]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kernel/process.c
Merge tag 'gvt-fixes-2017-08-23' of https://github.com/01org/gvt-linux into drm-intel...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/sched/idle.h>
11 #include <linux/sched/debug.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/pm.h>
17 #include <linux/tick.h>
18 #include <linux/random.h>
19 #include <linux/user-return-notifier.h>
20 #include <linux/dmi.h>
21 #include <linux/utsname.h>
22 #include <linux/stackprotector.h>
23 #include <linux/tick.h>
24 #include <linux/cpuidle.h>
25 #include <trace/events/power.h>
26 #include <linux/hw_breakpoint.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/syscalls.h>
30 #include <linux/uaccess.h>
31 #include <asm/mwait.h>
32 #include <asm/fpu/internal.h>
33 #include <asm/debugreg.h>
34 #include <asm/nmi.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mce.h>
37 #include <asm/vm86.h>
38 #include <asm/switch_to.h>
39 #include <asm/desc.h>
40 #include <asm/prctl.h>
41
42 /*
43 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
44 * no more per-task TSS's. The TSS size is kept cacheline-aligned
45 * so they are allowed to end up in the .data..cacheline_aligned
46 * section. Since TSS's are completely CPU-local, we want them
47 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
48 */
49 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
50 .x86_tss = {
51 .sp0 = TOP_OF_INIT_STACK,
52 #ifdef CONFIG_X86_32
53 .ss0 = __KERNEL_DS,
54 .ss1 = __KERNEL_CS,
55 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
56 #endif
57 },
58 #ifdef CONFIG_X86_32
59 /*
60 * Note that the .io_bitmap member must be extra-big. This is because
61 * the CPU will access an additional byte beyond the end of the IO
62 * permission bitmap. The extra byte must be all 1 bits, and must
63 * be within the limit.
64 */
65 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
66 #endif
67 #ifdef CONFIG_X86_32
68 .SYSENTER_stack_canary = STACK_END_MAGIC,
69 #endif
70 };
71 EXPORT_PER_CPU_SYMBOL(cpu_tss);
72
73 DEFINE_PER_CPU(bool, __tss_limit_invalid);
74 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
75
76 /*
77 * this gets called so that we can store lazy state into memory and copy the
78 * current task into the new thread.
79 */
80 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
81 {
82 memcpy(dst, src, arch_task_struct_size);
83 #ifdef CONFIG_VM86
84 dst->thread.vm86 = NULL;
85 #endif
86
87 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
88 }
89
90 /*
91 * Free current thread data structures etc..
92 */
93 void exit_thread(struct task_struct *tsk)
94 {
95 struct thread_struct *t = &tsk->thread;
96 unsigned long *bp = t->io_bitmap_ptr;
97 struct fpu *fpu = &t->fpu;
98
99 if (bp) {
100 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
101
102 t->io_bitmap_ptr = NULL;
103 clear_thread_flag(TIF_IO_BITMAP);
104 /*
105 * Careful, clear this in the TSS too:
106 */
107 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
108 t->io_bitmap_max = 0;
109 put_cpu();
110 kfree(bp);
111 }
112
113 free_vm86(t);
114
115 fpu__drop(fpu);
116 }
117
118 void flush_thread(void)
119 {
120 struct task_struct *tsk = current;
121
122 flush_ptrace_hw_breakpoint(tsk);
123 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
124
125 fpu__clear(&tsk->thread.fpu);
126 }
127
128 void disable_TSC(void)
129 {
130 preempt_disable();
131 if (!test_and_set_thread_flag(TIF_NOTSC))
132 /*
133 * Must flip the CPU state synchronously with
134 * TIF_NOTSC in the current running context.
135 */
136 cr4_set_bits(X86_CR4_TSD);
137 preempt_enable();
138 }
139
140 static void enable_TSC(void)
141 {
142 preempt_disable();
143 if (test_and_clear_thread_flag(TIF_NOTSC))
144 /*
145 * Must flip the CPU state synchronously with
146 * TIF_NOTSC in the current running context.
