]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/process.c
x86/cpufeatures: Disentangle SSBD enumeration
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/sched/idle.h>
11 #include <linux/sched/debug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/pm.h>
17 #include <linux/tick.h>
18 #include <linux/random.h>
19 #include <linux/user-return-notifier.h>
20 #include <linux/dmi.h>
21 #include <linux/utsname.h>
22 #include <linux/stackprotector.h>
23 #include <linux/tick.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41 #include <asm/spec-ctrl.h>
42
43 /*
44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
46 * so they are allowed to end up in the .data..cacheline_aligned
47 * section. Since TSS's are completely CPU-local, we want them
48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
49 */
50 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51 .x86_tss = {
52 /*
53 * .sp0 is only used when entering ring 0 from a lower
54 * privilege level. Since the init task never runs anything
55 * but ring 0 code, there is no need for a valid value here.
56 * Poison it.
57 */
58 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59
60 #ifdef CONFIG_X86_64
61 /*
62 * .sp1 is cpu_current_top_of_stack. The init task never
63 * runs user code, but cpu_current_top_of_stack should still
64 * be well defined before the first context switch.
65 */
66 .sp1 = TOP_OF_INIT_STACK,
67 #endif
68
69 #ifdef CONFIG_X86_32
70 .ss0 = __KERNEL_DS,
71 .ss1 = __KERNEL_CS,
72 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
73 #endif
74 },
75 #ifdef CONFIG_X86_32
76 /*
77 * Note that the .io_bitmap member must be extra-big. This is because
78 * the CPU will access an additional byte beyond the end of the IO
79 * permission bitmap. The extra byte must be all 1 bits, and must
80 * be within the limit.
81 */
82 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
83 #endif
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89
90 /*
91 * this gets called so that we can store lazy state into memory and copy the
92 * current task into the new thread.
93 */
94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 memcpy(dst, src, arch_task_struct_size);
97 #ifdef CONFIG_VM86
98 dst->thread.vm86 = NULL;
99 #endif
100
101 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102 }
103
104 /*
105 * Free current thread data structures etc..
106 */
107 void exit_thread(struct task_struct *tsk)
108 {
109 struct thread_struct *t = &tsk->thread;
110 unsigned long *bp = t->io_bitmap_ptr;
111 struct fpu *fpu = &t->fpu;
112
113 if (bp) {
114 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115
116 t->io_bitmap_ptr = NULL;
117 clear_thread_flag(TIF_IO_BITMAP);
118 /*
119 * Careful, clear this in the TSS too:
120 */
121 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122 t->io_bitmap_max = 0;
123 put_cpu();
124 kfree(bp);
125 }
126
127 free_vm86(t);
128
129 fpu__drop(fpu);
130 }
131
132 void flush_thread(void)
133 {
134 struct task_struct *tsk = current;
135
136 flush_ptrace_hw_breakpoint(tsk);
137 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138
139 fpu__clear(&tsk->thread.fpu);
140 }
141
142 void disable_TSC(void)
143 {
144 preempt_disable();
145 if (!test_and_set_thread_flag(TIF_NOTSC))
146 /*
147 * Must flip the CPU state synchronously with
148 * TIF_NOTSC in the current running context.
149 */
150 cr4_set_bits(X86_CR4_TSD);
151 preempt_enable();
152 }
153
154 static void enable_TSC(void)
155 {
156 preempt_disable();
157 if (test_and_clear_thread_flag(TIF_NOTSC))
158 /*
159 * Must flip the CPU state synchronously with
160 * TIF_NOTSC in the current running context.
