]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
ce546cb07cebf23b6e0d1e436004170d69aaf570
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40
41 #include <asm/apic.h>
42 #include <asm/perf_event.h>
43 #include <asm/tlbflush.h>
44 #include <asm/desc.h>
45 #include <asm/debugreg.h>
46 #include <asm/kvm_para.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/spec-ctrl.h>
49
50 #include <asm/virtext.h>
51 #include "trace.h"
52
53 #define __ex(x) __kvm_handle_fault_on_reboot(x)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id svm_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_SVM),
60 {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
63
64 #define IOPM_ALLOC_ORDER 2
65 #define MSRPM_ALLOC_ORDER 1
66
67 #define SEG_TYPE_LDT 2
68 #define SEG_TYPE_BUSY_TSS16 3
69
70 #define SVM_FEATURE_NPT (1 << 0)
71 #define SVM_FEATURE_LBRV (1 << 1)
72 #define SVM_FEATURE_SVML (1 << 2)
73 #define SVM_FEATURE_NRIP (1 << 3)
74 #define SVM_FEATURE_TSC_RATE (1 << 4)
75 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
76 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
77 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
78 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
79
80 #define SVM_AVIC_DOORBELL 0xc001011b
81
82 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
83 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
84 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
85
86 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
87
88 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
89 #define TSC_RATIO_MIN 0x0000000000000001ULL
90 #define TSC_RATIO_MAX 0x000000ffffffffffULL
91
92 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
93
94 /*
95 * 0xff is broadcast, so the max index allowed for physical APIC ID
96 * table is 0xfe. APIC IDs above 0xff are reserved.
97 */
98 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
99
100 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
101 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
102 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
103
104 /* AVIC GATAG is encoded using VM and VCPU IDs */
105 #define AVIC_VCPU_ID_BITS 8
106 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
107
108 #define AVIC_VM_ID_BITS 24
109 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
110 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
111
112 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
113 (y & AVIC_VCPU_ID_MASK))
114 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
115 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
116
117 static bool erratum_383_found __read_mostly;
118
119 static const u32 host_save_user_msrs[] = {
120 #ifdef CONFIG_X86_64
121 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
122 MSR_FS_BASE,
123 #endif
124 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
125 MSR_TSC_AUX,
126 };
127
128 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
129
130 struct kvm_vcpu;
131
132 struct nested_state {
133 struct vmcb *hsave;
134 u64 hsave_msr;
135 u64 vm_cr_msr;
136 u64 vmcb;
137
138 /* These are the merged vectors */
139 u32 *msrpm;
140
141 /* gpa pointers to the real vectors */
142 u64 vmcb_msrpm;
143 u64 vmcb_iopm;
144
145 /* A VMEXIT is required but not yet emulated */
146 bool exit_required;
147
148 /* cache for intercepts of the guest */
149 u32 intercept_cr;
150 u32 intercept_dr;
151 u32 intercept_exceptions;
152 u64 intercept;
153
154 /* Nested Paging related state */
155 u64 nested_cr3;
156 };
157
158 #define MSRPM_OFFSETS 16
159 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
160
161 /*
162 * Set osvw_len to higher value when updated Revision Guides
163 * are published and we know what the new status bits are
164 */
165 static uint64_t osvw_len = 4, osvw_status;
166
167 struct vcpu_svm {
168 struct kvm_vcpu vcpu;
169 struct vmcb *vmcb;
170 unsigned long vmcb_pa;
171 struct svm_cpu_data *svm_data;
172 uint64_t asid_generation;
173 uint64_t sysenter_esp;
174 uint64_t sysenter_eip;
175 uint64_t tsc_aux;
176
177 u64 next_rip;
178
179 u64 spec_ctrl;
180 /*
181 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
182 * translated into the appropriate L2_CFG bits on the host to
183 * perform speculative control.
184 */
185 u64 virt_spec_ctrl;
186
187 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
188 struct {
189 u16 fs;
190 u16 gs;
191 u16 ldt;
192 u64 gs_base;
193 } host;
194
195 u32 *msrpm;
196
197 ulong nmi_iret_rip;
198
199 struct nested_state nested;
200
201 bool nmi_singlestep;
202 u64 nmi_singlestep_guest_rflags;
203
204 unsigned int3_injected;
205 unsigned long int3_rip;
206
207 /* cached guest cpuid flags for faster access */
208 bool nrips_enabled : 1;
209
210 u32 ldr_reg;
211 struct page *avic_backing_page;
212 u64 *avic_physical_id_cache;
213 bool avic_is_running;
214
215 /*
216 * Per-vcpu list of struct amd_svm_iommu_ir:
217 * This is used mainly to store interrupt remapping information used
218 * when update the vcpu affinity. This avoids the need to scan for
219 * IRTE and try to match ga_tag in the IOMMU driver.
220 */
221 struct list_head ir_list;
222 spinlock_t ir_list_lock;
223 };
224
225 /*
226 * This is a wrapper of struct amd_iommu_ir_data.
227 */
228 struct amd_svm_iommu_ir {
229 struct list_head node; /* Used by SVM for per-vcpu ir_list */
230 void *data; /* Storing pointer to struct amd_ir_data */
231 };
232
233 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
234 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
235
236 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
237 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
238 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
239 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
240
241 static DEFINE_PER_CPU(u64, current_tsc_ratio);
242 #define TSC_RATIO_DEFAULT 0x0100000000ULL
243
244 #define MSR_INVALID 0xffffffffU
245
246 static const struct svm_direct_access_msrs {
247 u32 index; /* Index of the MSR */
248 bool always; /* True if intercept is always on */
249 } direct_access_msrs[] = {
250 { .index = MSR_STAR, .always = true },
251 { .index = MSR_IA32_SYSENTER_CS, .always = true },
252 #ifdef CONFIG_X86_64
253 { .index = MSR_GS_BASE, .always = true },
254 { .index = MSR_FS_BASE, .always = true },
255 { .index = MSR_KERNEL_GS_BASE, .always = true },
256 { .index = MSR_LSTAR, .always = true },
257 { .index = MSR_CSTAR, .always = true },
258 { .index = MSR_SYSCALL_MASK, .always = true },
259 #endif
260 { .index = MSR_IA32_SPEC_CTRL, .always = true },
261 { .index = MSR_IA32_PRED_CMD, .always = true },
262 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
263 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
264 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
265 { .index = MSR_IA32_LASTINTTOIP, .always = false },
266 { .index = MSR_INVALID, .always = false },
267 };
268
269 /* enable NPT for AMD64 and X86 with PAE */
270 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
271 static bool npt_enabled = true;
272 #else
273 static bool npt_enabled;
274 #endif
275
276 /* allow nested paging (virtualized MMU) for all guests */
277 static int npt = true;
278 module_param(npt, int, S_IRUGO);
279
280 /* allow nested virtualization in KVM/SVM */
281 static int nested = true;
282 module_param(nested, int, S_IRUGO);
283
284 /* enable / disable AVIC */
285 static int avic;
286 #ifdef CONFIG_X86_LOCAL_APIC
287 module_param(avic, int, S_IRUGO);
288 #endif
289
290 /* enable/disable Virtual VMLOAD VMSAVE */
291 static int vls = true;
292 module_param(vls, int, 0444);
293
294 /* AVIC VM ID bit masks and lock */
295 static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
296 static DEFINE_SPINLOCK(avic_vm_id_lock);
297
298 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
299 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
300 static void svm_complete_interrupts(struct vcpu_svm *svm);
301
302 static int nested_svm_exit_handled(struct vcpu_svm *svm);
303 static int nested_svm_intercept(struct vcpu_svm *svm);
304 static int nested_svm_vmexit(struct vcpu_svm *svm);
305 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
306 bool has_error_code, u32 error_code);
307
308 enum {
309 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
310 pause filter count */
311 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
312 VMCB_ASID, /* ASID */
313 VMCB_INTR, /* int_ctl, int_vector */
314 VMCB_NPT, /* npt_en, nCR3, gPAT */
315 VMCB_CR, /* CR0, CR3, CR4, EFER */
316 VMCB_DR, /* DR6, DR7 */
317 VMCB_DT, /* GDT, IDT */
318 VMCB_SEG, /* CS, DS, SS, ES, CPL */
319 VMCB_CR2, /* CR2 only */
320 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
321 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
322 * AVIC PHYSICAL_TABLE pointer,
323 * AVIC LOGICAL_TABLE pointer
324 */
325 VMCB_DIRTY_MAX,
326 };
327
328 /* TPR and CR2 are always written before VMRUN */
329 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
330
331 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
332
333 static inline void mark_all_dirty(struct vmcb *vmcb)
334 {
335 vmcb->control.clean = 0;
336 }
337
338 static inline void mark_all_clean(struct vmcb *vmcb)
339 {
340 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
341 & ~VMCB_ALWAYS_DIRTY_MASK;
342 }
343
344 static inline void mark_dirty(struct vmcb *vmcb, int bit)
345 {
346 vmcb->control.clean &= ~(1 << bit);
347 }
348
349 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
350 {
351 return container_of(vcpu, struct vcpu_svm, vcpu);
352 }
353
354 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
355 {
356 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
357 mark_dirty(svm->vmcb, VMCB_AVIC);
358 }
359
360 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
361 {
362 struct vcpu_svm *svm = to_svm(vcpu);
363 u64 *entry = svm->avic_physical_id_cache;
364
365 if (!entry)
366 return false;
367
368 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
369 }
370
371 static void recalc_intercepts(struct vcpu_svm *svm)
372 {
373 struct vmcb_control_area *c, *h;
374 struct nested_state *g;
375
376 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
377
378 if (!is_guest_mode(&svm->vcpu))
379 return;
380
381 c = &svm->vmcb->control;
382 h = &svm->nested.hsave->control;
383 g = &svm->nested;
384
385 c->intercept_cr = h->intercept_cr | g->intercept_cr;
386 c->intercept_dr = h->intercept_dr | g->intercept_dr;
387 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
388 c->intercept = h->intercept | g->intercept;
389 }
390
391 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
392 {
393 if (is_guest_mode(&svm->vcpu))
394 return svm->nested.hsave;
395 else
396 return svm->vmcb;
397 }
398
399 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
400 {
401 struct vmcb *vmcb = get_host_vmcb(svm);
402
403 vmcb->control.intercept_cr |= (1U << bit);
404
405 recalc_intercepts(svm);
406 }
407
408 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
409 {
410 struct vmcb *vmcb = get_host_vmcb(svm);
411
412 vmcb->control.intercept_cr &= ~(1U << bit);
413
414 recalc_intercepts(svm);
415 }
416
417 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
418 {
419 struct vmcb *vmcb = get_host_vmcb(svm);
420
421 return vmcb->control.intercept_cr & (1U << bit);
422 }
423
424 static inline void set_dr_intercepts(struct vcpu_svm *svm)
425 {
426 struct vmcb *vmcb = get_host_vmcb(svm);
427
428 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
429 | (1 << INTERCEPT_DR1_READ)
430 | (1 << INTERCEPT_DR2_READ)
431 | (1 << INTERCEPT_DR3_READ)
432 | (1 << INTERCEPT_DR4_READ)
433 | (1 << INTERCEPT_DR5_READ)
434 | (1 << INTERCEPT_DR6_READ)
435 | (1 << INTERCEPT_DR7_READ)
436 | (1 << INTERCEPT_DR0_WRITE)
437 | (1 << INTERCEPT_DR1_WRITE)
438 | (1 << INTERCEPT_DR2_WRITE)
439 | (1 << INTERCEPT_DR3_WRITE)
440 | (1 << INTERCEPT_DR4_WRITE)
441 | (1 << INTERCEPT_DR5_WRITE)
442 | (1 << INTERCEPT_DR6_WRITE)
443 | (1 << INTERCEPT_DR7_WRITE);
444
445 recalc_intercepts(svm);
446 }
447
448 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
449 {
450 struct vmcb *vmcb = get_host_vmcb(svm);
451
452 vmcb->control.intercept_dr = 0;
453
454 recalc_intercepts(svm);
455 }
456
457 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
458 {
459 struct vmcb *vmcb = get_host_vmcb(svm);
460
461 vmcb->control.intercept_exceptions |= (1U << bit);
462
463 recalc_intercepts(svm);
464 }
465
466 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
467 {
468 struct vmcb *vmcb = get_host_vmcb(svm);
469
470 vmcb->control.intercept_exceptions &= ~(1U << bit);
471
472 recalc_intercepts(svm);
473 }
474
475 static inline void set_intercept(struct vcpu_svm *svm, int bit)
476 {
477 struct vmcb *vmcb = get_host_vmcb(svm);
478
479 vmcb->control.intercept |= (1ULL << bit);
480
481 recalc_intercepts(svm);
482 }
483
484 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
485 {
486 struct vmcb *vmcb = get_host_vmcb(svm);
487
488 vmcb->control.intercept &= ~(1ULL << bit);
489
490 recalc_intercepts(svm);
491 }
492
493 static inline void enable_gif(struct vcpu_svm *svm)
494 {
495 svm->vcpu.arch.hflags |= HF_GIF_MASK;
496 }
497
498 static inline void disable_gif(struct vcpu_svm *svm)
499 {
500 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
501 }
502
503 static inline bool gif_set(struct vcpu_svm *svm)
504 {
505 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
506 }
507
508 static unsigned long iopm_base;
509
510 struct kvm_ldttss_desc {
511 u16 limit0;
512 u16 base0;
513 unsigned base1:8, type:5, dpl:2, p:1;
514 unsigned limit1:4, zero0:3, g:1, base2:8;
515 u32 base3;
516 u32 zero1;
517 } __attribute__((packed));
518
519 struct svm_cpu_data {
520 int cpu;
521
522 u64 asid_generation;
523 u32 max_asid;
524 u32 next_asid;
525 struct kvm_ldttss_desc *tss_desc;
526
527 struct page *save_area;
528
529 struct vmcb *current_vmcb;
530 };
531
532 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
533
534 struct svm_init_data {
535 int cpu;
536 int r;
537 };
538
539 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
540
541 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
542 #define MSRS_RANGE_SIZE 2048
543 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
544
545 static u32 svm_msrpm_offset(u32 msr)
546 {
547 u32 offset;
548 int i;
549
550 for (i = 0; i < NUM_MSR_MAPS; i++) {
551 if (msr < msrpm_ranges[i] ||
552 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
553 continue;
554
555 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
556 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
557
558 /* Now we have the u8 offset - but need the u32 offset */
559 return offset / 4;
560 }
561
562 /* MSR not in any range */
563 return MSR_INVALID;
564 }
565
566 #define MAX_INST_SIZE 15
567
568 static inline void clgi(void)
569 {
570 asm volatile (__ex(SVM_CLGI));
571 }
572
573 static inline void stgi(void)
574 {
575 asm volatile (__ex(SVM_STGI));
576 }
577
578 static inline void invlpga(unsigned long addr, u32 asid)
579 {
580 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
581 }
582
583 static int get_npt_level(void)
584 {
585 #ifdef CONFIG_X86_64
586 return PT64_ROOT_LEVEL;
587 #else
588 return PT32E_ROOT_LEVEL;
589 #endif
590 }
591
592 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
593 {
594 vcpu->arch.efer = efer;
595 if (!npt_enabled && !(efer & EFER_LMA))
596 efer &= ~EFER_LME;
597
598 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
599 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
600 }
601
602 static int is_external_interrupt(u32 info)
603 {
604 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
605 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
606 }
607
608 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
609 {
610 struct vcpu_svm *svm = to_svm(vcpu);
611 u32 ret = 0;
612
613 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
614 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
615 return ret;
616 }
617
618 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
619 {
620 struct vcpu_svm *svm = to_svm(vcpu);
621
622 if (mask == 0)
623 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
624 else
625 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
626
627 }
628
629 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
630 {
631 struct vcpu_svm *svm = to_svm(vcpu);
632
633 if (svm->vmcb->control.next_rip != 0) {
634 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
635 svm->next_rip = svm->vmcb->control.next_rip;
636 }
637
638 if (!svm->next_rip) {
639 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
640 EMULATE_DONE)
641 printk(KERN_DEBUG "%s: NOP\n", __func__);
642 return;
643 }
644 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
645 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
646 __func__, kvm_rip_read(vcpu), svm->next_rip);
647
648 kvm_rip_write(vcpu, svm->next_rip);
649 svm_set_interrupt_shadow(vcpu, 0);
650 }
651
652 static void svm_queue_exception(struct kvm_vcpu *vcpu)
653 {
654 struct vcpu_svm *svm = to_svm(vcpu);
655 unsigned nr = vcpu->arch.exception.nr;
656 bool has_error_code = vcpu->arch.exception.has_error_code;
657 bool reinject = vcpu->arch.exception.reinject;
658 u32 error_code = vcpu->arch.exception.error_code;
659
660 /*
661 * If we are within a nested VM we'd better #VMEXIT and let the guest
662 * handle the exception
663 */
664 if (!reinject &&
665 nested_svm_check_exception(svm, nr, has_error_code, error_code))
666 return;
667
668 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
669 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
670
671 /*
672 * For guest debugging where we have to reinject #BP if some
673 * INT3 is guest-owned:
674 * Emulate nRIP by moving RIP forward. Will fail if injection
675 * raises a fault that is not intercepted. Still better than
676 * failing in all cases.
677 */
678 skip_emulated_instruction(&svm->vcpu);
679 rip = kvm_rip_read(&svm->vcpu);
680 svm->int3_rip = rip + svm->vmcb->save.cs.base;
681 svm->int3_injected = rip - old_rip;
682 }
683
684 svm->vmcb->control.event_inj = nr
685 | SVM_EVTINJ_VALID
686 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
687 | SVM_EVTINJ_TYPE_EXEPT;
688 svm->vmcb->control.event_inj_err = error_code;
689 }
690
691 static void svm_init_erratum_383(void)
692 {
693 u32 low, high;
694 int err;
695 u64 val;
696
697 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
698 return;
699
700 /* Use _safe variants to not break nested virtualization */
701 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
702 if (err)
703 return;
704
705 val |= (1ULL << 47);
706
707 low = lower_32_bits(val);
708 high = upper_32_bits(val);
709
710 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
711
712 erratum_383_found = true;
713 }
714
715 static void svm_init_osvw(struct kvm_vcpu *vcpu)
716 {
717 /*
718 * Guests should see errata 400 and 415 as fixed (assuming that
719 * HLT and IO instructions are intercepted).
720 */
721 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
722 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
723
724 /*
725 * By increasing VCPU's osvw.length to 3 we are telling the guest that
726 * all osvw.status bits inside that length, including bit 0 (which is
727 * reserved for erratum 298), are valid. However, if host processor's
728 * osvw_len is 0 then osvw_status[0] carries no information. We need to
729 * be conservative here and therefore we tell the guest that erratum 298
730 * is present (because we really don't know).
