vendor = this_cpu->c_vendor;
1335 } else {
1336 if (c->cpuid_level >= 0)
1337 vendor = c->x86_vendor_id;
1338 }
1339
1340 if (vendor && !strstr(c->x86_model_id, vendor))
1341 pr_cont("%s ", vendor);
1342
1343 if (c->x86_model_id[0])
1344 pr_cont("%s", c->x86_model_id);
1345 else
1346 pr_cont("%d86", c->x86);
1347
1348 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1349
1350 if (c->x86_mask || c->cpuid_level >= 0)
1351 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1352 else
1353 pr_cont(")\n");
1354 }
1355
1356 /*
1357 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1358 * But we need to keep a dummy __setup around otherwise it would
1359 * show up as an environment variable for init.
1360 */
1361 static __init int setup_clearcpuid(char *arg)
1362 {
1363 return 1;
1364 }
1365 __setup("clearcpuid=", setup_clearcpuid);
1366
1367 #ifdef CONFIG_X86_64
1368 struct desc_ptr idt_descr __ro_after_init = {
1369 .size = NR_VECTORS * 16 - 1,
1370 .address = (unsigned long) idt_table,
1371 };
1372 const struct desc_ptr debug_idt_descr = {
1373 .size = NR_VECTORS * 16 - 1,
1374 .address = (unsigned long) debug_idt_table,
1375 };
1376
1377 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1378 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1379
1380 /*
1381 * The following percpu variables are hot. Align current_task to
1382 * cacheline size such that they fall in the same cacheline.
1383 */
1384 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1385 &init_task;
1386 EXPORT_PER_CPU_SYMBOL(current_task);
1387
1388 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1389 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1390
1391 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1392
1393 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1394 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1395
1396 /* May not be marked __init: used by software suspend */
1397 void syscall_init(void)
1398 {
1399 extern char _entry_trampoline[];
1400 extern char entry_SYSCALL_64_trampoline[];
1401
1402 int cpu = smp_processor_id();
1403 unsigned long SYSCALL64_entry_trampoline =
1404 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1405 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1406
1407 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1408 if (static_cpu_has(X86_FEATURE_PTI))
1409 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1410 else
1411 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1412
1413 #ifdef CONFIG_IA32_EMULATION
1414 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1415 /*
1416 * This only works on Intel CPUs.
1417 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1418 * This does not cause SYSENTER to jump to the wrong location, because
1419 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1420 */
1421 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1422 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1423 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1424 #else
1425 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1426 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1427 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1428 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1429 #endif
1430
1431 /* Flags to clear on syscall */
1432 wrmsrl(MSR_SYSCALL_MASK,
1433 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1434 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1435 }
1436
1437 /*
1438 * Copies of the original ist values from the tss are only accessed during
1439 * debugging, no special alignment required.
1440 */
1441 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1442
1443 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1444 DEFINE_PER_CPU(int, debug_stack_usage);
1445
1446 int is_debug_stack(unsigned long addr)
1447 {
1448 return __this_cpu_read(debug_stack_usage) ||
1449 (addr <= __this_cpu_read(debug_stack_addr) &&
1450 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1451 }
1452 NOKPROBE_SYMBOL(is_debug_stack);
1453
1454 DEFINE_PER_CPU(u32, debug_idt_ctr);
1455
1456 void debug_stack_set_zero(void)
1457 {
1458 this_cpu_inc(debug_idt_ctr);
1459 load_current_idt();
1460 }
1461 NOKPROBE_SYMBOL(debug_stack_set_zero);
1462
1463 void debug_stack_reset(void)
1464 {
1465 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1466 return;
1467 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1468 load_current_idt();
1469 }
1470 NOKPROBE_SYMBOL(debug_stack_reset);
1471
1472 #else /* CONFIG_X86_64 */
1473
1474 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1475 EXPORT_PER_CPU_SYMBOL(current_task);
1476 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1477 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1478
1479 /*
1480 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1481 * the top of the kernel stack. Use an extra percpu variable to track the
1482 * top of the kernel stack directly.
1483 */
1484 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1485 (unsigned long)&init_thread_union + THREAD_SIZE;
1486 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1487
1488 #ifdef CONFIG_CC_STACKPROTECTOR
1489 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1490 #endif
1491
1492 #endif /* CONFIG_X86_64 */
1493
1494 /*
1495 * Clear all 6 debug registers:
1496 */
1497 static void clear_all_debug_regs(void)
1498 {
1499 int i;
1500
1501 for (i = 0; i < 8; i++) {
1502 /* Ignore db4, db5 */
1503 if ((i == 4) || (i == 5))
1504 continue;
1505
1506 set_debugreg(0, i);
1507 }
1508 }
1509
1510 #ifdef CONFIG_KGDB
1511 /*
1512 * Restore debug regs if using kgdbwait and you have a kernel debugger
1513 * connection established.
1514 */
1515 static void dbg_restore_debug_regs(void)
1516 {
1517 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1518 arch_kgdb_ops.correct_hw_break();
1519 }
1520 #else /* ! CONFIG_KGDB */
1521 #define dbg_restore_debug_regs()
1522 #endif /* ! CONFIG_KGDB */
1523
1524 static void wait_for_master_cpu(int cpu)
1525 {
1526 #ifdef CONFIG_SMP
1527 /*
1528 * wait for ACK from master CPU before continuing
1529 * with AP initialization
1530 */
1531 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1532 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1533 cpu_relax();
1534 #endif
1535 }
1536
1537 /*
1538 * cpu_init() initializes state that is per-CPU. Some data is already
1539 * initialized (naturally) in the bootstrap process, such as the GDT
1540 * and IDT. We reload them nevertheless, this function acts as a
1541 * 'CPU state barrier', nothing should get across.