161 */
162 cr4_clear_bits(X86_CR4_TSD);
163 preempt_enable();
164 }
165
166 int get_tsc_mode(unsigned long adr)
167 {
168 unsigned int val;
169
170 if (test_thread_flag(TIF_NOTSC))
171 val = PR_TSC_SIGSEGV;
172 else
173 val = PR_TSC_ENABLE;
174
175 return put_user(val, (unsigned int __user *)adr);
176 }
177
178 int set_tsc_mode(unsigned int val)
179 {
180 if (val == PR_TSC_SIGSEGV)
181 disable_TSC();
182 else if (val == PR_TSC_ENABLE)
183 enable_TSC();
184 else
185 return -EINVAL;
186
187 return 0;
188 }
189
190 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191
192 static void set_cpuid_faulting(bool on)
193 {
194 u64 msrval;
195
196 msrval = this_cpu_read(msr_misc_features_shadow);
197 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199 this_cpu_write(msr_misc_features_shadow, msrval);
200 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201 }
202
203 static void disable_cpuid(void)
204 {
205 preempt_disable();
206 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207 /*
208 * Must flip the CPU state synchronously with
209 * TIF_NOCPUID in the current running context.
210 */
211 set_cpuid_faulting(true);
212 }
213 preempt_enable();
214 }
215
216 static void enable_cpuid(void)
217 {
218 preempt_disable();
219 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220 /*
221 * Must flip the CPU state synchronously with
222 * TIF_NOCPUID in the current running context.
223 */
224 set_cpuid_faulting(false);
225 }
226 preempt_enable();
227 }
228
229 static int get_cpuid_mode(void)
230 {
231 return !test_thread_flag(TIF_NOCPUID);
232 }
233
234 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235 {
236 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237 return -ENODEV;
238
239 if (cpuid_enabled)
240 enable_cpuid();
241 else
242 disable_cpuid();
243
244 return 0;
245 }
246
247 /*
248 * Called immediately after a successful exec.
249 */
250 void arch_setup_new_exec(void)
251 {
252 /* If cpuid was previously disabled for this task, re-enable it. */
253 if (test_thread_flag(TIF_NOCPUID))
254 enable_cpuid();
255 }
256
257 static inline void switch_to_bitmap(struct tss_struct *tss,
258 struct thread_struct *prev,
259 struct thread_struct *next,
260 unsigned long tifp, unsigned long tifn)
261 {
262 if (tifn & _TIF_IO_BITMAP) {
263 /*
264 * Copy the relevant range of the IO bitmap.
265 * Normally this is 128 bytes or less:
266 */
267 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268 max(prev->io_bitmap_max, next->io_bitmap_max));
269 /*
270 * Make sure that the TSS limit is correct for the CPU
271 * to notice the IO bitmap.
272 */
273 refresh_tss_limit();
274 } else if (tifp & _TIF_IO_BITMAP) {
275 /*
276 * Clear any possible leftover bits:
277 */
278 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
279 }
280 }
281
282 static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
283 {
284 u64 msr;
285
286 if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
287 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
288 wrmsrl(MSR_AMD64_LS_CFG, msr);
289 } else {
290 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
291 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
292 }
293 }
294
295 void speculative_store_bypass_update(void)
296 {
297 __speculative_store_bypass_update(current_thread_info()->flags);
298 }
299
300 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
301 struct tss_struct *tss)
302 {
303 struct thread_struct *prev, *next;
304 unsigned long tifp, tifn;
305
306 prev = &prev_p->thread;
307 next = &next_p->thread;
308
309 tifn = READ_ONCE(task_thread_info(next_p)->flags);
310 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
311 switch_to_bitmap(tss, prev, next, tifp, tifn);
312
313 propagate_user_return_notify(prev_p, next_p);
314
315 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
316 arch_has_block_step()) {
317 unsigned long debugctl, msk;
318
319 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
320 debugctl &= ~DEBUGCTLMSR_BTF;
321 msk = tifn & _TIF_BLOCKSTEP;
322 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
323 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
324 }
325
326 if ((tifp ^ tifn) & _TIF_NOTSC)
327 cr4_toggle_bits(X86_CR4_TSD);
328
329 if ((tifp ^ tifn) & _TIF_NOCPUID)
330 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
331
332 if ((tifp ^ tifn) & _TIF_SSBD)
333 __speculative_store_bypass_update(tifn);
334 }
335
336 /*
337 * Idle related variables and functions
338 */
339 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
340 EXPORT_SYMBOL(boot_option_idle_override);
341
342 static void (*x86_idle)(void);
343
344 #ifndef CONFIG_SMP
345 static inline void play_dead(void)
346 {
347 BUG();
348 }
349 #endif
350
351 void arch_cpu_idle_enter(void)
352 {
353 tsc_verify_tsc_adjust(false);
354 local_touch_nmi();
355 }
356
357 void arch_cpu_idle_dead(void)
358 {
359 play_dead();
360 }
361
362 /*
363 * Called from the generic idle code.