731 */
732 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
733 vcpu->arch.osvw.status |= 1;
734 }
735
736 static int has_svm(void)
737 {
738 const char *msg;
739
740 if (!cpu_has_svm(&msg)) {
741 printk(KERN_INFO "has_svm: %s\n", msg);
742 return 0;
743 }
744
745 return 1;
746 }
747
748 static void svm_hardware_disable(void)
749 {
750 /* Make sure we clean up behind us */
751 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
752 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
753
754 cpu_svm_disable();
755
756 amd_pmu_disable_virt();
757 }
758
759 static int svm_hardware_enable(void)
760 {
761
762 struct svm_cpu_data *sd;
763 uint64_t efer;
764 struct desc_struct *gdt;
765 int me = raw_smp_processor_id();
766
767 rdmsrl(MSR_EFER, efer);
768 if (efer & EFER_SVME)
769 return -EBUSY;
770
771 if (!has_svm()) {
772 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
773 return -EINVAL;
774 }
775 sd = per_cpu(svm_data, me);
776 if (!sd) {
777 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
778 return -EINVAL;
779 }
780
781 sd->asid_generation = 1;
782 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
783 sd->next_asid = sd->max_asid + 1;
784
785 gdt = get_current_gdt_rw();
786 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
787
788 wrmsrl(MSR_EFER, efer | EFER_SVME);
789
790 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
791
792 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
793 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
794 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
795 }
796
797
798 /*
799 * Get OSVW bits.
800 *
801 * Note that it is possible to have a system with mixed processor
802 * revisions and therefore different OSVW bits. If bits are not the same
803 * on different processors then choose the worst case (i.e. if erratum
804 * is present on one processor and not on another then assume that the
805 * erratum is present everywhere).
806 */
807 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
808 uint64_t len, status = 0;
809 int err;
810
811 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
812 if (!err)
813 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
814 &err);
815
816 if (err)
817 osvw_status = osvw_len = 0;
818 else {
819 if (len < osvw_len)
820 osvw_len = len;
821 osvw_status |= status;
822 osvw_status &= (1ULL << osvw_len) - 1;
823 }
824 } else
825 osvw_status = osvw_len = 0;
826
827 svm_init_erratum_383();
828
829 amd_pmu_enable_virt();
830
831 return 0;
832 }
833
834 static void svm_cpu_uninit(int cpu)
835 {
836 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
837
838 if (!sd)
839 return;
840
841 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
842 __free_page(sd->save_area);
843 kfree(sd);
844 }
845
846 static int svm_cpu_init(int cpu)
847 {
848 struct svm_cpu_data *sd;
849 int r;
850
851 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
852 if (!sd)
853 return -ENOMEM;
854 sd->cpu = cpu;
855 sd->save_area = alloc_page(GFP_KERNEL);
856 r = -ENOMEM;
857 if (!sd->save_area)
858 goto err_1;
859
860 per_cpu(svm_data, cpu) = sd;
861
862 return 0;
863
864 err_1:
865 kfree(sd);
866 return r;
867
868 }
869
870 static bool valid_msr_intercept(u32 index)
871 {
872 int i;
873
874 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
875 if (direct_access_msrs[i].index == index)
876 return true;
877
878 return false;
879 }
880
881 static void set_msr_interception(u32 *msrpm, unsigned msr,
882 int read, int write)
883 {
884 u8 bit_read, bit_write;
885 unsigned long tmp;
886 u32 offset;
887
888 /*
889 * If this warning triggers extend the direct_access_msrs list at the
890 * beginning of the file
891 */
892 WARN_ON(!valid_msr_intercept(msr));
893
894 offset = svm_msrpm_offset(msr);
895 bit_read = 2 * (msr & 0x0f);
896 bit_write = 2 * (msr & 0x0f) + 1;
897 tmp = msrpm[offset];
898
899 BUG_ON(offset == MSR_INVALID);
900
901 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
902 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
903
904 msrpm[offset] = tmp;
905 }
906
907 static void svm_vcpu_init_msrpm(u32 *msrpm)
908 {
909 int i;
910
911 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
912
913 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
914 if (!direct_access_msrs[i].always)
915 continue;
916
917 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
918 }
919 }
920
921 static void add_msr_offset(u32 offset)
922 {
923 int i;
924
925 for (i = 0; i < MSRPM_OFFSETS; ++i) {
926
927 /* Offset already in list? */
928 if (msrpm_offsets[i] == offset)
929 return;
930
931 /* Slot used by another offset? */
932 if (msrpm_offsets[i] != MSR_INVALID)
933 continue;
934
935 /* Add offset to list */
936 msrpm_offsets[i] = offset;
937
938 return;
939 }
940
941 /*
942 * If this BUG triggers the msrpm_offsets table has an overflow. Just
943 * increase MSRPM_OFFSETS in this case.
944 */
945 BUG();
946 }
947
948 static void init_msrpm_offsets(void)
949 {
950 int i;
951
952 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
953
954 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
955 u32 offset;
956
957 offset = svm_msrpm_offset(direct_access_msrs[i].index);
958 BUG_ON(offset == MSR_INVALID);
959
960 add_msr_offset(offset);
961 }
962 }
963
964 static void svm_enable_lbrv(struct vcpu_svm *svm)
965 {
966 u32 *msrpm = svm->msrpm;
967
968 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
969 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
970 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
971 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
972 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
973 }
974
975 static void svm_disable_lbrv(struct vcpu_svm *svm)
976 {
977 u32 *msrpm = svm->msrpm;
978
979 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
980 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
981 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
982 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
983 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
984 }
985
986 static void disable_nmi_singlestep(struct vcpu_svm *svm)
987 {
988 svm->nmi_singlestep = false;
989 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
990 /* Clear our flags if they were not set by the guest */
991 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
992 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
993 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
994 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
995 }
996 }
997
998 /* Note:
999 * This hash table is used to map VM_ID to a struct kvm_arch,
1000 * when handling AMD IOMMU GALOG notification to schedule in
1001 * a particular vCPU.
1002 */
1003 #define SVM_VM_DATA_HASH_BITS 8
1004 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1005 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1006
1007 /* Note:
1008 * This function is called from IOMMU driver to notify
1009 * SVM to schedule in a particular vCPU of a particular VM.
1010 */
1011 static int avic_ga_log_notifier(u32 ga_tag)
1012 {
1013 unsigned long flags;
1014 struct kvm_arch *ka = NULL;
1015 struct kvm_vcpu *vcpu = NULL;
1016 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1017 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1018
1019 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1020
1021 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1022 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1023 struct kvm *kvm = container_of(ka, struct kvm, arch);
1024 struct kvm_arch *vm_data = &kvm->arch;
1025
1026 if (vm_data->avic_vm_id != vm_id)
1027 continue;
1028 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1029 break;
1030 }
1031 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1032
1033 if (!vcpu)
1034 return 0;
1035
1036 /* Note:
1037 * At this point, the IOMMU should have already set the pending
1038 * bit in the vAPIC backing page. So, we just need to schedule
1039 * in the vcpu.
1040 */
1041 if (vcpu->mode == OUTSIDE_GUEST_MODE)
1042 kvm_vcpu_wake_up(vcpu);
1043
1044 return 0;
1045 }
1046
1047 static __init int svm_hardware_setup(void)
1048 {
1049 int cpu;
1050 struct page *iopm_pages;
1051 void *iopm_va;
1052 int r;
1053
1054 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1055
1056 if (!iopm_pages)
1057 return -ENOMEM;
1058
1059 iopm_va = page_address(iopm_pages);
1060 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1061 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1062
1063 init_msrpm_offsets();
1064
1065 if (boot_cpu_has(X86_FEATURE_NX))
1066 kvm_enable_efer_bits(EFER_NX);
1067
1068 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1069 kvm_enable_efer_bits(EFER_FFXSR);
1070
1071 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1072 kvm_has_tsc_control = true;
1073 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1074 kvm_tsc_scaling_ratio_frac_bits = 32;
1075 }
1076
1077 if (nested) {
1078 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1079 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1080 }
1081
1082 for_each_possible_cpu(cpu) {
1083 r = svm_cpu_init(cpu);
1084 if (r)
1085 goto err;
1086 }
1087
1088 if (!boot_cpu_has(X86_FEATURE_NPT))
1089 npt_enabled = false;
1090
1091 if (npt_enabled && !npt) {
1092 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1093 npt_enabled = false;
1094 }
1095
1096 if (npt_enabled) {
1097 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1098 kvm_enable_tdp();
1099 } else
1100 kvm_disable_tdp();
1101
1102 if (avic) {
1103 if (!npt_enabled ||
1104 !boot_cpu_has(X86_FEATURE_AVIC) ||
1105 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1106 avic = false;
1107 } else {
1108 pr_info("AVIC enabled\n");
1109
1110 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1111 }
1112 }
1113
1114 if (vls) {
1115 if (!npt_enabled ||
1116 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1117 !IS_ENABLED(CONFIG_X86_64)) {
1118 vls = false;
1119 } else {
1120 pr_info("Virtual VMLOAD VMSAVE supported\n");
1121 }
1122 }
1123
1124 return 0;
1125
1126 err:
1127 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1128 iopm_base = 0;
1129 return r;
1130 }
1131
1132 static __exit void svm_hardware_unsetup(void)
1133 {
1134 int cpu;
1135
1136 for_each_possible_cpu(cpu)
1137 svm_cpu_uninit(cpu);
1138
1139 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1140 iopm_base = 0;
1141 }
1142
1143 static void init_seg(struct vmcb_seg *seg)
1144 {
1145 seg->selector = 0;
1146 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1147 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1148 seg->limit = 0xffff;
1149 seg->base = 0;
1150 }
1151
1152 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1153 {
1154 seg->selector = 0;
1155 seg->attrib = SVM_SELECTOR_P_MASK | type;
1156 seg->limit = 0xffff;
1157 seg->base = 0;
1158 }
1159
1160 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1161 {
1162 struct vcpu_svm *svm = to_svm(vcpu);
1163 u64 g_tsc_offset = 0;
1164
1165 if (is_guest_mode(vcpu)) {
1166 g_tsc_offset = svm->vmcb->control.tsc_offset -
1167 svm->nested.hsave->control.tsc_offset;
1168 svm->nested.hsave->control.tsc_offset = offset;
1169 } else
1170 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1171 svm->vmcb->control.tsc_offset,
1172 offset);
1173
1174 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1175
1176 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1177 }
1178
1179 static void avic_init_vmcb(struct vcpu_svm *svm)
1180 {
1181 struct vmcb *vmcb = svm->vmcb;
1182 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1183 phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1184 phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1185 phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1186
1187 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1188 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1189 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1190 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1191 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1192 svm->vcpu.arch.apicv_active = true;
1193 }
1194
1195 static void init_vmcb(struct vcpu_svm *svm)
1196 {
1197 struct vmcb_control_area *control = &svm->vmcb->control;
1198 struct vmcb_save_area *save = &svm->vmcb->save;
1199
1200 svm->vcpu.arch.hflags = 0;
1201
1202 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1203 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1204 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1205 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1206 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1207 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1208 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1209 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1210
1211 set_dr_intercepts(svm);
1212
1213 set_exception_intercept(svm, PF_VECTOR);
1214 set_exception_intercept(svm, UD_VECTOR);
1215 set_exception_intercept(svm, MC_VECTOR);
1216 set_exception_intercept(svm, AC_VECTOR);
1217 set_exception_intercept(svm, DB_VECTOR);
1218
1219 set_intercept(svm, INTERCEPT_INTR);
1220 set_intercept(svm, INTERCEPT_NMI);
1221 set_intercept(svm, INTERCEPT_SMI);
1222 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1223 set_intercept(svm, INTERCEPT_RDPMC);
1224 set_intercept(svm, INTERCEPT_CPUID);
1225 set_intercept(svm, INTERCEPT_INVD);
1226 set_intercept(svm, INTERCEPT_HLT);
1227 set_intercept(svm, INTERCEPT_INVLPG);
1228 set_intercept(svm, INTERCEPT_INVLPGA);
1229 set_intercept(svm, INTERCEPT_IOIO_PROT);
1230 set_intercept(svm, INTERCEPT_MSR_PROT);
1231 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1232 set_intercept(svm, INTERCEPT_SHUTDOWN);
1233 set_intercept(svm, INTERCEPT_VMRUN);
1234 set_intercept(svm, INTERCEPT_VMMCALL);
1235 set_intercept(svm, INTERCEPT_VMLOAD);
1236 set_intercept(svm, INTERCEPT_VMSAVE);
1237 set_intercept(svm, INTERCEPT_STGI);
1238 set_intercept(svm, INTERCEPT_CLGI);
1239 set_intercept(svm, INTERCEPT_SKINIT);
1240 set_intercept(svm, INTERCEPT_WBINVD);
1241 set_intercept(svm, INTERCEPT_XSETBV);
1242
1243 if (!kvm_mwait_in_guest()) {
1244 set_intercept(svm, INTERCEPT_MONITOR);
1245 set_intercept(svm, INTERCEPT_MWAIT);
1246 }
1247
1248 control->iopm_base_pa = iopm_base;
1249 control->msrpm_base_pa = __pa(svm->msrpm);
1250 control->int_ctl = V_INTR_MASKING_MASK;
1251
1252 init_seg(&save->es);
1253 init_seg(&save->ss);
1254 init_seg(&save->ds);
1255 init_seg(&save->fs);
1256 init_seg(&save->gs);
1257
1258 save->cs.selector = 0xf000;
1259 save->cs.base = 0xffff0000;
1260 /* Executable/Readable Code Segment */
1261 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1262 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1263 save->cs.limit = 0xffff;
1264
1265 save->gdtr.limit = 0xffff;
1266 save->idtr.limit = 0xffff;
1267
1268 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1269 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1270
1271 svm_set_efer(&svm->vcpu, 0);
1272 save->dr6 = 0xffff0ff0;
1273 kvm_set_rflags(&svm->vcpu, 2);
1274 save->rip = 0x0000fff0;
1275 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1276
1277 /*
1278 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1279 * It also updates the guest-visible cr0 value.
1280 */
1281 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1282 kvm_mmu_reset_context(&svm->vcpu);
1283
1284 save->cr4 = X86_CR4_PAE;
1285 /* rdx = ?? */
1286
1287 if (npt_enabled) {
1288 /* Setup VMCB for Nested Paging */
1289 control->nested_ctl = 1;
1290 clr_intercept(svm, INTERCEPT_INVLPG);
1291 clr_exception_intercept(svm, PF_VECTOR);
1292 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1293 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1294 save->g_pat = svm->vcpu.arch.pat;
1295 save->cr3 = 0;
1296 save->cr4 = 0;
1297 }
1298 svm->asid_generation = 0;
1299
1300 svm->nested.vmcb = 0;
1301 svm->vcpu.arch.hflags = 0;
1302
1303 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1304 control->pause_filter_count = 3000;
1305 set_intercept(svm, INTERCEPT_PAUSE);
1306 }
1307
1308 if (avic)
1309 avic_init_vmcb(svm);
1310
1311 /*
1312 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1313 * in VMCB and clear intercepts to avoid #VMEXIT.
1314 */
1315 if (vls) {
1316 clr_intercept(svm, INTERCEPT_VMLOAD);
1317 clr_intercept(svm, INTERCEPT_VMSAVE);
1318 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1319 }
1320
1321 mark_all_dirty(svm->vmcb);
1322
1323 enable_gif(svm);
1324
1325 }
1326
1327 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1328 unsigned int index)
1329 {
1330 u64 *avic_physical_id_table;
1331 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1332
1333 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1334 return NULL;
1335
1336 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1337
1338 return &avic_physical_id_table[index];
1339 }
1340
1341 /**
1342 * Note:
1343 * AVIC hardware walks the nested page table to check permissions,
1344 * but does not use the SPA address specified in the leaf page
1345 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1346 * field of the VMCB. Therefore, we set up the
1347 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1348 */
1349 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1350 {
1351 struct kvm *kvm = vcpu->kvm;
1352 int ret;
1353
1354 if (kvm->arch.apic_access_page_done)
1355 return 0;
1356
1357 ret = x86_set_memory_region(kvm,
1358 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1359 APIC_DEFAULT_PHYS_BASE,
1360 PAGE_SIZE);
1361 if (ret)
1362 return ret;
1363
1364 kvm->arch.apic_access_page_done = true;
1365 return 0;
1366 }
1367
1368 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1369 {
1370 int ret;
1371 u64 *entry, new_entry;
1372 int id = vcpu->vcpu_id;
1373 struct vcpu_svm *svm = to_svm(vcpu);
1374
1375 ret = avic_init_access_page(vcpu);
1376 if (ret)
1377 return ret;
1378
1379 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1380 return -EINVAL;
1381
1382 if (!svm->vcpu.arch.apic->regs)
1383 return -EINVAL;
1384
1385 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1386
1387 /* Setting AVIC backing page address in the phy APIC ID table */
1388 entry = avic_get_physical_id_entry(vcpu, id);
1389 if (!entry)
1390 return -EINVAL;
1391
1392 new_entry = READ_ONCE(*entry);
1393 new_entry = (page_to_phys(svm->avic_backing_page) &
1394 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1395 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1396 WRITE_ONCE(*entry, new_entry);
1397
1398 svm->avic_physical_id_cache = entry;
1399
1400 return 0;
1401 }
1402
1403 static inline int avic_get_next_vm_id(void)
1404 {
1405 int id;
1406
1407 spin_lock(&avic_vm_id_lock);
1408
1409 /* AVIC VM ID is one-based. */
1410 id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1411 if (id <= AVIC_VM_ID_MASK)
1412 __set_bit(id, avic_vm_id_bitmap);
1413 else
1414 id = -EAGAIN;
1415
1416 spin_unlock(&avic_vm_id_lock);
1417 return id;
1418 }
1419
1420 static inline int avic_free_vm_id(int id)
1421 {
1422 if (id <= 0 || id > AVIC_VM_ID_MASK)
1423 return -EINVAL;
1424
1425 spin_lock(&avic_vm_id_lock);
1426 __clear_bit(id, avic_vm_id_bitmap);
1427 spin_unlock(&avic_vm_id_lock);
1428 return 0;
1429 }
1430
1431 static void avic_vm_destroy(struct kvm *kvm)
1432 {
1433 unsigned long flags;
1434 struct kvm_arch *vm_data = &kvm->arch;
1435
1436 if (!avic)
1437 return;
1438
1439 avic_free_vm_id(vm_data->avic_vm_id);
1440
1441 if (vm_data->avic_logical_id_table_page)
1442 __free_page(vm_data->avic_logical_id_table_page);
1443 if (vm_data->avic_physical_id_table_page)
1444 __free_page(vm_data->avic_physical_id_table_page);
1445
1446 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1447 hash_del(&vm_data->hnode);
1448 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1449 }
1450
1451 static int avic_vm_init(struct kvm *kvm)
1452 {
1453 unsigned long flags;
1454 int vm_id, err = -ENOMEM;
1455 struct kvm_arch *vm_data = &kvm->arch;
1456 struct page *p_page;
1457 struct page *l_page;
1458
1459 if (!avic)
1460 return 0;
1461
1462 vm_id = avic_get_next_vm_id();
1463 if (vm_id < 0)
1464 return vm_id;
1465 vm_data->avic_vm_id = (u32)vm_id;
1466
1467 /* Allocating physical APIC ID table (4KB) */
1468 p_page = alloc_page(GFP_KERNEL);
1469 if (!p_page)
1470 goto free_avic;
1471
1472 vm_data->avic_physical_id_table_page = p_page;
1473 clear_page(page_address(p_page));
1474
1475 /* Allocating logical APIC ID table (4KB) */
1476 l_page = alloc_page(GFP_KERNEL);
1477 if (!l_page)
1478 goto free_avic;
1479
1480 vm_data->avic_logical_id_table_page = l_page;
1481 clear_page(page_address(l_page));
1482
1483 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1484 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1485 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1486
1487 return 0;
1488
1489 free_avic:
1490 avic_vm_destroy(kvm);
1491 return err;
1492 }
1493
1494 static inline int
1495 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1496 {
1497 int ret = 0;
1498 unsigned long flags;
1499 struct amd_svm_iommu_ir *ir;
1500 struct vcpu_svm *svm = to_svm(vcpu);
1501
1502 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1503 return 0;
1504
1505 /*
1506 * Here, we go through the per-vcpu ir_list to update all existing
1507 * interrupt remapping table entry targeting this vcpu.