1542 * A lot of state is already set up in PDA init for 64 bit
1543 */
1544 #ifdef CONFIG_X86_64
1545
1546 void cpu_init(void)
1547 {
1548 struct orig_ist *oist;
1549 struct task_struct *me;
1550 struct tss_struct *t;
1551 unsigned long v;
1552 int cpu = raw_smp_processor_id();
1553 int i;
1554
1555 wait_for_master_cpu(cpu);
1556
1557 /*
1558 * Initialize the CR4 shadow before doing anything that could
1559 * try to read it.
1560 */
1561 cr4_init_shadow();
1562
1563 if (cpu)
1564 load_ucode_ap();
1565
1566 t = &per_cpu(cpu_tss_rw, cpu);
1567 oist = &per_cpu(orig_ist, cpu);
1568
1569 #ifdef CONFIG_NUMA
1570 if (this_cpu_read(numa_node) == 0 &&
1571 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1572 set_numa_node(early_cpu_to_node(cpu));
1573 #endif
1574
1575 me = current;
1576
1577 pr_debug("Initializing CPU#%d\n", cpu);
1578
1579 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1580
1581 /*
1582 * Initialize the per-CPU GDT with the boot GDT,
1583 * and set up the GDT descriptor:
1584 */
1585
1586 switch_to_new_gdt(cpu);
1587 loadsegment(fs, 0);
1588
1589 load_current_idt();
1590
1591 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1592 syscall_init();
1593
1594 wrmsrl(MSR_FS_BASE, 0);
1595 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1596 barrier();
1597
1598 x86_configure_nx();
1599 x2apic_setup();
1600
1601 /*
1602 * set up and load the per-CPU TSS
1603 */
1604 if (!oist->ist[0]) {
1605 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1606
1607 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1608 estacks += exception_stack_sizes[v];
1609 oist->ist[v] = t->x86_tss.ist[v] =
1610 (unsigned long)estacks;
1611 if (v == DEBUG_STACK-1)
1612 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1613 }
1614 }
1615
1616 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1617
1618 /*
1619 * <= is required because the CPU will access up to
1620 * 8 bits beyond the end of the IO permission bitmap.
1621 */
1622 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1623 t->io_bitmap[i] = ~0UL;
1624
1625 mmgrab(&init_mm);
1626 me->active_mm = &init_mm;
1627 BUG_ON(me->mm);
1628 initialize_tlbstate_and_flush();
1629 enter_lazy_tlb(&init_mm, me);
1630
1631 /*
1632 * Initialize the TSS. sp0 points to the entry trampoline stack
1633 * regardless of what task is running.
1634 */
1635 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1636 load_TR_desc();
1637 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1638
1639 load_mm_ldt(&init_mm);
1640
1641 clear_all_debug_regs();
1642 dbg_restore_debug_regs();
1643
1644 fpu__init_cpu();
1645
1646 if (is_uv_system())
1647 uv_cpu_init();
1648
1649 load_fixmap_gdt(cpu);
1650 }
1651
1652 #else
1653
1654 void cpu_init(void)
1655 {
1656 int cpu = smp_processor_id();
1657 struct task_struct *curr = current;
1658 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1659
1660 wait_for_master_cpu(cpu);
1661
1662 /*
1663 * Initialize the CR4 shadow before doing anything that could
1664 * try to read it.
1665 */
1666 cr4_init_shadow();
1667
1668 show_ucode_info_early();
1669
1670 pr_info("Initializing CPU#%d\n", cpu);
1671
1672 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1673 boot_cpu_has(X86_FEATURE_TSC) ||
1674 boot_cpu_has(X86_FEATURE_DE))
1675 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1676
1677 load_current_idt();
1678 switch_to_new_gdt(cpu);
1679
1680 /*
1681 * Set up and load the per-CPU TSS and LDT
1682 */
1683 mmgrab(&init_mm);
1684 curr->active_mm = &init_mm;
1685 BUG_ON(curr->mm);
1686 initialize_tlbstate_and_flush();
1687 enter_lazy_tlb(&init_mm, curr);
1688
1689 /*
1690 * Initialize the TSS. Don't bother initializing sp0, as the initial
1691 * task never enters user mode.
1692 */
1693 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1694 load_TR_desc();
1695
1696 load_mm_ldt(&init_mm);
1697
1698 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1699
1700 #ifdef CONFIG_DOUBLEFAULT
1701 /* Set up doublefault TSS pointer in the GDT */
1702 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1703 #endif
1704
1705 clear_all_debug_regs();
1706 dbg_restore_debug_regs();
1707
1708 fpu__init_cpu();
1709
1710 load_fixmap_gdt(cpu);
1711 }
1712 #endif
1713
1714 static void bsp_resume(void)
1715 {
1716 if (this_cpu->c_bsp_resume)
1717 this_cpu->c_bsp_resume(&boot_cpu_data);
1718 }
1719
1720 static struct syscore_ops cpu_syscore_ops = {
1721 .resume = bsp_resume,
1722 };
1723
1724 static int __init init_cpu_syscore(void)
1725 {
1726 register_syscore_ops(&cpu_syscore_ops);
1727 return 0;
1728 }
1729 core_initcall(init_cpu_syscore);