]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/cpu/common.c
Merge branch 'stable-4.13' of git://git.infradead.org/users/pcmoore/audit
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50
51 #ifdef CONFIG_X86_LOCAL_APIC
52 #include <asm/uv/uv.h>
53 #endif
54
55 #include "cpu.h"
56
57 u32 elf_hwcap2 __read_mostly;
58
59 /* all of these masks are initialized in setup_cpu_local_masks() */
60 cpumask_var_t cpu_initialized_mask;
61 cpumask_var_t cpu_callout_mask;
62 cpumask_var_t cpu_callin_mask;
63
64 /* representing cpus for which sibling maps can be computed */
65 cpumask_var_t cpu_sibling_setup_mask;
66
67 /* correctly size the local cpu masks */
68 void __init setup_cpu_local_masks(void)
69 {
70 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
71 alloc_bootmem_cpumask_var(&cpu_callin_mask);
72 alloc_bootmem_cpumask_var(&cpu_callout_mask);
73 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
74 }
75
76 static void default_init(struct cpuinfo_x86 *c)
77 {
78 #ifdef CONFIG_X86_64
79 cpu_detect_cache_sizes(c);
80 #else
81 /* Not much we can do here... */
82 /* Check if at least it has cpuid */
83 if (c->cpuid_level == -1) {
84 /* No cpuid. It must be an ancient CPU */
85 if (c->x86 == 4)
86 strcpy(c->x86_model_id, "486");
87 else if (c->x86 == 3)
88 strcpy(c->x86_model_id, "386");
89 }
90 #endif
91 }
92
93 static const struct cpu_dev default_cpu = {
94 .c_init = default_init,
95 .c_vendor = "Unknown",
96 .c_x86_vendor = X86_VENDOR_UNKNOWN,
97 };
98
99 static const struct cpu_dev *this_cpu = &default_cpu;
100
101 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
102 #ifdef CONFIG_X86_64
103 /*
104 * We need valid kernel segments for data and code in long mode too
105 * IRET will check the segment types kkeil 2000/10/28
106 * Also sysret mandates a special GDT layout
107 *
108 * TLS descriptors are currently at a different place compared to i386.
109 * Hopefully nobody expects them at a fixed place (Wine?)
110 */
111 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
113 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
117 #else
118 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
119 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
120 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
121 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
122 /*
123 * Segments used for calling PnP BIOS have byte granularity.
124 * They code segments and data segments have fixed 64k limits,
125 * the transfer segment sizes are set at run time.
126 */
127 /* 32-bit code */
128 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
129 /* 16-bit code */
130 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
131 /* 16-bit data */
132 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
133 /* 16-bit data */
134 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
135 /* 16-bit data */
136 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
137 /*
138 * The APM segments have byte granularity and their bases
139 * are set at run time. All have 64k limits.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* data */
146 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
147
148 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
149 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
150 GDT_STACK_CANARY_INIT
151 #endif
152 } };
153 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
154
155 static int __init x86_mpx_setup(char *s)
156 {
157 /* require an exact match without trailing characters */
158 if (strlen(s))
159 return 0;
160
161 /* do not emit a message if the feature is not present */
162 if (!boot_cpu_has(X86_FEATURE_MPX))
163 return 1;
164
165 setup_clear_cpu_cap(X86_FEATURE_MPX);
166 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
167 return 1;
168 }
169 __setup("nompx", x86_mpx_setup);
170
171 static int __init x86_noinvpcid_setup(char *s)
172 {
173 /* noinvpcid doesn't accept parameters */
174 if (s)
175 return -EINVAL;
176
177 /* do not emit a message if the feature is not present */
178 if (!boot_cpu_has(X86_FEATURE_INVPCID))
179 return 0;
180
181 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
182 pr_info("noinvpcid: INVPCID feature disabled\n");
183 return 0;
184 }
185 early_param("noinvpcid", x86_noinvpcid_setup);
186
187 #ifdef CONFIG_X86_32
188 static int cachesize_override = -1;
189 static int disable_x86_serial_nr = 1;
190
191 static int __init cachesize_setup(char *str)
192 {
193 get_option(&str, &cachesize_override);
194 return 1;
195 }
196 __setup("cachesize=", cachesize_setup);
197
198 static int __init x86_sep_setup(char *s)
199 {
200 setup_clear_cpu_cap(X86_FEATURE_SEP);
201 return 1;
202 }
203 __setup("nosep", x86_sep_setup);
204
205 /* Standard macro to see if a specific flag is changeable */
206 static inline int flag_is_changeable_p(u32 flag)
207 {
208 u32 f1, f2;
209
210 /*
211 * Cyrix and IDT cpus allow disabling of CPUID
212 * so the code below may return different results
213 * when it is executed before and after enabling
214 * the CPUID. Add "volatile" to not allow gcc to
215 * optimize the subsequent calls to this function.