1508 */
1509 spin_lock_irqsave(&svm->ir_list_lock, flags);
1510
1511 if (list_empty(&svm->ir_list))
1512 goto out;
1513
1514 list_for_each_entry(ir, &svm->ir_list, node) {
1515 ret = amd_iommu_update_ga(cpu, r, ir->data);
1516 if (ret)
1517 break;
1518 }
1519 out:
1520 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1521 return ret;
1522 }
1523
1524 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1525 {
1526 u64 entry;
1527 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1528 int h_physical_id = kvm_cpu_get_apicid(cpu);
1529 struct vcpu_svm *svm = to_svm(vcpu);
1530
1531 if (!kvm_vcpu_apicv_active(vcpu))
1532 return;
1533
1534 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1535 return;
1536
1537 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1538 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1539
1540 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1541 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1542
1543 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1544 if (svm->avic_is_running)
1545 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1546
1547 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1548 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1549 svm->avic_is_running);
1550 }
1551
1552 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1553 {
1554 u64 entry;
1555 struct vcpu_svm *svm = to_svm(vcpu);
1556
1557 if (!kvm_vcpu_apicv_active(vcpu))
1558 return;
1559
1560 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1561 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1562 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1563
1564 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1565 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1566 }
1567
1568 /**
1569 * This function is called during VCPU halt/unhalt.
1570 */
1571 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1572 {
1573 struct vcpu_svm *svm = to_svm(vcpu);
1574
1575 svm->avic_is_running = is_run;
1576 if (is_run)
1577 avic_vcpu_load(vcpu, vcpu->cpu);
1578 else
1579 avic_vcpu_put(vcpu);
1580 }
1581
1582 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1583 {
1584 struct vcpu_svm *svm = to_svm(vcpu);
1585 u32 dummy;
1586 u32 eax = 1;
1587
1588 svm->spec_ctrl = 0;
1589 svm->virt_spec_ctrl = 0;
1590
1591 if (!init_event) {
1592 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1593 MSR_IA32_APICBASE_ENABLE;
1594 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1595 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1596 }
1597 init_vmcb(svm);
1598
1599 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1600 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1601
1602 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1603 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1604 }
1605
1606 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1607 {
1608 struct vcpu_svm *svm;
1609 struct page *page;
1610 struct page *msrpm_pages;
1611 struct page *hsave_page;
1612 struct page *nested_msrpm_pages;
1613 int err;
1614
1615 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1616 if (!svm) {
1617 err = -ENOMEM;
1618 goto out;
1619 }
1620
1621 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1622 if (err)
1623 goto free_svm;
1624
1625 err = -ENOMEM;
1626 page = alloc_page(GFP_KERNEL);
1627 if (!page)
1628 goto uninit;
1629
1630 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1631 if (!msrpm_pages)
1632 goto free_page1;
1633
1634 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1635 if (!nested_msrpm_pages)
1636 goto free_page2;
1637
1638 hsave_page = alloc_page(GFP_KERNEL);
1639 if (!hsave_page)
1640 goto free_page3;
1641
1642 if (avic) {
1643 err = avic_init_backing_page(&svm->vcpu);
1644 if (err)
1645 goto free_page4;
1646
1647 INIT_LIST_HEAD(&svm->ir_list);
1648 spin_lock_init(&svm->ir_list_lock);
1649 }
1650
1651 /* We initialize this flag to true to make sure that the is_running
1652 * bit would be set the first time the vcpu is loaded.
1653 */
1654 svm->avic_is_running = true;
1655
1656 svm->nested.hsave = page_address(hsave_page);
1657
1658 svm->msrpm = page_address(msrpm_pages);
1659 svm_vcpu_init_msrpm(svm->msrpm);
1660
1661 svm->nested.msrpm = page_address(nested_msrpm_pages);
1662 svm_vcpu_init_msrpm(svm->nested.msrpm);
1663
1664 svm->vmcb = page_address(page);
1665 clear_page(svm->vmcb);
1666 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1667 svm->asid_generation = 0;
1668 init_vmcb(svm);
1669
1670 svm_init_osvw(&svm->vcpu);
1671
1672 return &svm->vcpu;
1673
1674 free_page4:
1675 __free_page(hsave_page);
1676 free_page3:
1677 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1678 free_page2:
1679 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1680 free_page1:
1681 __free_page(page);
1682 uninit:
1683 kvm_vcpu_uninit(&svm->vcpu);
1684 free_svm:
1685 kmem_cache_free(kvm_vcpu_cache, svm);
1686 out:
1687 return ERR_PTR(err);
1688 }
1689
1690 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1691 {
1692 struct vcpu_svm *svm = to_svm(vcpu);
1693
1694 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1695 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1696 __free_page(virt_to_page(svm->nested.hsave));
1697 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1698 kvm_vcpu_uninit(vcpu);
1699 kmem_cache_free(kvm_vcpu_cache, svm);
1700
1701 /*
1702 * The VMCB could be recycled, causing a false negative in svm_vcpu_load;
1703 * block speculative execution.
1704 */
1705 if (ibpb_inuse)
1706 wrmsrl(MSR_IA32_PRED_CMD, FEATURE_SET_IBPB);
1707 }
1708
1709 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1710 {
1711 struct vcpu_svm *svm = to_svm(vcpu);
1712 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1713 int i;
1714
1715 if (unlikely(cpu != vcpu->cpu)) {
1716 svm->asid_generation = 0;
1717 mark_all_dirty(svm->vmcb);
1718 }
1719
1720 #ifdef CONFIG_X86_64
1721 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1722 #endif
1723 savesegment(fs, svm->host.fs);
1724 savesegment(gs, svm->host.gs);
1725 svm->host.ldt = kvm_read_ldt();
1726
1727 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1728 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1729
1730 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1731 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1732 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1733 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1734 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1735 }
1736 }
1737 /* This assumes that the kernel never uses MSR_TSC_AUX */
1738 if (static_cpu_has(X86_FEATURE_RDTSCP))
1739 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1740
1741 if (sd->current_vmcb != svm->vmcb) {
1742 sd->current_vmcb = svm->vmcb;
1743 if (ibpb_inuse)
1744 wrmsrl(MSR_IA32_PRED_CMD, FEATURE_SET_IBPB);
1745 }
1746
1747 avic_vcpu_load(vcpu, cpu);
1748 }
1749
1750 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1751 {
1752 struct vcpu_svm *svm = to_svm(vcpu);
1753 int i;
1754
1755 avic_vcpu_put(vcpu);
1756
1757 ++vcpu->stat.host_state_reload;
1758 kvm_load_ldt(svm->host.ldt);
1759 #ifdef CONFIG_X86_64
1760 loadsegment(fs, svm->host.fs);
1761 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1762 load_gs_index(svm->host.gs);
1763 #else
1764 #ifdef CONFIG_X86_32_LAZY_GS
1765 loadsegment(gs, svm->host.gs);
1766 #endif
1767 #endif
1768 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1769 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1770 }
1771
1772 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1773 {
1774 avic_set_running(vcpu, false);
1775 }
1776
1777 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1778 {
1779 avic_set_running(vcpu, true);
1780 }
1781
1782 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1783 {
1784 struct vcpu_svm *svm = to_svm(vcpu);
1785 unsigned long rflags = svm->vmcb->save.rflags;
1786
1787 if (svm->nmi_singlestep) {
1788 /* Hide our flags if they were not set by the guest */
1789 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1790 rflags &= ~X86_EFLAGS_TF;
1791 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1792 rflags &= ~X86_EFLAGS_RF;
1793 }
1794 return rflags;
1795 }
1796
1797 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1798 {
1799 if (to_svm(vcpu)->nmi_singlestep)
1800 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1801
1802 /*
1803 * Any change of EFLAGS.VM is accompanied by a reload of SS
1804 * (caused by either a task switch or an inter-privilege IRET),
1805 * so we do not need to update the CPL here.
1806 */
1807 to_svm(vcpu)->vmcb->save.rflags = rflags;
1808 }
1809
1810 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1811 {
1812 switch (reg) {
1813 case VCPU_EXREG_PDPTR:
1814 BUG_ON(!npt_enabled);
1815 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1816 break;
1817 default:
1818 BUG();
1819 }
1820 }
1821
1822 static void svm_set_vintr(struct vcpu_svm *svm)
1823 {
1824 set_intercept(svm, INTERCEPT_VINTR);
1825 }
1826
1827 static void svm_clear_vintr(struct vcpu_svm *svm)
1828 {
1829 clr_intercept(svm, INTERCEPT_VINTR);
1830 }
1831
1832 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1833 {
1834 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1835
1836 switch (seg) {
1837 case VCPU_SREG_CS: return &save->cs;
1838 case VCPU_SREG_DS: return &save->ds;
1839 case VCPU_SREG_ES: return &save->es;
1840 case VCPU_SREG_FS: return &save->fs;
1841 case VCPU_SREG_GS: return &save->gs;
1842 case VCPU_SREG_SS: return &save->ss;
1843 case VCPU_SREG_TR: return &save->tr;
1844 case VCPU_SREG_LDTR: return &save->ldtr;
1845 }
1846 BUG();
1847 return NULL;
1848 }
1849
1850 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1851 {
1852 struct vmcb_seg *s = svm_seg(vcpu, seg);
1853
1854 return s->base;
1855 }
1856
1857 static void svm_get_segment(struct kvm_vcpu *vcpu,
1858 struct kvm_segment *var, int seg)
1859 {
1860 struct vmcb_seg *s = svm_seg(vcpu, seg);
1861
1862 var->base = s->base;
1863 var->limit = s->limit;
1864 var->selector = s->selector;
1865 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1866 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1867 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1868 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1869 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1870 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1871 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1872
1873 /*
1874 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1875 * However, the SVM spec states that the G bit is not observed by the
1876 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1877 * So let's synthesize a legal G bit for all segments, this helps
1878 * running KVM nested. It also helps cross-vendor migration, because
1879 * Intel's vmentry has a check on the 'G' bit.
1880 */
1881 var->g = s->limit > 0xfffff;
1882
1883 /*
1884 * AMD's VMCB does not have an explicit unusable field, so emulate it
1885 * for cross vendor migration purposes by "not present"
1886 */
1887 var->unusable = !var->present;
1888
1889 switch (seg) {
1890 case VCPU_SREG_TR:
1891 /*
1892 * Work around a bug where the busy flag in the tr selector
1893 * isn't exposed
1894 */
1895 var->type |= 0x2;
1896 break;
1897 case VCPU_SREG_DS:
1898 case VCPU_SREG_ES:
1899 case VCPU_SREG_FS:
1900 case VCPU_SREG_GS:
1901 /*
1902 * The accessed bit must always be set in the segment
1903 * descriptor cache, although it can be cleared in the
1904 * descriptor, the cached bit always remains at 1. Since
1905 * Intel has a check on this, set it here to support
1906 * cross-vendor migration.
1907 */
1908 if (!var->unusable)
1909 var->type |= 0x1;
1910 break;
1911 case VCPU_SREG_SS:
1912 /*
1913 * On AMD CPUs sometimes the DB bit in the segment
1914 * descriptor is left as 1, although the whole segment has
1915 * been made unusable. Clear it here to pass an Intel VMX
1916 * entry check when cross vendor migrating.
1917 */
1918 if (var->unusable)
1919 var->db = 0;
1920 /* This is symmetric with svm_set_segment() */
1921 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1922 break;
1923 }
1924 }
1925
1926 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1927 {
1928 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1929
1930 return save->cpl;
1931 }
1932
1933 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1934 {
1935 struct vcpu_svm *svm = to_svm(vcpu);
1936
1937 dt->size = svm->vmcb->save.idtr.limit;
1938 dt->address = svm->vmcb->save.idtr.base;
1939 }
1940
1941 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1942 {
1943 struct vcpu_svm *svm = to_svm(vcpu);
1944
1945 svm->vmcb->save.idtr.limit = dt->size;
1946 svm->vmcb->save.idtr.base = dt->address ;
1947 mark_dirty(svm->vmcb, VMCB_DT);
1948 }
1949
1950 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1951 {
1952 struct vcpu_svm *svm = to_svm(vcpu);
1953
1954 dt->size = svm->vmcb->save.gdtr.limit;
1955 dt->address = svm->vmcb->save.gdtr.base;
1956 }
1957
1958 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1959 {
1960 struct vcpu_svm *svm = to_svm(vcpu);
1961
1962 svm->vmcb->save.gdtr.limit = dt->size;
1963 svm->vmcb->save.gdtr.base = dt->address ;
1964 mark_dirty(svm->vmcb, VMCB_DT);
1965 }
1966
1967 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1968 {
1969 }
1970
1971 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1972 {
1973 }
1974
1975 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1976 {
1977 }
1978
1979 static void update_cr0_intercept(struct vcpu_svm *svm)
1980 {
1981 ulong gcr0 = svm->vcpu.arch.cr0;
1982 u64 *hcr0 = &svm->vmcb->save.cr0;
1983
1984 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1985 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1986
1987 mark_dirty(svm->vmcb, VMCB_CR);
1988
1989 if (gcr0 == *hcr0) {
1990 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1991 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1992 } else {
1993 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1994 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1995 }
1996 }
1997
1998 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1999 {
2000 struct vcpu_svm *svm = to_svm(vcpu);
2001
2002 #ifdef CONFIG_X86_64
2003 if (vcpu->arch.efer & EFER_LME) {
2004 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2005 vcpu->arch.efer |= EFER_LMA;
2006 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2007 }
2008
2009 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2010 vcpu->arch.efer &= ~EFER_LMA;
2011 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2012 }
2013 }
2014 #endif
2015 vcpu->arch.cr0 = cr0;
2016
2017 if (!npt_enabled)
2018 cr0 |= X86_CR0_PG | X86_CR0_WP;
2019
2020 /*
2021 * re-enable caching here because the QEMU bios
2022 * does not do it - this results in some delay at
2023 * reboot
2024 */
2025 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2026 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2027 svm->vmcb->save.cr0 = cr0;
2028 mark_dirty(svm->vmcb, VMCB_CR);
2029 update_cr0_intercept(svm);
2030 }
2031
2032 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2033 {
2034 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2035 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2036
2037 if (cr4 & X86_CR4_VMXE)
2038 return 1;
2039
2040 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2041 svm_flush_tlb(vcpu);
2042
2043 vcpu->arch.cr4 = cr4;
2044 if (!npt_enabled)
2045 cr4 |= X86_CR4_PAE;
2046 cr4 |= host_cr4_mce;
2047 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2048 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2049 return 0;
2050 }
2051
2052 static void svm_set_segment(struct kvm_vcpu *vcpu,
2053 struct kvm_segment *var, int seg)
2054 {
2055 struct vcpu_svm *svm = to_svm(vcpu);
2056 struct vmcb_seg *s = svm_seg(vcpu, seg);
2057
2058 s->base = var->base;
2059 s->limit = var->limit;
2060 s->selector = var->selector;
2061 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2062 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2063 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2064 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2065 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2066 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2067 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2068 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2069
2070 /*
2071 * This is always accurate, except if SYSRET returned to a segment
2072 * with SS.DPL != 3. Intel does not have this quirk, and always
2073 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2074 * would entail passing the CPL to userspace and back.
2075 */
2076 if (seg == VCPU_SREG_SS)
2077 /* This is symmetric with svm_get_segment() */
2078 svm->vmcb->save.cpl = (var->dpl & 3);
2079
2080 mark_dirty(svm->vmcb, VMCB_SEG);
2081 }
2082
2083 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2084 {
2085 struct vcpu_svm *svm = to_svm(vcpu);
2086
2087 clr_exception_intercept(svm, BP_VECTOR);
2088
2089 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2090 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2091 set_exception_intercept(svm, BP_VECTOR);
2092 } else
2093 vcpu->guest_debug = 0;
2094 }
2095
2096 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2097 {
2098 if (sd->next_asid > sd->max_asid) {
2099 ++sd->asid_generation;
2100 sd->next_asid = 1;
2101 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2102 }
2103
2104 svm->asid_generation = sd->asid_generation;
2105 svm->vmcb->control.asid = sd->next_asid++;
2106
2107 mark_dirty(svm->vmcb, VMCB_ASID);
2108 }
2109
2110 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2111 {
2112 return to_svm(vcpu)->vmcb->save.dr6;
2113 }
2114
2115 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2116 {
2117 struct vcpu_svm *svm = to_svm(vcpu);
2118
2119 svm->vmcb->save.dr6 = value;
2120 mark_dirty(svm->vmcb, VMCB_DR);
2121 }
2122
2123 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2124 {
2125 struct vcpu_svm *svm = to_svm(vcpu);
2126
2127 get_debugreg(vcpu->arch.db[0], 0);
2128 get_debugreg(vcpu->arch.db[1], 1);
2129 get_debugreg(vcpu->arch.db[2], 2);
2130 get_debugreg(vcpu->arch.db[3], 3);
2131 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2132 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2133
2134 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2135 set_dr_intercepts(svm);
2136 }
2137
2138 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2139 {
2140 struct vcpu_svm *svm = to_svm(vcpu);
2141
2142 svm->vmcb->save.dr7 = value;
2143 mark_dirty(svm->vmcb, VMCB_DR);
2144 }
2145
2146 static int pf_interception(struct vcpu_svm *svm)
2147 {
2148 u64 fault_address = svm->vmcb->control.exit_info_2;
2149 u64 error_code = svm->vmcb->control.exit_info_1;
2150
2151 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2152 svm->vmcb->control.insn_bytes,
2153 svm->vmcb->control.insn_len, !npt_enabled);
2154 }
2155
2156 static int db_interception(struct vcpu_svm *svm)
2157 {
2158 struct kvm_run *kvm_run = svm->vcpu.run;
2159
2160 if (!(svm->vcpu.guest_debug &
2161 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2162 !svm->nmi_singlestep) {
2163 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2164 return 1;
2165 }
2166
2167 if (svm->nmi_singlestep) {
2168 disable_nmi_singlestep(svm);
2169 }
2170
2171 if (svm->vcpu.guest_debug &
2172 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2173 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2174 kvm_run->debug.arch.pc =
2175 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2176 kvm_run->debug.arch.exception = DB_VECTOR;
2177 return 0;
2178 }
2179
2180 return 1;
2181 }
2182
2183 static int bp_interception(struct vcpu_svm *svm)
2184 {
2185 struct kvm_run *kvm_run = svm->vcpu.run;
2186
2187 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2188 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2189 kvm_run->debug.arch.exception = BP_VECTOR;
2190 return 0;
2191 }
2192
2193 static int ud_interception(struct vcpu_svm *svm)
2194 {
2195 int er;
2196
2197 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2198 if (er != EMULATE_DONE)
2199 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2200 return 1;
2201 }
2202
2203 static int ac_interception(struct vcpu_svm *svm)
2204 {
2205 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2206 return 1;
2207 }
2208
2209 static bool is_erratum_383(void)
2210 {
2211 int err, i;
2212 u64 value;
2213
2214 if (!erratum_383_found)
2215 return false;
2216
2217 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2218 if (err)
2219 return false;
2220
2221 /* Bit 62 may or may not be set for this mce */
2222 value &= ~(1ULL << 62);
2223
2224 if (value != 0xb600000000010015ULL)
2225 return false;
2226
2227 /* Clear MCi_STATUS registers */
2228 for (i = 0; i < 6; ++i)
2229 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2230
2231 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2232 if (!err) {
2233 u32 low, high;
2234
2235 value &= ~(1ULL << 2);
2236 low = lower_32_bits(value);
2237 high = upper_32_bits(value);
2238
2239 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2240 }
2241
2242 /* Flush tlb to evict multi-match entries */
2243 __flush_tlb_all();
2244
2245 return true;
2246 }
2247
2248 static void svm_handle_mce(struct vcpu_svm *svm)
2249 {
2250 if (is_erratum_383()) {
2251 /*
2252 * Erratum 383 triggered. Guest state is corrupt so kill the
2253 * guest.