147 */
148 cr4_clear_bits(X86_CR4_TSD);
149 preempt_enable();
150 }
151
152 int get_tsc_mode(unsigned long adr)
153 {
154 unsigned int val;
155
156 if (test_thread_flag(TIF_NOTSC))
157 val = PR_TSC_SIGSEGV;
158 else
159 val = PR_TSC_ENABLE;
160
161 return put_user(val, (unsigned int __user *)adr);
162 }
163
164 int set_tsc_mode(unsigned int val)
165 {
166 if (val == PR_TSC_SIGSEGV)
167 disable_TSC();
168 else if (val == PR_TSC_ENABLE)
169 enable_TSC();
170 else
171 return -EINVAL;
172
173 return 0;
174 }
175
176 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
177
178 static void set_cpuid_faulting(bool on)
179 {
180 u64 msrval;
181
182 msrval = this_cpu_read(msr_misc_features_shadow);
183 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
184 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
185 this_cpu_write(msr_misc_features_shadow, msrval);
186 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
187 }
188
189 static void disable_cpuid(void)
190 {
191 preempt_disable();
192 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
193 /*
194 * Must flip the CPU state synchronously with
195 * TIF_NOCPUID in the current running context.
196 */
197 set_cpuid_faulting(true);
198 }
199 preempt_enable();
200 }
201
202 static void enable_cpuid(void)
203 {
204 preempt_disable();
205 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
206 /*
207 * Must flip the CPU state synchronously with
208 * TIF_NOCPUID in the current running context.
209 */
210 set_cpuid_faulting(false);
211 }
212 preempt_enable();
213 }
214
215 static int get_cpuid_mode(void)
216 {
217 return !test_thread_flag(TIF_NOCPUID);
218 }
219
220 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
221 {
222 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
223 return -ENODEV;
224
225 if (cpuid_enabled)
226 enable_cpuid();
227 else
228 disable_cpuid();
229
230 return 0;
231 }
232
233 /*
234 * Called immediately after a successful exec.
235 */
236 void arch_setup_new_exec(void)
237 {
238 /* If cpuid was previously disabled for this task, re-enable it. */
239 if (test_thread_flag(TIF_NOCPUID))
240 enable_cpuid();
241 }
242
243 static inline void switch_to_bitmap(struct tss_struct *tss,
244 struct thread_struct *prev,
245 struct thread_struct *next,
246 unsigned long tifp, unsigned long tifn)
247 {
248 if (tifn & _TIF_IO_BITMAP) {
249 /*
250 * Copy the relevant range of the IO bitmap.
251 * Normally this is 128 bytes or less:
252 */
253 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
254 max(prev->io_bitmap_max, next->io_bitmap_max));
255 /*
256 * Make sure that the TSS limit is correct for the CPU
257 * to notice the IO bitmap.
258 */
259 refresh_tss_limit();
260 } else if (tifp & _TIF_IO_BITMAP) {
261 /*
262 * Clear any possible leftover bits:
263 */
264 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
265 }
266 }
267
268 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
269 struct tss_struct *tss)
270 {
271 struct thread_struct *prev, *next;
272 unsigned long tifp, tifn;
273
274 prev = &prev_p->thread;
275 next = &next_p->thread;
276
277 tifn = READ_ONCE(task_thread_info(next_p)->flags);
278 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
279 switch_to_bitmap(tss, prev, next, tifp, tifn);
280
281 propagate_user_return_notify(prev_p, next_p);
282
283 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
284 arch_has_block_step()) {
285 unsigned long debugctl, msk;
286
287 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
288 debugctl &= ~DEBUGCTLMSR_BTF;
289 msk = tifn & _TIF_BLOCKSTEP;
290 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
291 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
292 }
293
294 if ((tifp ^ tifn) & _TIF_NOTSC)
295 cr4_toggle_bits(X86_CR4_TSD);
296
297 if ((tifp ^ tifn) & _TIF_NOCPUID)
298 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
299 }
300
301 /*
302 * Idle related variables and functions
303 */
304 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
305 EXPORT_SYMBOL(boot_option_idle_override);
306
307 static void (*x86_idle)(void);
308
309 #ifndef CONFIG_SMP
310 static inline void play_dead(void)
311 {
312 BUG();
313 }
314 #endif
315
316 void arch_cpu_idle_enter(void)
317 {
318 tsc_verify_tsc_adjust(false);
319 local_touch_nmi();
320 }
321
322 void arch_cpu_idle_dead(void)
323 {
324 play_dead();
325 }
326
327 /*
328 * Called from the generic idle code.
