]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/svm.c
x86/bugs, KVM: Support the combination of guest and host IBRS
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40
41 #include <asm/apic.h>
42 #include <asm/perf_event.h>
43 #include <asm/tlbflush.h>
44 #include <asm/desc.h>
45 #include <asm/debugreg.h>
46 #include <asm/kvm_para.h>
47 #include <asm/irq_remapping.h>
48 #include <asm/nospec-branch.h>
49
50 #include <asm/virtext.h>
51 #include "trace.h"
52
53 #define __ex(x) __kvm_handle_fault_on_reboot(x)
54
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57
58 static const struct x86_cpu_id svm_cpu_id[] = {
59 X86_FEATURE_MATCH(X86_FEATURE_SVM),
60 {}
61 };
62 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
63
64 #define IOPM_ALLOC_ORDER 2
65 #define MSRPM_ALLOC_ORDER 1
66
67 #define SEG_TYPE_LDT 2
68 #define SEG_TYPE_BUSY_TSS16 3
69
70 #define SVM_FEATURE_NPT (1 << 0)
71 #define SVM_FEATURE_LBRV (1 << 1)
72 #define SVM_FEATURE_SVML (1 << 2)
73 #define SVM_FEATURE_NRIP (1 << 3)
74 #define SVM_FEATURE_TSC_RATE (1 << 4)
75 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
76 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
77 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
78 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
79
80 #define SVM_AVIC_DOORBELL 0xc001011b
81
82 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
83 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
84 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
85
86 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
87
88 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
89 #define TSC_RATIO_MIN 0x0000000000000001ULL
90 #define TSC_RATIO_MAX 0x000000ffffffffffULL
91
92 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
93
94 /*
95 * 0xff is broadcast, so the max index allowed for physical APIC ID
96 * table is 0xfe. APIC IDs above 0xff are reserved.
97 */
98 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
99
100 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
101 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
102 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
103
104 /* AVIC GATAG is encoded using VM and VCPU IDs */
105 #define AVIC_VCPU_ID_BITS 8
106 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
107
108 #define AVIC_VM_ID_BITS 24
109 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
110 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
111
112 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
113 (y & AVIC_VCPU_ID_MASK))
114 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
115 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
116
117 static bool erratum_383_found __read_mostly;
118
119 static const u32 host_save_user_msrs[] = {
120 #ifdef CONFIG_X86_64
121 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
122 MSR_FS_BASE,
123 #endif
124 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
125 MSR_TSC_AUX,
126 };
127
128 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
129
130 struct kvm_vcpu;
131
132 struct nested_state {
133 struct vmcb *hsave;
134 u64 hsave_msr;
135 u64 vm_cr_msr;
136 u64 vmcb;
137
138 /* These are the merged vectors */
139 u32 *msrpm;
140
141 /* gpa pointers to the real vectors */
142 u64 vmcb_msrpm;
143 u64 vmcb_iopm;
144
145 /* A VMEXIT is required but not yet emulated */
146 bool exit_required;
147
148 /* cache for intercepts of the guest */
149 u32 intercept_cr;
150 u32 intercept_dr;
151 u32 intercept_exceptions;
152 u64 intercept;
153
154 /* Nested Paging related state */
155 u64 nested_cr3;
156 };
157
158 #define MSRPM_OFFSETS 16
159 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
160
161 /*
162 * Set osvw_len to higher value when updated Revision Guides
163 * are published and we know what the new status bits are
164 */
165 static uint64_t osvw_len = 4, osvw_status;
166
167 struct vcpu_svm {
168 struct kvm_vcpu vcpu;
169 struct vmcb *vmcb;
170 unsigned long vmcb_pa;
171 struct svm_cpu_data *svm_data;
172 uint64_t asid_generation;
173 uint64_t sysenter_esp;
174 uint64_t sysenter_eip;
175 uint64_t tsc_aux;
176
177 u64 next_rip;
178
179 u64 spec_ctrl;
180
181 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
182 struct {
183 u16 fs;
184 u16 gs;
185 u16 ldt;
186 u64 gs_base;
187 } host;
188
189 u32 *msrpm;
190
191 ulong nmi_iret_rip;
192
193 struct nested_state nested;
194
195 bool nmi_singlestep;
196 u64 nmi_singlestep_guest_rflags;
197
198 unsigned int3_injected;
199 unsigned long int3_rip;
200
201 /* cached guest cpuid flags for faster access */
202 bool nrips_enabled : 1;
203
204 u32 ldr_reg;
205 struct page *avic_backing_page;
206 u64 *avic_physical_id_cache;
207 bool avic_is_running;
208
209 /*
210 * Per-vcpu list of struct amd_svm_iommu_ir:
211 * This is used mainly to store interrupt remapping information used
212 * when update the vcpu affinity. This avoids the need to scan for
213 * IRTE and try to match ga_tag in the IOMMU driver.
214 */
215 struct list_head ir_list;
216 spinlock_t ir_list_lock;
217 };
218
219 /*
220 * This is a wrapper of struct amd_iommu_ir_data.
221 */
222 struct amd_svm_iommu_ir {
223 struct list_head node; /* Used by SVM for per-vcpu ir_list */
224 void *data; /* Storing pointer to struct amd_ir_data */
225 };
226
227 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
228 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
229
230 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
231 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
232 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
233 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
234
235 static DEFINE_PER_CPU(u64, current_tsc_ratio);
236 #define TSC_RATIO_DEFAULT 0x0100000000ULL
237
238 #define MSR_INVALID 0xffffffffU
239
240 static const struct svm_direct_access_msrs {
241 u32 index; /* Index of the MSR */
242 bool always; /* True if intercept is always on */
243 } direct_access_msrs[] = {
244 { .index = MSR_STAR, .always = true },
245 { .index = MSR_IA32_SYSENTER_CS, .always = true },
246 #ifdef CONFIG_X86_64
247 { .index = MSR_GS_BASE, .always = true },
248 { .index = MSR_FS_BASE, .always = true },
249 { .index = MSR_KERNEL_GS_BASE, .always = true },
250 { .index = MSR_LSTAR, .always = true },
251 { .index = MSR_CSTAR, .always = true },
252 { .index = MSR_SYSCALL_MASK, .always = true },
253 #endif
254 { .index = MSR_IA32_SPEC_CTRL, .always = true },
255 { .index = MSR_IA32_PRED_CMD, .always = true },
256 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
257 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
258 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
259 { .index = MSR_IA32_LASTINTTOIP, .always = false },
260 { .index = MSR_INVALID, .always = false },
261 };
262
263 /* enable NPT for AMD64 and X86 with PAE */
264 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
265 static bool npt_enabled = true;
266 #else
267 static bool npt_enabled;
268 #endif
269
270 /* allow nested paging (virtualized MMU) for all guests */
271 static int npt = true;
272 module_param(npt, int, S_IRUGO);
273
274 /* allow nested virtualization in KVM/SVM */
275 static int nested = true;
276 module_param(nested, int, S_IRUGO);
277
278 /* enable / disable AVIC */
279 static int avic;
280 #ifdef CONFIG_X86_LOCAL_APIC
281 module_param(avic, int, S_IRUGO);
282 #endif
283
284 /* enable/disable Virtual VMLOAD VMSAVE */
285 static int vls = true;
286 module_param(vls, int, 0444);
287
288 /* AVIC VM ID bit masks and lock */
289 static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
290 static DEFINE_SPINLOCK(avic_vm_id_lock);
291
292 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
293 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
294 static void svm_complete_interrupts(struct vcpu_svm *svm);
295
296 static int nested_svm_exit_handled(struct vcpu_svm *svm);
297 static int nested_svm_intercept(struct vcpu_svm *svm);
298 static int nested_svm_vmexit(struct vcpu_svm *svm);
299 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
300 bool has_error_code, u32 error_code);
301
302 enum {
303 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
304 pause filter count */
305 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
306 VMCB_ASID, /* ASID */
307 VMCB_INTR, /* int_ctl, int_vector */
308 VMCB_NPT, /* npt_en, nCR3, gPAT */
309 VMCB_CR, /* CR0, CR3, CR4, EFER */
310 VMCB_DR, /* DR6, DR7 */
311 VMCB_DT, /* GDT, IDT */
312 VMCB_SEG, /* CS, DS, SS, ES, CPL */
313 VMCB_CR2, /* CR2 only */
314 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
315 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
316 * AVIC PHYSICAL_TABLE pointer,
317 * AVIC LOGICAL_TABLE pointer
318 */
319 VMCB_DIRTY_MAX,
320 };
321
322 /* TPR and CR2 are always written before VMRUN */
323 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
324
325 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
326
327 static inline void mark_all_dirty(struct vmcb *vmcb)
328 {
329 vmcb->control.clean = 0;
330 }
331
332 static inline void mark_all_clean(struct vmcb *vmcb)
333 {
334 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
335 & ~VMCB_ALWAYS_DIRTY_MASK;
336 }
337
338 static inline void mark_dirty(struct vmcb *vmcb, int bit)
339 {
340 vmcb->control.clean &= ~(1 << bit);
341 }
342
343 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
344 {
345 return container_of(vcpu, struct vcpu_svm, vcpu);
346 }
347
348 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
349 {
350 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
351 mark_dirty(svm->vmcb, VMCB_AVIC);
352 }
353
354 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
355 {
356 struct vcpu_svm *svm = to_svm(vcpu);
357 u64 *entry = svm->avic_physical_id_cache;
358
359 if (!entry)
360 return false;
361
362 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
363 }
364
365 static void recalc_intercepts(struct vcpu_svm *svm)
366 {
367 struct vmcb_control_area *c, *h;
368 struct nested_state *g;
369
370 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
371
372 if (!is_guest_mode(&svm->vcpu))
373 return;
374
375 c = &svm->vmcb->control;
376 h = &svm->nested.hsave->control;
377 g = &svm->nested;
378
379 c->intercept_cr = h->intercept_cr | g->intercept_cr;
380 c->intercept_dr = h->intercept_dr | g->intercept_dr;
381 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
382 c->intercept = h->intercept | g->intercept;
383 }
384
385 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
386 {
387 if (is_guest_mode(&svm->vcpu))
388 return svm->nested.hsave;
389 else
390 return svm->vmcb;
391 }
392
393 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
394 {
395 struct vmcb *vmcb = get_host_vmcb(svm);
396
397 vmcb->control.intercept_cr |= (1U << bit);
398
399 recalc_intercepts(svm);
400 }
401
402 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
403 {
404 struct vmcb *vmcb = get_host_vmcb(svm);
405
406 vmcb->control.intercept_cr &= ~(1U << bit);
407
408 recalc_intercepts(svm);
409 }
410
411 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
412 {
413 struct vmcb *vmcb = get_host_vmcb(svm);
414
415 return vmcb->control.intercept_cr & (1U << bit);
416 }
417
418 static inline void set_dr_intercepts(struct vcpu_svm *svm)
419 {
420 struct vmcb *vmcb = get_host_vmcb(svm);
421
422 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
423 | (1 << INTERCEPT_DR1_READ)
424 | (1 << INTERCEPT_DR2_READ)
425 | (1 << INTERCEPT_DR3_READ)
426 | (1 << INTERCEPT_DR4_READ)
427 | (1 << INTERCEPT_DR5_READ)
428 | (1 << INTERCEPT_DR6_READ)
429 | (1 << INTERCEPT_DR7_READ)
430 | (1 << INTERCEPT_DR0_WRITE)
431 | (1 << INTERCEPT_DR1_WRITE)
432 | (1 << INTERCEPT_DR2_WRITE)
433 | (1 << INTERCEPT_DR3_WRITE)
434 | (1 << INTERCEPT_DR4_WRITE)
435 | (1 << INTERCEPT_DR5_WRITE)
436 | (1 << INTERCEPT_DR6_WRITE)
437 | (1 << INTERCEPT_DR7_WRITE);
438
439 recalc_intercepts(svm);
440 }
441
442 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
443 {
444 struct vmcb *vmcb = get_host_vmcb(svm);
445
446 vmcb->control.intercept_dr = 0;
447
448 recalc_intercepts(svm);
449 }
450
451 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
452 {
453 struct vmcb *vmcb = get_host_vmcb(svm);
454
455 vmcb->control.intercept_exceptions |= (1U << bit);
456
457 recalc_intercepts(svm);
458 }
459
460 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
461 {
462 struct vmcb *vmcb = get_host_vmcb(svm);
463
464 vmcb->control.intercept_exceptions &= ~(1U << bit);
465
466 recalc_intercepts(svm);
467 }
468
469 static inline void set_intercept(struct vcpu_svm *svm, int bit)
470 {
471 struct vmcb *vmcb = get_host_vmcb(svm);
472
473 vmcb->control.intercept |= (1ULL << bit);
474
475 recalc_intercepts(svm);
476 }
477
478 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
479 {
480 struct vmcb *vmcb = get_host_vmcb(svm);
481
482 vmcb->control.intercept &= ~(1ULL << bit);
483
484 recalc_intercepts(svm);
485 }
486
487 static inline void enable_gif(struct vcpu_svm *svm)
488 {
489 svm->vcpu.arch.hflags |= HF_GIF_MASK;
490 }
491
492 static inline void disable_gif(struct vcpu_svm *svm)
493 {
494 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
495 }
496
497 static inline bool gif_set(struct vcpu_svm *svm)
498 {
499 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
500 }
501
502 static unsigned long iopm_base;
503
504 struct kvm_ldttss_desc {
505 u16 limit0;
506 u16 base0;
507 unsigned base1:8, type:5, dpl:2, p:1;
508 unsigned limit1:4, zero0:3, g:1, base2:8;
509 u32 base3;
510 u32 zero1;
511 } __attribute__((packed));
512
513 struct svm_cpu_data {
514 int cpu;
515
516 u64 asid_generation;
517 u32 max_asid;
518 u32 next_asid;
519 struct kvm_ldttss_desc *tss_desc;
520
521 struct page *save_area;
522
523 struct vmcb *current_vmcb;
524 };
525
526 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
527
528 struct svm_init_data {
529 int cpu;
530 int r;
531 };
532
533 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
534
535 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
536 #define MSRS_RANGE_SIZE 2048
537 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
538
539 static u32 svm_msrpm_offset(u32 msr)
540 {
541 u32 offset;
542 int i;
543
544 for (i = 0; i < NUM_MSR_MAPS; i++) {
545 if (msr < msrpm_ranges[i] ||
546 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
547 continue;
548
549 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
550 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
551
552 /* Now we have the u8 offset - but need the u32 offset */
553 return offset / 4;
554 }
555
556 /* MSR not in any range */
557 return MSR_INVALID;
558 }
559
560 #define MAX_INST_SIZE 15
561
562 static inline void clgi(void)
563 {
564 asm volatile (__ex(SVM_CLGI));
565 }
566
567 static inline void stgi(void)
568 {
569 asm volatile (__ex(SVM_STGI));
570 }
571
572 static inline void invlpga(unsigned long addr, u32 asid)
573 {
574 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
575 }
576
577 static int get_npt_level(void)
578 {
579 #ifdef CONFIG_X86_64
580 return PT64_ROOT_LEVEL;
581 #else
582 return PT32E_ROOT_LEVEL;
583 #endif
584 }
585
586 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
587 {
588 vcpu->arch.efer = efer;
589 if (!npt_enabled && !(efer & EFER_LMA))
590 efer &= ~EFER_LME;
591
592 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
593 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
594 }
595
596 static int is_external_interrupt(u32 info)
597 {
598 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
599 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
600 }
601
602 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
603 {
604 struct vcpu_svm *svm = to_svm(vcpu);
605 u32 ret = 0;
606
607 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
608 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
609 return ret;
610 }
611
612 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
613 {
614 struct vcpu_svm *svm = to_svm(vcpu);
615
616 if (mask == 0)
617 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
618 else
619 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
620
621 }
622
623 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
624 {
625 struct vcpu_svm *svm = to_svm(vcpu);
626
627 if (svm->vmcb->control.next_rip != 0) {
628 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
629 svm->next_rip = svm->vmcb->control.next_rip;
630 }
631
632 if (!svm->next_rip) {
633 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
634 EMULATE_DONE)
635 printk(KERN_DEBUG "%s: NOP\n", __func__);
636 return;
637 }
638 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
639 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
640 __func__, kvm_rip_read(vcpu), svm->next_rip);
641
642 kvm_rip_write(vcpu, svm->next_rip);
643 svm_set_interrupt_shadow(vcpu, 0);
644 }
645
646 static void svm_queue_exception(struct kvm_vcpu *vcpu)
647 {
648 struct vcpu_svm *svm = to_svm(vcpu);
649 unsigned nr = vcpu->arch.exception.nr;
650 bool has_error_code = vcpu->arch.exception.has_error_code;
651 bool reinject = vcpu->arch.exception.reinject;
652 u32 error_code = vcpu->arch.exception.error_code;
653
654 /*
655 * If we are within a nested VM we'd better #VMEXIT and let the guest
656 * handle the exception
657 */
658 if (!reinject &&
659 nested_svm_check_exception(svm, nr, has_error_code, error_code))
660 return;
661
662 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
663 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
664
665 /*
666 * For guest debugging where we have to reinject #BP if some
667 * INT3 is guest-owned:
668 * Emulate nRIP by moving RIP forward. Will fail if injection
669 * raises a fault that is not intercepted. Still better than
670 * failing in all cases.