2254 */
2255 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2256
2257 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2258
2259 return;
2260 }
2261
2262 /*
2263 * On an #MC intercept the MCE handler is not called automatically in
2264 * the host. So do it by hand here.
2265 */
2266 asm volatile (
2267 "int $0x12\n");
2268 /* not sure if we ever come back to this point */
2269
2270 return;
2271 }
2272
2273 static int mc_interception(struct vcpu_svm *svm)
2274 {
2275 return 1;
2276 }
2277
2278 static int shutdown_interception(struct vcpu_svm *svm)
2279 {
2280 struct kvm_run *kvm_run = svm->vcpu.run;
2281
2282 /*
2283 * VMCB is undefined after a SHUTDOWN intercept
2284 * so reinitialize it.
2285 */
2286 clear_page(svm->vmcb);
2287 init_vmcb(svm);
2288
2289 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2290 return 0;
2291 }
2292
2293 static int io_interception(struct vcpu_svm *svm)
2294 {
2295 struct kvm_vcpu *vcpu = &svm->vcpu;
2296 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2297 int size, in, string, ret;
2298 unsigned port;
2299
2300 ++svm->vcpu.stat.io_exits;
2301 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2302 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2303 if (string)
2304 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2305
2306 port = io_info >> 16;
2307 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2308 svm->next_rip = svm->vmcb->control.exit_info_2;
2309 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2310
2311 /*
2312 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2313 * KVM_EXIT_DEBUG here.
2314 */
2315 if (in)
2316 return kvm_fast_pio_in(vcpu, size, port) && ret;
2317 else
2318 return kvm_fast_pio_out(vcpu, size, port) && ret;
2319 }
2320
2321 static int nmi_interception(struct vcpu_svm *svm)
2322 {
2323 return 1;
2324 }
2325
2326 static int intr_interception(struct vcpu_svm *svm)
2327 {
2328 ++svm->vcpu.stat.irq_exits;
2329 return 1;
2330 }
2331
2332 static int nop_on_interception(struct vcpu_svm *svm)
2333 {
2334 return 1;
2335 }
2336
2337 static int halt_interception(struct vcpu_svm *svm)
2338 {
2339 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2340 return kvm_emulate_halt(&svm->vcpu);
2341 }
2342
2343 static int vmmcall_interception(struct vcpu_svm *svm)
2344 {
2345 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2346 return kvm_emulate_hypercall(&svm->vcpu);
2347 }
2348
2349 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2350 {
2351 struct vcpu_svm *svm = to_svm(vcpu);
2352
2353 return svm->nested.nested_cr3;
2354 }
2355
2356 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2357 {
2358 struct vcpu_svm *svm = to_svm(vcpu);
2359 u64 cr3 = svm->nested.nested_cr3;
2360 u64 pdpte;
2361 int ret;
2362
2363 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2364 offset_in_page(cr3) + index * 8, 8);
2365 if (ret)
2366 return 0;
2367 return pdpte;
2368 }
2369
2370 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2371 unsigned long root)
2372 {
2373 struct vcpu_svm *svm = to_svm(vcpu);
2374
2375 svm->vmcb->control.nested_cr3 = root;
2376 mark_dirty(svm->vmcb, VMCB_NPT);
2377 svm_flush_tlb(vcpu);
2378 }
2379
2380 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2381 struct x86_exception *fault)
2382 {
2383 struct vcpu_svm *svm = to_svm(vcpu);
2384
2385 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2386 /*
2387 * TODO: track the cause of the nested page fault, and
2388 * correctly fill in the high bits of exit_info_1.
2389 */
2390 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2391 svm->vmcb->control.exit_code_hi = 0;
2392 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2393 svm->vmcb->control.exit_info_2 = fault->address;
2394 }
2395
2396 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2397 svm->vmcb->control.exit_info_1 |= fault->error_code;
2398
2399 /*
2400 * The present bit is always zero for page structure faults on real
2401 * hardware.
2402 */
2403 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2404 svm->vmcb->control.exit_info_1 &= ~1;
2405
2406 nested_svm_vmexit(svm);
2407 }
2408
2409 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2410 {
2411 WARN_ON(mmu_is_nested(vcpu));
2412 kvm_init_shadow_mmu(vcpu);
2413 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2414 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2415 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2416 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2417 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2418 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2419 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2420 }
2421
2422 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2423 {
2424 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2425 }
2426
2427 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2428 {
2429 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2430 !is_paging(&svm->vcpu)) {
2431 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2432 return 1;
2433 }
2434
2435 if (svm->vmcb->save.cpl) {
2436 kvm_inject_gp(&svm->vcpu, 0);
2437 return 1;
2438 }
2439
2440 return 0;
2441 }
2442
2443 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2444 bool has_error_code, u32 error_code)
2445 {
2446 int vmexit;
2447
2448 if (!is_guest_mode(&svm->vcpu))
2449 return 0;
2450
2451 vmexit = nested_svm_intercept(svm);
2452 if (vmexit != NESTED_EXIT_DONE)
2453 return 0;
2454
2455 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2456 svm->vmcb->control.exit_code_hi = 0;
2457 svm->vmcb->control.exit_info_1 = error_code;
2458
2459 /*
2460 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2461 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2462 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2463 * written only when inject_pending_event runs (DR6 would written here
2464 * too). This should be conditional on a new capability---if the
2465 * capability is disabled, kvm_multiple_exception would write the
2466 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2467 */
2468 if (svm->vcpu.arch.exception.nested_apf)
2469 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2470 else
2471 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2472
2473 svm->nested.exit_required = true;
2474 return vmexit;
2475 }
2476
2477 /* This function returns true if it is save to enable the irq window */
2478 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2479 {
2480 if (!is_guest_mode(&svm->vcpu))
2481 return true;
2482
2483 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2484 return true;
2485
2486 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2487 return false;
2488
2489 /*
2490 * if vmexit was already requested (by intercepted exception
2491 * for instance) do not overwrite it with "external interrupt"
2492 * vmexit.
2493 */
2494 if (svm->nested.exit_required)
2495 return false;
2496
2497 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2498 svm->vmcb->control.exit_info_1 = 0;
2499 svm->vmcb->control.exit_info_2 = 0;
2500
2501 if (svm->nested.intercept & 1ULL) {
2502 /*
2503 * The #vmexit can't be emulated here directly because this
2504 * code path runs with irqs and preemption disabled. A
2505 * #vmexit emulation might sleep. Only signal request for
2506 * the #vmexit here.
2507 */
2508 svm->nested.exit_required = true;
2509 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2510 return false;
2511 }
2512
2513 return true;
2514 }
2515
2516 /* This function returns true if it is save to enable the nmi window */
2517 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2518 {
2519 if (!is_guest_mode(&svm->vcpu))
2520 return true;
2521
2522 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2523 return true;
2524
2525 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2526 svm->nested.exit_required = true;
2527
2528 return false;
2529 }
2530
2531 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2532 {
2533 struct page *page;
2534
2535 might_sleep();
2536
2537 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2538 if (is_error_page(page))
2539 goto error;
2540
2541 *_page = page;
2542
2543 return kmap(page);
2544
2545 error:
2546 kvm_inject_gp(&svm->vcpu, 0);
2547
2548 return NULL;
2549 }
2550
2551 static void nested_svm_unmap(struct page *page)
2552 {
2553 kunmap(page);
2554 kvm_release_page_dirty(page);
2555 }
2556
2557 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2558 {
2559 unsigned port, size, iopm_len;
2560 u16 val, mask;
2561 u8 start_bit;
2562 u64 gpa;
2563
2564 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2565 return NESTED_EXIT_HOST;
2566
2567 port = svm->vmcb->control.exit_info_1 >> 16;
2568 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2569 SVM_IOIO_SIZE_SHIFT;
2570 gpa = svm->nested.vmcb_iopm + (port / 8);
2571 start_bit = port % 8;
2572 iopm_len = (start_bit + size > 8) ? 2 : 1;
2573 mask = (0xf >> (4 - size)) << start_bit;
2574 val = 0;
2575
2576 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2577 return NESTED_EXIT_DONE;
2578
2579 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2580 }
2581
2582 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2583 {
2584 u32 offset, msr, value;
2585 int write, mask;
2586
2587 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2588 return NESTED_EXIT_HOST;
2589
2590 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2591 offset = svm_msrpm_offset(msr);
2592 write = svm->vmcb->control.exit_info_1 & 1;
2593 mask = 1 << ((2 * (msr & 0xf)) + write);
2594
2595 if (offset == MSR_INVALID)
2596 return NESTED_EXIT_DONE;
2597
2598 /* Offset is in 32 bit units but need in 8 bit units */
2599 offset *= 4;
2600
2601 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2602 return NESTED_EXIT_DONE;
2603
2604 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2605 }
2606
2607 /* DB exceptions for our internal use must not cause vmexit */
2608 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2609 {
2610 unsigned long dr6;
2611
2612 /* if we're not singlestepping, it's not ours */
2613 if (!svm->nmi_singlestep)
2614 return NESTED_EXIT_DONE;
2615
2616 /* if it's not a singlestep exception, it's not ours */
2617 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2618 return NESTED_EXIT_DONE;
2619 if (!(dr6 & DR6_BS))
2620 return NESTED_EXIT_DONE;
2621
2622 /* if the guest is singlestepping, it should get the vmexit */
2623 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2624 disable_nmi_singlestep(svm);
2625 return NESTED_EXIT_DONE;
2626 }
2627
2628 /* it's ours, the nested hypervisor must not see this one */
2629 return NESTED_EXIT_HOST;
2630 }
2631
2632 static int nested_svm_exit_special(struct vcpu_svm *svm)
2633 {
2634 u32 exit_code = svm->vmcb->control.exit_code;
2635
2636 switch (exit_code) {
2637 case SVM_EXIT_INTR:
2638 case SVM_EXIT_NMI:
2639 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2640 return NESTED_EXIT_HOST;
2641 case SVM_EXIT_NPF:
2642 /* For now we are always handling NPFs when using them */
2643 if (npt_enabled)
2644 return NESTED_EXIT_HOST;
2645 break;
2646 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2647 /* When we're shadowing, trap PFs, but not async PF */
2648 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2649 return NESTED_EXIT_HOST;
2650 break;
2651 default:
2652 break;
2653 }
2654
2655 return NESTED_EXIT_CONTINUE;
2656 }
2657
2658 /*
2659 * If this function returns true, this #vmexit was already handled
2660 */
2661 static int nested_svm_intercept(struct vcpu_svm *svm)
2662 {
2663 u32 exit_code = svm->vmcb->control.exit_code;
2664 int vmexit = NESTED_EXIT_HOST;
2665
2666 switch (exit_code) {
2667 case SVM_EXIT_MSR:
2668 vmexit = nested_svm_exit_handled_msr(svm);
2669 break;
2670 case SVM_EXIT_IOIO:
2671 vmexit = nested_svm_intercept_ioio(svm);
2672 break;
2673 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2674 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2675 if (svm->nested.intercept_cr & bit)
2676 vmexit = NESTED_EXIT_DONE;
2677 break;
2678 }
2679 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2680 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2681 if (svm->nested.intercept_dr & bit)
2682 vmexit = NESTED_EXIT_DONE;
2683 break;
2684 }
2685 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2686 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2687 if (svm->nested.intercept_exceptions & excp_bits) {
2688 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2689 vmexit = nested_svm_intercept_db(svm);
2690 else
2691 vmexit = NESTED_EXIT_DONE;
2692 }
2693 /* async page fault always cause vmexit */
2694 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2695 svm->vcpu.arch.exception.nested_apf != 0)
2696 vmexit = NESTED_EXIT_DONE;
2697 break;
2698 }
2699 case SVM_EXIT_ERR: {
2700 vmexit = NESTED_EXIT_DONE;
2701 break;
2702 }
2703 default: {
2704 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2705 if (svm->nested.intercept & exit_bits)
2706 vmexit = NESTED_EXIT_DONE;
2707 }
2708 }
2709
2710 return vmexit;
2711 }
2712
2713 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2714 {
2715 int vmexit;
2716
2717 vmexit = nested_svm_intercept(svm);
2718
2719 if (vmexit == NESTED_EXIT_DONE)
2720 nested_svm_vmexit(svm);
2721
2722 return vmexit;
2723 }
2724
2725 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2726 {
2727 struct vmcb_control_area *dst = &dst_vmcb->control;
2728 struct vmcb_control_area *from = &from_vmcb->control;
2729
2730 dst->intercept_cr = from->intercept_cr;
2731 dst->intercept_dr = from->intercept_dr;
2732 dst->intercept_exceptions = from->intercept_exceptions;
2733 dst->intercept = from->intercept;
2734 dst->iopm_base_pa = from->iopm_base_pa;
2735 dst->msrpm_base_pa = from->msrpm_base_pa;
2736 dst->tsc_offset = from->tsc_offset;
2737 dst->asid = from->asid;
2738 dst->tlb_ctl = from->tlb_ctl;
2739 dst->int_ctl = from->int_ctl;
2740 dst->int_vector = from->int_vector;
2741 dst->int_state = from->int_state;
2742 dst->exit_code = from->exit_code;
2743 dst->exit_code_hi = from->exit_code_hi;
2744 dst->exit_info_1 = from->exit_info_1;
2745 dst->exit_info_2 = from->exit_info_2;
2746 dst->exit_int_info = from->exit_int_info;
2747 dst->exit_int_info_err = from->exit_int_info_err;
2748 dst->nested_ctl = from->nested_ctl;
2749 dst->event_inj = from->event_inj;
2750 dst->event_inj_err = from->event_inj_err;
2751 dst->nested_cr3 = from->nested_cr3;
2752 dst->virt_ext = from->virt_ext;
2753 }
2754
2755 static int nested_svm_vmexit(struct vcpu_svm *svm)
2756 {
2757 struct vmcb *nested_vmcb;
2758 struct vmcb *hsave = svm->nested.hsave;
2759 struct vmcb *vmcb = svm->vmcb;
2760 struct page *page;
2761
2762 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2763 vmcb->control.exit_info_1,
2764 vmcb->control.exit_info_2,
2765 vmcb->control.exit_int_info,
2766 vmcb->control.exit_int_info_err,
2767 KVM_ISA_SVM);
2768
2769 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2770 if (!nested_vmcb)
2771 return 1;
2772
2773 /* Exit Guest-Mode */
2774 leave_guest_mode(&svm->vcpu);
2775 svm->nested.vmcb = 0;
2776
2777 /* Give the current vmcb to the guest */
2778 disable_gif(svm);
2779
2780 nested_vmcb->save.es = vmcb->save.es;
2781 nested_vmcb->save.cs = vmcb->save.cs;
2782 nested_vmcb->save.ss = vmcb->save.ss;
2783 nested_vmcb->save.ds = vmcb->save.ds;
2784 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2785 nested_vmcb->save.idtr = vmcb->save.idtr;
2786 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2787 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2788 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2789 nested_vmcb->save.cr2 = vmcb->save.cr2;
2790 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2791 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2792 nested_vmcb->save.rip = vmcb->save.rip;
2793 nested_vmcb->save.rsp = vmcb->save.rsp;
2794 nested_vmcb->save.rax = vmcb->save.rax;
2795 nested_vmcb->save.dr7 = vmcb->save.dr7;
2796 nested_vmcb->save.dr6 = vmcb->save.dr6;
2797 nested_vmcb->save.cpl = vmcb->save.cpl;
2798
2799 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2800 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2801 nested_vmcb->control.int_state = vmcb->control.int_state;
2802 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2803 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2804 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2805 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2806 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2807 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2808
2809 if (svm->nrips_enabled)
2810 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2811
2812 /*
2813 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2814 * to make sure that we do not lose injected events. So check event_inj
2815 * here and copy it to exit_int_info if it is valid.
2816 * Exit_int_info and event_inj can't be both valid because the case
2817 * below only happens on a VMRUN instruction intercept which has
2818 * no valid exit_int_info set.