216 */
217 asm volatile ("pushfl \n\t"
218 "pushfl \n\t"
219 "popl %0 \n\t"
220 "movl %0, %1 \n\t"
221 "xorl %2, %0 \n\t"
222 "pushl %0 \n\t"
223 "popfl \n\t"
224 "pushfl \n\t"
225 "popl %0 \n\t"
226 "popfl \n\t"
227
228 : "=&r" (f1), "=&r" (f2)
229 : "ir" (flag));
230
231 return ((f1^f2) & flag) != 0;
232 }
233
234 /* Probe for the CPUID instruction */
235 int have_cpuid_p(void)
236 {
237 return flag_is_changeable_p(X86_EFLAGS_ID);
238 }
239
240 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
241 {
242 unsigned long lo, hi;
243
244 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
245 return;
246
247 /* Disable processor serial number: */
248
249 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
250 lo |= 0x200000;
251 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
252
253 pr_notice("CPU serial number disabled.\n");
254 clear_cpu_cap(c, X86_FEATURE_PN);
255
256 /* Disabling the serial number may affect the cpuid level */
257 c->cpuid_level = cpuid_eax(0);
258 }
259
260 static int __init x86_serial_nr_setup(char *s)
261 {
262 disable_x86_serial_nr = 0;
263 return 1;
264 }
265 __setup("serialnumber", x86_serial_nr_setup);
266 #else
267 static inline int flag_is_changeable_p(u32 flag)
268 {
269 return 1;
270 }
271 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272 {
273 }
274 #endif
275
276 static __init int setup_disable_smep(char *arg)
277 {
278 setup_clear_cpu_cap(X86_FEATURE_SMEP);
279 /* Check for things that depend on SMEP being enabled: */
280 check_mpx_erratum(&boot_cpu_data);
281 return 1;
282 }
283 __setup("nosmep", setup_disable_smep);
284
285 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
286 {
287 if (cpu_has(c, X86_FEATURE_SMEP))
288 cr4_set_bits(X86_CR4_SMEP);
289 }
290
291 static __init int setup_disable_smap(char *arg)
292 {
293 setup_clear_cpu_cap(X86_FEATURE_SMAP);
294 return 1;
295 }
296 __setup("nosmap", setup_disable_smap);
297
298 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
299 {
300 unsigned long eflags = native_save_fl();
301
302 /* This should have been cleared long ago */
303 BUG_ON(eflags & X86_EFLAGS_AC);
304
305 if (cpu_has(c, X86_FEATURE_SMAP)) {
306 #ifdef CONFIG_X86_SMAP
307 cr4_set_bits(X86_CR4_SMAP);
308 #else
309 cr4_clear_bits(X86_CR4_SMAP);
310 #endif
311 }
312 }
313
314 /*
315 * Protection Keys are not available in 32-bit mode.
316 */
317 static bool pku_disabled;
318
319 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
320 {
321 /* check the boot processor, plus compile options for PKU: */
322 if (!cpu_feature_enabled(X86_FEATURE_PKU))
323 return;
324 /* checks the actual processor's cpuid bits: */
325 if (!cpu_has(c, X86_FEATURE_PKU))
326 return;
327 if (pku_disabled)
328 return;
329
330 cr4_set_bits(X86_CR4_PKE);
331 /*
332 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
333 * cpuid bit to be set. We need to ensure that we
334 * update that bit in this CPU's "cpu_info".
335 */
336 get_cpu_cap(c);
337 }
338
339 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
340 static __init int setup_disable_pku(char *arg)
341 {
342 /*
343 * Do not clear the X86_FEATURE_PKU bit. All of the
344 * runtime checks are against OSPKE so clearing the
345 * bit does nothing.
346 *
347 * This way, we will see "pku" in cpuinfo, but not
348 * "ospke", which is exactly what we want. It shows
349 * that the CPU has PKU, but the OS has not enabled it.
350 * This happens to be exactly how a system would look
351 * if we disabled the config option.
352 */
353 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
354 pku_disabled = true;
355 return 1;
356 }
357 __setup("nopku", setup_disable_pku);
358 #endif /* CONFIG_X86_64 */
359
360 /*
361 * Some CPU features depend on higher CPUID levels, which may not always
362 * be available due to CPUID level capping or broken virtualization
363 * software. Add those features to this table to auto-disable them.
364 */
365 struct cpuid_dependent_feature {
366 u32 feature;
367 u32 level;
368 };
369
370 static const struct cpuid_dependent_feature
371 cpuid_dependent_features[] = {
372 { X86_FEATURE_MWAIT, 0x00000005 },
373 { X86_FEATURE_DCA, 0x00000009 },
374 { X86_FEATURE_XSAVE, 0x0000000d },
375 { 0, 0 }
376 };
377
378 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
379 {
380 const struct cpuid_dependent_feature *df;
381
382 for (df = cpuid_dependent_features; df->feature; df++) {
383
384 if (!cpu_has(c, df->feature))
385 continue;
386 /*
387 * Note: cpuid_level is set to -1 if unavailable, but
388 * extended_extended_level is set to 0 if unavailable
389 * and the legitimate extended levels are all negative
390 * when signed; hence the weird messing around with
391 * signs here...
392 */
393 if (!((s32)df->level < 0 ?
394 (u32)df->level > (u32)c->extended_cpuid_level :
395 (s32)df->level > (s32)c->cpuid_level))
396 continue;
397
398 clear_cpu_cap(c, df->feature);
399 if (!warn)
400 continue;
401
402 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
403 x86_cap_flag(df->feature), df->level);
404 }
405 }
406
407 /*
408 * Naming convention should be: <Name> [(<Codename>)]
409 * This table only is used unless init_<vendor>() below doesn't set it;
410 * in particular, if CPUID levels 0x80000002..4 are supported, this
411 * isn't used
412 */
413
414 /* Look up CPU names by table lookup. */
415 static const char *table_lookup_model(struct cpuinfo_x86 *c)
416 {
417 #ifdef CONFIG_X86_32
418 const struct legacy_cpu_model_info *info;
419
420 if (c->x86_model >= 16)
421 return NULL; /* Range check */
422
423 if (!this_cpu)
424 return NULL;
425
426 info = this_cpu->legacy_models;
427
428 while (info->family) {
429 if (info->family == c->x86)
430 return info->model_names[c->x86_model];
431 info++;
432 }
433 #endif
434 return NULL; /* Not found */
435 }
436
437 __u32 cpu_caps_cleared[NCAPINTS];
438 __u32 cpu_caps_set[NCAPINTS];
439
440 void load_percpu_segment(int cpu)
441 {
442 #ifdef CONFIG_X86_32
443 loadsegment(fs, __KERNEL_PERCPU);
444 #else
445 __loadsegment_simple(gs, 0);
446 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
447 #endif
448 load_stack_canary_segment();
449 }
450
451 /* Setup the fixmap mapping only once per-processor */
452 static inline void setup_fixmap_gdt(int cpu)
453 {
454 #ifdef CONFIG_X86_64
455 /* On 64-bit systems, we use a read-only fixmap GDT. */
456 pgprot_t prot = PAGE_KERNEL_RO;
457 #else
458 /*
459 * On native 32-bit systems, the GDT cannot be read-only because
460 * our double fault handler uses a task gate, and entering through
461 * a task gate needs to change an available TSS to busy. If the GDT
462 * is read-only, that will triple fault.