329 */
330 void arch_cpu_idle(void)
331 {
332 x86_idle();
333 }
334
335 /*
336 * We use this if we don't have any better idle routine..
337 */
338 void __cpuidle default_idle(void)
339 {
340 trace_cpu_idle_rcuidle(1, smp_processor_id());
341 safe_halt();
342 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
343 }
344 #ifdef CONFIG_APM_MODULE
345 EXPORT_SYMBOL(default_idle);
346 #endif
347
348 #ifdef CONFIG_XEN
349 bool xen_set_default_idle(void)
350 {
351 bool ret = !!x86_idle;
352
353 x86_idle = default_idle;
354
355 return ret;
356 }
357 #endif
358 void stop_this_cpu(void *dummy)
359 {
360 local_irq_disable();
361 /*
362 * Remove this CPU:
363 */
364 set_cpu_online(smp_processor_id(), false);
365 disable_local_APIC();
366 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
367
368 for (;;)
369 halt();
370 }
371
372 /*
373 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
374 * states (local apic timer and TSC stop).
375 */
376 static void amd_e400_idle(void)
377 {
378 /*
379 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
380 * gets set after static_cpu_has() places have been converted via
381 * alternatives.
382 */
383 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
384 default_idle();
385 return;
386 }
387
388 tick_broadcast_enter();
389
390 default_idle();
391
392 /*
393 * The switch back from broadcast mode needs to be called with
394 * interrupts disabled.
395 */
396 local_irq_disable();
397 tick_broadcast_exit();
398 local_irq_enable();
399 }
400
401 /*
402 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
403 * We can't rely on cpuidle installing MWAIT, because it will not load
404 * on systems that support only C1 -- so the boot default must be MWAIT.
405 *
406 * Some AMD machines are the opposite, they depend on using HALT.
407 *
408 * So for default C1, which is used during boot until cpuidle loads,
409 * use MWAIT-C1 on Intel HW that has it, else use HALT.
410 */
411 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
412 {
413 if (c->x86_vendor != X86_VENDOR_INTEL)
414 return 0;
415
416 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
417 return 0;
418
419 return 1;
420 }
421
422 /*
423 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
424 * with interrupts enabled and no flags, which is backwards compatible with the
425 * original MWAIT implementation.
426 */
427 static __cpuidle void mwait_idle(void)
428 {
429 if (!current_set_polling_and_test()) {
430 trace_cpu_idle_rcuidle(1, smp_processor_id());
431 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
432 mb(); /* quirk */
433 clflush((void *)&current_thread_info()->flags);
434 mb(); /* quirk */
435 }
436
437 __monitor((void *)&current_thread_info()->flags, 0, 0);
438 if (!need_resched())
439 __sti_mwait(0, 0);
440 else
441 local_irq_enable();
442 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
443 } else {
444 local_irq_enable();
445 }
446 __current_clr_polling();
447 }
448
449 void select_idle_routine(const struct cpuinfo_x86 *c)
450 {
451 #ifdef CONFIG_SMP
452 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
453 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
454 #endif
455 if (x86_idle || boot_option_idle_override == IDLE_POLL)
456 return;
457
458 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
459 pr_info("using AMD E400 aware idle routine\n");
460 x86_idle = amd_e400_idle;
461 } else if (prefer_mwait_c1_over_halt(c)) {
462 pr_info("using mwait in idle threads\n");
463 x86_idle = mwait_idle;
464 } else
465 x86_idle = default_idle;
466 }
467
468 void amd_e400_c1e_apic_setup(void)
469 {
470 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
471 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
472 local_irq_disable();
473 tick_broadcast_force();
474 local_irq_enable();
475 }
476 }
477
478 void __init arch_post_acpi_subsys_init(void)
479 {
480 u32 lo, hi;
481
482 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
483 return;
484
485 /*
486 * AMD E400 detection needs to happen after ACPI has been enabled. If
487 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
488 * MSR_K8_INT_PENDING_MSG.