2819 */
2820 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2821 struct vmcb_control_area *nc = &nested_vmcb->control;
2822
2823 nc->exit_int_info = vmcb->control.event_inj;
2824 nc->exit_int_info_err = vmcb->control.event_inj_err;
2825 }
2826
2827 nested_vmcb->control.tlb_ctl = 0;
2828 nested_vmcb->control.event_inj = 0;
2829 nested_vmcb->control.event_inj_err = 0;
2830
2831 /* We always set V_INTR_MASKING and remember the old value in hflags */
2832 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2833 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2834
2835 /* Restore the original control entries */
2836 copy_vmcb_control_area(vmcb, hsave);
2837
2838 kvm_clear_exception_queue(&svm->vcpu);
2839 kvm_clear_interrupt_queue(&svm->vcpu);
2840
2841 svm->nested.nested_cr3 = 0;
2842
2843 /* Restore selected save entries */
2844 svm->vmcb->save.es = hsave->save.es;
2845 svm->vmcb->save.cs = hsave->save.cs;
2846 svm->vmcb->save.ss = hsave->save.ss;
2847 svm->vmcb->save.ds = hsave->save.ds;
2848 svm->vmcb->save.gdtr = hsave->save.gdtr;
2849 svm->vmcb->save.idtr = hsave->save.idtr;
2850 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2851 svm_set_efer(&svm->vcpu, hsave->save.efer);
2852 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2853 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2854 if (npt_enabled) {
2855 svm->vmcb->save.cr3 = hsave->save.cr3;
2856 svm->vcpu.arch.cr3 = hsave->save.cr3;
2857 } else {
2858 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2859 }
2860 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2861 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2862 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2863 svm->vmcb->save.dr7 = 0;
2864 svm->vmcb->save.cpl = 0;
2865 svm->vmcb->control.exit_int_info = 0;
2866
2867 mark_all_dirty(svm->vmcb);
2868
2869 nested_svm_unmap(page);
2870
2871 nested_svm_uninit_mmu_context(&svm->vcpu);
2872 kvm_mmu_reset_context(&svm->vcpu);
2873 kvm_mmu_load(&svm->vcpu);
2874
2875 return 0;
2876 }
2877
2878 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2879 {
2880 /*
2881 * This function merges the msr permission bitmaps of kvm and the
2882 * nested vmcb. It is optimized in that it only merges the parts where
2883 * the kvm msr permission bitmap may contain zero bits
2884 */
2885 int i;
2886
2887 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2888 return true;
2889
2890 for (i = 0; i < MSRPM_OFFSETS; i++) {
2891 u32 value, p;
2892 u64 offset;
2893
2894 if (msrpm_offsets[i] == 0xffffffff)
2895 break;
2896
2897 p = msrpm_offsets[i];
2898 offset = svm->nested.vmcb_msrpm + (p * 4);
2899
2900 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2901 return false;
2902
2903 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2904 }
2905
2906 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2907
2908 return true;
2909 }
2910
2911 static bool nested_vmcb_checks(struct vmcb *vmcb)
2912 {
2913 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2914 return false;
2915
2916 if (vmcb->control.asid == 0)
2917 return false;
2918
2919 if (vmcb->control.nested_ctl && !npt_enabled)
2920 return false;
2921
2922 return true;
2923 }
2924
2925 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2926 {
2927 struct vmcb *nested_vmcb;
2928 struct vmcb *hsave = svm->nested.hsave;
2929 struct vmcb *vmcb = svm->vmcb;
2930 struct page *page;
2931 u64 vmcb_gpa;
2932
2933 vmcb_gpa = svm->vmcb->save.rax;
2934
2935 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2936 if (!nested_vmcb)
2937 return false;
2938
2939 if (!nested_vmcb_checks(nested_vmcb)) {
2940 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2941 nested_vmcb->control.exit_code_hi = 0;
2942 nested_vmcb->control.exit_info_1 = 0;
2943 nested_vmcb->control.exit_info_2 = 0;
2944
2945 nested_svm_unmap(page);
2946
2947 return false;
2948 }
2949
2950 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2951 nested_vmcb->save.rip,
2952 nested_vmcb->control.int_ctl,
2953 nested_vmcb->control.event_inj,
2954 nested_vmcb->control.nested_ctl);
2955
2956 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2957 nested_vmcb->control.intercept_cr >> 16,
2958 nested_vmcb->control.intercept_exceptions,
2959 nested_vmcb->control.intercept);
2960
2961 /* Clear internal status */
2962 kvm_clear_exception_queue(&svm->vcpu);
2963 kvm_clear_interrupt_queue(&svm->vcpu);
2964
2965 /*
2966 * Save the old vmcb, so we don't need to pick what we save, but can
2967 * restore everything when a VMEXIT occurs
2968 */
2969 hsave->save.es = vmcb->save.es;
2970 hsave->save.cs = vmcb->save.cs;
2971 hsave->save.ss = vmcb->save.ss;
2972 hsave->save.ds = vmcb->save.ds;
2973 hsave->save.gdtr = vmcb->save.gdtr;
2974 hsave->save.idtr = vmcb->save.idtr;
2975 hsave->save.efer = svm->vcpu.arch.efer;
2976 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2977 hsave->save.cr4 = svm->vcpu.arch.cr4;
2978 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2979 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2980 hsave->save.rsp = vmcb->save.rsp;
2981 hsave->save.rax = vmcb->save.rax;
2982 if (npt_enabled)
2983 hsave->save.cr3 = vmcb->save.cr3;
2984 else
2985 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2986
2987 copy_vmcb_control_area(hsave, vmcb);
2988
2989 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2990 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2991 else
2992 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2993
2994 if (nested_vmcb->control.nested_ctl) {
2995 kvm_mmu_unload(&svm->vcpu);
2996 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2997 nested_svm_init_mmu_context(&svm->vcpu);
2998 }
2999
3000 /* Load the nested guest state */
3001 svm->vmcb->save.es = nested_vmcb->save.es;
3002 svm->vmcb->save.cs = nested_vmcb->save.cs;
3003 svm->vmcb->save.ss = nested_vmcb->save.ss;
3004 svm->vmcb->save.ds = nested_vmcb->save.ds;
3005 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3006 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3007 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3008 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3009 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3010 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3011 if (npt_enabled) {
3012 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3013 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3014 } else
3015 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3016
3017 /* Guest paging mode is active - reset mmu */
3018 kvm_mmu_reset_context(&svm->vcpu);
3019
3020 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3021 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3022 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3023 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3024
3025 /* In case we don't even reach vcpu_run, the fields are not updated */
3026 svm->vmcb->save.rax = nested_vmcb->save.rax;
3027 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3028 svm->vmcb->save.rip = nested_vmcb->save.rip;
3029 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3030 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3031 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3032
3033 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3034 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3035
3036 /* cache intercepts */
3037 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3038 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3039 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3040 svm->nested.intercept = nested_vmcb->control.intercept;
3041
3042 svm_flush_tlb(&svm->vcpu);
3043 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3044 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3045 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3046 else
3047 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3048
3049 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3050 /* We only want the cr8 intercept bits of the guest */
3051 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3052 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3053 }
3054
3055 /* We don't want to see VMMCALLs from a nested guest */
3056 clr_intercept(svm, INTERCEPT_VMMCALL);
3057
3058 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3059 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3060 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3061 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3062 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3063 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3064
3065 nested_svm_unmap(page);
3066
3067 /* Enter Guest-Mode */
3068 enter_guest_mode(&svm->vcpu);
3069
3070 /*
3071 * Merge guest and host intercepts - must be called with vcpu in
3072 * guest-mode to take affect here
3073 */
3074 recalc_intercepts(svm);
3075
3076 svm->nested.vmcb = vmcb_gpa;
3077
3078 enable_gif(svm);
3079
3080 mark_all_dirty(svm->vmcb);
3081
3082 return true;
3083 }
3084
3085 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3086 {
3087 to_vmcb->save.fs = from_vmcb->save.fs;
3088 to_vmcb->save.gs = from_vmcb->save.gs;
3089 to_vmcb->save.tr = from_vmcb->save.tr;
3090 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3091 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3092 to_vmcb->save.star = from_vmcb->save.star;
3093 to_vmcb->save.lstar = from_vmcb->save.lstar;
3094 to_vmcb->save.cstar = from_vmcb->save.cstar;
3095 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3096 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3097 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3098 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3099 }
3100
3101 static int vmload_interception(struct vcpu_svm *svm)
3102 {
3103 struct vmcb *nested_vmcb;
3104 struct page *page;
3105 int ret;
3106
3107 if (nested_svm_check_permissions(svm))
3108 return 1;
3109
3110 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3111 if (!nested_vmcb)
3112 return 1;
3113
3114 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3115 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3116
3117 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3118 nested_svm_unmap(page);
3119
3120 return ret;
3121 }
3122
3123 static int vmsave_interception(struct vcpu_svm *svm)
3124 {
3125 struct vmcb *nested_vmcb;
3126 struct page *page;
3127 int ret;
3128
3129 if (nested_svm_check_permissions(svm))
3130 return 1;
3131
3132 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3133 if (!nested_vmcb)
3134 return 1;
3135
3136 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3137 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3138
3139 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3140 nested_svm_unmap(page);
3141
3142 return ret;
3143 }
3144
3145 static int vmrun_interception(struct vcpu_svm *svm)
3146 {
3147 if (nested_svm_check_permissions(svm))
3148 return 1;
3149
3150 /* Save rip after vmrun instruction */
3151 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3152
3153 if (!nested_svm_vmrun(svm))
3154 return 1;
3155
3156 if (!nested_svm_vmrun_msrpm(svm))
3157 goto failed;
3158
3159 return 1;
3160
3161 failed:
3162
3163 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3164 svm->vmcb->control.exit_code_hi = 0;
3165 svm->vmcb->control.exit_info_1 = 0;
3166 svm->vmcb->control.exit_info_2 = 0;
3167
3168 nested_svm_vmexit(svm);
3169
3170 return 1;
3171 }
3172
3173 static int stgi_interception(struct vcpu_svm *svm)
3174 {
3175 int ret;
3176
3177 if (nested_svm_check_permissions(svm))
3178 return 1;
3179
3180 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3181 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3182 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3183
3184 enable_gif(svm);
3185
3186 return ret;
3187 }
3188
3189 static int clgi_interception(struct vcpu_svm *svm)
3190 {
3191 int ret;
3192
3193 if (nested_svm_check_permissions(svm))
3194 return 1;
3195
3196 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3197 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3198
3199 disable_gif(svm);
3200
3201 /* After a CLGI no interrupts should come */
3202 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3203 svm_clear_vintr(svm);
3204 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3205 mark_dirty(svm->vmcb, VMCB_INTR);
3206 }
3207
3208 return ret;
3209 }
3210
3211 static int invlpga_interception(struct vcpu_svm *svm)
3212 {
3213 struct kvm_vcpu *vcpu = &svm->vcpu;
3214
3215 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3216 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3217
3218 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3219 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3220
3221 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3222 return kvm_skip_emulated_instruction(&svm->vcpu);
3223 }
3224
3225 static int skinit_interception(struct vcpu_svm *svm)
3226 {
3227 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3228
3229 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3230 return 1;
3231 }
3232
3233 static int wbinvd_interception(struct vcpu_svm *svm)
3234 {
3235 return kvm_emulate_wbinvd(&svm->vcpu);
3236 }
3237
3238 static int xsetbv_interception(struct vcpu_svm *svm)
3239 {
3240 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3241 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3242
3243 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3244 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3245 return kvm_skip_emulated_instruction(&svm->vcpu);
3246 }
3247
3248 return 1;
3249 }
3250
3251 static int task_switch_interception(struct vcpu_svm *svm)
3252 {
3253 u16 tss_selector;
3254 int reason;
3255 int int_type = svm->vmcb->control.exit_int_info &
3256 SVM_EXITINTINFO_TYPE_MASK;
3257 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3258 uint32_t type =
3259 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3260 uint32_t idt_v =
3261 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3262 bool has_error_code = false;
3263 u32 error_code = 0;
3264
3265 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3266
3267 if (svm->vmcb->control.exit_info_2 &
3268 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3269 reason = TASK_SWITCH_IRET;
3270 else if (svm->vmcb->control.exit_info_2 &
3271 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3272 reason = TASK_SWITCH_JMP;
3273 else if (idt_v)
3274 reason = TASK_SWITCH_GATE;
3275 else
3276 reason = TASK_SWITCH_CALL;
3277
3278 if (reason == TASK_SWITCH_GATE) {
3279 switch (type) {
3280 case SVM_EXITINTINFO_TYPE_NMI:
3281 svm->vcpu.arch.nmi_injected = false;
3282 break;
3283 case SVM_EXITINTINFO_TYPE_EXEPT:
3284 if (svm->vmcb->control.exit_info_2 &
3285 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3286 has_error_code = true;
3287 error_code =
3288 (u32)svm->vmcb->control.exit_info_2;
3289 }
3290 kvm_clear_exception_queue(&svm->vcpu);
3291 break;
3292 case SVM_EXITINTINFO_TYPE_INTR:
3293 kvm_clear_interrupt_queue(&svm->vcpu);
3294 break;
3295 default:
3296 break;
3297 }
3298 }
3299
3300 if (reason != TASK_SWITCH_GATE ||
3301 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3302 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3303 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3304 skip_emulated_instruction(&svm->vcpu);
3305
3306 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3307 int_vec = -1;
3308
3309 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3310 has_error_code, error_code) == EMULATE_FAIL) {
3311 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3312 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3313 svm->vcpu.run->internal.ndata = 0;
3314 return 0;
3315 }
3316 return 1;
3317 }
3318
3319 static int cpuid_interception(struct vcpu_svm *svm)
3320 {
3321 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3322 return kvm_emulate_cpuid(&svm->vcpu);
3323 }
3324
3325 static int iret_interception(struct vcpu_svm *svm)
3326 {
3327 ++svm->vcpu.stat.nmi_window_exits;
3328 clr_intercept(svm, INTERCEPT_IRET);
3329 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3330 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3331 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3332 return 1;
3333 }
3334
3335 static int invlpg_interception(struct vcpu_svm *svm)
3336 {
3337 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3338 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3339
3340 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3341 return kvm_skip_emulated_instruction(&svm->vcpu);
3342 }
3343
3344 static int emulate_on_interception(struct vcpu_svm *svm)
3345 {
3346 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3347 }
3348
3349 static int rdpmc_interception(struct vcpu_svm *svm)
3350 {
3351 int err;
3352
3353 if (!static_cpu_has(X86_FEATURE_NRIPS))
3354 return emulate_on_interception(svm);
3355
3356 err = kvm_rdpmc(&svm->vcpu);
3357 return kvm_complete_insn_gp(&svm->vcpu, err);
3358 }
3359
3360 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3361 unsigned long val)
3362 {
3363 unsigned long cr0 = svm->vcpu.arch.cr0;
3364 bool ret = false;
3365 u64 intercept;
3366
3367 intercept = svm->nested.intercept;
3368
3369 if (!is_guest_mode(&svm->vcpu) ||
3370 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3371 return false;
3372
3373 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3374 val &= ~SVM_CR0_SELECTIVE_MASK;
3375
3376 if (cr0 ^ val) {
3377 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3378 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3379 }
3380
3381 return ret;
3382 }
3383
3384 #define CR_VALID (1ULL << 63)
3385
3386 static int cr_interception(struct vcpu_svm *svm)
3387 {
3388 int reg, cr;
3389 unsigned long val;
3390 int err;
3391
3392 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3393 return emulate_on_interception(svm);
3394
3395 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3396 return emulate_on_interception(svm);
3397
3398 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3399 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3400 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3401 else
3402 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3403
3404 err = 0;
3405 if (cr >= 16) { /* mov to cr */
3406 cr -= 16;
3407 val = kvm_register_read(&svm->vcpu, reg);
3408 switch (cr) {
3409 case 0:
3410 if (!check_selective_cr0_intercepted(svm, val))
3411 err = kvm_set_cr0(&svm->vcpu, val);
3412 else
3413 return 1;
3414
3415 break;
3416 case 3:
3417 err = kvm_set_cr3(&svm->vcpu, val);
3418 break;
3419 case 4:
3420 err = kvm_set_cr4(&svm->vcpu, val);
3421 break;
3422 case 8:
3423 err = kvm_set_cr8(&svm->vcpu, val);
3424 break;
3425 default:
3426 WARN(1, "unhandled write to CR%d", cr);
3427 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3428 return 1;
3429 }
3430 } else { /* mov from cr */
3431 switch (cr) {
3432 case 0:
3433 val = kvm_read_cr0(&svm->vcpu);
3434 break;
3435 case 2:
3436 val = svm->vcpu.arch.cr2;
3437 break;
3438 case 3:
3439 val = kvm_read_cr3(&svm->vcpu);
3440 break;
3441 case 4:
3442 val = kvm_read_cr4(&svm->vcpu);
3443 break;
3444 case 8:
3445 val = kvm_get_cr8(&svm->vcpu);
3446 break;
3447 default:
3448 WARN(1, "unhandled read from CR%d", cr);
3449 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3450 return 1;
3451 }
3452 kvm_register_write(&svm->vcpu, reg, val);
3453 }
3454 return kvm_complete_insn_gp(&svm->vcpu, err);
3455 }
3456
3457 static int dr_interception(struct vcpu_svm *svm)
3458 {
3459 int reg, dr;
3460 unsigned long val;
3461
3462 if (svm->vcpu.guest_debug == 0) {
3463 /*
3464 * No more DR vmexits; force a reload of the debug registers
3465 * and reenter on this instruction. The next vmexit will
3466 * retrieve the full state of the debug registers.
3467 */
3468 clr_dr_intercepts(svm);
3469 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3470 return 1;
3471 }
3472
3473 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3474 return emulate_on_interception(svm);
3475
3476 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3477 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3478
3479 if (dr >= 16) { /* mov to DRn */
3480 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3481 return 1;
3482 val = kvm_register_read(&svm->vcpu, reg);
3483 kvm_set_dr(&svm->vcpu, dr - 16, val);
3484 } else {
3485 if (!kvm_require_dr(&svm->vcpu, dr))
3486 return 1;
3487 kvm_get_dr(&svm->vcpu, dr, &val);
3488 kvm_register_write(&svm->vcpu, reg, val);
3489 }
3490
3491 return kvm_skip_emulated_instruction(&svm->vcpu);
3492 }
3493
3494 static int cr8_write_interception(struct vcpu_svm *svm)
3495 {
3496 struct kvm_run *kvm_run = svm->vcpu.run;
3497 int r;
3498
3499 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3500 /* instruction emulation calls kvm_set_cr8() */
3501 r = cr_interception(svm);
3502 if (lapic_in_kernel(&svm->vcpu))
3503 return r;
3504 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3505 return r;
3506 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3507 return 0;
3508 }
3509
3510 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3511 {
3512 struct vcpu_svm *svm = to_svm(vcpu);
3513
3514 switch (msr_info->index) {
3515 case MSR_IA32_TSC: {
3516 msr_info->data = svm->vmcb->control.tsc_offset +
3517 kvm_scale_tsc(vcpu, rdtsc());
3518
3519 break;
3520 }
3521 case MSR_STAR:
3522 msr_info->data = svm->vmcb->save.star;
3523 break;
3524 #ifdef CONFIG_X86_64
3525 case MSR_LSTAR:
3526 msr_info->data = svm->vmcb->save.lstar;
3527 break;
3528 case MSR_CSTAR:
3529 msr_info->data = svm->vmcb->save.cstar;
3530 break;
3531 case MSR_KERNEL_GS_BASE:
3532 msr_info->data = svm->vmcb->save.kernel_gs_base;
3533 break;
3534 case MSR_SYSCALL_MASK:
3535 msr_info->data = svm->vmcb->save.sfmask;
3536 break;
3537 #endif
3538 case MSR_IA32_SYSENTER_CS:
3539 msr_info->data = svm->vmcb->save.sysenter_cs;
3540 break;
3541 case MSR_IA32_SYSENTER_EIP:
3542 msr_info->data = svm->sysenter_eip;
3543 break;
3544 case MSR_IA32_SYSENTER_ESP:
3545 msr_info->data = svm->sysenter_esp;
3546 break;
3547 case MSR_TSC_AUX:
3548 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3549 return 1;
3550 msr_info->data = svm->tsc_aux;
3551 break;
3552 /*
3553 * Nobody will change the following 5 values in the VMCB so we can
3554 * safely return them on rdmsr. They will always be 0 until LBRV is
3555 * implemented.