671 */
672 skip_emulated_instruction(&svm->vcpu);
673 rip = kvm_rip_read(&svm->vcpu);
674 svm->int3_rip = rip + svm->vmcb->save.cs.base;
675 svm->int3_injected = rip - old_rip;
676 }
677
678 svm->vmcb->control.event_inj = nr
679 | SVM_EVTINJ_VALID
680 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
681 | SVM_EVTINJ_TYPE_EXEPT;
682 svm->vmcb->control.event_inj_err = error_code;
683 }
684
685 static void svm_init_erratum_383(void)
686 {
687 u32 low, high;
688 int err;
689 u64 val;
690
691 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
692 return;
693
694 /* Use _safe variants to not break nested virtualization */
695 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
696 if (err)
697 return;
698
699 val |= (1ULL << 47);
700
701 low = lower_32_bits(val);
702 high = upper_32_bits(val);
703
704 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
705
706 erratum_383_found = true;
707 }
708
709 static void svm_init_osvw(struct kvm_vcpu *vcpu)
710 {
711 /*
712 * Guests should see errata 400 and 415 as fixed (assuming that
713 * HLT and IO instructions are intercepted).
714 */
715 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
716 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
717
718 /*
719 * By increasing VCPU's osvw.length to 3 we are telling the guest that
720 * all osvw.status bits inside that length, including bit 0 (which is
721 * reserved for erratum 298), are valid. However, if host processor's
722 * osvw_len is 0 then osvw_status[0] carries no information. We need to
723 * be conservative here and therefore we tell the guest that erratum 298
724 * is present (because we really don't know).
725 */
726 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
727 vcpu->arch.osvw.status |= 1;
728 }
729
730 static int has_svm(void)
731 {
732 const char *msg;
733
734 if (!cpu_has_svm(&msg)) {
735 printk(KERN_INFO "has_svm: %s\n", msg);
736 return 0;
737 }
738
739 return 1;
740 }
741
742 static void svm_hardware_disable(void)
743 {
744 /* Make sure we clean up behind us */
745 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
746 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
747
748 cpu_svm_disable();
749
750 amd_pmu_disable_virt();
751 }
752
753 static int svm_hardware_enable(void)
754 {
755
756 struct svm_cpu_data *sd;
757 uint64_t efer;
758 struct desc_struct *gdt;
759 int me = raw_smp_processor_id();
760
761 rdmsrl(MSR_EFER, efer);
762 if (efer & EFER_SVME)
763 return -EBUSY;
764
765 if (!has_svm()) {
766 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
767 return -EINVAL;
768 }
769 sd = per_cpu(svm_data, me);
770 if (!sd) {
771 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
772 return -EINVAL;
773 }
774
775 sd->asid_generation = 1;
776 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
777 sd->next_asid = sd->max_asid + 1;
778
779 gdt = get_current_gdt_rw();
780 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
781
782 wrmsrl(MSR_EFER, efer | EFER_SVME);
783
784 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
785
786 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
787 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
788 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
789 }
790
791
792 /*
793 * Get OSVW bits.
794 *
795 * Note that it is possible to have a system with mixed processor
796 * revisions and therefore different OSVW bits. If bits are not the same
797 * on different processors then choose the worst case (i.e. if erratum
798 * is present on one processor and not on another then assume that the
799 * erratum is present everywhere).
800 */
801 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
802 uint64_t len, status = 0;
803 int err;
804
805 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
806 if (!err)
807 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
808 &err);
809
810 if (err)
811 osvw_status = osvw_len = 0;
812 else {
813 if (len < osvw_len)
814 osvw_len = len;
815 osvw_status |= status;
816 osvw_status &= (1ULL << osvw_len) - 1;
817 }
818 } else
819 osvw_status = osvw_len = 0;
820
821 svm_init_erratum_383();
822
823 amd_pmu_enable_virt();
824
825 return 0;
826 }
827
828 static void svm_cpu_uninit(int cpu)
829 {
830 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
831
832 if (!sd)
833 return;
834
835 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
836 __free_page(sd->save_area);
837 kfree(sd);
838 }
839
840 static int svm_cpu_init(int cpu)
841 {
842 struct svm_cpu_data *sd;
843 int r;
844
845 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
846 if (!sd)
847 return -ENOMEM;
848 sd->cpu = cpu;
849 sd->save_area = alloc_page(GFP_KERNEL);
850 r = -ENOMEM;
851 if (!sd->save_area)
852 goto err_1;
853
854 per_cpu(svm_data, cpu) = sd;
855
856 return 0;
857
858 err_1:
859 kfree(sd);
860 return r;
861
862 }
863
864 static bool valid_msr_intercept(u32 index)
865 {
866 int i;
867
868 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
869 if (direct_access_msrs[i].index == index)
870 return true;
871
872 return false;
873 }
874
875 static void set_msr_interception(u32 *msrpm, unsigned msr,
876 int read, int write)
877 {
878 u8 bit_read, bit_write;
879 unsigned long tmp;
880 u32 offset;
881
882 /*
883 * If this warning triggers extend the direct_access_msrs list at the
884 * beginning of the file
885 */
886 WARN_ON(!valid_msr_intercept(msr));
887
888 offset = svm_msrpm_offset(msr);
889 bit_read = 2 * (msr & 0x0f);
890 bit_write = 2 * (msr & 0x0f) + 1;
891 tmp = msrpm[offset];
892
893 BUG_ON(offset == MSR_INVALID);
894
895 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
896 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
897
898 msrpm[offset] = tmp;
899 }
900
901 static void svm_vcpu_init_msrpm(u32 *msrpm)
902 {
903 int i;
904
905 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
906
907 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
908 if (!direct_access_msrs[i].always)
909 continue;
910
911 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
912 }
913 }
914
915 static void add_msr_offset(u32 offset)
916 {
917 int i;
918
919 for (i = 0; i < MSRPM_OFFSETS; ++i) {
920
921 /* Offset already in list? */
922 if (msrpm_offsets[i] == offset)
923 return;
924
925 /* Slot used by another offset? */
926 if (msrpm_offsets[i] != MSR_INVALID)
927 continue;
928
929 /* Add offset to list */
930 msrpm_offsets[i] = offset;
931
932 return;
933 }
934
935 /*
936 * If this BUG triggers the msrpm_offsets table has an overflow. Just
937 * increase MSRPM_OFFSETS in this case.
938 */
939 BUG();
940 }
941
942 static void init_msrpm_offsets(void)
943 {
944 int i;
945
946 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
947
948 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
949 u32 offset;
950
951 offset = svm_msrpm_offset(direct_access_msrs[i].index);
952 BUG_ON(offset == MSR_INVALID);
953
954 add_msr_offset(offset);
955 }
956 }
957
958 static void svm_enable_lbrv(struct vcpu_svm *svm)
959 {
960 u32 *msrpm = svm->msrpm;
961
962 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
963 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
964 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
965 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
966 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
967 }
968
969 static void svm_disable_lbrv(struct vcpu_svm *svm)
970 {
971 u32 *msrpm = svm->msrpm;
972
973 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
974 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
975 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
976 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
977 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
978 }
979
980 static void disable_nmi_singlestep(struct vcpu_svm *svm)
981 {
982 svm->nmi_singlestep = false;
983 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
984 /* Clear our flags if they were not set by the guest */
985 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
986 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
987 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
988 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
989 }
990 }
991
992 /* Note:
993 * This hash table is used to map VM_ID to a struct kvm_arch,
994 * when handling AMD IOMMU GALOG notification to schedule in
995 * a particular vCPU.
996 */
997 #define SVM_VM_DATA_HASH_BITS 8
998 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
999 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1000
1001 /* Note:
1002 * This function is called from IOMMU driver to notify
1003 * SVM to schedule in a particular vCPU of a particular VM.
1004 */
1005 static int avic_ga_log_notifier(u32 ga_tag)
1006 {
1007 unsigned long flags;
1008 struct kvm_arch *ka = NULL;
1009 struct kvm_vcpu *vcpu = NULL;
1010 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1011 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1012
1013 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1014
1015 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1016 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1017 struct kvm *kvm = container_of(ka, struct kvm, arch);
1018 struct kvm_arch *vm_data = &kvm->arch;
1019
1020 if (vm_data->avic_vm_id != vm_id)
1021 continue;
1022 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1023 break;
1024 }
1025 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1026
1027 if (!vcpu)
1028 return 0;
1029
1030 /* Note:
1031 * At this point, the IOMMU should have already set the pending
1032 * bit in the vAPIC backing page. So, we just need to schedule
1033 * in the vcpu.
1034 */
1035 if (vcpu->mode == OUTSIDE_GUEST_MODE)
1036 kvm_vcpu_wake_up(vcpu);
1037
1038 return 0;
1039 }
1040
1041 static __init int svm_hardware_setup(void)
1042 {
1043 int cpu;
1044 struct page *iopm_pages;
1045 void *iopm_va;
1046 int r;
1047
1048 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1049
1050 if (!iopm_pages)
1051 return -ENOMEM;
1052
1053 iopm_va = page_address(iopm_pages);
1054 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1055 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1056
1057 init_msrpm_offsets();
1058
1059 if (boot_cpu_has(X86_FEATURE_NX))
1060 kvm_enable_efer_bits(EFER_NX);
1061
1062 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1063 kvm_enable_efer_bits(EFER_FFXSR);
1064
1065 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1066 kvm_has_tsc_control = true;
1067 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1068 kvm_tsc_scaling_ratio_frac_bits = 32;
1069 }
1070
1071 if (nested) {
1072 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1073 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1074 }
1075
1076 for_each_possible_cpu(cpu) {
1077 r = svm_cpu_init(cpu);
1078 if (r)
1079 goto err;
1080 }
1081
1082 if (!boot_cpu_has(X86_FEATURE_NPT))
1083 npt_enabled = false;
1084
1085 if (npt_enabled && !npt) {
1086 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1087 npt_enabled = false;
1088 }
1089
1090 if (npt_enabled) {
1091 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1092 kvm_enable_tdp();
1093 } else
1094 kvm_disable_tdp();
1095
1096 if (avic) {
1097 if (!npt_enabled ||
1098 !boot_cpu_has(X86_FEATURE_AVIC) ||
1099 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1100 avic = false;
1101 } else {
1102 pr_info("AVIC enabled\n");
1103
1104 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1105 }
1106 }
1107
1108 if (vls) {
1109 if (!npt_enabled ||
1110 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1111 !IS_ENABLED(CONFIG_X86_64)) {
1112 vls = false;
1113 } else {
1114 pr_info("Virtual VMLOAD VMSAVE supported\n");
1115 }
1116 }
1117
1118 return 0;
1119
1120 err:
1121 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1122 iopm_base = 0;
1123 return r;
1124 }
1125
1126 static __exit void svm_hardware_unsetup(void)
1127 {
1128 int cpu;
1129
1130 for_each_possible_cpu(cpu)
1131 svm_cpu_uninit(cpu);
1132
1133 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1134 iopm_base = 0;
1135 }
1136
1137 static void init_seg(struct vmcb_seg *seg)
1138 {
1139 seg->selector = 0;
1140 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1141 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1142 seg->limit = 0xffff;
1143 seg->base = 0;
1144 }
1145
1146 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1147 {
1148 seg->selector = 0;
1149 seg->attrib = SVM_SELECTOR_P_MASK | type;
1150 seg->limit = 0xffff;
1151 seg->base = 0;
1152 }
1153
1154 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1155 {
1156 struct vcpu_svm *svm = to_svm(vcpu);
1157 u64 g_tsc_offset = 0;
1158
1159 if (is_guest_mode(vcpu)) {
1160 g_tsc_offset = svm->vmcb->control.tsc_offset -
1161 svm->nested.hsave->control.tsc_offset;
1162 svm->nested.hsave->control.tsc_offset = offset;
1163 } else
1164 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1165 svm->vmcb->control.tsc_offset,
1166 offset);
1167
1168 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1169
1170 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1171 }
1172
1173 static void avic_init_vmcb(struct vcpu_svm *svm)
1174 {
1175 struct vmcb *vmcb = svm->vmcb;
1176 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1177 phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1178 phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1179 phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1180
1181 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1182 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1183 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1184 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1185 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1186 svm->vcpu.arch.apicv_active = true;
1187 }
1188
1189 static void init_vmcb(struct vcpu_svm *svm)
1190 {
1191 struct vmcb_control_area *control = &svm->vmcb->control;
1192 struct vmcb_save_area *save = &svm->vmcb->save;
1193
1194 svm->vcpu.arch.hflags = 0;
1195
1196 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1197 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1198 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1199 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1200 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1201 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1202 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1203 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1204
1205 set_dr_intercepts(svm);
1206
1207 set_exception_intercept(svm, PF_VECTOR);
1208 set_exception_intercept(svm, UD_VECTOR);
1209 set_exception_intercept(svm, MC_VECTOR);
1210 set_exception_intercept(svm, AC_VECTOR);
1211 set_exception_intercept(svm, DB_VECTOR);
1212
1213 set_intercept(svm, INTERCEPT_INTR);
1214 set_intercept(svm, INTERCEPT_NMI);
1215 set_intercept(svm, INTERCEPT_SMI);
1216 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1217 set_intercept(svm, INTERCEPT_RDPMC);
1218 set_intercept(svm, INTERCEPT_CPUID);
1219 set_intercept(svm, INTERCEPT_INVD);
1220 set_intercept(svm, INTERCEPT_HLT);
1221 set_intercept(svm, INTERCEPT_INVLPG);
1222 set_intercept(svm, INTERCEPT_INVLPGA);
1223 set_intercept(svm, INTERCEPT_IOIO_PROT);
1224 set_intercept(svm, INTERCEPT_MSR_PROT);
1225 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1226 set_intercept(svm, INTERCEPT_SHUTDOWN);
1227 set_intercept(svm, INTERCEPT_VMRUN);
1228 set_intercept(svm, INTERCEPT_VMMCALL);
1229 set_intercept(svm, INTERCEPT_VMLOAD);
1230 set_intercept(svm, INTERCEPT_VMSAVE);
1231 set_intercept(svm, INTERCEPT_STGI);
1232 set_intercept(svm, INTERCEPT_CLGI);
1233 set_intercept(svm, INTERCEPT_SKINIT);
1234 set_intercept(svm, INTERCEPT_WBINVD);
1235 set_intercept(svm, INTERCEPT_XSETBV);
1236
1237 if (!kvm_mwait_in_guest()) {
1238 set_intercept(svm, INTERCEPT_MONITOR);
1239 set_intercept(svm, INTERCEPT_MWAIT);
1240 }
1241
1242 control->iopm_base_pa = iopm_base;
1243 control->msrpm_base_pa = __pa(svm->msrpm);
1244 control->int_ctl = V_INTR_MASKING_MASK;
1245
1246 init_seg(&save->es);
1247 init_seg(&save->ss);
1248 init_seg(&save->ds);
1249 init_seg(&save->fs);
1250 init_seg(&save->gs);
1251
1252 save->cs.selector = 0xf000;
1253 save->cs.base = 0xffff0000;
1254 /* Executable/Readable Code Segment */
1255 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1256 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1257 save->cs.limit = 0xffff;
1258
1259 save->gdtr.limit = 0xffff;
1260 save->idtr.limit = 0xffff;
1261
1262 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1263 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1264
1265 svm_set_efer(&svm->vcpu, 0);
1266 save->dr6 = 0xffff0ff0;
1267 kvm_set_rflags(&svm->vcpu, 2);
1268 save->rip = 0x0000fff0;
1269 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1270
1271 /*
1272 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1273 * It also updates the guest-visible cr0 value.
1274 */
1275 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1276 kvm_mmu_reset_context(&svm->vcpu);
1277
1278 save->cr4 = X86_CR4_PAE;
1279 /* rdx = ?? */
1280
1281 if (npt_enabled) {
1282 /* Setup VMCB for Nested Paging */
1283 control->nested_ctl = 1;
1284 clr_intercept(svm, INTERCEPT_INVLPG);
1285 clr_exception_intercept(svm, PF_VECTOR);
1286 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1287 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1288 save->g_pat = svm->vcpu.arch.pat;
1289 save->cr3 = 0;
1290 save->cr4 = 0;
1291 }
1292 svm->asid_generation = 0;
1293
1294 svm->nested.vmcb = 0;
1295 svm->vcpu.arch.hflags = 0;
1296
1297 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1298 control->pause_filter_count = 3000;
1299 set_intercept(svm, INTERCEPT_PAUSE);
1300 }
1301
1302 if (avic)
1303 avic_init_vmcb(svm);
1304
1305 /*
1306 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1307 * in VMCB and clear intercepts to avoid #VMEXIT.