489 */
490 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
491 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
492 return;
493
494 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
495
496 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
497 mark_tsc_unstable("TSC halt in AMD C1E");
498 pr_info("System has AMD C1E enabled\n");
499 }
500
501 static int __init idle_setup(char *str)
502 {
503 if (!str)
504 return -EINVAL;
505
506 if (!strcmp(str, "poll")) {
507 pr_info("using polling idle threads\n");
508 boot_option_idle_override = IDLE_POLL;
509 cpu_idle_poll_ctrl(true);
510 } else if (!strcmp(str, "halt")) {
511 /*
512 * When the boot option of idle=halt is added, halt is
513 * forced to be used for CPU idle. In such case CPU C2/C3
514 * won't be used again.
515 * To continue to load the CPU idle driver, don't touch
516 * the boot_option_idle_override.
517 */
518 x86_idle = default_idle;
519 boot_option_idle_override = IDLE_HALT;
520 } else if (!strcmp(str, "nomwait")) {
521 /*
522 * If the boot option of "idle=nomwait" is added,
523 * it means that mwait will be disabled for CPU C2/C3
524 * states. In such case it won't touch the variable
525 * of boot_option_idle_override.
526 */
527 boot_option_idle_override = IDLE_NOMWAIT;
528 } else
529 return -1;
530
531 return 0;
532 }
533 early_param("idle", idle_setup);
534
535 unsigned long arch_align_stack(unsigned long sp)
536 {
537 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
538 sp -= get_random_int() % 8192;
539 return sp & ~0xf;
540 }
541
542 unsigned long arch_randomize_brk(struct mm_struct *mm)
543 {
544 return randomize_page(mm->brk, 0x02000000);
545 }
546
547 /*
548 * Called from fs/proc with a reference on @p to find the function
549 * which called into schedule(). This needs to be done carefully
550 * because the task might wake up and we might look at a stack
551 * changing under us.
552 */
553 unsigned long get_wchan(struct task_struct *p)
554 {
555 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
556 int count = 0;
557
558 if (!p || p == current || p->state == TASK_RUNNING)
559 return 0;
560
561 if (!try_get_task_stack(p))
562 return 0;
563
564 start = (unsigned long)task_stack_page(p);
565 if (!start)
566 goto out;
567
568 /*
569 * Layout of the stack page:
570 *
571 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
572 * PADDING
573 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
574 * stack
575 * ----------- bottom = start
576 *
577 * The tasks stack pointer points at the location where the
578 * framepointer is stored. The data on the stack is:
579 * ... IP FP ... IP FP
580 *
581 * We need to read FP and IP, so we need to adjust the upper
582 * bound by another unsigned long.
583 */
584 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
585 top -= 2 * sizeof(unsigned long);
586 bottom = start;
587
588 sp = READ_ONCE(p->thread.sp);
589 if (sp < bottom || sp > top)
590 goto out;
591
592 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
593 do {
594 if (fp < bottom || fp > top)
595 goto out;
596 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
597 if (!in_sched_functions(ip)) {
598 ret = ip;
599 goto out;
600 }
601 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
602 } while (count++ < 16 && p->state != TASK_RUNNING);
603
604 out:
605 put_task_stack(p);
606 return ret;
607 }
608
609 long do_arch_prctl_common(struct task_struct *task, int option,
610 unsigned long cpuid_enabled)
611 {
612 switch (option) {
613 case ARCH_GET_CPUID:
614 return get_cpuid_mode();
615 case ARCH_SET_CPUID:
616 return set_cpuid_mode(task, cpuid_enabled);
617 }
618
619 return -EINVAL;
620 }