3556 */
3557 case MSR_IA32_DEBUGCTLMSR:
3558 msr_info->data = svm->vmcb->save.dbgctl;
3559 break;
3560 case MSR_IA32_LASTBRANCHFROMIP:
3561 msr_info->data = svm->vmcb->save.br_from;
3562 break;
3563 case MSR_IA32_LASTBRANCHTOIP:
3564 msr_info->data = svm->vmcb->save.br_to;
3565 break;
3566 case MSR_IA32_LASTINTFROMIP:
3567 msr_info->data = svm->vmcb->save.last_excp_from;
3568 break;
3569 case MSR_IA32_LASTINTTOIP:
3570 msr_info->data = svm->vmcb->save.last_excp_to;
3571 break;
3572 case MSR_VM_HSAVE_PA:
3573 msr_info->data = svm->nested.hsave_msr;
3574 break;
3575 case MSR_VM_CR:
3576 msr_info->data = svm->nested.vm_cr_msr;
3577 break;
3578 case MSR_IA32_SPEC_CTRL:
3579 msr_info->data = svm->spec_ctrl;
3580 break;
3581 case MSR_IA32_UCODE_REV:
3582 msr_info->data = 0x01000065;
3583 break;
3584 case MSR_F15H_IC_CFG: {
3585
3586 int family, model;
3587
3588 family = guest_cpuid_family(vcpu);
3589 model = guest_cpuid_model(vcpu);
3590
3591 if (family < 0 || model < 0)
3592 return kvm_get_msr_common(vcpu, msr_info);
3593
3594 msr_info->data = 0;
3595
3596 if (family == 0x15 &&
3597 (model >= 0x2 && model < 0x20))
3598 msr_info->data = 0x1E;
3599 }
3600 break;
3601 default:
3602 return kvm_get_msr_common(vcpu, msr_info);
3603 }
3604 return 0;
3605 }
3606
3607 static int rdmsr_interception(struct vcpu_svm *svm)
3608 {
3609 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3610 struct msr_data msr_info;
3611
3612 msr_info.index = ecx;
3613 msr_info.host_initiated = false;
3614 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3615 trace_kvm_msr_read_ex(ecx);
3616 kvm_inject_gp(&svm->vcpu, 0);
3617 return 1;
3618 } else {
3619 trace_kvm_msr_read(ecx, msr_info.data);
3620
3621 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3622 msr_info.data & 0xffffffff);
3623 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3624 msr_info.data >> 32);
3625 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3626 return kvm_skip_emulated_instruction(&svm->vcpu);
3627 }
3628 }
3629
3630 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3631 {
3632 struct vcpu_svm *svm = to_svm(vcpu);
3633 int svm_dis, chg_mask;
3634
3635 if (data & ~SVM_VM_CR_VALID_MASK)
3636 return 1;
3637
3638 chg_mask = SVM_VM_CR_VALID_MASK;
3639
3640 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3641 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3642
3643 svm->nested.vm_cr_msr &= ~chg_mask;
3644 svm->nested.vm_cr_msr |= (data & chg_mask);
3645
3646 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3647
3648 /* check for svm_disable while efer.svme is set */
3649 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3650 return 1;
3651
3652 return 0;
3653 }
3654
3655 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3656 {
3657 struct vcpu_svm *svm = to_svm(vcpu);
3658
3659 u32 ecx = msr->index;
3660 u64 data = msr->data;
3661 switch (ecx) {
3662 case MSR_IA32_TSC:
3663 kvm_write_tsc(vcpu, msr);
3664 break;
3665 case MSR_STAR:
3666 svm->vmcb->save.star = data;
3667 break;
3668 #ifdef CONFIG_X86_64
3669 case MSR_LSTAR:
3670 svm->vmcb->save.lstar = data;
3671 break;
3672 case MSR_CSTAR:
3673 svm->vmcb->save.cstar = data;
3674 break;
3675 case MSR_KERNEL_GS_BASE:
3676 svm->vmcb->save.kernel_gs_base = data;
3677 break;
3678 case MSR_SYSCALL_MASK:
3679 svm->vmcb->save.sfmask = data;
3680 break;
3681 #endif
3682 case MSR_IA32_SYSENTER_CS:
3683 svm->vmcb->save.sysenter_cs = data;
3684 break;
3685 case MSR_IA32_SYSENTER_EIP:
3686 svm->sysenter_eip = data;
3687 svm->vmcb->save.sysenter_eip = data;
3688 break;
3689 case MSR_IA32_SYSENTER_ESP:
3690 svm->sysenter_esp = data;
3691 svm->vmcb->save.sysenter_esp = data;
3692 break;
3693 case MSR_TSC_AUX:
3694 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3695 return 1;
3696
3697 /*
3698 * This is rare, so we update the MSR here instead of using
3699 * direct_access_msrs. Doing that would require a rdmsr in
3700 * svm_vcpu_put.
3701 */
3702 svm->tsc_aux = data;
3703 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3704 break;
3705 case MSR_IA32_DEBUGCTLMSR:
3706 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3707 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3708 __func__, data);
3709 break;
3710 }
3711 if (data & DEBUGCTL_RESERVED_BITS)
3712 return 1;
3713
3714 svm->vmcb->save.dbgctl = data;
3715 mark_dirty(svm->vmcb, VMCB_LBR);
3716 if (data & (1ULL<<0))
3717 svm_enable_lbrv(svm);
3718 else
3719 svm_disable_lbrv(svm);
3720 break;
3721 case MSR_VM_HSAVE_PA:
3722 svm->nested.hsave_msr = data;
3723 break;
3724 case MSR_VM_CR:
3725 return svm_set_vm_cr(vcpu, data);
3726 case MSR_VM_IGNNE:
3727 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3728 break;
3729 case MSR_IA32_SPEC_CTRL:
3730 svm->spec_ctrl = data;
3731 break;
3732 case MSR_IA32_APICBASE:
3733 if (kvm_vcpu_apicv_active(vcpu))
3734 avic_update_vapic_bar(to_svm(vcpu), data);
3735 /* Follow through */
3736 default:
3737 return kvm_set_msr_common(vcpu, msr);
3738 }
3739 return 0;
3740 }
3741
3742 static int wrmsr_interception(struct vcpu_svm *svm)
3743 {
3744 struct msr_data msr;
3745 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3746 u64 data = kvm_read_edx_eax(&svm->vcpu);
3747
3748 msr.data = data;
3749 msr.index = ecx;
3750 msr.host_initiated = false;
3751
3752 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3753 if (kvm_set_msr(&svm->vcpu, &msr)) {
3754 trace_kvm_msr_write_ex(ecx, data);
3755 kvm_inject_gp(&svm->vcpu, 0);
3756 return 1;
3757 } else {
3758 trace_kvm_msr_write(ecx, data);
3759 return kvm_skip_emulated_instruction(&svm->vcpu);
3760 }
3761 }
3762
3763 static int msr_interception(struct vcpu_svm *svm)
3764 {
3765 if (svm->vmcb->control.exit_info_1)
3766 return wrmsr_interception(svm);
3767 else
3768 return rdmsr_interception(svm);
3769 }
3770
3771 static int interrupt_window_interception(struct vcpu_svm *svm)
3772 {
3773 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3774 svm_clear_vintr(svm);
3775 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3776 mark_dirty(svm->vmcb, VMCB_INTR);
3777 ++svm->vcpu.stat.irq_window_exits;
3778 return 1;
3779 }
3780
3781 static int pause_interception(struct vcpu_svm *svm)
3782 {
3783 kvm_vcpu_on_spin(&(svm->vcpu));
3784 return 1;
3785 }
3786
3787 static int nop_interception(struct vcpu_svm *svm)
3788 {
3789 return kvm_skip_emulated_instruction(&(svm->vcpu));
3790 }
3791
3792 static int monitor_interception(struct vcpu_svm *svm)
3793 {
3794 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3795 return nop_interception(svm);
3796 }
3797
3798 static int mwait_interception(struct vcpu_svm *svm)
3799 {
3800 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3801 return nop_interception(svm);
3802 }
3803
3804 enum avic_ipi_failure_cause {
3805 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3806 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3807 AVIC_IPI_FAILURE_INVALID_TARGET,
3808 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3809 };
3810
3811 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3812 {
3813 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3814 u32 icrl = svm->vmcb->control.exit_info_1;
3815 u32 id = svm->vmcb->control.exit_info_2 >> 32;
3816 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3817 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3818
3819 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3820
3821 switch (id) {
3822 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3823 /*
3824 * AVIC hardware handles the generation of
3825 * IPIs when the specified Message Type is Fixed
3826 * (also known as fixed delivery mode) and
3827 * the Trigger Mode is edge-triggered. The hardware
3828 * also supports self and broadcast delivery modes
3829 * specified via the Destination Shorthand(DSH)
3830 * field of the ICRL. Logical and physical APIC ID
3831 * formats are supported. All other IPI types cause
3832 * a #VMEXIT, which needs to emulated.
3833 */
3834 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3835 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3836 break;
3837 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3838 int i;
3839 struct kvm_vcpu *vcpu;
3840 struct kvm *kvm = svm->vcpu.kvm;
3841 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3842
3843 /*
3844 * At this point, we expect that the AVIC HW has already
3845 * set the appropriate IRR bits on the valid target
3846 * vcpus. So, we just need to kick the appropriate vcpu.
3847 */
3848 kvm_for_each_vcpu(i, vcpu, kvm) {
3849 bool m = kvm_apic_match_dest(vcpu, apic,
3850 icrl & KVM_APIC_SHORT_MASK,
3851 GET_APIC_DEST_FIELD(icrh),
3852 icrl & KVM_APIC_DEST_MASK);
3853
3854 if (m && !avic_vcpu_is_running(vcpu))
3855 kvm_vcpu_wake_up(vcpu);
3856 }
3857 break;
3858 }
3859 case AVIC_IPI_FAILURE_INVALID_TARGET:
3860 break;
3861 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3862 WARN_ONCE(1, "Invalid backing page\n");
3863 break;
3864 default:
3865 pr_err("Unknown IPI interception\n");
3866 }
3867
3868 return 1;
3869 }
3870
3871 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3872 {
3873 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3874 int index;
3875 u32 *logical_apic_id_table;
3876 int dlid = GET_APIC_LOGICAL_ID(ldr);
3877
3878 if (!dlid)
3879 return NULL;
3880
3881 if (flat) { /* flat */
3882 index = ffs(dlid) - 1;
3883 if (index > 7)
3884 return NULL;
3885 } else { /* cluster */
3886 int cluster = (dlid & 0xf0) >> 4;
3887 int apic = ffs(dlid & 0x0f) - 1;
3888
3889 if ((apic < 0) || (apic > 7) ||
3890 (cluster >= 0xf))
3891 return NULL;
3892 index = (cluster << 2) + apic;
3893 }
3894
3895 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3896
3897 return &logical_apic_id_table[index];
3898 }
3899
3900 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3901 bool valid)
3902 {
3903 bool flat;
3904 u32 *entry, new_entry;
3905
3906 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3907 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3908 if (!entry)
3909 return -EINVAL;
3910
3911 new_entry = READ_ONCE(*entry);
3912 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3913 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3914 if (valid)
3915 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3916 else
3917 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3918 WRITE_ONCE(*entry, new_entry);
3919
3920 return 0;
3921 }
3922
3923 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3924 {
3925 int ret;
3926 struct vcpu_svm *svm = to_svm(vcpu);
3927 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3928
3929 if (!ldr)
3930 return 1;
3931
3932 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3933 if (ret && svm->ldr_reg) {
3934 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3935 svm->ldr_reg = 0;
3936 } else {
3937 svm->ldr_reg = ldr;
3938 }
3939 return ret;
3940 }
3941
3942 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3943 {
3944 u64 *old, *new;
3945 struct vcpu_svm *svm = to_svm(vcpu);
3946 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3947 u32 id = (apic_id_reg >> 24) & 0xff;
3948
3949 if (vcpu->vcpu_id == id)
3950 return 0;
3951
3952 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3953 new = avic_get_physical_id_entry(vcpu, id);
3954 if (!new || !old)
3955 return 1;
3956
3957 /* We need to move physical_id_entry to new offset */
3958 *new = *old;
3959 *old = 0ULL;
3960 to_svm(vcpu)->avic_physical_id_cache = new;
3961
3962 /*
3963 * Also update the guest physical APIC ID in the logical
3964 * APIC ID table entry if already setup the LDR.
3965 */
3966 if (svm->ldr_reg)
3967 avic_handle_ldr_update(vcpu);
3968
3969 return 0;
3970 }
3971
3972 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3973 {
3974 struct vcpu_svm *svm = to_svm(vcpu);
3975 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3976 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3977 u32 mod = (dfr >> 28) & 0xf;
3978
3979 /*
3980 * We assume that all local APICs are using the same type.
3981 * If this changes, we need to flush the AVIC logical
3982 * APID id table.
3983 */
3984 if (vm_data->ldr_mode == mod)
3985 return 0;
3986
3987 clear_page(page_address(vm_data->avic_logical_id_table_page));
3988 vm_data->ldr_mode = mod;
3989
3990 if (svm->ldr_reg)
3991 avic_handle_ldr_update(vcpu);
3992 return 0;
3993 }
3994
3995 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3996 {
3997 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3998 u32 offset = svm->vmcb->control.exit_info_1 &
3999 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4000
4001 switch (offset) {
4002 case APIC_ID:
4003 if (avic_handle_apic_id_update(&svm->vcpu))
4004 return 0;
4005 break;
4006 case APIC_LDR:
4007 if (avic_handle_ldr_update(&svm->vcpu))
4008 return 0;
4009 break;
4010 case APIC_DFR:
4011 avic_handle_dfr_update(&svm->vcpu);
4012 break;
4013 default:
4014 break;
4015 }
4016
4017 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4018
4019 return 1;
4020 }
4021
4022 static bool is_avic_unaccelerated_access_trap(u32 offset)
4023 {
4024 bool ret = false;
4025
4026 switch (offset) {
4027 case APIC_ID:
4028 case APIC_EOI:
4029 case APIC_RRR:
4030 case APIC_LDR:
4031 case APIC_DFR:
4032 case APIC_SPIV:
4033 case APIC_ESR:
4034 case APIC_ICR:
4035 case APIC_LVTT:
4036 case APIC_LVTTHMR:
4037 case APIC_LVTPC:
4038 case APIC_LVT0:
4039 case APIC_LVT1:
4040 case APIC_LVTERR:
4041 case APIC_TMICT:
4042 case APIC_TDCR:
4043 ret = true;
4044 break;
4045 default:
4046 break;
4047 }
4048 return ret;
4049 }
4050
4051 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4052 {
4053 int ret = 0;
4054 u32 offset = svm->vmcb->control.exit_info_1 &
4055 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4056 u32 vector = svm->vmcb->control.exit_info_2 &
4057 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4058 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4059 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4060 bool trap = is_avic_unaccelerated_access_trap(offset);
4061
4062 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4063 trap, write, vector);
4064 if (trap) {
4065 /* Handling Trap */
4066 WARN_ONCE(!write, "svm: Handling trap read.\n");
4067 ret = avic_unaccel_trap_write(svm);
4068 } else {
4069 /* Handling Fault */
4070 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4071 }
4072
4073 return ret;
4074 }
4075
4076 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4077 [SVM_EXIT_READ_CR0] = cr_interception,
4078 [SVM_EXIT_READ_CR3] = cr_interception,
4079 [SVM_EXIT_READ_CR4] = cr_interception,
4080 [SVM_EXIT_READ_CR8] = cr_interception,
4081 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4082 [SVM_EXIT_WRITE_CR0] = cr_interception,
4083 [SVM_EXIT_WRITE_CR3] = cr_interception,
4084 [SVM_EXIT_WRITE_CR4] = cr_interception,
4085 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4086 [SVM_EXIT_READ_DR0] = dr_interception,
4087 [SVM_EXIT_READ_DR1] = dr_interception,
4088 [SVM_EXIT_READ_DR2] = dr_interception,
4089 [SVM_EXIT_READ_DR3] = dr_interception,
4090 [SVM_EXIT_READ_DR4] = dr_interception,
4091 [SVM_EXIT_READ_DR5] = dr_interception,
4092 [SVM_EXIT_READ_DR6] = dr_interception,
4093 [SVM_EXIT_READ_DR7] = dr_interception,
4094 [SVM_EXIT_WRITE_DR0] = dr_interception,
4095 [SVM_EXIT_WRITE_DR1] = dr_interception,
4096 [SVM_EXIT_WRITE_DR2] = dr_interception,
4097 [SVM_EXIT_WRITE_DR3] = dr_interception,
4098 [SVM_EXIT_WRITE_DR4] = dr_interception,
4099 [SVM_EXIT_WRITE_DR5] = dr_interception,
4100 [SVM_EXIT_WRITE_DR6] = dr_interception,
4101 [SVM_EXIT_WRITE_DR7] = dr_interception,
4102 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4103 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4104 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4105 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4106 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4107 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4108 [SVM_EXIT_INTR] = intr_interception,
4109 [SVM_EXIT_NMI] = nmi_interception,
4110 [SVM_EXIT_SMI] = nop_on_interception,
4111 [SVM_EXIT_INIT] = nop_on_interception,
4112 [SVM_EXIT_VINTR] = interrupt_window_interception,
4113 [SVM_EXIT_RDPMC] = rdpmc_interception,
4114 [SVM_EXIT_CPUID] = cpuid_interception,
4115 [SVM_EXIT_IRET] = iret_interception,
4116 [SVM_EXIT_INVD] = emulate_on_interception,
4117 [SVM_EXIT_PAUSE] = pause_interception,
4118 [SVM_EXIT_HLT] = halt_interception,
4119 [SVM_EXIT_INVLPG] = invlpg_interception,
4120 [SVM_EXIT_INVLPGA] = invlpga_interception,
4121 [SVM_EXIT_IOIO] = io_interception,
4122 [SVM_EXIT_MSR] = msr_interception,
4123 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4124 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4125 [SVM_EXIT_VMRUN] = vmrun_interception,
4126 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4127 [SVM_EXIT_VMLOAD] = vmload_interception,
4128 [SVM_EXIT_VMSAVE] = vmsave_interception,
4129 [SVM_EXIT_STGI] = stgi_interception,
4130 [SVM_EXIT_CLGI] = clgi_interception,
4131 [SVM_EXIT_SKINIT] = skinit_interception,
4132 [SVM_EXIT_WBINVD] = wbinvd_interception,
4133 [SVM_EXIT_MONITOR] = monitor_interception,
4134 [SVM_EXIT_MWAIT] = mwait_interception,
4135 [SVM_EXIT_XSETBV] = xsetbv_interception,
4136 [SVM_EXIT_NPF] = pf_interception,
4137 [SVM_EXIT_RSM] = emulate_on_interception,
4138 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4139 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4140 };
4141
4142 static void dump_vmcb(struct kvm_vcpu *vcpu)
4143 {
4144 struct vcpu_svm *svm = to_svm(vcpu);
4145 struct vmcb_control_area *control = &svm->vmcb->control;
4146 struct vmcb_save_area *save = &svm->vmcb->save;
4147
4148 pr_err("VMCB Control Area:\n");
4149 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4150 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4151 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4152 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4153 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4154 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4155 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4156 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4157 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4158 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4159 pr_err("%-20s%d\n", "asid:", control->asid);
4160 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4161 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4162 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4163 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4164 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4165 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4166 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4167 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4168 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4169 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4170 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4171 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4172 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4173 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4174 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4175 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4176 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4177 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4178 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4179 pr_err("VMCB State Save Area:\n");
4180 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4181 "es:",
4182 save->es.selector, save->es.attrib,
4183 save->es.limit, save->es.base);
4184 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4185 "cs:",
4186 save->cs.selector, save->cs.attrib,
4187 save->cs.limit, save->cs.base);
4188 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4189 "ss:",
4190 save->ss.selector, save->ss.attrib,
4191 save->ss.limit, save->ss.base);
4192 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4193 "ds:",
4194 save->ds.selector, save->ds.attrib,
4195 save->ds.limit, save->ds.base);
4196 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4197 "fs:",
4198 save->fs.selector, save->fs.attrib,
4199 save->fs.limit, save->fs.base);
4200 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4201 "gs:",
4202 save->gs.selector, save->gs.attrib,
4203 save->gs.limit, save->gs.base);
4204 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4205 "gdtr:",