1308 */
1309 if (vls) {
1310 clr_intercept(svm, INTERCEPT_VMLOAD);
1311 clr_intercept(svm, INTERCEPT_VMSAVE);
1312 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1313 }
1314
1315 mark_all_dirty(svm->vmcb);
1316
1317 enable_gif(svm);
1318
1319 }
1320
1321 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1322 unsigned int index)
1323 {
1324 u64 *avic_physical_id_table;
1325 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1326
1327 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1328 return NULL;
1329
1330 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1331
1332 return &avic_physical_id_table[index];
1333 }
1334
1335 /**
1336 * Note:
1337 * AVIC hardware walks the nested page table to check permissions,
1338 * but does not use the SPA address specified in the leaf page
1339 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1340 * field of the VMCB. Therefore, we set up the
1341 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1342 */
1343 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1344 {
1345 struct kvm *kvm = vcpu->kvm;
1346 int ret;
1347
1348 if (kvm->arch.apic_access_page_done)
1349 return 0;
1350
1351 ret = x86_set_memory_region(kvm,
1352 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1353 APIC_DEFAULT_PHYS_BASE,
1354 PAGE_SIZE);
1355 if (ret)
1356 return ret;
1357
1358 kvm->arch.apic_access_page_done = true;
1359 return 0;
1360 }
1361
1362 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1363 {
1364 int ret;
1365 u64 *entry, new_entry;
1366 int id = vcpu->vcpu_id;
1367 struct vcpu_svm *svm = to_svm(vcpu);
1368
1369 ret = avic_init_access_page(vcpu);
1370 if (ret)
1371 return ret;
1372
1373 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1374 return -EINVAL;
1375
1376 if (!svm->vcpu.arch.apic->regs)
1377 return -EINVAL;
1378
1379 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1380
1381 /* Setting AVIC backing page address in the phy APIC ID table */
1382 entry = avic_get_physical_id_entry(vcpu, id);
1383 if (!entry)
1384 return -EINVAL;
1385
1386 new_entry = READ_ONCE(*entry);
1387 new_entry = (page_to_phys(svm->avic_backing_page) &
1388 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1389 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1390 WRITE_ONCE(*entry, new_entry);
1391
1392 svm->avic_physical_id_cache = entry;
1393
1394 return 0;
1395 }
1396
1397 static inline int avic_get_next_vm_id(void)
1398 {
1399 int id;
1400
1401 spin_lock(&avic_vm_id_lock);
1402
1403 /* AVIC VM ID is one-based. */
1404 id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1405 if (id <= AVIC_VM_ID_MASK)
1406 __set_bit(id, avic_vm_id_bitmap);
1407 else
1408 id = -EAGAIN;
1409
1410 spin_unlock(&avic_vm_id_lock);
1411 return id;
1412 }
1413
1414 static inline int avic_free_vm_id(int id)
1415 {
1416 if (id <= 0 || id > AVIC_VM_ID_MASK)
1417 return -EINVAL;
1418
1419 spin_lock(&avic_vm_id_lock);
1420 __clear_bit(id, avic_vm_id_bitmap);
1421 spin_unlock(&avic_vm_id_lock);
1422 return 0;
1423 }
1424
1425 static void avic_vm_destroy(struct kvm *kvm)
1426 {
1427 unsigned long flags;
1428 struct kvm_arch *vm_data = &kvm->arch;
1429
1430 if (!avic)
1431 return;
1432
1433 avic_free_vm_id(vm_data->avic_vm_id);
1434
1435 if (vm_data->avic_logical_id_table_page)
1436 __free_page(vm_data->avic_logical_id_table_page);
1437 if (vm_data->avic_physical_id_table_page)
1438 __free_page(vm_data->avic_physical_id_table_page);
1439
1440 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1441 hash_del(&vm_data->hnode);
1442 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1443 }
1444
1445 static int avic_vm_init(struct kvm *kvm)
1446 {
1447 unsigned long flags;
1448 int vm_id, err = -ENOMEM;
1449 struct kvm_arch *vm_data = &kvm->arch;
1450 struct page *p_page;
1451 struct page *l_page;
1452
1453 if (!avic)
1454 return 0;
1455
1456 vm_id = avic_get_next_vm_id();
1457 if (vm_id < 0)
1458 return vm_id;
1459 vm_data->avic_vm_id = (u32)vm_id;
1460
1461 /* Allocating physical APIC ID table (4KB) */
1462 p_page = alloc_page(GFP_KERNEL);
1463 if (!p_page)
1464 goto free_avic;
1465
1466 vm_data->avic_physical_id_table_page = p_page;
1467 clear_page(page_address(p_page));
1468
1469 /* Allocating logical APIC ID table (4KB) */
1470 l_page = alloc_page(GFP_KERNEL);
1471 if (!l_page)
1472 goto free_avic;
1473
1474 vm_data->avic_logical_id_table_page = l_page;
1475 clear_page(page_address(l_page));
1476
1477 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1478 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1479 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1480
1481 return 0;
1482
1483 free_avic:
1484 avic_vm_destroy(kvm);
1485 return err;
1486 }
1487
1488 static inline int
1489 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1490 {
1491 int ret = 0;
1492 unsigned long flags;
1493 struct amd_svm_iommu_ir *ir;
1494 struct vcpu_svm *svm = to_svm(vcpu);
1495
1496 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1497 return 0;
1498
1499 /*
1500 * Here, we go through the per-vcpu ir_list to update all existing
1501 * interrupt remapping table entry targeting this vcpu.
1502 */
1503 spin_lock_irqsave(&svm->ir_list_lock, flags);
1504
1505 if (list_empty(&svm->ir_list))
1506 goto out;
1507
1508 list_for_each_entry(ir, &svm->ir_list, node) {
1509 ret = amd_iommu_update_ga(cpu, r, ir->data);
1510 if (ret)
1511 break;
1512 }
1513 out:
1514 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1515 return ret;
1516 }
1517
1518 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1519 {
1520 u64 entry;
1521 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1522 int h_physical_id = kvm_cpu_get_apicid(cpu);
1523 struct vcpu_svm *svm = to_svm(vcpu);
1524
1525 if (!kvm_vcpu_apicv_active(vcpu))
1526 return;
1527
1528 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1529 return;
1530
1531 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1532 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1533
1534 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1535 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1536
1537 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1538 if (svm->avic_is_running)
1539 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1540
1541 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1542 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1543 svm->avic_is_running);
1544 }
1545
1546 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1547 {
1548 u64 entry;
1549 struct vcpu_svm *svm = to_svm(vcpu);
1550
1551 if (!kvm_vcpu_apicv_active(vcpu))
1552 return;
1553
1554 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1555 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1556 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1557
1558 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1559 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1560 }
1561
1562 /**
1563 * This function is called during VCPU halt/unhalt.
1564 */
1565 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1566 {
1567 struct vcpu_svm *svm = to_svm(vcpu);
1568
1569 svm->avic_is_running = is_run;
1570 if (is_run)
1571 avic_vcpu_load(vcpu, vcpu->cpu);
1572 else
1573 avic_vcpu_put(vcpu);
1574 }
1575
1576 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1577 {
1578 struct vcpu_svm *svm = to_svm(vcpu);
1579 u32 dummy;
1580 u32 eax = 1;
1581
1582 if (!init_event) {
1583 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1584 MSR_IA32_APICBASE_ENABLE;
1585 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1586 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1587 }
1588 init_vmcb(svm);
1589
1590 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1591 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1592
1593 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1594 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1595 }
1596
1597 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1598 {
1599 struct vcpu_svm *svm;
1600 struct page *page;
1601 struct page *msrpm_pages;
1602 struct page *hsave_page;
1603 struct page *nested_msrpm_pages;
1604 int err;
1605
1606 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1607 if (!svm) {
1608 err = -ENOMEM;
1609 goto out;
1610 }
1611
1612 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1613 if (err)
1614 goto free_svm;
1615
1616 err = -ENOMEM;
1617 page = alloc_page(GFP_KERNEL);
1618 if (!page)
1619 goto uninit;
1620
1621 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1622 if (!msrpm_pages)
1623 goto free_page1;
1624
1625 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1626 if (!nested_msrpm_pages)
1627 goto free_page2;
1628
1629 hsave_page = alloc_page(GFP_KERNEL);
1630 if (!hsave_page)
1631 goto free_page3;
1632
1633 if (avic) {
1634 err = avic_init_backing_page(&svm->vcpu);
1635 if (err)
1636 goto free_page4;
1637
1638 INIT_LIST_HEAD(&svm->ir_list);
1639 spin_lock_init(&svm->ir_list_lock);
1640 }
1641
1642 /* We initialize this flag to true to make sure that the is_running
1643 * bit would be set the first time the vcpu is loaded.
1644 */
1645 svm->avic_is_running = true;
1646
1647 svm->nested.hsave = page_address(hsave_page);
1648
1649 svm->msrpm = page_address(msrpm_pages);
1650 svm_vcpu_init_msrpm(svm->msrpm);
1651
1652 svm->nested.msrpm = page_address(nested_msrpm_pages);
1653 svm_vcpu_init_msrpm(svm->nested.msrpm);
1654
1655 svm->vmcb = page_address(page);
1656 clear_page(svm->vmcb);
1657 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1658 svm->asid_generation = 0;
1659 init_vmcb(svm);
1660
1661 svm_init_osvw(&svm->vcpu);
1662
1663 return &svm->vcpu;
1664
1665 free_page4:
1666 __free_page(hsave_page);
1667 free_page3:
1668 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1669 free_page2:
1670 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1671 free_page1:
1672 __free_page(page);
1673 uninit:
1674 kvm_vcpu_uninit(&svm->vcpu);
1675 free_svm:
1676 kmem_cache_free(kvm_vcpu_cache, svm);
1677 out:
1678 return ERR_PTR(err);
1679 }
1680
1681 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1682 {
1683 struct vcpu_svm *svm = to_svm(vcpu);
1684
1685 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1686 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1687 __free_page(virt_to_page(svm->nested.hsave));
1688 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1689 kvm_vcpu_uninit(vcpu);
1690 kmem_cache_free(kvm_vcpu_cache, svm);
1691
1692 /*
1693 * The VMCB could be recycled, causing a false negative in svm_vcpu_load;
1694 * block speculative execution.
1695 */
1696 if (ibpb_inuse)
1697 wrmsrl(MSR_IA32_PRED_CMD, FEATURE_SET_IBPB);
1698 }
1699
1700 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1701 {
1702 struct vcpu_svm *svm = to_svm(vcpu);
1703 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1704 int i;
1705
1706 if (unlikely(cpu != vcpu->cpu)) {
1707 svm->asid_generation = 0;
1708 mark_all_dirty(svm->vmcb);
1709 }
1710
1711 #ifdef CONFIG_X86_64
1712 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1713 #endif
1714 savesegment(fs, svm->host.fs);
1715 savesegment(gs, svm->host.gs);
1716 svm->host.ldt = kvm_read_ldt();
1717
1718 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1719 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1720
1721 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1722 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1723 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1724 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1725 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1726 }
1727 }
1728 /* This assumes that the kernel never uses MSR_TSC_AUX */
1729 if (static_cpu_has(X86_FEATURE_RDTSCP))
1730 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1731
1732 if (sd->current_vmcb != svm->vmcb) {
1733 sd->current_vmcb = svm->vmcb;
1734 if (ibpb_inuse)
1735 wrmsrl(MSR_IA32_PRED_CMD, FEATURE_SET_IBPB);
1736 }
1737
1738 avic_vcpu_load(vcpu, cpu);
1739 }
1740
1741 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1742 {
1743 struct vcpu_svm *svm = to_svm(vcpu);
1744 int i;
1745
1746 avic_vcpu_put(vcpu);
1747
1748 ++vcpu->stat.host_state_reload;
1749 kvm_load_ldt(svm->host.ldt);
1750 #ifdef CONFIG_X86_64
1751 loadsegment(fs, svm->host.fs);
1752 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1753 load_gs_index(svm->host.gs);
1754 #else
1755 #ifdef CONFIG_X86_32_LAZY_GS
1756 loadsegment(gs, svm->host.gs);
1757 #endif
1758 #endif
1759 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1760 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1761 }
1762
1763 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1764 {
1765 avic_set_running(vcpu, false);
1766 }
1767
1768 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1769 {
1770 avic_set_running(vcpu, true);
1771 }
1772
1773 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1774 {
1775 struct vcpu_svm *svm = to_svm(vcpu);
1776 unsigned long rflags = svm->vmcb->save.rflags;
1777
1778 if (svm->nmi_singlestep) {
1779 /* Hide our flags if they were not set by the guest */
1780 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1781 rflags &= ~X86_EFLAGS_TF;
1782 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1783 rflags &= ~X86_EFLAGS_RF;
1784 }
1785 return rflags;
1786 }
1787
1788 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1789 {
1790 if (to_svm(vcpu)->nmi_singlestep)
1791 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1792
1793 /*
1794 * Any change of EFLAGS.VM is accompanied by a reload of SS
1795 * (caused by either a task switch or an inter-privilege IRET),
1796 * so we do not need to update the CPL here.
1797 */
1798 to_svm(vcpu)->vmcb->save.rflags = rflags;
1799 }
1800
1801 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1802 {
1803 switch (reg) {
1804 case VCPU_EXREG_PDPTR:
1805 BUG_ON(!npt_enabled);
1806 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1807 break;
1808 default:
1809 BUG();
1810 }
1811 }
1812
1813 static void svm_set_vintr(struct vcpu_svm *svm)
1814 {
1815 set_intercept(svm, INTERCEPT_VINTR);
1816 }
1817
1818 static void svm_clear_vintr(struct vcpu_svm *svm)
1819 {
1820 clr_intercept(svm, INTERCEPT_VINTR);
1821 }
1822
1823 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1824 {
1825 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1826
1827 switch (seg) {
1828 case VCPU_SREG_CS: return &save->cs;
1829 case VCPU_SREG_DS: return &save->ds;
1830 case VCPU_SREG_ES: return &save->es;
1831 case VCPU_SREG_FS: return &save->fs;
1832 case VCPU_SREG_GS: return &save->gs;
1833 case VCPU_SREG_SS: return &save->ss;
1834 case VCPU_SREG_TR: return &save->tr;
1835 case VCPU_SREG_LDTR: return &save->ldtr;
1836 }
1837 BUG();
1838 return NULL;
1839 }
1840
1841 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1842 {
1843 struct vmcb_seg *s = svm_seg(vcpu, seg);
1844
1845 return s->base;
1846 }
1847
1848 static void svm_get_segment(struct kvm_vcpu *vcpu,
1849 struct kvm_segment *var, int seg)
1850 {
1851 struct vmcb_seg *s = svm_seg(vcpu, seg);
1852
1853 var->base = s->base;
1854 var->limit = s->limit;
1855 var->selector = s->selector;
1856 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1857 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1858 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1859 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1860 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1861 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1862 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1863
1864 /*
1865 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1866 * However, the SVM spec states that the G bit is not observed by the
1867 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1868 * So let's synthesize a legal G bit for all segments, this helps
1869 * running KVM nested. It also helps cross-vendor migration, because
1870 * Intel's vmentry has a check on the 'G' bit.
1871 */
1872 var->g = s->limit > 0xfffff;
1873
1874 /*
1875 * AMD's VMCB does not have an explicit unusable field, so emulate it
1876 * for cross vendor migration purposes by "not present"
1877 */
1878 var->unusable = !var->present;
1879
1880 switch (seg) {
1881 case VCPU_SREG_TR:
1882 /*
1883 * Work around a bug where the busy flag in the tr selector
1884 * isn't exposed
1885 */
1886 var->type |= 0x2;
1887 break;
1888 case VCPU_SREG_DS:
1889 case VCPU_SREG_ES:
1890 case VCPU_SREG_FS:
1891 case VCPU_SREG_GS:
1892 /*
1893 * The accessed bit must always be set in the segment
1894 * descriptor cache, although it can be cleared in the
1895 * descriptor, the cached bit always remains at 1. Since
1896 * Intel has a check on this, set it here to support
1897 * cross-vendor migration.
1898 */
1899 if (!var->unusable)
1900 var->type |= 0x1;
1901 break;
1902 case VCPU_SREG_SS:
1903 /*
1904 * On AMD CPUs sometimes the DB bit in the segment
1905 * descriptor is left as 1, although the whole segment has
1906 * been made unusable. Clear it here to pass an Intel VMX
1907 * entry check when cross vendor migrating.