463 *
464 * On Xen PV, the GDT must be read-only because the hypervisor requires
465 * it.
466 */
467 pgprot_t prot = boot_cpu_has(X86_FEATURE_XENPV) ?
468 PAGE_KERNEL_RO : PAGE_KERNEL;
469 #endif
470
471 __set_fixmap(get_cpu_gdt_ro_index(cpu), get_cpu_gdt_paddr(cpu), prot);
472 }
473
474 /* Load the original GDT from the per-cpu structure */
475 void load_direct_gdt(int cpu)
476 {
477 struct desc_ptr gdt_descr;
478
479 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
480 gdt_descr.size = GDT_SIZE - 1;
481 load_gdt(&gdt_descr);
482 }
483 EXPORT_SYMBOL_GPL(load_direct_gdt);
484
485 /* Load a fixmap remapping of the per-cpu GDT */
486 void load_fixmap_gdt(int cpu)
487 {
488 struct desc_ptr gdt_descr;
489
490 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
491 gdt_descr.size = GDT_SIZE - 1;
492 load_gdt(&gdt_descr);
493 }
494 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
495
496 /*
497 * Current gdt points %fs at the "master" per-cpu area: after this,
498 * it's on the real one.
499 */
500 void switch_to_new_gdt(int cpu)
501 {
502 /* Load the original GDT */
503 load_direct_gdt(cpu);
504 /* Reload the per-cpu base */
505 load_percpu_segment(cpu);
506 }
507
508 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
509
510 static void get_model_name(struct cpuinfo_x86 *c)
511 {
512 unsigned int *v;
513 char *p, *q, *s;
514
515 if (c->extended_cpuid_level < 0x80000004)
516 return;
517
518 v = (unsigned int *)c->x86_model_id;
519 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
520 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
521 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
522 c->x86_model_id[48] = 0;
523
524 /* Trim whitespace */
525 p = q = s = &c->x86_model_id[0];
526
527 while (*p == ' ')
528 p++;
529
530 while (*p) {
531 /* Note the last non-whitespace index */
532 if (!isspace(*p))
533 s = q;
534
535 *q++ = *p++;
536 }
537
538 *(s + 1) = '\0';
539 }
540
541 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
542 {
543 unsigned int n, dummy, ebx, ecx, edx, l2size;
544
545 n = c->extended_cpuid_level;
546
547 if (n >= 0x80000005) {
548 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
549 c->x86_cache_size = (ecx>>24) + (edx>>24);
550 #ifdef CONFIG_X86_64
551 /* On K8 L1 TLB is inclusive, so don't count it */
552 c->x86_tlbsize = 0;
553 #endif
554 }
555
556 if (n < 0x80000006) /* Some chips just has a large L1. */
557 return;
558
559 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
560 l2size = ecx >> 16;
561
562 #ifdef CONFIG_X86_64
563 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
564 #else
565 /* do processor-specific cache resizing */
566 if (this_cpu->legacy_cache_size)
567 l2size = this_cpu->legacy_cache_size(c, l2size);
568
569 /* Allow user to override all this if necessary. */
570 if (cachesize_override != -1)
571 l2size = cachesize_override;
572
573 if (l2size == 0)
574 return; /* Again, no L2 cache is possible */
575 #endif
576
577 c->x86_cache_size = l2size;
578 }
579
580 u16 __read_mostly tlb_lli_4k[NR_INFO];
581 u16 __read_mostly tlb_lli_2m[NR_INFO];
582 u16 __read_mostly tlb_lli_4m[NR_INFO];
583 u16 __read_mostly tlb_lld_4k[NR_INFO];
584 u16 __read_mostly tlb_lld_2m[NR_INFO];
585 u16 __read_mostly tlb_lld_4m[NR_INFO];
586 u16 __read_mostly tlb_lld_1g[NR_INFO];
587
588 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
589 {
590 if (this_cpu->c_detect_tlb)
591 this_cpu->c_detect_tlb(c);
592
593 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
594 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
595 tlb_lli_4m[ENTRIES]);
596
597 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
598 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
599 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
600 }
601
602 void detect_ht(struct cpuinfo_x86 *c)
603 {
604 #ifdef CONFIG_SMP
605 u32 eax, ebx, ecx, edx;
606 int index_msb, core_bits;
607 static bool printed;
608
609 if (!cpu_has(c, X86_FEATURE_HT))
610 return;
611
612 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
613 goto out;
614
615 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
616 return;
617
618 cpuid(1, &eax, &ebx, &ecx, &edx);
619
620 smp_num_siblings = (ebx & 0xff0000) >> 16;
621
622 if (smp_num_siblings == 1) {
623 pr_info_once("CPU0: Hyper-Threading is disabled\n");
624 goto out;
625 }
626
627 if (smp_num_siblings <= 1)
628 goto out;
629
630 index_msb = get_count_order(smp_num_siblings);
631 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
632
633 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
634
635 index_msb = get_count_order(smp_num_siblings);
636
637 core_bits = get_count_order(c->x86_max_cores);
638
639 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
640 ((1 << core_bits) - 1);
641
642 out:
643 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
644 pr_info("CPU: Physical Processor ID: %d\n",
645 c->phys_proc_id);
646 pr_info("CPU: Processor Core ID: %d\n",
647 c->cpu_core_id);
648 printed = 1;
649 }
650 #endif
651 }
652
653 static void get_cpu_vendor(struct cpuinfo_x86 *c)
654 {
655 char *v = c->x86_vendor_id;
656 int i;
657
658 for (i = 0; i < X86_VENDOR_NUM; i++) {
659 if (!cpu_devs[i])
660 break;
661
662 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
663 (cpu_devs[i]->c_ident[1] &&
664 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
665