4206 save->gdtr.selector, save->gdtr.attrib,
4207 save->gdtr.limit, save->gdtr.base);
4208 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4209 "ldtr:",
4210 save->ldtr.selector, save->ldtr.attrib,
4211 save->ldtr.limit, save->ldtr.base);
4212 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4213 "idtr:",
4214 save->idtr.selector, save->idtr.attrib,
4215 save->idtr.limit, save->idtr.base);
4216 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4217 "tr:",
4218 save->tr.selector, save->tr.attrib,
4219 save->tr.limit, save->tr.base);
4220 pr_err("cpl: %d efer: %016llx\n",
4221 save->cpl, save->efer);
4222 pr_err("%-15s %016llx %-13s %016llx\n",
4223 "cr0:", save->cr0, "cr2:", save->cr2);
4224 pr_err("%-15s %016llx %-13s %016llx\n",
4225 "cr3:", save->cr3, "cr4:", save->cr4);
4226 pr_err("%-15s %016llx %-13s %016llx\n",
4227 "dr6:", save->dr6, "dr7:", save->dr7);
4228 pr_err("%-15s %016llx %-13s %016llx\n",
4229 "rip:", save->rip, "rflags:", save->rflags);
4230 pr_err("%-15s %016llx %-13s %016llx\n",
4231 "rsp:", save->rsp, "rax:", save->rax);
4232 pr_err("%-15s %016llx %-13s %016llx\n",
4233 "star:", save->star, "lstar:", save->lstar);
4234 pr_err("%-15s %016llx %-13s %016llx\n",
4235 "cstar:", save->cstar, "sfmask:", save->sfmask);
4236 pr_err("%-15s %016llx %-13s %016llx\n",
4237 "kernel_gs_base:", save->kernel_gs_base,
4238 "sysenter_cs:", save->sysenter_cs);
4239 pr_err("%-15s %016llx %-13s %016llx\n",
4240 "sysenter_esp:", save->sysenter_esp,
4241 "sysenter_eip:", save->sysenter_eip);
4242 pr_err("%-15s %016llx %-13s %016llx\n",
4243 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4244 pr_err("%-15s %016llx %-13s %016llx\n",
4245 "br_from:", save->br_from, "br_to:", save->br_to);
4246 pr_err("%-15s %016llx %-13s %016llx\n",
4247 "excp_from:", save->last_excp_from,
4248 "excp_to:", save->last_excp_to);
4249 }
4250
4251 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4252 {
4253 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4254
4255 *info1 = control->exit_info_1;
4256 *info2 = control->exit_info_2;
4257 }
4258
4259 static int handle_exit(struct kvm_vcpu *vcpu)
4260 {
4261 struct vcpu_svm *svm = to_svm(vcpu);
4262 struct kvm_run *kvm_run = vcpu->run;
4263 u32 exit_code = svm->vmcb->control.exit_code;
4264
4265 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4266
4267 vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4268
4269 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4270 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4271 if (npt_enabled)
4272 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4273
4274 if (unlikely(svm->nested.exit_required)) {
4275 nested_svm_vmexit(svm);
4276 svm->nested.exit_required = false;
4277
4278 return 1;
4279 }
4280
4281 if (is_guest_mode(vcpu)) {
4282 int vmexit;
4283
4284 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4285 svm->vmcb->control.exit_info_1,
4286 svm->vmcb->control.exit_info_2,
4287 svm->vmcb->control.exit_int_info,
4288 svm->vmcb->control.exit_int_info_err,
4289 KVM_ISA_SVM);
4290
4291 vmexit = nested_svm_exit_special(svm);
4292
4293 if (vmexit == NESTED_EXIT_CONTINUE)
4294 vmexit = nested_svm_exit_handled(svm);
4295
4296 if (vmexit == NESTED_EXIT_DONE)
4297 return 1;
4298 }
4299
4300 svm_complete_interrupts(svm);
4301
4302 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4303 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4304 kvm_run->fail_entry.hardware_entry_failure_reason
4305 = svm->vmcb->control.exit_code;
4306 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4307 dump_vmcb(vcpu);
4308 return 0;
4309 }
4310
4311 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4312 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4313 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4314 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4315 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4316 "exit_code 0x%x\n",
4317 __func__, svm->vmcb->control.exit_int_info,
4318 exit_code);
4319
4320 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4321 || !svm_exit_handlers[exit_code]) {
4322 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4323 kvm_queue_exception(vcpu, UD_VECTOR);
4324 return 1;
4325 }
4326
4327 return svm_exit_handlers[exit_code](svm);
4328 }
4329
4330 static void reload_tss(struct kvm_vcpu *vcpu)
4331 {
4332 int cpu = raw_smp_processor_id();
4333
4334 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4335 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4336 load_TR_desc();
4337 }
4338
4339 static void pre_svm_run(struct vcpu_svm *svm)
4340 {
4341 int cpu = raw_smp_processor_id();
4342
4343 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4344
4345 /* FIXME: handle wraparound of asid_generation */
4346 if (svm->asid_generation != sd->asid_generation)
4347 new_asid(svm, sd);
4348 }
4349
4350 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4351 {
4352 struct vcpu_svm *svm = to_svm(vcpu);
4353
4354 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4355 vcpu->arch.hflags |= HF_NMI_MASK;
4356 set_intercept(svm, INTERCEPT_IRET);
4357 ++vcpu->stat.nmi_injections;
4358 }
4359
4360 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4361 {
4362 struct vmcb_control_area *control;
4363
4364 /* The following fields are ignored when AVIC is enabled */
4365 control = &svm->vmcb->control;
4366 control->int_vector = irq;
4367 control->int_ctl &= ~V_INTR_PRIO_MASK;
4368 control->int_ctl |= V_IRQ_MASK |
4369 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4370 mark_dirty(svm->vmcb, VMCB_INTR);
4371 }
4372
4373 static void svm_set_irq(struct kvm_vcpu *vcpu)
4374 {
4375 struct vcpu_svm *svm = to_svm(vcpu);
4376
4377 BUG_ON(!(gif_set(svm)));
4378
4379 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4380 ++vcpu->stat.irq_injections;
4381
4382 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4383 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4384 }
4385
4386 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4387 {
4388 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4389 }
4390
4391 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4392 {
4393 struct vcpu_svm *svm = to_svm(vcpu);
4394
4395 if (svm_nested_virtualize_tpr(vcpu) ||
4396 kvm_vcpu_apicv_active(vcpu))
4397 return;
4398
4399 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4400
4401 if (irr == -1)
4402 return;
4403
4404 if (tpr >= irr)
4405 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4406 }
4407
4408 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4409 {
4410 return;
4411 }
4412
4413 static bool svm_get_enable_apicv(void)
4414 {
4415 return avic;
4416 }
4417
4418 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4419 {
4420 }
4421
4422 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4423 {
4424 }
4425
4426 /* Note: Currently only used by Hyper-V. */
4427 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4428 {
4429 struct vcpu_svm *svm = to_svm(vcpu);
4430 struct vmcb *vmcb = svm->vmcb;
4431
4432 if (!avic)
4433 return;
4434
4435 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4436 mark_dirty(vmcb, VMCB_INTR);
4437 }
4438
4439 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4440 {
4441 return;
4442 }
4443
4444 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4445 {
4446 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4447 smp_mb__after_atomic();
4448
4449 if (avic_vcpu_is_running(vcpu))
4450 wrmsrl(SVM_AVIC_DOORBELL,
4451 kvm_cpu_get_apicid(vcpu->cpu));
4452 else
4453 kvm_vcpu_wake_up(vcpu);
4454 }
4455
4456 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4457 {
4458 unsigned long flags;
4459 struct amd_svm_iommu_ir *cur;
4460
4461 spin_lock_irqsave(&svm->ir_list_lock, flags);
4462 list_for_each_entry(cur, &svm->ir_list, node) {
4463 if (cur->data != pi->ir_data)
4464 continue;
4465 list_del(&cur->node);
4466 kfree(cur);
4467 break;
4468 }
4469 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4470 }
4471
4472 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4473 {
4474 int ret = 0;
4475 unsigned long flags;
4476 struct amd_svm_iommu_ir *ir;
4477
4478 /**
4479 * In some cases, the existing irte is updaed and re-set,
4480 * so we need to check here if it's already been * added
4481 * to the ir_list.
4482 */
4483 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4484 struct kvm *kvm = svm->vcpu.kvm;
4485 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4486 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4487 struct vcpu_svm *prev_svm;
4488
4489 if (!prev_vcpu) {
4490 ret = -EINVAL;
4491 goto out;
4492 }
4493
4494 prev_svm = to_svm(prev_vcpu);
4495 svm_ir_list_del(prev_svm, pi);
4496 }
4497
4498 /**
4499 * Allocating new amd_iommu_pi_data, which will get
4500 * add to the per-vcpu ir_list.
4501 */
4502 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4503 if (!ir) {
4504 ret = -ENOMEM;
4505 goto out;
4506 }
4507 ir->data = pi->ir_data;
4508
4509 spin_lock_irqsave(&svm->ir_list_lock, flags);
4510 list_add(&ir->node, &svm->ir_list);
4511 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4512 out:
4513 return ret;
4514 }
4515
4516 /**
4517 * Note:
4518 * The HW cannot support posting multicast/broadcast
4519 * interrupts to a vCPU. So, we still use legacy interrupt
4520 * remapping for these kind of interrupts.
4521 *
4522 * For lowest-priority interrupts, we only support
4523 * those with single CPU as the destination, e.g. user
4524 * configures the interrupts via /proc/irq or uses
4525 * irqbalance to make the interrupts single-CPU.
4526 */
4527 static int
4528 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4529 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4530 {
4531 struct kvm_lapic_irq irq;
4532 struct kvm_vcpu *vcpu = NULL;
4533
4534 kvm_set_msi_irq(kvm, e, &irq);
4535
4536 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4537 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4538 __func__, irq.vector);
4539 return -1;
4540 }
4541
4542 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4543 irq.vector);
4544 *svm = to_svm(vcpu);
4545 vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4546 vcpu_info->vector = irq.vector;
4547
4548 return 0;
4549 }
4550
4551 /*
4552 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4553 *
4554 * @kvm: kvm
4555 * @host_irq: host irq of the interrupt
4556 * @guest_irq: gsi of the interrupt
4557 * @set: set or unset PI
4558 * returns 0 on success, < 0 on failure
4559 */
4560 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4561 uint32_t guest_irq, bool set)
4562 {
4563 struct kvm_kernel_irq_routing_entry *e;
4564 struct kvm_irq_routing_table *irq_rt;
4565 int idx, ret = -EINVAL;
4566
4567 if (!kvm_arch_has_assigned_device(kvm) ||
4568 !irq_remapping_cap(IRQ_POSTING_CAP))
4569 return 0;
4570
4571 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4572 __func__, host_irq, guest_irq, set);
4573
4574 idx = srcu_read_lock(&kvm->irq_srcu);
4575 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4576 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4577
4578 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4579 struct vcpu_data vcpu_info;
4580 struct vcpu_svm *svm = NULL;
4581
4582 if (e->type != KVM_IRQ_ROUTING_MSI)
4583 continue;
4584
4585 /**
4586 * Here, we setup with legacy mode in the following cases:
4587 * 1. When cannot target interrupt to a specific vcpu.
4588 * 2. Unsetting posted interrupt.
4589 * 3. APIC virtialization is disabled for the vcpu.
4590 */
4591 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4592 kvm_vcpu_apicv_active(&svm->vcpu)) {
4593 struct amd_iommu_pi_data pi;
4594
4595 /* Try to enable guest_mode in IRTE */
4596 pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4597 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4598 svm->vcpu.vcpu_id);
4599 pi.is_guest_mode = true;
4600 pi.vcpu_data = &vcpu_info;
4601 ret = irq_set_vcpu_affinity(host_irq, &pi);
4602
4603 /**
4604 * Here, we successfully setting up vcpu affinity in
4605 * IOMMU guest mode. Now, we need to store the posted
4606 * interrupt information in a per-vcpu ir_list so that
4607 * we can reference to them directly when we update vcpu
4608 * scheduling information in IOMMU irte.
4609 */
4610 if (!ret && pi.is_guest_mode)
4611 svm_ir_list_add(svm, &pi);
4612 } else {
4613 /* Use legacy mode in IRTE */
4614 struct amd_iommu_pi_data pi;
4615
4616 /**
4617 * Here, pi is used to:
4618 * - Tell IOMMU to use legacy mode for this interrupt.
4619 * - Retrieve ga_tag of prior interrupt remapping data.
4620 */
4621 pi.is_guest_mode = false;
4622 ret = irq_set_vcpu_affinity(host_irq, &pi);
4623
4624 /**
4625 * Check if the posted interrupt was previously
4626 * setup with the guest_mode by checking if the ga_tag
4627 * was cached. If so, we need to clean up the per-vcpu
4628 * ir_list.
4629 */
4630 if (!ret && pi.prev_ga_tag) {
4631 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4632 struct kvm_vcpu *vcpu;
4633
4634 vcpu = kvm_get_vcpu_by_id(kvm, id);
4635 if (vcpu)
4636 svm_ir_list_del(to_svm(vcpu), &pi);
4637 }
4638 }
4639
4640 if (!ret && svm) {
4641 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4642 host_irq, e->gsi,
4643 vcpu_info.vector,
4644 vcpu_info.pi_desc_addr, set);
4645 }
4646
4647 if (ret < 0) {
4648 pr_err("%s: failed to update PI IRTE\n", __func__);
4649 goto out;
4650 }
4651 }
4652
4653 ret = 0;
4654 out:
4655 srcu_read_unlock(&kvm->irq_srcu, idx);
4656 return ret;
4657 }
4658
4659 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4660 {
4661 struct vcpu_svm *svm = to_svm(vcpu);
4662 struct vmcb *vmcb = svm->vmcb;
4663 int ret;
4664 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4665 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4666 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4667
4668 return ret;
4669 }
4670
4671 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4672 {
4673 struct vcpu_svm *svm = to_svm(vcpu);
4674
4675 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4676 }
4677
4678 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4679 {
4680 struct vcpu_svm *svm = to_svm(vcpu);
4681
4682 if (masked) {
4683 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4684 set_intercept(svm, INTERCEPT_IRET);
4685 } else {
4686 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4687 clr_intercept(svm, INTERCEPT_IRET);
4688 }
4689 }
4690
4691 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4692 {
4693 struct vcpu_svm *svm = to_svm(vcpu);
4694 struct vmcb *vmcb = svm->vmcb;
4695 int ret;
4696
4697 if (!gif_set(svm) ||
4698 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4699 return 0;
4700
4701 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4702
4703 if (is_guest_mode(vcpu))
4704 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4705
4706 return ret;
4707 }
4708
4709 static void enable_irq_window(struct kvm_vcpu *vcpu)
4710 {
4711 struct vcpu_svm *svm = to_svm(vcpu);
4712
4713 if (kvm_vcpu_apicv_active(vcpu))
4714 return;
4715
4716 /*
4717 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4718 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4719 * get that intercept, this function will be called again though and
4720 * we'll get the vintr intercept.
4721 */
4722 if (gif_set(svm) && nested_svm_intr(svm)) {
4723 svm_set_vintr(svm);
4724 svm_inject_irq(svm, 0x0);
4725 }
4726 }
4727
4728 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4729 {
4730 struct vcpu_svm *svm = to_svm(vcpu);
4731
4732 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4733 == HF_NMI_MASK)
4734 return; /* IRET will cause a vm exit */
4735
4736 if ((svm->vcpu.arch.hflags & HF_GIF_MASK) == 0)
4737 return; /* STGI will cause a vm exit */
4738
4739 if (svm->nested.exit_required)
4740 return; /* we're not going to run the guest yet */
4741
4742 /*
4743 * Something prevents NMI from been injected. Single step over possible
4744 * problem (IRET or exception injection or interrupt shadow)
4745 */
4746 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4747 svm->nmi_singlestep = true;
4748 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4749 }
4750
4751 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4752 {
4753 return 0;
4754 }
4755
4756 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4757 {
4758 struct vcpu_svm *svm = to_svm(vcpu);
4759
4760 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4761 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4762 else
4763 svm->asid_generation--;
4764 }
4765
4766 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4767 {
4768 }
4769
4770 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4771 {
4772 struct vcpu_svm *svm = to_svm(vcpu);
4773
4774 if (svm_nested_virtualize_tpr(vcpu))
4775 return;
4776
4777 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4778 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4779 kvm_set_cr8(vcpu, cr8);
4780 }
4781 }
4782
4783 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4784 {
4785 struct vcpu_svm *svm = to_svm(vcpu);
4786 u64 cr8;
4787
4788 if (svm_nested_virtualize_tpr(vcpu) ||
4789 kvm_vcpu_apicv_active(vcpu))
4790 return;
4791
4792 cr8 = kvm_get_cr8(vcpu);
4793 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4794 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4795 }
4796
4797 static void svm_complete_interrupts(struct vcpu_svm *svm)
4798 {
4799 u8 vector;
4800 int type;
4801 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4802 unsigned int3_injected = svm->int3_injected;
4803
4804 svm->int3_injected = 0;
4805
4806 /*
4807 * If we've made progress since setting HF_IRET_MASK, we've
4808 * executed an IRET and can allow NMI injection.
4809 */
4810 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4811 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4812 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4813 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4814 }
4815
4816 svm->vcpu.arch.nmi_injected = false;
4817 kvm_clear_exception_queue(&svm->vcpu);
4818 kvm_clear_interrupt_queue(&svm->vcpu);
4819
4820 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4821 return;
4822
4823 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4824
4825 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4826 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4827
4828 switch (type) {
4829 case SVM_EXITINTINFO_TYPE_NMI:
4830 svm->vcpu.arch.nmi_injected = true;
4831 break;
4832 case SVM_EXITINTINFO_TYPE_EXEPT:
4833 /*
4834 * In case of software exceptions, do not reinject the vector,
4835 * but re-execute the instruction instead. Rewind RIP first
4836 * if we emulated INT3 before.
4837 */
4838 if (kvm_exception_is_soft(vector)) {
4839 if (vector == BP_VECTOR && int3_injected &&
4840 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4841 kvm_rip_write(&svm->vcpu,
4842 kvm_rip_read(&svm->vcpu) -
4843 int3_injected);
4844 break;
4845 }
4846 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4847 u32 err = svm->vmcb->control.exit_int_info_err;
4848 kvm_requeue_exception_e(&svm->vcpu, vector, err);
4849
4850 } else
4851 kvm_requeue_exception(&svm->vcpu, vector);
4852 break;
4853 case SVM_EXITINTINFO_TYPE_INTR:
4854 kvm_queue_interrupt(&svm->vcpu, vector, false);
4855 break;
4856 default:
4857 break;
4858 }
4859 }
4860
4861 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4862 {
4863 struct vcpu_svm *svm = to_svm(vcpu);
4864 struct vmcb_control_area *control = &svm->vmcb->control;
4865
4866 control->exit_int_info = control->event_inj;
4867 control->exit_int_info_err = control->event_inj_err;
4868 control->event_inj = 0;
4869 svm_complete_interrupts(svm);
4870 }
4871
4872 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4873 {
4874 struct vcpu_svm *svm = to_svm(vcpu);
4875
4876 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4877 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4878 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4879
4880 /*
4881 * A vmexit emulation is required before the vcpu can be executed
4882 * again.
4883 */
4884 if (unlikely(svm->nested.exit_required))
4885 return;
4886
4887 /*
4888 * Disable singlestep if we're injecting an interrupt/exception.
4889 * We don't want our modified rflags to be pushed on the stack where
4890 * we might not be able to easily reset them if we disabled NMI
4891 * singlestep later.