1908 */
1909 if (var->unusable)
1910 var->db = 0;
1911 /* This is symmetric with svm_set_segment() */
1912 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1913 break;
1914 }
1915 }
1916
1917 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1918 {
1919 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1920
1921 return save->cpl;
1922 }
1923
1924 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1925 {
1926 struct vcpu_svm *svm = to_svm(vcpu);
1927
1928 dt->size = svm->vmcb->save.idtr.limit;
1929 dt->address = svm->vmcb->save.idtr.base;
1930 }
1931
1932 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1933 {
1934 struct vcpu_svm *svm = to_svm(vcpu);
1935
1936 svm->vmcb->save.idtr.limit = dt->size;
1937 svm->vmcb->save.idtr.base = dt->address ;
1938 mark_dirty(svm->vmcb, VMCB_DT);
1939 }
1940
1941 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1942 {
1943 struct vcpu_svm *svm = to_svm(vcpu);
1944
1945 dt->size = svm->vmcb->save.gdtr.limit;
1946 dt->address = svm->vmcb->save.gdtr.base;
1947 }
1948
1949 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1950 {
1951 struct vcpu_svm *svm = to_svm(vcpu);
1952
1953 svm->vmcb->save.gdtr.limit = dt->size;
1954 svm->vmcb->save.gdtr.base = dt->address ;
1955 mark_dirty(svm->vmcb, VMCB_DT);
1956 }
1957
1958 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1959 {
1960 }
1961
1962 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1963 {
1964 }
1965
1966 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1967 {
1968 }
1969
1970 static void update_cr0_intercept(struct vcpu_svm *svm)
1971 {
1972 ulong gcr0 = svm->vcpu.arch.cr0;
1973 u64 *hcr0 = &svm->vmcb->save.cr0;
1974
1975 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1976 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1977
1978 mark_dirty(svm->vmcb, VMCB_CR);
1979
1980 if (gcr0 == *hcr0) {
1981 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1982 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1983 } else {
1984 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1985 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1986 }
1987 }
1988
1989 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1990 {
1991 struct vcpu_svm *svm = to_svm(vcpu);
1992
1993 #ifdef CONFIG_X86_64
1994 if (vcpu->arch.efer & EFER_LME) {
1995 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1996 vcpu->arch.efer |= EFER_LMA;
1997 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1998 }
1999
2000 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2001 vcpu->arch.efer &= ~EFER_LMA;
2002 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2003 }
2004 }
2005 #endif
2006 vcpu->arch.cr0 = cr0;
2007
2008 if (!npt_enabled)
2009 cr0 |= X86_CR0_PG | X86_CR0_WP;
2010
2011 /*
2012 * re-enable caching here because the QEMU bios
2013 * does not do it - this results in some delay at
2014 * reboot
2015 */
2016 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2017 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2018 svm->vmcb->save.cr0 = cr0;
2019 mark_dirty(svm->vmcb, VMCB_CR);
2020 update_cr0_intercept(svm);
2021 }
2022
2023 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2024 {
2025 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2026 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2027
2028 if (cr4 & X86_CR4_VMXE)
2029 return 1;
2030
2031 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2032 svm_flush_tlb(vcpu);
2033
2034 vcpu->arch.cr4 = cr4;
2035 if (!npt_enabled)
2036 cr4 |= X86_CR4_PAE;
2037 cr4 |= host_cr4_mce;
2038 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2039 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2040 return 0;
2041 }
2042
2043 static void svm_set_segment(struct kvm_vcpu *vcpu,
2044 struct kvm_segment *var, int seg)
2045 {
2046 struct vcpu_svm *svm = to_svm(vcpu);
2047 struct vmcb_seg *s = svm_seg(vcpu, seg);
2048
2049 s->base = var->base;
2050 s->limit = var->limit;
2051 s->selector = var->selector;
2052 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2053 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2054 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2055 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2056 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2057 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2058 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2059 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2060
2061 /*
2062 * This is always accurate, except if SYSRET returned to a segment
2063 * with SS.DPL != 3. Intel does not have this quirk, and always
2064 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2065 * would entail passing the CPL to userspace and back.
2066 */
2067 if (seg == VCPU_SREG_SS)
2068 /* This is symmetric with svm_get_segment() */
2069 svm->vmcb->save.cpl = (var->dpl & 3);
2070
2071 mark_dirty(svm->vmcb, VMCB_SEG);
2072 }
2073
2074 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2075 {
2076 struct vcpu_svm *svm = to_svm(vcpu);
2077
2078 clr_exception_intercept(svm, BP_VECTOR);
2079
2080 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2081 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2082 set_exception_intercept(svm, BP_VECTOR);
2083 } else
2084 vcpu->guest_debug = 0;
2085 }
2086
2087 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2088 {
2089 if (sd->next_asid > sd->max_asid) {
2090 ++sd->asid_generation;
2091 sd->next_asid = 1;
2092 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2093 }
2094
2095 svm->asid_generation = sd->asid_generation;
2096 svm->vmcb->control.asid = sd->next_asid++;
2097
2098 mark_dirty(svm->vmcb, VMCB_ASID);
2099 }
2100
2101 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2102 {
2103 return to_svm(vcpu)->vmcb->save.dr6;
2104 }
2105
2106 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2107 {
2108 struct vcpu_svm *svm = to_svm(vcpu);
2109
2110 svm->vmcb->save.dr6 = value;
2111 mark_dirty(svm->vmcb, VMCB_DR);
2112 }
2113
2114 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2115 {
2116 struct vcpu_svm *svm = to_svm(vcpu);
2117
2118 get_debugreg(vcpu->arch.db[0], 0);
2119 get_debugreg(vcpu->arch.db[1], 1);
2120 get_debugreg(vcpu->arch.db[2], 2);
2121 get_debugreg(vcpu->arch.db[3], 3);
2122 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2123 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2124
2125 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2126 set_dr_intercepts(svm);
2127 }
2128
2129 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2130 {
2131 struct vcpu_svm *svm = to_svm(vcpu);
2132
2133 svm->vmcb->save.dr7 = value;
2134 mark_dirty(svm->vmcb, VMCB_DR);
2135 }
2136
2137 static int pf_interception(struct vcpu_svm *svm)
2138 {
2139 u64 fault_address = svm->vmcb->control.exit_info_2;
2140 u64 error_code = svm->vmcb->control.exit_info_1;
2141
2142 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2143 svm->vmcb->control.insn_bytes,
2144 svm->vmcb->control.insn_len, !npt_enabled);
2145 }
2146
2147 static int db_interception(struct vcpu_svm *svm)
2148 {
2149 struct kvm_run *kvm_run = svm->vcpu.run;
2150
2151 if (!(svm->vcpu.guest_debug &
2152 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2153 !svm->nmi_singlestep) {
2154 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2155 return 1;
2156 }
2157
2158 if (svm->nmi_singlestep) {
2159 disable_nmi_singlestep(svm);
2160 }
2161
2162 if (svm->vcpu.guest_debug &
2163 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2164 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2165 kvm_run->debug.arch.pc =
2166 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2167 kvm_run->debug.arch.exception = DB_VECTOR;
2168 return 0;
2169 }
2170
2171 return 1;
2172 }
2173
2174 static int bp_interception(struct vcpu_svm *svm)
2175 {
2176 struct kvm_run *kvm_run = svm->vcpu.run;
2177
2178 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2179 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2180 kvm_run->debug.arch.exception = BP_VECTOR;
2181 return 0;
2182 }
2183
2184 static int ud_interception(struct vcpu_svm *svm)
2185 {
2186 int er;
2187
2188 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2189 if (er != EMULATE_DONE)
2190 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2191 return 1;
2192 }
2193
2194 static int ac_interception(struct vcpu_svm *svm)
2195 {
2196 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2197 return 1;
2198 }
2199
2200 static bool is_erratum_383(void)
2201 {
2202 int err, i;
2203 u64 value;
2204
2205 if (!erratum_383_found)
2206 return false;
2207
2208 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2209 if (err)
2210 return false;
2211
2212 /* Bit 62 may or may not be set for this mce */
2213 value &= ~(1ULL << 62);
2214
2215 if (value != 0xb600000000010015ULL)
2216 return false;
2217
2218 /* Clear MCi_STATUS registers */
2219 for (i = 0; i < 6; ++i)
2220 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2221
2222 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2223 if (!err) {
2224 u32 low, high;
2225
2226 value &= ~(1ULL << 2);
2227 low = lower_32_bits(value);
2228 high = upper_32_bits(value);
2229
2230 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2231 }
2232
2233 /* Flush tlb to evict multi-match entries */
2234 __flush_tlb_all();
2235
2236 return true;
2237 }
2238
2239 static void svm_handle_mce(struct vcpu_svm *svm)
2240 {
2241 if (is_erratum_383()) {
2242 /*
2243 * Erratum 383 triggered. Guest state is corrupt so kill the
2244 * guest.
2245 */
2246 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2247
2248 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2249
2250 return;
2251 }
2252
2253 /*
2254 * On an #MC intercept the MCE handler is not called automatically in
2255 * the host. So do it by hand here.
2256 */
2257 asm volatile (
2258 "int $0x12\n");
2259 /* not sure if we ever come back to this point */
2260
2261 return;
2262 }
2263
2264 static int mc_interception(struct vcpu_svm *svm)
2265 {
2266 return 1;
2267 }
2268
2269 static int shutdown_interception(struct vcpu_svm *svm)
2270 {
2271 struct kvm_run *kvm_run = svm->vcpu.run;
2272
2273 /*
2274 * VMCB is undefined after a SHUTDOWN intercept
2275 * so reinitialize it.
2276 */
2277 clear_page(svm->vmcb);
2278 init_vmcb(svm);
2279
2280 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2281 return 0;
2282 }
2283
2284 static int io_interception(struct vcpu_svm *svm)
2285 {
2286 struct kvm_vcpu *vcpu = &svm->vcpu;
2287 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2288 int size, in, string, ret;
2289 unsigned port;
2290
2291 ++svm->vcpu.stat.io_exits;
2292 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2293 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2294 if (string)
2295 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2296
2297 port = io_info >> 16;
2298 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2299 svm->next_rip = svm->vmcb->control.exit_info_2;
2300 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2301
2302 /*
2303 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2304 * KVM_EXIT_DEBUG here.
2305 */
2306 if (in)
2307 return kvm_fast_pio_in(vcpu, size, port) && ret;
2308 else
2309 return kvm_fast_pio_out(vcpu, size, port) && ret;
2310 }
2311
2312 static int nmi_interception(struct vcpu_svm *svm)
2313 {
2314 return 1;
2315 }
2316
2317 static int intr_interception(struct vcpu_svm *svm)
2318 {
2319 ++svm->vcpu.stat.irq_exits;
2320 return 1;
2321 }
2322
2323 static int nop_on_interception(struct vcpu_svm *svm)
2324 {
2325 return 1;
2326 }
2327
2328 static int halt_interception(struct vcpu_svm *svm)
2329 {
2330 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2331 return kvm_emulate_halt(&svm->vcpu);
2332 }
2333
2334 static int vmmcall_interception(struct vcpu_svm *svm)
2335 {
2336 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2337 return kvm_emulate_hypercall(&svm->vcpu);
2338 }
2339
2340 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2341 {
2342 struct vcpu_svm *svm = to_svm(vcpu);
2343
2344 return svm->nested.nested_cr3;
2345 }
2346
2347 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2348 {
2349 struct vcpu_svm *svm = to_svm(vcpu);
2350 u64 cr3 = svm->nested.nested_cr3;
2351 u64 pdpte;
2352 int ret;
2353
2354 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2355 offset_in_page(cr3) + index * 8, 8);
2356 if (ret)
2357 return 0;
2358 return pdpte;
2359 }
2360
2361 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2362 unsigned long root)
2363 {
2364 struct vcpu_svm *svm = to_svm(vcpu);
2365
2366 svm->vmcb->control.nested_cr3 = root;
2367 mark_dirty(svm->vmcb, VMCB_NPT);
2368 svm_flush_tlb(vcpu);
2369 }
2370
2371 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2372 struct x86_exception *fault)
2373 {
2374 struct vcpu_svm *svm = to_svm(vcpu);
2375
2376 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2377 /*
2378 * TODO: track the cause of the nested page fault, and
2379 * correctly fill in the high bits of exit_info_1.
2380 */
2381 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2382 svm->vmcb->control.exit_code_hi = 0;
2383 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2384 svm->vmcb->control.exit_info_2 = fault->address;
2385 }
2386
2387 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2388 svm->vmcb->control.exit_info_1 |= fault->error_code;
2389
2390 /*
2391 * The present bit is always zero for page structure faults on real
2392 * hardware.
2393 */
2394 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2395 svm->vmcb->control.exit_info_1 &= ~1;
2396
2397 nested_svm_vmexit(svm);
2398 }
2399
2400 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2401 {
2402 WARN_ON(mmu_is_nested(vcpu));
2403 kvm_init_shadow_mmu(vcpu);
2404 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2405 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2406 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2407 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2408 vcpu->arch.mmu.shadow_root_level = get_npt_level();
2409 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2410 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2411 }
2412
2413 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2414 {
2415 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2416 }
2417
2418 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2419 {
2420 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2421 !is_paging(&svm->vcpu)) {
2422 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2423 return 1;
2424 }
2425
2426 if (svm->vmcb->save.cpl) {
2427 kvm_inject_gp(&svm->vcpu, 0);
2428 return 1;
2429 }
2430
2431 return 0;
2432 }
2433
2434 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2435 bool has_error_code, u32 error_code)
2436 {
2437 int vmexit;
2438
2439 if (!is_guest_mode(&svm->vcpu))
2440 return 0;
2441
2442 vmexit = nested_svm_intercept(svm);
2443 if (vmexit != NESTED_EXIT_DONE)
2444 return 0;
2445
2446 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2447 svm->vmcb->control.exit_code_hi = 0;
2448 svm->vmcb->control.exit_info_1 = error_code;
2449
2450 /*
2451 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2452 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2453 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2454 * written only when inject_pending_event runs (DR6 would written here
2455 * too). This should be conditional on a new capability---if the
2456 * capability is disabled, kvm_multiple_exception would write the
2457 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2458 */
2459 if (svm->vcpu.arch.exception.nested_apf)
2460 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2461 else
2462 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2463
2464 svm->nested.exit_required = true;
2465 return vmexit;
2466 }
2467
2468 /* This function returns true if it is save to enable the irq window */
2469 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2470 {
2471 if (!is_guest_mode(&svm->vcpu))
2472 return true;
2473
2474 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2475 return true;
2476
2477 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2478 return false;
2479
2480 /*
2481 * if vmexit was already requested (by intercepted exception
2482 * for instance) do not overwrite it with "external interrupt"
2483 * vmexit.
2484 */
2485 if (svm->nested.exit_required)
2486 return false;
2487
2488 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2489 svm->vmcb->control.exit_info_1 = 0;
2490 svm->vmcb->control.exit_info_2 = 0;
2491
2492 if (svm->nested.intercept & 1ULL) {
2493 /*
2494 * The #vmexit can't be emulated here directly because this
2495 * code path runs with irqs and preemption disabled. A
2496 * #vmexit emulation might sleep. Only signal request for
2497 * the #vmexit here.