666 this_cpu = cpu_devs[i];
667 c->x86_vendor = this_cpu->c_x86_vendor;
668 return;
669 }
670 }
671
672 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
673 "CPU: Your system may be unstable.\n", v);
674
675 c->x86_vendor = X86_VENDOR_UNKNOWN;
676 this_cpu = &default_cpu;
677 }
678
679 void cpu_detect(struct cpuinfo_x86 *c)
680 {
681 /* Get vendor name */
682 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
683 (unsigned int *)&c->x86_vendor_id[0],
684 (unsigned int *)&c->x86_vendor_id[8],
685 (unsigned int *)&c->x86_vendor_id[4]);
686
687 c->x86 = 4;
688 /* Intel-defined flags: level 0x00000001 */
689 if (c->cpuid_level >= 0x00000001) {
690 u32 junk, tfms, cap0, misc;
691
692 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
693 c->x86 = x86_family(tfms);
694 c->x86_model = x86_model(tfms);
695 c->x86_mask = x86_stepping(tfms);
696
697 if (cap0 & (1<<19)) {
698 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
699 c->x86_cache_alignment = c->x86_clflush_size;
700 }
701 }
702 }
703
704 static void apply_forced_caps(struct cpuinfo_x86 *c)
705 {
706 int i;
707
708 for (i = 0; i < NCAPINTS; i++) {
709 c->x86_capability[i] &= ~cpu_caps_cleared[i];
710 c->x86_capability[i] |= cpu_caps_set[i];
711 }
712 }
713
714 void get_cpu_cap(struct cpuinfo_x86 *c)
715 {
716 u32 eax, ebx, ecx, edx;
717
718 /* Intel-defined flags: level 0x00000001 */
719 if (c->cpuid_level >= 0x00000001) {
720 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
721
722 c->x86_capability[CPUID_1_ECX] = ecx;
723 c->x86_capability[CPUID_1_EDX] = edx;
724 }
725
726 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
727 if (c->cpuid_level >= 0x00000006)
728 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
729
730 /* Additional Intel-defined flags: level 0x00000007 */
731 if (c->cpuid_level >= 0x00000007) {
732 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
733 c->x86_capability[CPUID_7_0_EBX] = ebx;
734 c->x86_capability[CPUID_7_ECX] = ecx;
735 }
736
737 /* Extended state features: level 0x0000000d */
738 if (c->cpuid_level >= 0x0000000d) {
739 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
740
741 c->x86_capability[CPUID_D_1_EAX] = eax;
742 }
743
744 /* Additional Intel-defined flags: level 0x0000000F */
745 if (c->cpuid_level >= 0x0000000F) {
746
747 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
748 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
749 c->x86_capability[CPUID_F_0_EDX] = edx;
750
751 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
752 /* will be overridden if occupancy monitoring exists */
753 c->x86_cache_max_rmid = ebx;
754
755 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
756 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
757 c->x86_capability[CPUID_F_1_EDX] = edx;
758
759 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
760 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
761 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
762 c->x86_cache_max_rmid = ecx;
763 c->x86_cache_occ_scale = ebx;
764 }
765 } else {
766 c->x86_cache_max_rmid = -1;
767 c->x86_cache_occ_scale = -1;
768 }
769 }
770
771 /* AMD-defined flags: level 0x80000001 */
772 eax = cpuid_eax(0x80000000);
773 c->extended_cpuid_level = eax;
774
775 if ((eax & 0xffff0000) == 0x80000000) {
776 if (eax >= 0x80000001) {
777 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
778
779 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
780 c->x86_capability[CPUID_8000_0001_EDX] = edx;
781 }
782 }
783
784 if (c->extended_cpuid_level >= 0x80000007) {
785 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
786
787 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
788 c->x86_power = edx;
789 }
790
791 if (c->extended_cpuid_level >= 0x80000008) {
792 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
793
794 c->x86_virt_bits = (eax >> 8) & 0xff;
795 c->x86_phys_bits = eax & 0xff;
796 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
797 }
798 #ifdef CONFIG_X86_32
799 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
800 c->x86_phys_bits = 36;
801 #endif
802
803 if (c->extended_cpuid_level >= 0x8000000a)
804 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
805
806 init_scattered_cpuid_features(c);
807
808 /*
809 * Clear/Set all flags overridden by options, after probe.
810 * This needs to happen each time we re-probe, which may happen
811 * several times during CPU initialization.
812 */
813 apply_forced_caps(c);
814 }
815
816 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
817 {
818 #ifdef CONFIG_X86_32
819 int i;
820
821 /*
822 * First of all, decide if this is a 486 or higher
823 * It's a 486 if we can modify the AC flag
824 */
825 if (flag_is_changeable_p(X86_EFLAGS_AC))
826 c->x86 = 4;
827 else
828 c->x86 = 3;
829
830 for (i = 0; i < X86_VENDOR_NUM; i++)
831 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
832 c->x86_vendor_id[0] = 0;
833 cpu_devs[i]->c_identify(c);
834 if (c->x86_vendor_id[0]) {
835 get_cpu_vendor(c);
836 break;
837 }
838 }
839 #endif
840 }
841
842 /*
843 * Do minimum CPU detection early.
844 * Fields really needed: vendor, cpuid_level, family, model, mask,
845 * cache alignment.
846 * The others are not touched to avoid unwanted side effects.
847 *
848 * WARNING: this function is only called on the BP. Don't add code here
849 * that is supposed to run on all CPUs.