4892 */
4893 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4894 /*
4895 * Event injection happens before external interrupts cause a
4896 * vmexit and interrupts are disabled here, so smp_send_reschedule
4897 * is enough to force an immediate vmexit.
4898 */
4899 disable_nmi_singlestep(svm);
4900 smp_send_reschedule(vcpu->cpu);
4901 }
4902
4903 pre_svm_run(svm);
4904
4905 sync_lapic_to_cr8(vcpu);
4906
4907 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4908
4909 clgi();
4910
4911 local_irq_enable();
4912
4913 /* SMB: Don't care about ibrs_inuse but rely on guest value */
4914 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
4915
4916 asm volatile (
4917 "push %%" _ASM_BP "; \n\t"
4918 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4919 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4920 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4921 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4922 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4923 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4924 #ifdef CONFIG_X86_64
4925 "mov %c[r8](%[svm]), %%r8 \n\t"
4926 "mov %c[r9](%[svm]), %%r9 \n\t"
4927 "mov %c[r10](%[svm]), %%r10 \n\t"
4928 "mov %c[r11](%[svm]), %%r11 \n\t"
4929 "mov %c[r12](%[svm]), %%r12 \n\t"
4930 "mov %c[r13](%[svm]), %%r13 \n\t"
4931 "mov %c[r14](%[svm]), %%r14 \n\t"
4932 "mov %c[r15](%[svm]), %%r15 \n\t"
4933 #endif
4934
4935 /* Enter guest mode */
4936 "push %%" _ASM_AX " \n\t"
4937 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4938 __ex(SVM_VMLOAD) "\n\t"
4939 __ex(SVM_VMRUN) "\n\t"
4940 __ex(SVM_VMSAVE) "\n\t"
4941 "pop %%" _ASM_AX " \n\t"
4942
4943 /* Save guest registers, load host registers */
4944 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4945 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4946 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4947 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4948 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4949 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4950 #ifdef CONFIG_X86_64
4951 "mov %%r8, %c[r8](%[svm]) \n\t"
4952 "mov %%r9, %c[r9](%[svm]) \n\t"
4953 "mov %%r10, %c[r10](%[svm]) \n\t"
4954 "mov %%r11, %c[r11](%[svm]) \n\t"
4955 "mov %%r12, %c[r12](%[svm]) \n\t"
4956 "mov %%r13, %c[r13](%[svm]) \n\t"
4957 "mov %%r14, %c[r14](%[svm]) \n\t"
4958 "mov %%r15, %c[r15](%[svm]) \n\t"
4959 #endif
4960 /*
4961 * Clear host registers marked as clobbered to prevent
4962 * speculative use.
4963 */
4964 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
4965 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
4966 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
4967 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
4968 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
4969 #ifdef CONFIG_X86_64
4970 "xor %%r8, %%r8 \n\t"
4971 "xor %%r9, %%r9 \n\t"
4972 "xor %%r10, %%r10 \n\t"
4973 "xor %%r11, %%r11 \n\t"
4974 "xor %%r12, %%r12 \n\t"
4975 "xor %%r13, %%r13 \n\t"
4976 "xor %%r14, %%r14 \n\t"
4977 "xor %%r15, %%r15 \n\t"
4978 #endif
4979 "pop %%" _ASM_BP
4980 :
4981 : [svm]"a"(svm),
4982 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4983 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4984 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4985 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4986 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4987 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4988 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4989 #ifdef CONFIG_X86_64
4990 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4991 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4992 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4993 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4994 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4995 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4996 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4997 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4998 #endif
4999 : "cc", "memory"
5000 #ifdef CONFIG_X86_64
5001 , "rbx", "rcx", "rdx", "rsi", "rdi"
5002 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5003 #else
5004 , "ebx", "ecx", "edx", "esi", "edi"
5005 #endif
5006 );
5007
5008 /* Eliminate branch target predictions from guest mode */
5009 vmexit_fill_RSB();
5010
5011 #ifdef CONFIG_X86_64
5012 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5013 #else
5014 loadsegment(fs, svm->host.fs);
5015 #ifndef CONFIG_X86_32_LAZY_GS
5016 loadsegment(gs, svm->host.gs);
5017 #endif
5018 #endif
5019
5020 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5021
5022 reload_tss(vcpu);
5023
5024 local_irq_disable();
5025
5026 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5027 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5028 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5029 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5030
5031 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5032 kvm_before_handle_nmi(&svm->vcpu);
5033
5034 stgi();
5035
5036 /* Any pending NMI will happen here */
5037
5038 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5039 kvm_after_handle_nmi(&svm->vcpu);
5040
5041 sync_cr8_to_lapic(vcpu);
5042
5043 svm->next_rip = 0;
5044
5045 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5046
5047 /* if exit due to PF check for async PF */
5048 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5049 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5050
5051 if (npt_enabled) {
5052 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5053 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5054 }
5055
5056 /*
5057 * We need to handle MC intercepts here before the vcpu has a chance to
5058 * change the physical cpu
5059 */
5060 if (unlikely(svm->vmcb->control.exit_code ==
5061 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5062 svm_handle_mce(svm);
5063
5064 mark_all_clean(svm->vmcb);
5065 }
5066 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5067
5068 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5069 {
5070 struct vcpu_svm *svm = to_svm(vcpu);
5071
5072 svm->vmcb->save.cr3 = root;
5073 mark_dirty(svm->vmcb, VMCB_CR);
5074 svm_flush_tlb(vcpu);
5075 }
5076
5077 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5078 {
5079 struct vcpu_svm *svm = to_svm(vcpu);
5080
5081 svm->vmcb->control.nested_cr3 = root;
5082 mark_dirty(svm->vmcb, VMCB_NPT);
5083
5084 /* Also sync guest cr3 here in case we live migrate */
5085 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5086 mark_dirty(svm->vmcb, VMCB_CR);
5087
5088 svm_flush_tlb(vcpu);
5089 }
5090
5091 static int is_disabled(void)
5092 {
5093 u64 vm_cr;
5094
5095 rdmsrl(MSR_VM_CR, vm_cr);
5096 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5097 return 1;
5098
5099 return 0;
5100 }
5101
5102 static void
5103 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5104 {
5105 /*
5106 * Patch in the VMMCALL instruction:
5107 */
5108 hypercall[0] = 0x0f;
5109 hypercall[1] = 0x01;
5110 hypercall[2] = 0xd9;
5111 }
5112
5113 static void svm_check_processor_compat(void *rtn)
5114 {
5115 *(int *)rtn = 0;
5116 }
5117
5118 static bool svm_cpu_has_accelerated_tpr(void)
5119 {
5120 return false;
5121 }
5122
5123 static bool svm_has_high_real_mode_segbase(void)
5124 {
5125 return true;
5126 }
5127
5128 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5129 {
5130 return 0;
5131 }
5132
5133 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5134 {
5135 struct vcpu_svm *svm = to_svm(vcpu);
5136 struct kvm_cpuid_entry2 *entry;
5137
5138 /* Update nrips enabled cache */
5139 svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
5140
5141 if (!kvm_vcpu_apicv_active(vcpu))
5142 return;
5143
5144 entry = kvm_find_cpuid_entry(vcpu, 1, 0);
5145 if (entry)
5146 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5147 }
5148
5149 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5150 {
5151 switch (func) {
5152 case 0x1:
5153 if (avic)
5154 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5155 break;
5156 case 0x80000001:
5157 if (nested)
5158 entry->ecx |= (1 << 2); /* Set SVM bit */
5159 break;
5160 case 0x8000000A:
5161 entry->eax = 1; /* SVM revision 1 */
5162 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5163 ASID emulation to nested SVM */
5164 entry->ecx = 0; /* Reserved */
5165 entry->edx = 0; /* Per default do not support any
5166 additional features */
5167
5168 /* Support next_rip if host supports it */
5169 if (boot_cpu_has(X86_FEATURE_NRIPS))
5170 entry->edx |= SVM_FEATURE_NRIP;
5171
5172 /* Support NPT for the guest if enabled */
5173 if (npt_enabled)
5174 entry->edx |= SVM_FEATURE_NPT;
5175
5176 break;
5177 }
5178 }
5179
5180 static int svm_get_lpage_level(void)
5181 {
5182 return PT_PDPE_LEVEL;
5183 }
5184
5185 static bool svm_rdtscp_supported(void)
5186 {
5187 return boot_cpu_has(X86_FEATURE_RDTSCP);
5188 }
5189
5190 static bool svm_invpcid_supported(void)
5191 {
5192 return false;
5193 }
5194
5195 static bool svm_mpx_supported(void)
5196 {
5197 return false;
5198 }
5199
5200 static bool svm_xsaves_supported(void)
5201 {
5202 return false;
5203 }
5204
5205 static bool svm_has_wbinvd_exit(void)
5206 {
5207 return true;
5208 }
5209
5210 #define PRE_EX(exit) { .exit_code = (exit), \
5211 .stage = X86_ICPT_PRE_EXCEPT, }
5212 #define POST_EX(exit) { .exit_code = (exit), \
5213 .stage = X86_ICPT_POST_EXCEPT, }
5214 #define POST_MEM(exit) { .exit_code = (exit), \
5215 .stage = X86_ICPT_POST_MEMACCESS, }
5216
5217 static const struct __x86_intercept {
5218 u32 exit_code;
5219 enum x86_intercept_stage stage;
5220 } x86_intercept_map[] = {
5221 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5222 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5223 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5224 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5225 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5226 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5227 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5228 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5229 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5230 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5231 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5232 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5233 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5234 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5235 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5236 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5237 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5238 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5239 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5240 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5241 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5242 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5243 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5244 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5245 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5246 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5247 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5248 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5249 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5250 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5251 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5252 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5253 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5254 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5255 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5256 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5257 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5258 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5259 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5260 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5261 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5262 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5263 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5264 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5265 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5266 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5267 };
5268
5269 #undef PRE_EX
5270 #undef POST_EX
5271 #undef POST_MEM
5272
5273 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5274 struct x86_instruction_info *info,
5275 enum x86_intercept_stage stage)
5276 {
5277 struct vcpu_svm *svm = to_svm(vcpu);
5278 int vmexit, ret = X86EMUL_CONTINUE;
5279 struct __x86_intercept icpt_info;
5280 struct vmcb *vmcb = svm->vmcb;
5281
5282 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5283 goto out;
5284
5285 icpt_info = x86_intercept_map[info->intercept];
5286
5287 if (stage != icpt_info.stage)
5288 goto out;
5289
5290 switch (icpt_info.exit_code) {
5291 case SVM_EXIT_READ_CR0:
5292 if (info->intercept == x86_intercept_cr_read)
5293 icpt_info.exit_code += info->modrm_reg;
5294 break;
5295 case SVM_EXIT_WRITE_CR0: {
5296 unsigned long cr0, val;
5297 u64 intercept;
5298
5299 if (info->intercept == x86_intercept_cr_write)
5300 icpt_info.exit_code += info->modrm_reg;
5301
5302 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5303 info->intercept == x86_intercept_clts)
5304 break;
5305
5306 intercept = svm->nested.intercept;
5307
5308 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5309 break;
5310
5311 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5312 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5313
5314 if (info->intercept == x86_intercept_lmsw) {
5315 cr0 &= 0xfUL;
5316 val &= 0xfUL;
5317 /* lmsw can't clear PE - catch this here */
5318 if (cr0 & X86_CR0_PE)
5319 val |= X86_CR0_PE;
5320 }
5321
5322 if (cr0 ^ val)
5323 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5324
5325 break;
5326 }
5327 case SVM_EXIT_READ_DR0:
5328 case SVM_EXIT_WRITE_DR0:
5329 icpt_info.exit_code += info->modrm_reg;
5330 break;
5331 case SVM_EXIT_MSR:
5332 if (info->intercept == x86_intercept_wrmsr)
5333 vmcb->control.exit_info_1 = 1;
5334 else
5335 vmcb->control.exit_info_1 = 0;
5336 break;
5337 case SVM_EXIT_PAUSE:
5338 /*
5339 * We get this for NOP only, but pause
5340 * is rep not, check this here
5341 */
5342 if (info->rep_prefix != REPE_PREFIX)
5343 goto out;
5344 case SVM_EXIT_IOIO: {
5345 u64 exit_info;
5346 u32 bytes;
5347
5348 if (info->intercept == x86_intercept_in ||
5349 info->intercept == x86_intercept_ins) {
5350 exit_info = ((info->src_val & 0xffff) << 16) |
5351 SVM_IOIO_TYPE_MASK;
5352 bytes = info->dst_bytes;
5353 } else {
5354 exit_info = (info->dst_val & 0xffff) << 16;
5355 bytes = info->src_bytes;
5356 }
5357
5358 if (info->intercept == x86_intercept_outs ||
5359 info->intercept == x86_intercept_ins)
5360 exit_info |= SVM_IOIO_STR_MASK;
5361
5362 if (info->rep_prefix)
5363 exit_info |= SVM_IOIO_REP_MASK;
5364
5365 bytes = min(bytes, 4u);
5366
5367 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5368
5369 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5370
5371 vmcb->control.exit_info_1 = exit_info;
5372 vmcb->control.exit_info_2 = info->next_rip;
5373
5374 break;
5375 }
5376 default:
5377 break;
5378 }
5379
5380 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5381 if (static_cpu_has(X86_FEATURE_NRIPS))
5382 vmcb->control.next_rip = info->next_rip;
5383 vmcb->control.exit_code = icpt_info.exit_code;
5384 vmexit = nested_svm_exit_handled(svm);
5385
5386 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5387 : X86EMUL_CONTINUE;
5388
5389 out:
5390 return ret;
5391 }
5392
5393 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5394 {
5395 local_irq_enable();
5396 /*
5397 * We must have an instruction with interrupts enabled, so
5398 * the timer interrupt isn't delayed by the interrupt shadow.
5399 */
5400 asm("nop");
5401 local_irq_disable();
5402 }
5403
5404 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5405 {
5406 }
5407
5408 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5409 {
5410 if (avic_handle_apic_id_update(vcpu) != 0)
5411 return;
5412 if (avic_handle_dfr_update(vcpu) != 0)
5413 return;
5414 avic_handle_ldr_update(vcpu);
5415 }
5416
5417 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5418 {
5419 /* [63:9] are reserved. */
5420 vcpu->arch.mcg_cap &= 0x1ff;
5421 }
5422
5423 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5424 .cpu_has_kvm_support = has_svm,
5425 .disabled_by_bios = is_disabled,
5426 .hardware_setup = svm_hardware_setup,
5427 .hardware_unsetup = svm_hardware_unsetup,
5428 .check_processor_compatibility = svm_check_processor_compat,
5429 .hardware_enable = svm_hardware_enable,
5430 .hardware_disable = svm_hardware_disable,
5431 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5432 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5433
5434 .vcpu_create = svm_create_vcpu,
5435 .vcpu_free = svm_free_vcpu,
5436 .vcpu_reset = svm_vcpu_reset,
5437
5438 .vm_init = avic_vm_init,
5439 .vm_destroy = avic_vm_destroy,
5440
5441 .prepare_guest_switch = svm_prepare_guest_switch,
5442 .vcpu_load = svm_vcpu_load,
5443 .vcpu_put = svm_vcpu_put,
5444 .vcpu_blocking = svm_vcpu_blocking,
5445 .vcpu_unblocking = svm_vcpu_unblocking,
5446
5447 .update_bp_intercept = update_bp_intercept,
5448 .get_msr = svm_get_msr,
5449 .set_msr = svm_set_msr,
5450 .get_segment_base = svm_get_segment_base,
5451 .get_segment = svm_get_segment,
5452 .set_segment = svm_set_segment,
5453 .get_cpl = svm_get_cpl,
5454 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5455 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5456 .decache_cr3 = svm_decache_cr3,
5457 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5458 .set_cr0 = svm_set_cr0,
5459 .set_cr3 = svm_set_cr3,
5460 .set_cr4 = svm_set_cr4,
5461 .set_efer = svm_set_efer,
5462 .get_idt = svm_get_idt,
5463 .set_idt = svm_set_idt,
5464 .get_gdt = svm_get_gdt,
5465 .set_gdt = svm_set_gdt,
5466 .get_dr6 = svm_get_dr6,
5467 .set_dr6 = svm_set_dr6,
5468 .set_dr7 = svm_set_dr7,
5469 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5470 .cache_reg = svm_cache_reg,
5471 .get_rflags = svm_get_rflags,
5472 .set_rflags = svm_set_rflags,
5473
5474 .tlb_flush = svm_flush_tlb,
5475
5476 .run = svm_vcpu_run,
5477 .handle_exit = handle_exit,
5478 .skip_emulated_instruction = skip_emulated_instruction,
5479 .set_interrupt_shadow = svm_set_interrupt_shadow,
5480 .get_interrupt_shadow = svm_get_interrupt_shadow,
5481 .patch_hypercall = svm_patch_hypercall,
5482 .set_irq = svm_set_irq,
5483 .set_nmi = svm_inject_nmi,
5484 .queue_exception = svm_queue_exception,
5485 .cancel_injection = svm_cancel_injection,
5486 .interrupt_allowed = svm_interrupt_allowed,
5487 .nmi_allowed = svm_nmi_allowed,
5488 .get_nmi_mask = svm_get_nmi_mask,
5489 .set_nmi_mask = svm_set_nmi_mask,
5490 .enable_nmi_window = enable_nmi_window,
5491 .enable_irq_window = enable_irq_window,
5492 .update_cr8_intercept = update_cr8_intercept,
5493 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5494 .get_enable_apicv = svm_get_enable_apicv,
5495 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5496 .load_eoi_exitmap = svm_load_eoi_exitmap,
5497 .hwapic_irr_update = svm_hwapic_irr_update,
5498 .hwapic_isr_update = svm_hwapic_isr_update,
5499 .apicv_post_state_restore = avic_post_state_restore,
5500
5501 .set_tss_addr = svm_set_tss_addr,
5502 .get_tdp_level = get_npt_level,
5503 .get_mt_mask = svm_get_mt_mask,
5504
5505 .get_exit_info = svm_get_exit_info,
5506
5507 .get_lpage_level = svm_get_lpage_level,
5508
5509 .cpuid_update = svm_cpuid_update,
5510
5511 .rdtscp_supported = svm_rdtscp_supported,
5512 .invpcid_supported = svm_invpcid_supported,
5513 .mpx_supported = svm_mpx_supported,
5514 .xsaves_supported = svm_xsaves_supported,
5515
5516 .set_supported_cpuid = svm_set_supported_cpuid,
5517
5518 .has_wbinvd_exit = svm_has_wbinvd_exit,
5519
5520 .write_tsc_offset = svm_write_tsc_offset,
5521
5522 .set_tdp_cr3 = set_tdp_cr3,
5523
5524 .check_intercept = svm_check_intercept,
5525 .handle_external_intr = svm_handle_external_intr,
5526
5527 .sched_in = svm_sched_in,
5528
5529 .pmu_ops = &amd_pmu_ops,
5530 .deliver_posted_interrupt = svm_deliver_avic_intr,
5531 .update_pi_irte = svm_update_pi_irte,
5532 .setup_mce = svm_setup_mce,
5533 };
5534
5535 static int __init svm_init(void)
5536 {
5537 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5538 __alignof__(struct vcpu_svm), THIS_MODULE);
5539 }
5540
5541 static void __exit svm_exit(void)
5542 {
5543 kvm_exit();
5544 }
5545
5546 module_init(svm_init)
5547 module_exit(svm_exit)