2498 */
2499 svm->nested.exit_required = true;
2500 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2501 return false;
2502 }
2503
2504 return true;
2505 }
2506
2507 /* This function returns true if it is save to enable the nmi window */
2508 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2509 {
2510 if (!is_guest_mode(&svm->vcpu))
2511 return true;
2512
2513 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2514 return true;
2515
2516 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2517 svm->nested.exit_required = true;
2518
2519 return false;
2520 }
2521
2522 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2523 {
2524 struct page *page;
2525
2526 might_sleep();
2527
2528 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2529 if (is_error_page(page))
2530 goto error;
2531
2532 *_page = page;
2533
2534 return kmap(page);
2535
2536 error:
2537 kvm_inject_gp(&svm->vcpu, 0);
2538
2539 return NULL;
2540 }
2541
2542 static void nested_svm_unmap(struct page *page)
2543 {
2544 kunmap(page);
2545 kvm_release_page_dirty(page);
2546 }
2547
2548 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2549 {
2550 unsigned port, size, iopm_len;
2551 u16 val, mask;
2552 u8 start_bit;
2553 u64 gpa;
2554
2555 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2556 return NESTED_EXIT_HOST;
2557
2558 port = svm->vmcb->control.exit_info_1 >> 16;
2559 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2560 SVM_IOIO_SIZE_SHIFT;
2561 gpa = svm->nested.vmcb_iopm + (port / 8);
2562 start_bit = port % 8;
2563 iopm_len = (start_bit + size > 8) ? 2 : 1;
2564 mask = (0xf >> (4 - size)) << start_bit;
2565 val = 0;
2566
2567 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2568 return NESTED_EXIT_DONE;
2569
2570 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2571 }
2572
2573 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2574 {
2575 u32 offset, msr, value;
2576 int write, mask;
2577
2578 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2579 return NESTED_EXIT_HOST;
2580
2581 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2582 offset = svm_msrpm_offset(msr);
2583 write = svm->vmcb->control.exit_info_1 & 1;
2584 mask = 1 << ((2 * (msr & 0xf)) + write);
2585
2586 if (offset == MSR_INVALID)
2587 return NESTED_EXIT_DONE;
2588
2589 /* Offset is in 32 bit units but need in 8 bit units */
2590 offset *= 4;
2591
2592 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2593 return NESTED_EXIT_DONE;
2594
2595 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2596 }
2597
2598 /* DB exceptions for our internal use must not cause vmexit */
2599 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2600 {
2601 unsigned long dr6;
2602
2603 /* if we're not singlestepping, it's not ours */
2604 if (!svm->nmi_singlestep)
2605 return NESTED_EXIT_DONE;
2606
2607 /* if it's not a singlestep exception, it's not ours */
2608 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2609 return NESTED_EXIT_DONE;
2610 if (!(dr6 & DR6_BS))
2611 return NESTED_EXIT_DONE;
2612
2613 /* if the guest is singlestepping, it should get the vmexit */
2614 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2615 disable_nmi_singlestep(svm);
2616 return NESTED_EXIT_DONE;
2617 }
2618
2619 /* it's ours, the nested hypervisor must not see this one */
2620 return NESTED_EXIT_HOST;
2621 }
2622
2623 static int nested_svm_exit_special(struct vcpu_svm *svm)
2624 {
2625 u32 exit_code = svm->vmcb->control.exit_code;
2626
2627 switch (exit_code) {
2628 case SVM_EXIT_INTR:
2629 case SVM_EXIT_NMI:
2630 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2631 return NESTED_EXIT_HOST;
2632 case SVM_EXIT_NPF:
2633 /* For now we are always handling NPFs when using them */
2634 if (npt_enabled)
2635 return NESTED_EXIT_HOST;
2636 break;
2637 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2638 /* When we're shadowing, trap PFs, but not async PF */
2639 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2640 return NESTED_EXIT_HOST;
2641 break;
2642 default:
2643 break;
2644 }
2645
2646 return NESTED_EXIT_CONTINUE;
2647 }
2648
2649 /*
2650 * If this function returns true, this #vmexit was already handled
2651 */
2652 static int nested_svm_intercept(struct vcpu_svm *svm)
2653 {
2654 u32 exit_code = svm->vmcb->control.exit_code;
2655 int vmexit = NESTED_EXIT_HOST;
2656
2657 switch (exit_code) {
2658 case SVM_EXIT_MSR:
2659 vmexit = nested_svm_exit_handled_msr(svm);
2660 break;
2661 case SVM_EXIT_IOIO:
2662 vmexit = nested_svm_intercept_ioio(svm);
2663 break;
2664 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2665 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2666 if (svm->nested.intercept_cr & bit)
2667 vmexit = NESTED_EXIT_DONE;
2668 break;
2669 }
2670 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2671 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2672 if (svm->nested.intercept_dr & bit)
2673 vmexit = NESTED_EXIT_DONE;
2674 break;
2675 }
2676 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2677 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2678 if (svm->nested.intercept_exceptions & excp_bits) {
2679 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2680 vmexit = nested_svm_intercept_db(svm);
2681 else
2682 vmexit = NESTED_EXIT_DONE;
2683 }
2684 /* async page fault always cause vmexit */
2685 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2686 svm->vcpu.arch.exception.nested_apf != 0)
2687 vmexit = NESTED_EXIT_DONE;
2688 break;
2689 }
2690 case SVM_EXIT_ERR: {
2691 vmexit = NESTED_EXIT_DONE;
2692 break;
2693 }
2694 default: {
2695 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2696 if (svm->nested.intercept & exit_bits)
2697 vmexit = NESTED_EXIT_DONE;
2698 }
2699 }
2700
2701 return vmexit;
2702 }
2703
2704 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2705 {
2706 int vmexit;
2707
2708 vmexit = nested_svm_intercept(svm);
2709
2710 if (vmexit == NESTED_EXIT_DONE)
2711 nested_svm_vmexit(svm);
2712
2713 return vmexit;
2714 }
2715
2716 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2717 {
2718 struct vmcb_control_area *dst = &dst_vmcb->control;
2719 struct vmcb_control_area *from = &from_vmcb->control;
2720
2721 dst->intercept_cr = from->intercept_cr;
2722 dst->intercept_dr = from->intercept_dr;
2723 dst->intercept_exceptions = from->intercept_exceptions;
2724 dst->intercept = from->intercept;
2725 dst->iopm_base_pa = from->iopm_base_pa;
2726 dst->msrpm_base_pa = from->msrpm_base_pa;
2727 dst->tsc_offset = from->tsc_offset;
2728 dst->asid = from->asid;
2729 dst->tlb_ctl = from->tlb_ctl;
2730 dst->int_ctl = from->int_ctl;
2731 dst->int_vector = from->int_vector;
2732 dst->int_state = from->int_state;
2733 dst->exit_code = from->exit_code;
2734 dst->exit_code_hi = from->exit_code_hi;
2735 dst->exit_info_1 = from->exit_info_1;
2736 dst->exit_info_2 = from->exit_info_2;
2737 dst->exit_int_info = from->exit_int_info;
2738 dst->exit_int_info_err = from->exit_int_info_err;
2739 dst->nested_ctl = from->nested_ctl;
2740 dst->event_inj = from->event_inj;
2741 dst->event_inj_err = from->event_inj_err;
2742 dst->nested_cr3 = from->nested_cr3;
2743 dst->virt_ext = from->virt_ext;
2744 }
2745
2746 static int nested_svm_vmexit(struct vcpu_svm *svm)
2747 {
2748 struct vmcb *nested_vmcb;
2749 struct vmcb *hsave = svm->nested.hsave;
2750 struct vmcb *vmcb = svm->vmcb;
2751 struct page *page;
2752
2753 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2754 vmcb->control.exit_info_1,
2755 vmcb->control.exit_info_2,
2756 vmcb->control.exit_int_info,
2757 vmcb->control.exit_int_info_err,
2758 KVM_ISA_SVM);
2759
2760 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2761 if (!nested_vmcb)
2762 return 1;
2763
2764 /* Exit Guest-Mode */
2765 leave_guest_mode(&svm->vcpu);
2766 svm->nested.vmcb = 0;
2767
2768 /* Give the current vmcb to the guest */
2769 disable_gif(svm);
2770
2771 nested_vmcb->save.es = vmcb->save.es;
2772 nested_vmcb->save.cs = vmcb->save.cs;
2773 nested_vmcb->save.ss = vmcb->save.ss;
2774 nested_vmcb->save.ds = vmcb->save.ds;
2775 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2776 nested_vmcb->save.idtr = vmcb->save.idtr;
2777 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2778 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2779 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2780 nested_vmcb->save.cr2 = vmcb->save.cr2;
2781 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2782 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2783 nested_vmcb->save.rip = vmcb->save.rip;
2784 nested_vmcb->save.rsp = vmcb->save.rsp;
2785 nested_vmcb->save.rax = vmcb->save.rax;
2786 nested_vmcb->save.dr7 = vmcb->save.dr7;
2787 nested_vmcb->save.dr6 = vmcb->save.dr6;
2788 nested_vmcb->save.cpl = vmcb->save.cpl;
2789
2790 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2791 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2792 nested_vmcb->control.int_state = vmcb->control.int_state;
2793 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2794 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2795 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2796 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2797 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2798 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2799
2800 if (svm->nrips_enabled)
2801 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2802
2803 /*
2804 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2805 * to make sure that we do not lose injected events. So check event_inj
2806 * here and copy it to exit_int_info if it is valid.
2807 * Exit_int_info and event_inj can't be both valid because the case
2808 * below only happens on a VMRUN instruction intercept which has
2809 * no valid exit_int_info set.
2810 */
2811 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2812 struct vmcb_control_area *nc = &nested_vmcb->control;
2813
2814 nc->exit_int_info = vmcb->control.event_inj;
2815 nc->exit_int_info_err = vmcb->control.event_inj_err;
2816 }
2817
2818 nested_vmcb->control.tlb_ctl = 0;
2819 nested_vmcb->control.event_inj = 0;
2820 nested_vmcb->control.event_inj_err = 0;
2821
2822 /* We always set V_INTR_MASKING and remember the old value in hflags */
2823 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2824 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2825
2826 /* Restore the original control entries */
2827 copy_vmcb_control_area(vmcb, hsave);
2828
2829 kvm_clear_exception_queue(&svm->vcpu);
2830 kvm_clear_interrupt_queue(&svm->vcpu);
2831
2832 svm->nested.nested_cr3 = 0;
2833
2834 /* Restore selected save entries */
2835 svm->vmcb->save.es = hsave->save.es;
2836 svm->vmcb->save.cs = hsave->save.cs;
2837 svm->vmcb->save.ss = hsave->save.ss;
2838 svm->vmcb->save.ds = hsave->save.ds;
2839 svm->vmcb->save.gdtr = hsave->save.gdtr;
2840 svm->vmcb->save.idtr = hsave->save.idtr;
2841 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2842 svm_set_efer(&svm->vcpu, hsave->save.efer);
2843 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2844 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2845 if (npt_enabled) {
2846 svm->vmcb->save.cr3 = hsave->save.cr3;
2847 svm->vcpu.arch.cr3 = hsave->save.cr3;
2848 } else {
2849 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2850 }
2851 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2852 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2853 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2854 svm->vmcb->save.dr7 = 0;
2855 svm->vmcb->save.cpl = 0;
2856 svm->vmcb->control.exit_int_info = 0;
2857
2858 mark_all_dirty(svm->vmcb);
2859
2860 nested_svm_unmap(page);
2861
2862 nested_svm_uninit_mmu_context(&svm->vcpu);
2863 kvm_mmu_reset_context(&svm->vcpu);
2864 kvm_mmu_load(&svm->vcpu);
2865
2866 return 0;
2867 }
2868
2869 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2870 {
2871 /*
2872 * This function merges the msr permission bitmaps of kvm and the
2873 * nested vmcb. It is optimized in that it only merges the parts where
2874 * the kvm msr permission bitmap may contain zero bits
2875 */
2876 int i;
2877
2878 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2879 return true;
2880
2881 for (i = 0; i < MSRPM_OFFSETS; i++) {
2882 u32 value, p;
2883 u64 offset;
2884
2885 if (msrpm_offsets[i] == 0xffffffff)
2886 break;
2887
2888 p = msrpm_offsets[i];
2889 offset = svm->nested.vmcb_msrpm + (p * 4);
2890
2891 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2892 return false;
2893
2894 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2895 }
2896
2897 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2898
2899 return true;
2900 }
2901
2902 static bool nested_vmcb_checks(struct vmcb *vmcb)
2903 {
2904 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2905 return false;
2906
2907 if (vmcb->control.asid == 0)
2908 return false;
2909
2910 if (vmcb->control.nested_ctl && !npt_enabled)
2911 return false;
2912
2913 return true;
2914 }
2915
2916 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2917 {
2918 struct vmcb *nested_vmcb;
2919 struct vmcb *hsave = svm->nested.hsave;
2920 struct vmcb *vmcb = svm->vmcb;
2921 struct page *page;
2922 u64 vmcb_gpa;
2923
2924 vmcb_gpa = svm->vmcb->save.rax;
2925
2926 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2927 if (!nested_vmcb)
2928 return false;
2929
2930 if (!nested_vmcb_checks(nested_vmcb)) {
2931 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2932 nested_vmcb->control.exit_code_hi = 0;
2933 nested_vmcb->control.exit_info_1 = 0;
2934 nested_vmcb->control.exit_info_2 = 0;
2935
2936 nested_svm_unmap(page);
2937
2938 return false;
2939 }
2940
2941 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2942 nested_vmcb->save.rip,
2943 nested_vmcb->control.int_ctl,
2944 nested_vmcb->control.event_inj,
2945 nested_vmcb->control.nested_ctl);
2946
2947 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2948 nested_vmcb->control.intercept_cr >> 16,
2949 nested_vmcb->control.intercept_exceptions,
2950 nested_vmcb->control.intercept);
2951
2952 /* Clear internal status */
2953 kvm_clear_exception_queue(&svm->vcpu);
2954 kvm_clear_interrupt_queue(&svm->vcpu);
2955
2956 /*
2957 * Save the old vmcb, so we don't need to pick what we save, but can
2958 * restore everything when a VMEXIT occurs
2959 */
2960 hsave->save.es = vmcb->save.es;
2961 hsave->save.cs = vmcb->save.cs;
2962 hsave->save.ss = vmcb->save.ss;
2963 hsave->save.ds = vmcb->save.ds;
2964 hsave->save.gdtr = vmcb->save.gdtr;
2965 hsave->save.idtr = vmcb->save.idtr;
2966 hsave->save.efer = svm->vcpu.arch.efer;
2967 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2968 hsave->save.cr4 = svm->vcpu.arch.cr4;
2969 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2970 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2971 hsave->save.rsp = vmcb->save.rsp;
2972 hsave->save.rax = vmcb->save.rax;
2973 if (npt_enabled)
2974 hsave->save.cr3 = vmcb->save.cr3;
2975 else
2976 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2977
2978 copy_vmcb_control_area(hsave, vmcb);
2979
2980 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2981 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2982 else
2983 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2984
2985 if (nested_vmcb->control.nested_ctl) {
2986 kvm_mmu_unload(&svm->vcpu);
2987 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2988 nested_svm_init_mmu_context(&svm->vcpu);
2989 }
2990
2991 /* Load the nested guest state */
2992 svm->vmcb->save.es = nested_vmcb->save.es;
2993 svm->vmcb->save.cs = nested_vmcb->save.cs;
2994 svm->vmcb->save.ss = nested_vmcb->save.ss;
2995 svm->vmcb->save.ds = nested_vmcb->save.ds;
2996 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2997 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2998 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2999 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3000 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3001 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3002 if (npt_enabled) {
3003 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3004 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3005 } else
3006 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3007
3008 /* Guest paging mode is active - reset mmu */
3009 kvm_mmu_reset_context(&svm->vcpu);
3010
3011 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3012 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3013 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3014 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3015
3016 /* In case we don't even reach vcpu_run, the fields are not updated */
3017 svm->vmcb->save.rax = nested_vmcb->save.rax;
3018 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3019 svm->vmcb->save.rip = nested_vmcb->save.rip;
3020 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3021 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3022 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3023
3024 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3025 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3026
3027 /* cache intercepts */
3028 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3029 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3030 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3031 svm->nested.intercept = nested_vmcb->control.intercept;
3032
3033 svm_flush_tlb(&svm->vcpu);
3034 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3035 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3036 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3037 else
3038 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3039
3040 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3041 /* We only want the cr8 intercept bits of the guest */
3042 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3043 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3044 }
3045
3046 /* We don't want to see VMMCALLs from a nested guest */
3047 clr_intercept(svm, INTERCEPT_VMMCALL);
3048
3049 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3050 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3051 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3052 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3053 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3054 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3055
3056 nested_svm_unmap(page);
3057
3058 /* Enter Guest-Mode */
3059 enter_guest_mode(&svm->vcpu);
3060
3061 /*
3062 * Merge guest and host intercepts - must be called with vcpu in
3063 * guest-mode to take affect here
3064 */
3065 recalc_intercepts(svm);
3066
3067 svm->nested.vmcb = vmcb_gpa;
3068
3069 enable_gif(svm);
3070
3071 mark_all_dirty(svm->vmcb);
3072
3073 return true;
3074 }
3075
3076 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3077 {
3078 to_vmcb->save.fs = from_vmcb->save.fs;
3079 to_vmcb->save.gs = from_vmcb->save.gs;
3080 to_vmcb->save.tr = from_vmcb->save.tr;
3081 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3082 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3083 to_vmcb->save.star = from_vmcb->save.star;
3084 to_vmcb->save.lstar = from_vmcb->save.lstar;
3085 to_vmcb->save.cstar = from_vmcb->save.cstar;
3086 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3087 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3088 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3089 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3090 }
3091
3092 static int vmload_interception(struct vcpu_svm *svm)
3093 {
3094 struct vmcb *nested_vmcb;
3095 struct page *page;
3096 int ret;
3097
3098 if (nested_svm_check_permissions(svm))
3099 return 1;
3100
3101 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3102 if (!nested_vmcb)
3103 return 1;
3104
3105 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3106 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3107
3108 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3109 nested_svm_unmap(page);
3110
3111 return ret;
3112 }
3113
3114 static int vmsave_interception(struct vcpu_svm *svm)