364 */
365 void arch_cpu_idle(void)
366 {
367 x86_idle();
368 }
369
370 /*
371 * We use this if we don't have any better idle routine..
372 */
373 void __cpuidle default_idle(void)
374 {
375 trace_cpu_idle_rcuidle(1, smp_processor_id());
376 safe_halt();
377 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
378 }
379 #ifdef CONFIG_APM_MODULE
380 EXPORT_SYMBOL(default_idle);
381 #endif
382
383 #ifdef CONFIG_XEN
384 bool xen_set_default_idle(void)
385 {
386 bool ret = !!x86_idle;
387
388 x86_idle = default_idle;
389
390 return ret;
391 }
392 #endif
393 void stop_this_cpu(void *dummy)
394 {
395 local_irq_disable();
396 /*
397 * Remove this CPU:
398 */
399 set_cpu_online(smp_processor_id(), false);
400 disable_local_APIC();
401 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
402
403 for (;;)
404 halt();
405 }
406
407 /*
408 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
409 * states (local apic timer and TSC stop).
410 */
411 static void amd_e400_idle(void)
412 {
413 /*
414 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
415 * gets set after static_cpu_has() places have been converted via
416 * alternatives.
417 */
418 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
419 default_idle();
420 return;
421 }
422
423 tick_broadcast_enter();
424
425 default_idle();
426
427 /*
428 * The switch back from broadcast mode needs to be called with
429 * interrupts disabled.
430 */
431 local_irq_disable();
432 tick_broadcast_exit();
433 local_irq_enable();
434 }
435
436 /*
437 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
438 * We can't rely on cpuidle installing MWAIT, because it will not load
439 * on systems that support only C1 -- so the boot default must be MWAIT.
440 *
441 * Some AMD machines are the opposite, they depend on using HALT.
442 *
443 * So for default C1, which is used during boot until cpuidle loads,
444 * use MWAIT-C1 on Intel HW that has it, else use HALT.
445 */
446 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
447 {
448 if (c->x86_vendor != X86_VENDOR_INTEL)
449 return 0;
450
451 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
452 return 0;
453
454 return 1;
455 }
456
457 /*
458 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
459 * with interrupts enabled and no flags, which is backwards compatible with the
460 * original MWAIT implementation.
461 */
462 static __cpuidle void mwait_idle(void)
463 {
464 if (!current_set_polling_and_test()) {
465 trace_cpu_idle_rcuidle(1, smp_processor_id());
466 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
467 mb(); /* quirk */
468 clflush((void *)&current_thread_info()->flags);
469 mb(); /* quirk */
470 }
471
472 if (ibrs_inuse)
473 native_wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_get_default());
474
475 __monitor((void *)&current_thread_info()->flags, 0, 0);
476 if (!need_resched()) {
477 __sti_mwait(0, 0);
478 if (ibrs_inuse)
479 native_wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_get_default() | SPEC_CTRL_IBRS);
480 } else {
481 if (ibrs_inuse)
482 native_wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_get_default() | SPEC_CTRL_IBRS);
483 local_irq_enable();
484 }
485 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
486 } else {
487 local_irq_enable();
488 }
489 __current_clr_polling();
490 }
491
492 void select_idle_routine(const struct cpuinfo_x86 *c)
493 {
494 #ifdef CONFIG_SMP
495 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
496 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
497 #endif
498 if (x86_idle || boot_option_idle_override == IDLE_POLL)
499 return;
500
501 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
502 pr_info("using AMD E400 aware idle routine\n");
503 x86_idle = amd_e400_idle;
504 } else if (prefer_mwait_c1_over_halt(c)) {
505 pr_info("using mwait in idle threads\n");
506 x86_idle = mwait_idle;
507 } else
508 x86_idle = default_idle;
509 }
510
511 void amd_e400_c1e_apic_setup(void)
512 {
513 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
514 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
515 local_irq_disable();
516 tick_broadcast_force();
517 local_irq_enable();
518 }
519 }
520
521 void __init arch_post_acpi_subsys_init(void)
522 {
523 u32 lo, hi;
524
525 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
526 return;
527
528 /*
529 * AMD E400 detection needs to happen after ACPI has been enabled. If
530 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
531 * MSR_K8_INT_PENDING_MSG.