850 */
851 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
852 {
853 #ifdef CONFIG_X86_64
854 c->x86_clflush_size = 64;
855 c->x86_phys_bits = 36;
856 c->x86_virt_bits = 48;
857 #else
858 c->x86_clflush_size = 32;
859 c->x86_phys_bits = 32;
860 c->x86_virt_bits = 32;
861 #endif
862 c->x86_cache_alignment = c->x86_clflush_size;
863
864 memset(&c->x86_capability, 0, sizeof c->x86_capability);
865 c->extended_cpuid_level = 0;
866
867 /* cyrix could have cpuid enabled via c_identify()*/
868 if (have_cpuid_p()) {
869 cpu_detect(c);
870 get_cpu_vendor(c);
871 get_cpu_cap(c);
872 setup_force_cpu_cap(X86_FEATURE_CPUID);
873
874 if (this_cpu->c_early_init)
875 this_cpu->c_early_init(c);
876
877 c->cpu_index = 0;
878 filter_cpuid_features(c, false);
879
880 if (this_cpu->c_bsp_init)
881 this_cpu->c_bsp_init(c);
882 } else {
883 identify_cpu_without_cpuid(c);
884 setup_clear_cpu_cap(X86_FEATURE_CPUID);
885 }
886
887 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
888 fpu__init_system(c);
889 }
890
891 void __init early_cpu_init(void)
892 {
893 const struct cpu_dev *const *cdev;
894 int count = 0;
895
896 #ifdef CONFIG_PROCESSOR_SELECT
897 pr_info("KERNEL supported cpus:\n");
898 #endif
899
900 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
901 const struct cpu_dev *cpudev = *cdev;
902
903 if (count >= X86_VENDOR_NUM)
904 break;
905 cpu_devs[count] = cpudev;
906 count++;
907
908 #ifdef CONFIG_PROCESSOR_SELECT
909 {
910 unsigned int j;
911
912 for (j = 0; j < 2; j++) {
913 if (!cpudev->c_ident[j])
914 continue;
915 pr_info(" %s %s\n", cpudev->c_vendor,
916 cpudev->c_ident[j]);
917 }
918 }
919 #endif
920 }
921 early_identify_cpu(&boot_cpu_data);
922 }
923
924 /*
925 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
926 * unfortunately, that's not true in practice because of early VIA
927 * chips and (more importantly) broken virtualizers that are not easy
928 * to detect. In the latter case it doesn't even *fail* reliably, so
929 * probing for it doesn't even work. Disable it completely on 32-bit
930 * unless we can find a reliable way to detect all the broken cases.
931 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
932 */
933 static void detect_nopl(struct cpuinfo_x86 *c)
934 {
935 #ifdef CONFIG_X86_32
936 clear_cpu_cap(c, X86_FEATURE_NOPL);
937 #else
938 set_cpu_cap(c, X86_FEATURE_NOPL);
939 #endif
940 }
941
942 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
943 {
944 #ifdef CONFIG_X86_64
945 /*
946 * Empirically, writing zero to a segment selector on AMD does
947 * not clear the base, whereas writing zero to a segment
948 * selector on Intel does clear the base. Intel's behavior
949 * allows slightly faster context switches in the common case
950 * where GS is unused by the prev and next threads.
951 *
952 * Since neither vendor documents this anywhere that I can see,
953 * detect it directly instead of hardcoding the choice by
954 * vendor.
955 *
956 * I've designated AMD's behavior as the "bug" because it's
957 * counterintuitive and less friendly.
958 */
959
960 unsigned long old_base, tmp;
961 rdmsrl(MSR_FS_BASE, old_base);
962 wrmsrl(MSR_FS_BASE, 1);
963 loadsegment(fs, 0);
964 rdmsrl(MSR_FS_BASE, tmp);
965 if (tmp != 0)
966 set_cpu_bug(c, X86_BUG_NULL_SEG);
967 wrmsrl(MSR_FS_BASE, old_base);
968 #endif
969 }
970
971 static void generic_identify(struct cpuinfo_x86 *c)
972 {
973 c->extended_cpuid_level = 0;
974
975 if (!have_cpuid_p())
976 identify_cpu_without_cpuid(c);
977
978 /* cyrix could have cpuid enabled via c_identify()*/
979 if (!have_cpuid_p())
980 return;
981
982 cpu_detect(c);
983
984 get_cpu_vendor(c);
985
986 get_cpu_cap(c);
987
988 if (c->cpuid_level >= 0x00000001) {
989 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
990 #ifdef CONFIG_X86_32
991 # ifdef CONFIG_SMP
992 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
993 # else
994 c->apicid = c->initial_apicid;
995 # endif
996 #endif
997 c->phys_proc_id = c->initial_apicid;
998 }
999
1000 get_model_name(c); /* Default name */
1001
1002 detect_nopl(c);
1003
1004 detect_null_seg_behavior(c);
1005
1006 /*
1007 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1008 * systems that run Linux at CPL > 0 may or may not have the
1009 * issue, but, even if they have the issue, there's absolutely
1010 * nothing we can do about it because we can't use the real IRET
1011 * instruction.
1012 *
1013 * NB: For the time being, only 32-bit kernels support
1014 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1015 * whether to apply espfix using paravirt hooks. If any
1016 * non-paravirt system ever shows up that does *not* have the
1017 * ESPFIX issue, we can change this.
1018 */
1019 #ifdef CONFIG_X86_32
1020 # ifdef CONFIG_PARAVIRT
1021 do {
1022 extern void native_iret(void);
1023 if (pv_cpu_ops.iret == native_iret)
1024 set_cpu_bug(c, X86_BUG_ESPFIX);
1025 } while (0);
1026 # else
1027 set_cpu_bug(c, X86_BUG_ESPFIX);
1028 # endif
1029 #endif
1030 }
1031
1032 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1033 {
1034 /*
1035 * The heavy lifting of max_rmid and cache_occ_scale are handled
1036 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1037 * in case CQM bits really aren't there in this CPU.