3115 {
3116 struct vmcb *nested_vmcb;
3117 struct page *page;
3118 int ret;
3119
3120 if (nested_svm_check_permissions(svm))
3121 return 1;
3122
3123 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3124 if (!nested_vmcb)
3125 return 1;
3126
3127 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3128 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3129
3130 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3131 nested_svm_unmap(page);
3132
3133 return ret;
3134 }
3135
3136 static int vmrun_interception(struct vcpu_svm *svm)
3137 {
3138 if (nested_svm_check_permissions(svm))
3139 return 1;
3140
3141 /* Save rip after vmrun instruction */
3142 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3143
3144 if (!nested_svm_vmrun(svm))
3145 return 1;
3146
3147 if (!nested_svm_vmrun_msrpm(svm))
3148 goto failed;
3149
3150 return 1;
3151
3152 failed:
3153
3154 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3155 svm->vmcb->control.exit_code_hi = 0;
3156 svm->vmcb->control.exit_info_1 = 0;
3157 svm->vmcb->control.exit_info_2 = 0;
3158
3159 nested_svm_vmexit(svm);
3160
3161 return 1;
3162 }
3163
3164 static int stgi_interception(struct vcpu_svm *svm)
3165 {
3166 int ret;
3167
3168 if (nested_svm_check_permissions(svm))
3169 return 1;
3170
3171 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3172 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3173 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3174
3175 enable_gif(svm);
3176
3177 return ret;
3178 }
3179
3180 static int clgi_interception(struct vcpu_svm *svm)
3181 {
3182 int ret;
3183
3184 if (nested_svm_check_permissions(svm))
3185 return 1;
3186
3187 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3188 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3189
3190 disable_gif(svm);
3191
3192 /* After a CLGI no interrupts should come */
3193 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3194 svm_clear_vintr(svm);
3195 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3196 mark_dirty(svm->vmcb, VMCB_INTR);
3197 }
3198
3199 return ret;
3200 }
3201
3202 static int invlpga_interception(struct vcpu_svm *svm)
3203 {
3204 struct kvm_vcpu *vcpu = &svm->vcpu;
3205
3206 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3207 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3208
3209 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3210 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3211
3212 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3213 return kvm_skip_emulated_instruction(&svm->vcpu);
3214 }
3215
3216 static int skinit_interception(struct vcpu_svm *svm)
3217 {
3218 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3219
3220 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3221 return 1;
3222 }
3223
3224 static int wbinvd_interception(struct vcpu_svm *svm)
3225 {
3226 return kvm_emulate_wbinvd(&svm->vcpu);
3227 }
3228
3229 static int xsetbv_interception(struct vcpu_svm *svm)
3230 {
3231 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3232 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3233
3234 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3235 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3236 return kvm_skip_emulated_instruction(&svm->vcpu);
3237 }
3238
3239 return 1;
3240 }
3241
3242 static int task_switch_interception(struct vcpu_svm *svm)
3243 {
3244 u16 tss_selector;
3245 int reason;
3246 int int_type = svm->vmcb->control.exit_int_info &
3247 SVM_EXITINTINFO_TYPE_MASK;
3248 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3249 uint32_t type =
3250 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3251 uint32_t idt_v =
3252 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3253 bool has_error_code = false;
3254 u32 error_code = 0;
3255
3256 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3257
3258 if (svm->vmcb->control.exit_info_2 &
3259 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3260 reason = TASK_SWITCH_IRET;
3261 else if (svm->vmcb->control.exit_info_2 &
3262 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3263 reason = TASK_SWITCH_JMP;
3264 else if (idt_v)
3265 reason = TASK_SWITCH_GATE;
3266 else
3267 reason = TASK_SWITCH_CALL;
3268
3269 if (reason == TASK_SWITCH_GATE) {
3270 switch (type) {
3271 case SVM_EXITINTINFO_TYPE_NMI:
3272 svm->vcpu.arch.nmi_injected = false;
3273 break;
3274 case SVM_EXITINTINFO_TYPE_EXEPT:
3275 if (svm->vmcb->control.exit_info_2 &
3276 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3277 has_error_code = true;
3278 error_code =
3279 (u32)svm->vmcb->control.exit_info_2;
3280 }
3281 kvm_clear_exception_queue(&svm->vcpu);
3282 break;
3283 case SVM_EXITINTINFO_TYPE_INTR:
3284 kvm_clear_interrupt_queue(&svm->vcpu);
3285 break;
3286 default:
3287 break;
3288 }
3289 }
3290
3291 if (reason != TASK_SWITCH_GATE ||
3292 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3293 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3294 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3295 skip_emulated_instruction(&svm->vcpu);
3296
3297 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3298 int_vec = -1;
3299
3300 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3301 has_error_code, error_code) == EMULATE_FAIL) {
3302 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3303 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3304 svm->vcpu.run->internal.ndata = 0;
3305 return 0;
3306 }
3307 return 1;
3308 }
3309
3310 static int cpuid_interception(struct vcpu_svm *svm)
3311 {
3312 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3313 return kvm_emulate_cpuid(&svm->vcpu);
3314 }
3315
3316 static int iret_interception(struct vcpu_svm *svm)
3317 {
3318 ++svm->vcpu.stat.nmi_window_exits;
3319 clr_intercept(svm, INTERCEPT_IRET);
3320 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3321 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3322 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3323 return 1;
3324 }
3325
3326 static int invlpg_interception(struct vcpu_svm *svm)
3327 {
3328 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3329 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3330
3331 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3332 return kvm_skip_emulated_instruction(&svm->vcpu);
3333 }
3334
3335 static int emulate_on_interception(struct vcpu_svm *svm)
3336 {
3337 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3338 }
3339
3340 static int rdpmc_interception(struct vcpu_svm *svm)
3341 {
3342 int err;
3343
3344 if (!static_cpu_has(X86_FEATURE_NRIPS))
3345 return emulate_on_interception(svm);
3346
3347 err = kvm_rdpmc(&svm->vcpu);
3348 return kvm_complete_insn_gp(&svm->vcpu, err);
3349 }
3350
3351 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3352 unsigned long val)
3353 {
3354 unsigned long cr0 = svm->vcpu.arch.cr0;
3355 bool ret = false;
3356 u64 intercept;
3357
3358 intercept = svm->nested.intercept;
3359
3360 if (!is_guest_mode(&svm->vcpu) ||
3361 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3362 return false;
3363
3364 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3365 val &= ~SVM_CR0_SELECTIVE_MASK;
3366
3367 if (cr0 ^ val) {
3368 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3369 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3370 }
3371
3372 return ret;
3373 }
3374
3375 #define CR_VALID (1ULL << 63)
3376
3377 static int cr_interception(struct vcpu_svm *svm)
3378 {
3379 int reg, cr;
3380 unsigned long val;
3381 int err;
3382
3383 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3384 return emulate_on_interception(svm);
3385
3386 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3387 return emulate_on_interception(svm);
3388
3389 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3390 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3391 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3392 else
3393 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3394
3395 err = 0;
3396 if (cr >= 16) { /* mov to cr */
3397 cr -= 16;
3398 val = kvm_register_read(&svm->vcpu, reg);
3399 switch (cr) {
3400 case 0:
3401 if (!check_selective_cr0_intercepted(svm, val))
3402 err = kvm_set_cr0(&svm->vcpu, val);
3403 else
3404 return 1;
3405
3406 break;
3407 case 3:
3408 err = kvm_set_cr3(&svm->vcpu, val);
3409 break;
3410 case 4:
3411 err = kvm_set_cr4(&svm->vcpu, val);
3412 break;
3413 case 8:
3414 err = kvm_set_cr8(&svm->vcpu, val);
3415 break;
3416 default:
3417 WARN(1, "unhandled write to CR%d", cr);
3418 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3419 return 1;
3420 }
3421 } else { /* mov from cr */
3422 switch (cr) {
3423 case 0:
3424 val = kvm_read_cr0(&svm->vcpu);
3425 break;
3426 case 2:
3427 val = svm->vcpu.arch.cr2;
3428 break;
3429 case 3:
3430 val = kvm_read_cr3(&svm->vcpu);
3431 break;
3432 case 4:
3433 val = kvm_read_cr4(&svm->vcpu);
3434 break;
3435 case 8:
3436 val = kvm_get_cr8(&svm->vcpu);
3437 break;
3438 default:
3439 WARN(1, "unhandled read from CR%d", cr);
3440 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3441 return 1;
3442 }
3443 kvm_register_write(&svm->vcpu, reg, val);
3444 }
3445 return kvm_complete_insn_gp(&svm->vcpu, err);
3446 }
3447
3448 static int dr_interception(struct vcpu_svm *svm)
3449 {
3450 int reg, dr;
3451 unsigned long val;
3452
3453 if (svm->vcpu.guest_debug == 0) {
3454 /*
3455 * No more DR vmexits; force a reload of the debug registers
3456 * and reenter on this instruction. The next vmexit will
3457 * retrieve the full state of the debug registers.
3458 */
3459 clr_dr_intercepts(svm);
3460 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3461 return 1;
3462 }
3463
3464 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3465 return emulate_on_interception(svm);
3466
3467 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3468 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3469
3470 if (dr >= 16) { /* mov to DRn */
3471 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3472 return 1;
3473 val = kvm_register_read(&svm->vcpu, reg);
3474 kvm_set_dr(&svm->vcpu, dr - 16, val);
3475 } else {
3476 if (!kvm_require_dr(&svm->vcpu, dr))
3477 return 1;
3478 kvm_get_dr(&svm->vcpu, dr, &val);
3479 kvm_register_write(&svm->vcpu, reg, val);
3480 }
3481
3482 return kvm_skip_emulated_instruction(&svm->vcpu);
3483 }
3484
3485 static int cr8_write_interception(struct vcpu_svm *svm)
3486 {
3487 struct kvm_run *kvm_run = svm->vcpu.run;
3488 int r;
3489
3490 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3491 /* instruction emulation calls kvm_set_cr8() */
3492 r = cr_interception(svm);
3493 if (lapic_in_kernel(&svm->vcpu))
3494 return r;
3495 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3496 return r;
3497 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3498 return 0;
3499 }
3500
3501 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3502 {
3503 struct vcpu_svm *svm = to_svm(vcpu);
3504
3505 switch (msr_info->index) {
3506 case MSR_IA32_TSC: {
3507 msr_info->data = svm->vmcb->control.tsc_offset +
3508 kvm_scale_tsc(vcpu, rdtsc());
3509
3510 break;
3511 }
3512 case MSR_STAR:
3513 msr_info->data = svm->vmcb->save.star;
3514 break;
3515 #ifdef CONFIG_X86_64
3516 case MSR_LSTAR:
3517 msr_info->data = svm->vmcb->save.lstar;
3518 break;
3519 case MSR_CSTAR:
3520 msr_info->data = svm->vmcb->save.cstar;
3521 break;
3522 case MSR_KERNEL_GS_BASE:
3523 msr_info->data = svm->vmcb->save.kernel_gs_base;
3524 break;
3525 case MSR_SYSCALL_MASK:
3526 msr_info->data = svm->vmcb->save.sfmask;
3527 break;
3528 #endif
3529 case MSR_IA32_SYSENTER_CS:
3530 msr_info->data = svm->vmcb->save.sysenter_cs;
3531 break;
3532 case MSR_IA32_SYSENTER_EIP:
3533 msr_info->data = svm->sysenter_eip;
3534 break;
3535 case MSR_IA32_SYSENTER_ESP:
3536 msr_info->data = svm->sysenter_esp;
3537 break;
3538 case MSR_TSC_AUX:
3539 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3540 return 1;
3541 msr_info->data = svm->tsc_aux;
3542 break;
3543 /*
3544 * Nobody will change the following 5 values in the VMCB so we can
3545 * safely return them on rdmsr. They will always be 0 until LBRV is
3546 * implemented.
3547 */
3548 case MSR_IA32_DEBUGCTLMSR:
3549 msr_info->data = svm->vmcb->save.dbgctl;
3550 break;
3551 case MSR_IA32_LASTBRANCHFROMIP:
3552 msr_info->data = svm->vmcb->save.br_from;
3553 break;
3554 case MSR_IA32_LASTBRANCHTOIP:
3555 msr_info->data = svm->vmcb->save.br_to;
3556 break;
3557 case MSR_IA32_LASTINTFROMIP:
3558 msr_info->data = svm->vmcb->save.last_excp_from;
3559 break;
3560 case MSR_IA32_LASTINTTOIP:
3561 msr_info->data = svm->vmcb->save.last_excp_to;
3562 break;
3563 case MSR_VM_HSAVE_PA:
3564 msr_info->data = svm->nested.hsave_msr;
3565 break;
3566 case MSR_VM_CR:
3567 msr_info->data = svm->nested.vm_cr_msr;
3568 break;
3569 case MSR_IA32_SPEC_CTRL:
3570 msr_info->data = svm->spec_ctrl;
3571 break;
3572 case MSR_IA32_UCODE_REV:
3573 msr_info->data = 0x01000065;
3574 break;
3575 case MSR_F15H_IC_CFG: {
3576
3577 int family, model;
3578
3579 family = guest_cpuid_family(vcpu);
3580 model = guest_cpuid_model(vcpu);
3581
3582 if (family < 0 || model < 0)
3583 return kvm_get_msr_common(vcpu, msr_info);
3584
3585 msr_info->data = 0;
3586
3587 if (family == 0x15 &&
3588 (model >= 0x2 && model < 0x20))
3589 msr_info->data = 0x1E;
3590 }
3591 break;
3592 default:
3593 return kvm_get_msr_common(vcpu, msr_info);
3594 }
3595 return 0;
3596 }
3597
3598 static int rdmsr_interception(struct vcpu_svm *svm)
3599 {
3600 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3601 struct msr_data msr_info;
3602
3603 msr_info.index = ecx;
3604 msr_info.host_initiated = false;
3605 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3606 trace_kvm_msr_read_ex(ecx);
3607 kvm_inject_gp(&svm->vcpu, 0);
3608 return 1;
3609 } else {
3610 trace_kvm_msr_read(ecx, msr_info.data);
3611
3612 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3613 msr_info.data & 0xffffffff);
3614 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3615 msr_info.data >> 32);
3616 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3617 return kvm_skip_emulated_instruction(&svm->vcpu);
3618 }
3619 }
3620
3621 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3622 {
3623 struct vcpu_svm *svm = to_svm(vcpu);
3624 int svm_dis, chg_mask;
3625
3626 if (data & ~SVM_VM_CR_VALID_MASK)
3627 return 1;
3628
3629 chg_mask = SVM_VM_CR_VALID_MASK;
3630
3631 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3632 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3633
3634 svm->nested.vm_cr_msr &= ~chg_mask;
3635 svm->nested.vm_cr_msr |= (data & chg_mask);
3636
3637 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3638
3639 /* check for svm_disable while efer.svme is set */
3640 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3641 return 1;
3642
3643 return 0;
3644 }
3645
3646 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3647 {
3648 struct vcpu_svm *svm = to_svm(vcpu);
3649
3650 u32 ecx = msr->index;
3651 u64 data = msr->data;
3652 switch (ecx) {
3653 case MSR_IA32_TSC:
3654 kvm_write_tsc(vcpu, msr);
3655 break;
3656 case MSR_STAR:
3657 svm->vmcb->save.star = data;
3658 break;
3659 #ifdef CONFIG_X86_64
3660 case MSR_LSTAR:
3661 svm->vmcb->save.lstar = data;
3662 break;
3663 case MSR_CSTAR:
3664 svm->vmcb->save.cstar = data;
3665 break;
3666 case MSR_KERNEL_GS_BASE:
3667 svm->vmcb->save.kernel_gs_base = data;
3668 break;
3669 case MSR_SYSCALL_MASK:
3670 svm->vmcb->save.sfmask = data;
3671 break;
3672 #endif
3673 case MSR_IA32_SYSENTER_CS:
3674 svm->vmcb->save.sysenter_cs = data;
3675 break;
3676 case MSR_IA32_SYSENTER_EIP:
3677 svm->sysenter_eip = data;
3678 svm->vmcb->save.sysenter_eip = data;
3679 break;
3680 case MSR_IA32_SYSENTER_ESP:
3681 svm->sysenter_esp = data;
3682 svm->vmcb->save.sysenter_esp = data;
3683 break;
3684 case MSR_TSC_AUX:
3685 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3686 return 1;
3687
3688 /*
3689 * This is rare, so we update the MSR here instead of using
3690 * direct_access_msrs. Doing that would require a rdmsr in
3691 * svm_vcpu_put.
3692 */
3693 svm->tsc_aux = data;
3694 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3695 break;
3696 case MSR_IA32_DEBUGCTLMSR:
3697 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3698 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3699 __func__, data);
3700 break;
3701 }
3702 if (data & DEBUGCTL_RESERVED_BITS)
3703 return 1;
3704
3705 svm->vmcb->save.dbgctl = data;
3706 mark_dirty(svm->vmcb, VMCB_LBR);
3707 if (data & (1ULL<<0))
3708 svm_enable_lbrv(svm);
3709 else
3710 svm_disable_lbrv(svm);
3711 break;
3712 case MSR_VM_HSAVE_PA:
3713 svm->nested.hsave_msr = data;
3714 break;
3715 case MSR_VM_CR:
3716 return svm_set_vm_cr(vcpu, data);
3717 case MSR_VM_IGNNE:
3718 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3719 break;
3720 case MSR_IA32_SPEC_CTRL:
3721 svm->spec_ctrl = data;
3722 break;
3723 case MSR_IA32_APICBASE:
3724 if (kvm_vcpu_apicv_active(vcpu))
3725 avic_update_vapic_bar(to_svm(vcpu), data);
3726 /* Follow through */
3727 default:
3728 return kvm_set_msr_common(vcpu, msr);
3729 }
3730 return 0;
3731 }
3732
3733 static int wrmsr_interception(struct vcpu_svm *svm)
3734 {
3735 struct msr_data msr;
3736 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3737 u64 data = kvm_read_edx_eax(&svm->vcpu);
3738
3739 msr.data = data;
3740 msr.index = ecx;
3741 msr.host_initiated = false;
3742
3743 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3744 if (kvm_set_msr(&svm->vcpu, &msr)) {
3745 trace_kvm_msr_write_ex(ecx, data);
3746 kvm_inject_gp(&svm->vcpu, 0);
3747 return 1;
3748 } else {
3749 trace_kvm_msr_write(ecx, data);
3750 return kvm_skip_emulated_instruction(&svm->vcpu);
3751 }
3752 }
3753
3754 static int msr_interception(struct vcpu_svm *svm)
3755 {
3756 if (svm->vmcb->control.exit_info_1)
3757 return wrmsr_interception(svm);
3758 else
3759 return rdmsr_interception(svm);
3760 }
3761
3762 static int interrupt_window_interception(struct vcpu_svm *svm)
3763 {
3764 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3765 svm_clear_vintr(svm);
3766 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3767 mark_dirty(svm->vmcb, VMCB_INTR);
3768 ++svm->vcpu.stat.irq_window_exits;
3769 return 1;
3770 }
3771
3772 static int pause_interception(struct vcpu_svm *svm)
3773 {
3774 kvm_vcpu_on_spin(&(svm->vcpu));
3775 return 1;
3776 }
3777
3778 static int nop_interception(struct vcpu_svm *svm)
3779 {
3780 return kvm_skip_emulated_instruction(&(svm->vcpu));
3781 }
3782
3783 static int monitor_interception(struct vcpu_svm *svm)
3784 {
3785 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3786 return nop_interception(svm);
3787 }
3788
3789 static int mwait_interception(struct vcpu_svm *svm)
3790 {
3791 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3792 return nop_interception(svm);
3793 }
3794
3795 enum avic_ipi_failure_cause {
3796 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3797 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3798 AVIC_IPI_FAILURE_INVALID_TARGET,
3799 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3800 };
3801
3802 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3803 {
3804 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3805 u32 icrl = svm->vmcb->control.exit_info_1;
3806 u32 id = svm->vmcb->control.exit_info_2 >> 32;
3807 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3808 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3809
3810 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3811
3812 switch (id) {
3813 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3814 /*
3815 * AVIC hardware handles the generation of
3816 * IPIs when the specified Message Type is Fixed
3817 * (also known as fixed delivery mode) and
3818 * the Trigger Mode is edge-triggered. The hardware
3819 * also supports self and broadcast delivery modes
3820 * specified via the Destination Shorthand(DSH)
3821 * field of the ICRL. Logical and physical APIC ID
3822 * formats are supported. All other IPI types cause
3823 * a #VMEXIT, which needs to emulated.