532 */
533 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
534 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
535 return;
536
537 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
538
539 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
540 mark_tsc_unstable("TSC halt in AMD C1E");
541 pr_info("System has AMD C1E enabled\n");
542 }
543
544 static int __init idle_setup(char *str)
545 {
546 if (!str)
547 return -EINVAL;
548
549 if (!strcmp(str, "poll")) {
550 pr_info("using polling idle threads\n");
551 boot_option_idle_override = IDLE_POLL;
552 cpu_idle_poll_ctrl(true);
553 } else if (!strcmp(str, "halt")) {
554 /*
555 * When the boot option of idle=halt is added, halt is
556 * forced to be used for CPU idle. In such case CPU C2/C3
557 * won't be used again.
558 * To continue to load the CPU idle driver, don't touch
559 * the boot_option_idle_override.
560 */
561 x86_idle = default_idle;
562 boot_option_idle_override = IDLE_HALT;
563 } else if (!strcmp(str, "nomwait")) {
564 /*
565 * If the boot option of "idle=nomwait" is added,
566 * it means that mwait will be disabled for CPU C2/C3
567 * states. In such case it won't touch the variable
568 * of boot_option_idle_override.
569 */
570 boot_option_idle_override = IDLE_NOMWAIT;
571 } else
572 return -1;
573
574 return 0;
575 }
576 early_param("idle", idle_setup);
577
578 unsigned long arch_align_stack(unsigned long sp)
579 {
580 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
581 sp -= get_random_int() % 8192;
582 return sp & ~0xf;
583 }
584
585 unsigned long arch_randomize_brk(struct mm_struct *mm)
586 {
587 return randomize_page(mm->brk, 0x02000000);
588 }
589
590 /*
591 * Called from fs/proc with a reference on @p to find the function
592 * which called into schedule(). This needs to be done carefully
593 * because the task might wake up and we might look at a stack
594 * changing under us.
595 */
596 unsigned long get_wchan(struct task_struct *p)
597 {
598 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
599 int count = 0;
600
601 if (!p || p == current || p->state == TASK_RUNNING)
602 return 0;
603
604 if (!try_get_task_stack(p))
605 return 0;
606
607 start = (unsigned long)task_stack_page(p);
608 if (!start)
609 goto out;
610
611 /*
612 * Layout of the stack page:
613 *
614 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
615 * PADDING
616 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
617 * stack
618 * ----------- bottom = start
619 *
620 * The tasks stack pointer points at the location where the
621 * framepointer is stored. The data on the stack is:
622 * ... IP FP ... IP FP
623 *
624 * We need to read FP and IP, so we need to adjust the upper
625 * bound by another unsigned long.
626 */
627 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
628 top -= 2 * sizeof(unsigned long);
629 bottom = start;
630
631 sp = READ_ONCE(p->thread.sp);
632 if (sp < bottom || sp > top)
633 goto out;
634
635 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
636 do {
637 if (fp < bottom || fp > top)
638 goto out;
639 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
640 if (!in_sched_functions(ip)) {
641 ret = ip;
642 goto out;
643 }
644 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
645 } while (count++ < 16 && p->state != TASK_RUNNING);
646
647 out:
648 put_task_stack(p);
649 return ret;
650 }
651
652 long do_arch_prctl_common(struct task_struct *task, int option,
653 unsigned long cpuid_enabled)
654 {
655 switch (option) {
656 case ARCH_GET_CPUID:
657 return get_cpuid_mode();
658 case ARCH_SET_CPUID:
659 return set_cpuid_mode(task, cpuid_enabled);
660 }
661
662 return -EINVAL;
663 }