1038 */
1039 if (c != &boot_cpu_data) {
1040 boot_cpu_data.x86_cache_max_rmid =
1041 min(boot_cpu_data.x86_cache_max_rmid,
1042 c->x86_cache_max_rmid);
1043 }
1044 }
1045
1046 /*
1047 * Validate that ACPI/mptables have the same information about the
1048 * effective APIC id and update the package map.
1049 */
1050 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1051 {
1052 #ifdef CONFIG_SMP
1053 unsigned int apicid, cpu = smp_processor_id();
1054
1055 apicid = apic->cpu_present_to_apicid(cpu);
1056
1057 if (apicid != c->apicid) {
1058 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1059 cpu, apicid, c->initial_apicid);
1060 }
1061 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1062 #else
1063 c->logical_proc_id = 0;
1064 #endif
1065 }
1066
1067 /*
1068 * This does the hard work of actually picking apart the CPU stuff...
1069 */
1070 static void identify_cpu(struct cpuinfo_x86 *c)
1071 {
1072 int i;
1073
1074 c->loops_per_jiffy = loops_per_jiffy;
1075 c->x86_cache_size = -1;
1076 c->x86_vendor = X86_VENDOR_UNKNOWN;
1077 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1078 c->x86_vendor_id[0] = '\0'; /* Unset */
1079 c->x86_model_id[0] = '\0'; /* Unset */
1080 c->x86_max_cores = 1;
1081 c->x86_coreid_bits = 0;
1082 c->cu_id = 0xff;
1083 #ifdef CONFIG_X86_64
1084 c->x86_clflush_size = 64;
1085 c->x86_phys_bits = 36;
1086 c->x86_virt_bits = 48;
1087 #else
1088 c->cpuid_level = -1; /* CPUID not detected */
1089 c->x86_clflush_size = 32;
1090 c->x86_phys_bits = 32;
1091 c->x86_virt_bits = 32;
1092 #endif
1093 c->x86_cache_alignment = c->x86_clflush_size;
1094 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1095
1096 generic_identify(c);
1097
1098 if (this_cpu->c_identify)
1099 this_cpu->c_identify(c);
1100
1101 /* Clear/Set all flags overridden by options, after probe */
1102 apply_forced_caps(c);
1103
1104 #ifdef CONFIG_X86_64
1105 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1106 #endif
1107
1108 /*
1109 * Vendor-specific initialization. In this section we
1110 * canonicalize the feature flags, meaning if there are
1111 * features a certain CPU supports which CPUID doesn't
1112 * tell us, CPUID claiming incorrect flags, or other bugs,
1113 * we handle them here.
1114 *
1115 * At the end of this section, c->x86_capability better
1116 * indicate the features this CPU genuinely supports!
1117 */
1118 if (this_cpu->c_init)
1119 this_cpu->c_init(c);
1120
1121 /* Disable the PN if appropriate */
1122 squash_the_stupid_serial_number(c);
1123
1124 /* Set up SMEP/SMAP */
1125 setup_smep(c);
1126 setup_smap(c);
1127
1128 /*
1129 * The vendor-specific functions might have changed features.
1130 * Now we do "generic changes."
1131 */
1132
1133 /* Filter out anything that depends on CPUID levels we don't have */
1134 filter_cpuid_features(c, true);
1135
1136 /* If the model name is still unset, do table lookup. */
1137 if (!c->x86_model_id[0]) {
1138 const char *p;
1139 p = table_lookup_model(c);
1140 if (p)
1141 strcpy(c->x86_model_id, p);
1142 else
1143 /* Last resort... */
1144 sprintf(c->x86_model_id, "%02x/%02x",
1145 c->x86, c->x86_model);
1146 }
1147
1148 #ifdef CONFIG_X86_64
1149 detect_ht(c);
1150 #endif
1151
1152 x86_init_rdrand(c);
1153 x86_init_cache_qos(c);
1154 setup_pku(c);
1155
1156 /*
1157 * Clear/Set all flags overridden by options, need do it
1158 * before following smp all cpus cap AND.
1159 */
1160 apply_forced_caps(c);
1161
1162 /*
1163 * On SMP, boot_cpu_data holds the common feature set between
1164 * all CPUs; so make sure that we indicate which features are
1165 * common between the CPUs. The first time this routine gets
1166 * executed, c == &boot_cpu_data.
1167 */
1168 if (c != &boot_cpu_data) {
1169 /* AND the already accumulated flags with these */
1170 for (i = 0; i < NCAPINTS; i++)
1171 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1172
1173 /* OR, i.e. replicate the bug flags */
1174 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1175 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1176 }
1177
1178 /* Init Machine Check Exception if available. */
1179 mcheck_cpu_init(c);
1180
1181 select_idle_routine(c);
1182
1183 #ifdef CONFIG_NUMA
1184 numa_add_cpu(smp_processor_id());
1185 #endif
1186 }
1187
1188 /*
1189 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1190 * on 32-bit kernels:
1191 */
1192 #ifdef CONFIG_X86_32
1193 void enable_sep_cpu(void)
1194 {
1195 struct tss_struct *tss;
1196 int cpu;
1197
1198 if (!boot_cpu_has(X86_FEATURE_SEP))
1199 return;
1200
1201 cpu = get_cpu();
1202 tss = &per_cpu(cpu_tss, cpu);
1203
1204 /*
1205 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1206 * see the big comment in struct x86_hw_tss's definition.