3824 */
3825 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3826 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3827 break;
3828 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3829 int i;
3830 struct kvm_vcpu *vcpu;
3831 struct kvm *kvm = svm->vcpu.kvm;
3832 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3833
3834 /*
3835 * At this point, we expect that the AVIC HW has already
3836 * set the appropriate IRR bits on the valid target
3837 * vcpus. So, we just need to kick the appropriate vcpu.
3838 */
3839 kvm_for_each_vcpu(i, vcpu, kvm) {
3840 bool m = kvm_apic_match_dest(vcpu, apic,
3841 icrl & KVM_APIC_SHORT_MASK,
3842 GET_APIC_DEST_FIELD(icrh),
3843 icrl & KVM_APIC_DEST_MASK);
3844
3845 if (m && !avic_vcpu_is_running(vcpu))
3846 kvm_vcpu_wake_up(vcpu);
3847 }
3848 break;
3849 }
3850 case AVIC_IPI_FAILURE_INVALID_TARGET:
3851 break;
3852 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3853 WARN_ONCE(1, "Invalid backing page\n");
3854 break;
3855 default:
3856 pr_err("Unknown IPI interception\n");
3857 }
3858
3859 return 1;
3860 }
3861
3862 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3863 {
3864 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3865 int index;
3866 u32 *logical_apic_id_table;
3867 int dlid = GET_APIC_LOGICAL_ID(ldr);
3868
3869 if (!dlid)
3870 return NULL;
3871
3872 if (flat) { /* flat */
3873 index = ffs(dlid) - 1;
3874 if (index > 7)
3875 return NULL;
3876 } else { /* cluster */
3877 int cluster = (dlid & 0xf0) >> 4;
3878 int apic = ffs(dlid & 0x0f) - 1;
3879
3880 if ((apic < 0) || (apic > 7) ||
3881 (cluster >= 0xf))
3882 return NULL;
3883 index = (cluster << 2) + apic;
3884 }
3885
3886 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3887
3888 return &logical_apic_id_table[index];
3889 }
3890
3891 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3892 bool valid)
3893 {
3894 bool flat;
3895 u32 *entry, new_entry;
3896
3897 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3898 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3899 if (!entry)
3900 return -EINVAL;
3901
3902 new_entry = READ_ONCE(*entry);
3903 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3904 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3905 if (valid)
3906 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3907 else
3908 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3909 WRITE_ONCE(*entry, new_entry);
3910
3911 return 0;
3912 }
3913
3914 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3915 {
3916 int ret;
3917 struct vcpu_svm *svm = to_svm(vcpu);
3918 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3919
3920 if (!ldr)
3921 return 1;
3922
3923 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3924 if (ret && svm->ldr_reg) {
3925 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3926 svm->ldr_reg = 0;
3927 } else {
3928 svm->ldr_reg = ldr;
3929 }
3930 return ret;
3931 }
3932
3933 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3934 {
3935 u64 *old, *new;
3936 struct vcpu_svm *svm = to_svm(vcpu);
3937 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3938 u32 id = (apic_id_reg >> 24) & 0xff;
3939
3940 if (vcpu->vcpu_id == id)
3941 return 0;
3942
3943 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3944 new = avic_get_physical_id_entry(vcpu, id);
3945 if (!new || !old)
3946 return 1;
3947
3948 /* We need to move physical_id_entry to new offset */
3949 *new = *old;
3950 *old = 0ULL;
3951 to_svm(vcpu)->avic_physical_id_cache = new;
3952
3953 /*
3954 * Also update the guest physical APIC ID in the logical
3955 * APIC ID table entry if already setup the LDR.
3956 */
3957 if (svm->ldr_reg)
3958 avic_handle_ldr_update(vcpu);
3959
3960 return 0;
3961 }
3962
3963 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3964 {
3965 struct vcpu_svm *svm = to_svm(vcpu);
3966 struct kvm_arch *vm_data = &vcpu->kvm->arch;
3967 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3968 u32 mod = (dfr >> 28) & 0xf;
3969
3970 /*
3971 * We assume that all local APICs are using the same type.
3972 * If this changes, we need to flush the AVIC logical
3973 * APID id table.
3974 */
3975 if (vm_data->ldr_mode == mod)
3976 return 0;
3977
3978 clear_page(page_address(vm_data->avic_logical_id_table_page));
3979 vm_data->ldr_mode = mod;
3980
3981 if (svm->ldr_reg)
3982 avic_handle_ldr_update(vcpu);
3983 return 0;
3984 }
3985
3986 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3987 {
3988 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3989 u32 offset = svm->vmcb->control.exit_info_1 &
3990 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3991
3992 switch (offset) {
3993 case APIC_ID:
3994 if (avic_handle_apic_id_update(&svm->vcpu))
3995 return 0;
3996 break;
3997 case APIC_LDR:
3998 if (avic_handle_ldr_update(&svm->vcpu))
3999 return 0;
4000 break;
4001 case APIC_DFR:
4002 avic_handle_dfr_update(&svm->vcpu);
4003 break;
4004 default:
4005 break;
4006 }
4007
4008 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4009
4010 return 1;
4011 }
4012
4013 static bool is_avic_unaccelerated_access_trap(u32 offset)
4014 {
4015 bool ret = false;
4016
4017 switch (offset) {
4018 case APIC_ID:
4019 case APIC_EOI:
4020 case APIC_RRR:
4021 case APIC_LDR:
4022 case APIC_DFR:
4023 case APIC_SPIV:
4024 case APIC_ESR:
4025 case APIC_ICR:
4026 case APIC_LVTT:
4027 case APIC_LVTTHMR:
4028 case APIC_LVTPC:
4029 case APIC_LVT0:
4030 case APIC_LVT1:
4031 case APIC_LVTERR:
4032 case APIC_TMICT:
4033 case APIC_TDCR:
4034 ret = true;
4035 break;
4036 default:
4037 break;
4038 }
4039 return ret;
4040 }
4041
4042 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4043 {
4044 int ret = 0;
4045 u32 offset = svm->vmcb->control.exit_info_1 &
4046 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4047 u32 vector = svm->vmcb->control.exit_info_2 &
4048 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4049 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4050 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4051 bool trap = is_avic_unaccelerated_access_trap(offset);
4052
4053 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4054 trap, write, vector);
4055 if (trap) {
4056 /* Handling Trap */
4057 WARN_ONCE(!write, "svm: Handling trap read.\n");
4058 ret = avic_unaccel_trap_write(svm);
4059 } else {
4060 /* Handling Fault */
4061 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4062 }
4063
4064 return ret;
4065 }
4066
4067 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4068 [SVM_EXIT_READ_CR0] = cr_interception,
4069 [SVM_EXIT_READ_CR3] = cr_interception,
4070 [SVM_EXIT_READ_CR4] = cr_interception,
4071 [SVM_EXIT_READ_CR8] = cr_interception,
4072 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4073 [SVM_EXIT_WRITE_CR0] = cr_interception,
4074 [SVM_EXIT_WRITE_CR3] = cr_interception,
4075 [SVM_EXIT_WRITE_CR4] = cr_interception,
4076 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4077 [SVM_EXIT_READ_DR0] = dr_interception,
4078 [SVM_EXIT_READ_DR1] = dr_interception,
4079 [SVM_EXIT_READ_DR2] = dr_interception,
4080 [SVM_EXIT_READ_DR3] = dr_interception,
4081 [SVM_EXIT_READ_DR4] = dr_interception,
4082 [SVM_EXIT_READ_DR5] = dr_interception,
4083 [SVM_EXIT_READ_DR6] = dr_interception,
4084 [SVM_EXIT_READ_DR7] = dr_interception,
4085 [SVM_EXIT_WRITE_DR0] = dr_interception,
4086 [SVM_EXIT_WRITE_DR1] = dr_interception,
4087 [SVM_EXIT_WRITE_DR2] = dr_interception,
4088 [SVM_EXIT_WRITE_DR3] = dr_interception,
4089 [SVM_EXIT_WRITE_DR4] = dr_interception,
4090 [SVM_EXIT_WRITE_DR5] = dr_interception,
4091 [SVM_EXIT_WRITE_DR6] = dr_interception,
4092 [SVM_EXIT_WRITE_DR7] = dr_interception,
4093 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4094 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4095 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4096 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4097 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4098 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4099 [SVM_EXIT_INTR] = intr_interception,
4100 [SVM_EXIT_NMI] = nmi_interception,
4101 [SVM_EXIT_SMI] = nop_on_interception,
4102 [SVM_EXIT_INIT] = nop_on_interception,
4103 [SVM_EXIT_VINTR] = interrupt_window_interception,
4104 [SVM_EXIT_RDPMC] = rdpmc_interception,
4105 [SVM_EXIT_CPUID] = cpuid_interception,
4106 [SVM_EXIT_IRET] = iret_interception,
4107 [SVM_EXIT_INVD] = emulate_on_interception,
4108 [SVM_EXIT_PAUSE] = pause_interception,
4109 [SVM_EXIT_HLT] = halt_interception,
4110 [SVM_EXIT_INVLPG] = invlpg_interception,
4111 [SVM_EXIT_INVLPGA] = invlpga_interception,
4112 [SVM_EXIT_IOIO] = io_interception,
4113 [SVM_EXIT_MSR] = msr_interception,
4114 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4115 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4116 [SVM_EXIT_VMRUN] = vmrun_interception,
4117 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4118 [SVM_EXIT_VMLOAD] = vmload_interception,
4119 [SVM_EXIT_VMSAVE] = vmsave_interception,
4120 [SVM_EXIT_STGI] = stgi_interception,
4121 [SVM_EXIT_CLGI] = clgi_interception,
4122 [SVM_EXIT_SKINIT] = skinit_interception,
4123 [SVM_EXIT_WBINVD] = wbinvd_interception,
4124 [SVM_EXIT_MONITOR] = monitor_interception,
4125 [SVM_EXIT_MWAIT] = mwait_interception,
4126 [SVM_EXIT_XSETBV] = xsetbv_interception,
4127 [SVM_EXIT_NPF] = pf_interception,
4128 [SVM_EXIT_RSM] = emulate_on_interception,
4129 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4130 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4131 };
4132
4133 static void dump_vmcb(struct kvm_vcpu *vcpu)
4134 {
4135 struct vcpu_svm *svm = to_svm(vcpu);
4136 struct vmcb_control_area *control = &svm->vmcb->control;
4137 struct vmcb_save_area *save = &svm->vmcb->save;
4138
4139 pr_err("VMCB Control Area:\n");
4140 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4141 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4142 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4143 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4144 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4145 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4146 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4147 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4148 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4149 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4150 pr_err("%-20s%d\n", "asid:", control->asid);
4151 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4152 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4153 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4154 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4155 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4156 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4157 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4158 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4159 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4160 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4161 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4162 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4163 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4164 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4165 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4166 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4167 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4168 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4169 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4170 pr_err("VMCB State Save Area:\n");
4171 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4172 "es:",
4173 save->es.selector, save->es.attrib,
4174 save->es.limit, save->es.base);
4175 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4176 "cs:",
4177 save->cs.selector, save->cs.attrib,
4178 save->cs.limit, save->cs.base);
4179 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4180 "ss:",
4181 save->ss.selector, save->ss.attrib,
4182 save->ss.limit, save->ss.base);
4183 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4184 "ds:",
4185 save->ds.selector, save->ds.attrib,
4186 save->ds.limit, save->ds.base);
4187 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4188 "fs:",
4189 save->fs.selector, save->fs.attrib,
4190 save->fs.limit, save->fs.base);
4191 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4192 "gs:",
4193 save->gs.selector, save->gs.attrib,
4194 save->gs.limit, save->gs.base);
4195 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4196 "gdtr:",
4197 save->gdtr.selector, save->gdtr.attrib,
4198 save->gdtr.limit, save->gdtr.base);
4199 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4200 "ldtr:",
4201 save->ldtr.selector, save->ldtr.attrib,
4202 save->ldtr.limit, save->ldtr.base);
4203 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4204 "idtr:",
4205 save->idtr.selector, save->idtr.attrib,
4206 save->idtr.limit, save->idtr.base);
4207 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4208 "tr:",
4209 save->tr.selector, save->tr.attrib,
4210 save->tr.limit, save->tr.base);
4211 pr_err("cpl: %d efer: %016llx\n",
4212 save->cpl, save->efer);
4213 pr_err("%-15s %016llx %-13s %016llx\n",
4214 "cr0:", save->cr0, "cr2:", save->cr2);
4215 pr_err("%-15s %016llx %-13s %016llx\n",
4216 "cr3:", save->cr3, "cr4:", save->cr4);
4217 pr_err("%-15s %016llx %-13s %016llx\n",
4218 "dr6:", save->dr6, "dr7:", save->dr7);
4219 pr_err("%-15s %016llx %-13s %016llx\n",
4220 "rip:", save->rip, "rflags:", save->rflags);
4221 pr_err("%-15s %016llx %-13s %016llx\n",
4222 "rsp:", save->rsp, "rax:", save->rax);
4223 pr_err("%-15s %016llx %-13s %016llx\n",
4224 "star:", save->star, "lstar:", save->lstar);
4225 pr_err("%-15s %016llx %-13s %016llx\n",
4226 "cstar:", save->cstar, "sfmask:", save->sfmask);
4227 pr_err("%-15s %016llx %-13s %016llx\n",
4228 "kernel_gs_base:", save->kernel_gs_base,
4229 "sysenter_cs:", save->sysenter_cs);
4230 pr_err("%-15s %016llx %-13s %016llx\n",
4231 "sysenter_esp:", save->sysenter_esp,
4232 "sysenter_eip:", save->sysenter_eip);
4233 pr_err("%-15s %016llx %-13s %016llx\n",
4234 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4235 pr_err("%-15s %016llx %-13s %016llx\n",
4236 "br_from:", save->br_from, "br_to:", save->br_to);
4237 pr_err("%-15s %016llx %-13s %016llx\n",
4238 "excp_from:", save->last_excp_from,
4239 "excp_to:", save->last_excp_to);
4240 }
4241
4242 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4243 {
4244 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4245
4246 *info1 = control->exit_info_1;
4247 *info2 = control->exit_info_2;
4248 }
4249
4250 static int handle_exit(struct kvm_vcpu *vcpu)
4251 {
4252 struct vcpu_svm *svm = to_svm(vcpu);
4253 struct kvm_run *kvm_run = vcpu->run;
4254 u32 exit_code = svm->vmcb->control.exit_code;
4255
4256 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4257
4258 vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4259
4260 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4261 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4262 if (npt_enabled)
4263 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4264
4265 if (unlikely(svm->nested.exit_required)) {
4266 nested_svm_vmexit(svm);
4267 svm->nested.exit_required = false;
4268
4269 return 1;
4270 }
4271
4272 if (is_guest_mode(vcpu)) {
4273 int vmexit;
4274
4275 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4276 svm->vmcb->control.exit_info_1,
4277 svm->vmcb->control.exit_info_2,
4278 svm->vmcb->control.exit_int_info,
4279 svm->vmcb->control.exit_int_info_err,
4280 KVM_ISA_SVM);
4281
4282 vmexit = nested_svm_exit_special(svm);
4283
4284 if (vmexit == NESTED_EXIT_CONTINUE)
4285 vmexit = nested_svm_exit_handled(svm);
4286
4287 if (vmexit == NESTED_EXIT_DONE)
4288 return 1;
4289 }
4290
4291 svm_complete_interrupts(svm);
4292
4293 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4294 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4295 kvm_run->fail_entry.hardware_entry_failure_reason
4296 = svm->vmcb->control.exit_code;
4297 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4298 dump_vmcb(vcpu);
4299 return 0;
4300 }
4301
4302 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4303 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4304 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4305 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4306 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4307 "exit_code 0x%x\n",
4308 __func__, svm->vmcb->control.exit_int_info,
4309 exit_code);
4310
4311 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4312 || !svm_exit_handlers[exit_code]) {
4313 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4314 kvm_queue_exception(vcpu, UD_VECTOR);
4315 return 1;
4316 }
4317
4318 return svm_exit_handlers[exit_code](svm);
4319 }
4320
4321 static void reload_tss(struct kvm_vcpu *vcpu)
4322 {
4323 int cpu = raw_smp_processor_id();
4324
4325 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4326 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4327 load_TR_desc();
4328 }
4329
4330 static void pre_svm_run(struct vcpu_svm *svm)
4331 {
4332 int cpu = raw_smp_processor_id();
4333
4334 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4335
4336 /* FIXME: handle wraparound of asid_generation */
4337 if (svm->asid_generation != sd->asid_generation)
4338 new_asid(svm, sd);
4339 }
4340
4341 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4342 {
4343 struct vcpu_svm *svm = to_svm(vcpu);
4344
4345 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4346 vcpu->arch.hflags |= HF_NMI_MASK;
4347 set_intercept(svm, INTERCEPT_IRET);
4348 ++vcpu->stat.nmi_injections;
4349 }
4350
4351 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4352 {
4353 struct vmcb_control_area *control;
4354
4355 /* The following fields are ignored when AVIC is enabled */
4356 control = &svm->vmcb->control;
4357 control->int_vector = irq;
4358 control->int_ctl &= ~V_INTR_PRIO_MASK;
4359 control->int_ctl |= V_IRQ_MASK |
4360 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4361 mark_dirty(svm->vmcb, VMCB_INTR);
4362 }
4363
4364 static void svm_set_irq(struct kvm_vcpu *vcpu)
4365 {
4366 struct vcpu_svm *svm = to_svm(vcpu);
4367
4368 BUG_ON(!(gif_set(svm)));
4369
4370 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4371 ++vcpu->stat.irq_injections;
4372
4373 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4374 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4375 }
4376
4377 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4378 {
4379 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4380 }
4381
4382 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4383 {
4384 struct vcpu_svm *svm = to_svm(vcpu);
4385
4386 if (svm_nested_virtualize_tpr(vcpu) ||
4387 kvm_vcpu_apicv_active(vcpu))
4388 return;
4389
4390 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4391
4392 if (irr == -1)
4393 return;
4394
4395 if (tpr >= irr)
4396 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4397 }
4398
4399 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4400 {
4401 return;
4402 }
4403
4404 static bool svm_get_enable_apicv(void)
4405 {
4406 return avic;
4407 }
4408
4409 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4410 {
4411 }
4412
4413 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4414 {
4415 }
4416
4417 /* Note: Currently only used by Hyper-V. */
4418 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4419 {
4420 struct vcpu_svm *svm = to_svm(vcpu);
4421 struct vmcb *vmcb = svm->vmcb;
4422
4423 if (!avic)
4424 return;
4425
4426 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4427 mark_dirty(vmcb, VMCB_INTR);
4428 }
4429
4430 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4431 {
4432 return;
4433 }
4434
4435 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4436 {
4437 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4438 smp_mb__after_atomic();
4439
4440 if (avic_vcpu_is_running(vcpu))
4441 wrmsrl(SVM_AVIC_DOORBELL,
4442 kvm_cpu_get_apicid(vcpu->cpu));
4443 else
4444 kvm_vcpu_wake_up(vcpu);
4445 }
4446
4447 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4448 {
4449 unsigned long flags;
4450 struct amd_svm_iommu_ir *cur;
4451
4452 spin_lock_irqsave(&svm->ir_list_lock, flags);
4453 list_for_each_entry(cur, &svm->ir_list, node) {
4454 if (cur->data != pi->ir_data)
4455 continue;
4456 list_del(&cur->node);
4457 kfree(cur);
4458 break;
4459 }
4460 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4461 }
4462
4463 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4464 {
4465 int ret = 0;
4466 unsigned long flags;
4467 struct amd_svm_iommu_ir *ir;
4468
4469 /**
4470 * In some cases, the existing irte is updaed and re-set,
4471 * so we need to check here if it's already been * added
4472 * to the ir_list.