1207 */
1208
1209 tss->x86_tss.ss1 = __KERNEL_CS;
1210 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1211
1212 wrmsr(MSR_IA32_SYSENTER_ESP,
1213 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1214 0);
1215
1216 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1217
1218 put_cpu();
1219 }
1220 #endif
1221
1222 void __init identify_boot_cpu(void)
1223 {
1224 identify_cpu(&boot_cpu_data);
1225 #ifdef CONFIG_X86_32
1226 sysenter_setup();
1227 enable_sep_cpu();
1228 #endif
1229 cpu_detect_tlb(&boot_cpu_data);
1230 }
1231
1232 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1233 {
1234 BUG_ON(c == &boot_cpu_data);
1235 identify_cpu(c);
1236 #ifdef CONFIG_X86_32
1237 enable_sep_cpu();
1238 #endif
1239 mtrr_ap_init();
1240 validate_apic_and_package_id(c);
1241 }
1242
1243 static __init int setup_noclflush(char *arg)
1244 {
1245 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1246 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1247 return 1;
1248 }
1249 __setup("noclflush", setup_noclflush);
1250
1251 void print_cpu_info(struct cpuinfo_x86 *c)
1252 {
1253 const char *vendor = NULL;
1254
1255 if (c->x86_vendor < X86_VENDOR_NUM) {
1256 vendor = this_cpu->c_vendor;
1257 } else {
1258 if (c->cpuid_level >= 0)
1259 vendor = c->x86_vendor_id;
1260 }
1261
1262 if (vendor && !strstr(c->x86_model_id, vendor))
1263 pr_cont("%s ", vendor);
1264
1265 if (c->x86_model_id[0])
1266 pr_cont("%s", c->x86_model_id);
1267 else
1268 pr_cont("%d86", c->x86);
1269
1270 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1271
1272 if (c->x86_mask || c->cpuid_level >= 0)
1273 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1274 else
1275 pr_cont(")\n");
1276 }
1277
1278 static __init int setup_disablecpuid(char *arg)
1279 {
1280 int bit;
1281
1282 if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1283 setup_clear_cpu_cap(bit);
1284 else
1285 return 0;
1286
1287 return 1;
1288 }
1289 __setup("clearcpuid=", setup_disablecpuid);
1290
1291 #ifdef CONFIG_X86_64
1292 struct desc_ptr idt_descr __ro_after_init = {
1293 .size = NR_VECTORS * 16 - 1,
1294 .address = (unsigned long) idt_table,
1295 };
1296 const struct desc_ptr debug_idt_descr = {
1297 .size = NR_VECTORS * 16 - 1,
1298 .address = (unsigned long) debug_idt_table,
1299 };
1300
1301 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1302 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1303
1304 /*
1305 * The following percpu variables are hot. Align current_task to
1306 * cacheline size such that they fall in the same cacheline.
1307 */
1308 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1309 &init_task;
1310 EXPORT_PER_CPU_SYMBOL(current_task);
1311
1312 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1313 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1314
1315 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1316
1317 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1318 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1319
1320 /*
1321 * Special IST stacks which the CPU switches to when it calls
1322 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1323 * limit), all of them are 4K, except the debug stack which
1324 * is 8K.
1325 */
1326 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1327 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1328 [DEBUG_STACK - 1] = DEBUG_STKSZ
1329 };
1330
1331 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1332 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1333
1334 /* May not be marked __init: used by software suspend */
1335 void syscall_init(void)
1336 {
1337 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1338 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1339
1340 #ifdef CONFIG_IA32_EMULATION
1341 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1342 /*
1343 * This only works on Intel CPUs.
1344 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1345 * This does not cause SYSENTER to jump to the wrong location, because
1346 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1347 */
1348 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1349 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1350 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1351 #else
1352 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1353 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1354 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1355 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1356 #endif
1357
1358 /* Flags to clear on syscall */
1359 wrmsrl(MSR_SYSCALL_MASK,
1360 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1361 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1362 }
1363
1364 /*
1365 * Copies of the original ist values from the tss are only accessed during
1366 * debugging, no special alignment required.
1367 */
1368 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1369
1370 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1371 DEFINE_PER_CPU(int, debug_stack_usage);
1372
1373 int is_debug_stack(unsigned long addr)
1374 {
1375 return __this_cpu_read(debug_stack_usage) ||
1376 (addr <= __this_cpu_read(debug_stack_addr) &&
1377 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1378 }
1379 NOKPROBE_SYMBOL(is_debug_stack);
1380
1381 DEFINE_PER_CPU(u32, debug_idt_ctr);
1382
1383 void debug_stack_set_zero(void)
1384 {
1385 this_cpu_inc(debug_idt_ctr);
1386 load_current_idt();
1387 }
1388 NOKPROBE_SYMBOL(debug_stack_set_zero);
1389
1390 void debug_stack_reset(void)
1391 {
1392 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1393 return;
1394 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1395 load_current_idt();
1396 }
1397 NOKPROBE_SYMBOL(debug_stack_reset);
1398
1399 #else /* CONFIG_X86_64 */
1400
1401 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1402 EXPORT_PER_CPU_SYMBOL(current_task);
1403 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1404 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1405
1406 /*
1407 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1408 * the top of the kernel stack. Use an extra percpu variable to track the
1409 * top of the kernel stack directly.
1410 */
1411 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1412 (unsigned long)&init_thread_union + THREAD_SIZE;
1413 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1414
1415 #ifdef CONFIG_CC_STACKPROTECTOR
1416 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1417 #endif
1418
1419 #endif /* CONFIG_X86_64 */
1420
1421 /*
1422 * Clear all 6 debug registers:
1423 */
1424 static void clear_all_debug_regs(void)
1425 {
1426 int i;
1427
1428 for (i = 0; i < 8; i++) {
1429 /* Ignore db4, db5 */
1430 if ((i == 4) || (i == 5))
1431 continue;
1432
1433 set_debugreg(0, i);
1434 }
1435 }
1436
1437 #ifdef CONFIG_KGDB
1438 /*
1439 * Restore debug regs if using kgdbwait and you have a kernel debugger
1440 * connection established.
1441 */
1442 static void dbg_restore_debug_regs(void)
1443 {
1444 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1445 arch_kgdb_ops.correct_hw_break();
1446 }
1447 #else /* ! CONFIG_KGDB */
1448 #define dbg_restore_debug_regs()
1449 #endif /* ! CONFIG_KGDB */
1450
1451 static void wait_for_master_cpu(int cpu)
1452 {
1453 #ifdef CONFIG_SMP
1454 /*
1455 * wait for ACK from master CPU before continuing
1456 * with AP initialization
1457 */
1458 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1459 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1460 cpu_relax();
1461 #endif
1462 }
1463
1464 /*
1465 * cpu_init() initializes state that is per-CPU. Some data is already
1466 * initialized (naturally) in the bootstrap process, such as the GDT
1467 * and IDT. We reload them nevertheless, this function acts as a
1468 * 'CPU state barrier', nothing should get across.
1469 * A lot of state is already set up in PDA init for 64 bit
1470 */
1471 #ifdef CONFIG_X86_64
1472
1473 void cpu_init(void)
1474 {
1475 struct orig_ist *oist;
1476 struct task_struct *me;
1477 struct tss_struct *t;
1478 unsigned long v;
1479 int cpu = raw_smp_processor_id();
1480 int i;
1481
1482 wait_for_master_cpu(cpu);
1483
1484 /*
1485 * Initialize the CR4 shadow before doing anything that could
1486 * try to read it.
1487 */
1488 cr4_init_shadow();
1489
1490 if (cpu)
1491 load_ucode_ap();
1492
1493 t = &per_cpu(cpu_tss, cpu);
1494 oist = &per_cpu(orig_ist, cpu);
1495
1496 #ifdef CONFIG_NUMA
1497 if (this_cpu_read(numa_node) == 0 &&
1498 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1499 set_numa_node(early_cpu_to_node(cpu));
1500 #endif
1501
1502 me = current;
1503
1504 pr_debug("Initializing CPU#%d\n", cpu);
1505
1506 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1507
1508 /*
1509 * Initialize the per-CPU GDT with the boot GDT,
1510 * and set up the GDT descriptor:
1511 */
1512
1513 switch_to_new_gdt(cpu);
1514 loadsegment(fs, 0);
1515
1516 load_current_idt();
1517
1518 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1519 syscall_init();
1520
1521 wrmsrl(MSR_FS_BASE, 0);
1522 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1523 barrier();
1524
1525 x86_configure_nx();
1526 x2apic_setup();
1527
1528 /*
1529 * set up and load the per-CPU TSS
1530 */
1531 if (!oist->ist[0]) {
1532 char *estacks = per_cpu(exception_stacks, cpu);
1533
1534 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1535 estacks += exception_stack_sizes[v];
1536 oist->ist[v] = t->x86_tss.ist[v] =
1537 (unsigned long)estacks;
1538 if (v == DEBUG_STACK-1)
1539 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1540 }
1541 }
1542
1543 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1544
1545 /*
1546 * <= is required because the CPU will access up to
1547 * 8 bits beyond the end of the IO permission bitmap.
1548 */
1549 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1550 t->io_bitmap[i] = ~0UL;
1551
1552 mmgrab(&init_mm);
1553 me->active_mm = &init_mm;
1554 BUG_ON(me->mm);
1555 enter_lazy_tlb(&init_mm, me);
1556
1557 load_sp0(t, &current->thread);
1558 set_tss_desc(cpu, t);
1559 load_TR_desc();
1560 load_mm_ldt(&init_mm);
1561
1562 clear_all_debug_regs();
1563 dbg_restore_debug_regs();
1564
1565 fpu__init_cpu();
1566
1567 if (is_uv_system())
1568 uv_cpu_init();
1569
1570 setup_fixmap_gdt(cpu);
1571 load_fixmap_gdt(cpu);
1572 }
1573
1574 #else
1575
1576 void cpu_init(void)
1577 {
1578 int cpu = smp_processor_id();
1579 struct task_struct *curr = current;
1580 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1581 struct thread_struct *thread = &curr->thread;
1582
1583 wait_for_master_cpu(cpu);
1584
1585 /*
1586 * Initialize the CR4 shadow before doing anything that could
1587 * try to read it.
1588 */
1589 cr4_init_shadow();
1590
1591 show_ucode_info_early();
1592
1593 pr_info("Initializing CPU#%d\n", cpu);
1594
1595 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1596 boot_cpu_has(X86_FEATURE_TSC) ||
1597 boot_cpu_has(X86_FEATURE_DE))
1598 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1599
1600 load_current_idt();
1601 switch_to_new_gdt(cpu);
1602
1603 /*
1604 * Set up and load the per-CPU TSS and LDT
1605 */
1606 mmgrab(&init_mm);
1607 curr->active_mm = &init_mm;
1608 BUG_ON(curr->mm);
1609 enter_lazy_tlb(&init_mm, curr);
1610
1611 load_sp0(t, thread);
1612 set_tss_desc(cpu, t);
1613 load_TR_desc();
1614 load_mm_ldt(&init_mm);
1615
1616 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1617
1618 #ifdef CONFIG_DOUBLEFAULT
1619 /* Set up doublefault TSS pointer in the GDT */
1620 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1621 #endif
1622
1623 clear_all_debug_regs();
1624 dbg_restore_debug_regs();
1625
1626 fpu__init_cpu();
1627
1628 setup_fixmap_gdt(cpu);
1629 load_fixmap_gdt(cpu);
1630 }
1631 #endif
1632
1633 static void bsp_resume(void)
1634 {
1635 if (this_cpu->c_bsp_resume)
1636 this_cpu->c_bsp_resume(&boot_cpu_data);
1637 }
1638
1639 static struct syscore_ops cpu_syscore_ops = {
1640 .resume = bsp_resume,
1641 };
1642
1643 static int __init init_cpu_syscore(void)
1644 {
1645 register_syscore_ops(&cpu_syscore_ops);
1646 return 0;
1647 }
1648 core_initcall(init_cpu_syscore);