4473 */
4474 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4475 struct kvm *kvm = svm->vcpu.kvm;
4476 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4477 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4478 struct vcpu_svm *prev_svm;
4479
4480 if (!prev_vcpu) {
4481 ret = -EINVAL;
4482 goto out;
4483 }
4484
4485 prev_svm = to_svm(prev_vcpu);
4486 svm_ir_list_del(prev_svm, pi);
4487 }
4488
4489 /**
4490 * Allocating new amd_iommu_pi_data, which will get
4491 * add to the per-vcpu ir_list.
4492 */
4493 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4494 if (!ir) {
4495 ret = -ENOMEM;
4496 goto out;
4497 }
4498 ir->data = pi->ir_data;
4499
4500 spin_lock_irqsave(&svm->ir_list_lock, flags);
4501 list_add(&ir->node, &svm->ir_list);
4502 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4503 out:
4504 return ret;
4505 }
4506
4507 /**
4508 * Note:
4509 * The HW cannot support posting multicast/broadcast
4510 * interrupts to a vCPU. So, we still use legacy interrupt
4511 * remapping for these kind of interrupts.
4512 *
4513 * For lowest-priority interrupts, we only support
4514 * those with single CPU as the destination, e.g. user
4515 * configures the interrupts via /proc/irq or uses
4516 * irqbalance to make the interrupts single-CPU.
4517 */
4518 static int
4519 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4520 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4521 {
4522 struct kvm_lapic_irq irq;
4523 struct kvm_vcpu *vcpu = NULL;
4524
4525 kvm_set_msi_irq(kvm, e, &irq);
4526
4527 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4528 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4529 __func__, irq.vector);
4530 return -1;
4531 }
4532
4533 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4534 irq.vector);
4535 *svm = to_svm(vcpu);
4536 vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4537 vcpu_info->vector = irq.vector;
4538
4539 return 0;
4540 }
4541
4542 /*
4543 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4544 *
4545 * @kvm: kvm
4546 * @host_irq: host irq of the interrupt
4547 * @guest_irq: gsi of the interrupt
4548 * @set: set or unset PI
4549 * returns 0 on success, < 0 on failure
4550 */
4551 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4552 uint32_t guest_irq, bool set)
4553 {
4554 struct kvm_kernel_irq_routing_entry *e;
4555 struct kvm_irq_routing_table *irq_rt;
4556 int idx, ret = -EINVAL;
4557
4558 if (!kvm_arch_has_assigned_device(kvm) ||
4559 !irq_remapping_cap(IRQ_POSTING_CAP))
4560 return 0;
4561
4562 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4563 __func__, host_irq, guest_irq, set);
4564
4565 idx = srcu_read_lock(&kvm->irq_srcu);
4566 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4567 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4568
4569 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4570 struct vcpu_data vcpu_info;
4571 struct vcpu_svm *svm = NULL;
4572
4573 if (e->type != KVM_IRQ_ROUTING_MSI)
4574 continue;
4575
4576 /**
4577 * Here, we setup with legacy mode in the following cases:
4578 * 1. When cannot target interrupt to a specific vcpu.
4579 * 2. Unsetting posted interrupt.
4580 * 3. APIC virtialization is disabled for the vcpu.
4581 */
4582 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4583 kvm_vcpu_apicv_active(&svm->vcpu)) {
4584 struct amd_iommu_pi_data pi;
4585
4586 /* Try to enable guest_mode in IRTE */
4587 pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4588 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4589 svm->vcpu.vcpu_id);
4590 pi.is_guest_mode = true;
4591 pi.vcpu_data = &vcpu_info;
4592 ret = irq_set_vcpu_affinity(host_irq, &pi);
4593
4594 /**
4595 * Here, we successfully setting up vcpu affinity in
4596 * IOMMU guest mode. Now, we need to store the posted
4597 * interrupt information in a per-vcpu ir_list so that
4598 * we can reference to them directly when we update vcpu
4599 * scheduling information in IOMMU irte.
4600 */
4601 if (!ret && pi.is_guest_mode)
4602 svm_ir_list_add(svm, &pi);
4603 } else {
4604 /* Use legacy mode in IRTE */
4605 struct amd_iommu_pi_data pi;
4606
4607 /**
4608 * Here, pi is used to:
4609 * - Tell IOMMU to use legacy mode for this interrupt.
4610 * - Retrieve ga_tag of prior interrupt remapping data.
4611 */
4612 pi.is_guest_mode = false;
4613 ret = irq_set_vcpu_affinity(host_irq, &pi);
4614
4615 /**
4616 * Check if the posted interrupt was previously
4617 * setup with the guest_mode by checking if the ga_tag
4618 * was cached. If so, we need to clean up the per-vcpu
4619 * ir_list.
4620 */
4621 if (!ret && pi.prev_ga_tag) {
4622 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4623 struct kvm_vcpu *vcpu;
4624
4625 vcpu = kvm_get_vcpu_by_id(kvm, id);
4626 if (vcpu)
4627 svm_ir_list_del(to_svm(vcpu), &pi);
4628 }
4629 }
4630
4631 if (!ret && svm) {
4632 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4633 host_irq, e->gsi,
4634 vcpu_info.vector,
4635 vcpu_info.pi_desc_addr, set);
4636 }
4637
4638 if (ret < 0) {
4639 pr_err("%s: failed to update PI IRTE\n", __func__);
4640 goto out;
4641 }
4642 }
4643
4644 ret = 0;
4645 out:
4646 srcu_read_unlock(&kvm->irq_srcu, idx);
4647 return ret;
4648 }
4649
4650 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4651 {
4652 struct vcpu_svm *svm = to_svm(vcpu);
4653 struct vmcb *vmcb = svm->vmcb;
4654 int ret;
4655 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4656 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4657 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4658
4659 return ret;
4660 }
4661
4662 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4663 {
4664 struct vcpu_svm *svm = to_svm(vcpu);
4665
4666 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4667 }
4668
4669 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4670 {
4671 struct vcpu_svm *svm = to_svm(vcpu);
4672
4673 if (masked) {
4674 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4675 set_intercept(svm, INTERCEPT_IRET);
4676 } else {
4677 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4678 clr_intercept(svm, INTERCEPT_IRET);
4679 }
4680 }
4681
4682 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4683 {
4684 struct vcpu_svm *svm = to_svm(vcpu);
4685 struct vmcb *vmcb = svm->vmcb;
4686 int ret;
4687
4688 if (!gif_set(svm) ||
4689 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4690 return 0;
4691
4692 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4693
4694 if (is_guest_mode(vcpu))
4695 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4696
4697 return ret;
4698 }
4699
4700 static void enable_irq_window(struct kvm_vcpu *vcpu)
4701 {
4702 struct vcpu_svm *svm = to_svm(vcpu);
4703
4704 if (kvm_vcpu_apicv_active(vcpu))
4705 return;
4706
4707 /*
4708 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4709 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4710 * get that intercept, this function will be called again though and
4711 * we'll get the vintr intercept.
4712 */
4713 if (gif_set(svm) && nested_svm_intr(svm)) {
4714 svm_set_vintr(svm);
4715 svm_inject_irq(svm, 0x0);
4716 }
4717 }
4718
4719 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4720 {
4721 struct vcpu_svm *svm = to_svm(vcpu);
4722
4723 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4724 == HF_NMI_MASK)
4725 return; /* IRET will cause a vm exit */
4726
4727 if ((svm->vcpu.arch.hflags & HF_GIF_MASK) == 0)
4728 return; /* STGI will cause a vm exit */
4729
4730 if (svm->nested.exit_required)
4731 return; /* we're not going to run the guest yet */
4732
4733 /*
4734 * Something prevents NMI from been injected. Single step over possible
4735 * problem (IRET or exception injection or interrupt shadow)
4736 */
4737 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4738 svm->nmi_singlestep = true;
4739 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4740 }
4741
4742 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4743 {
4744 return 0;
4745 }
4746
4747 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4748 {
4749 struct vcpu_svm *svm = to_svm(vcpu);
4750
4751 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4752 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4753 else
4754 svm->asid_generation--;
4755 }
4756
4757 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4758 {
4759 }
4760
4761 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4762 {
4763 struct vcpu_svm *svm = to_svm(vcpu);
4764
4765 if (svm_nested_virtualize_tpr(vcpu))
4766 return;
4767
4768 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4769 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4770 kvm_set_cr8(vcpu, cr8);
4771 }
4772 }
4773
4774 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4775 {
4776 struct vcpu_svm *svm = to_svm(vcpu);
4777 u64 cr8;
4778
4779 if (svm_nested_virtualize_tpr(vcpu) ||
4780 kvm_vcpu_apicv_active(vcpu))
4781 return;
4782
4783 cr8 = kvm_get_cr8(vcpu);
4784 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4785 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4786 }
4787
4788 static void svm_complete_interrupts(struct vcpu_svm *svm)
4789 {
4790 u8 vector;
4791 int type;
4792 u32 exitintinfo = svm->vmcb->control.exit_int_info;
4793 unsigned int3_injected = svm->int3_injected;
4794
4795 svm->int3_injected = 0;
4796
4797 /*
4798 * If we've made progress since setting HF_IRET_MASK, we've
4799 * executed an IRET and can allow NMI injection.
4800 */
4801 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4802 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4803 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4804 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4805 }
4806
4807 svm->vcpu.arch.nmi_injected = false;
4808 kvm_clear_exception_queue(&svm->vcpu);
4809 kvm_clear_interrupt_queue(&svm->vcpu);
4810
4811 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4812 return;
4813
4814 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4815
4816 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4817 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4818
4819 switch (type) {
4820 case SVM_EXITINTINFO_TYPE_NMI:
4821 svm->vcpu.arch.nmi_injected = true;
4822 break;
4823 case SVM_EXITINTINFO_TYPE_EXEPT:
4824 /*
4825 * In case of software exceptions, do not reinject the vector,
4826 * but re-execute the instruction instead. Rewind RIP first
4827 * if we emulated INT3 before.
4828 */
4829 if (kvm_exception_is_soft(vector)) {
4830 if (vector == BP_VECTOR && int3_injected &&
4831 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4832 kvm_rip_write(&svm->vcpu,
4833 kvm_rip_read(&svm->vcpu) -
4834 int3_injected);
4835 break;
4836 }
4837 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4838 u32 err = svm->vmcb->control.exit_int_info_err;
4839 kvm_requeue_exception_e(&svm->vcpu, vector, err);
4840
4841 } else
4842 kvm_requeue_exception(&svm->vcpu, vector);
4843 break;
4844 case SVM_EXITINTINFO_TYPE_INTR:
4845 kvm_queue_interrupt(&svm->vcpu, vector, false);
4846 break;
4847 default:
4848 break;
4849 }
4850 }
4851
4852 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4853 {
4854 struct vcpu_svm *svm = to_svm(vcpu);
4855 struct vmcb_control_area *control = &svm->vmcb->control;
4856
4857 control->exit_int_info = control->event_inj;
4858 control->exit_int_info_err = control->event_inj_err;
4859 control->event_inj = 0;
4860 svm_complete_interrupts(svm);
4861 }
4862
4863 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4864 {
4865 struct vcpu_svm *svm = to_svm(vcpu);
4866
4867 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4868 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4869 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4870
4871 /*
4872 * A vmexit emulation is required before the vcpu can be executed
4873 * again.
4874 */
4875 if (unlikely(svm->nested.exit_required))
4876 return;
4877
4878 /*
4879 * Disable singlestep if we're injecting an interrupt/exception.
4880 * We don't want our modified rflags to be pushed on the stack where
4881 * we might not be able to easily reset them if we disabled NMI
4882 * singlestep later.
4883 */
4884 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4885 /*
4886 * Event injection happens before external interrupts cause a
4887 * vmexit and interrupts are disabled here, so smp_send_reschedule
4888 * is enough to force an immediate vmexit.
4889 */
4890 disable_nmi_singlestep(svm);
4891 smp_send_reschedule(vcpu->cpu);
4892 }
4893
4894 pre_svm_run(svm);
4895
4896 sync_lapic_to_cr8(vcpu);
4897
4898 svm->vmcb->save.cr2 = vcpu->arch.cr2;
4899
4900 clgi();
4901
4902 local_irq_enable();
4903
4904 /* SMB: Don't care about ibrs_inuse but rely on guest value */
4905 x86_spec_ctrl_set_guest(svm->spec_ctrl);
4906
4907 asm volatile (
4908 "push %%" _ASM_BP "; \n\t"
4909 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4910 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4911 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4912 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4913 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4914 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4915 #ifdef CONFIG_X86_64
4916 "mov %c[r8](%[svm]), %%r8 \n\t"
4917 "mov %c[r9](%[svm]), %%r9 \n\t"
4918 "mov %c[r10](%[svm]), %%r10 \n\t"
4919 "mov %c[r11](%[svm]), %%r11 \n\t"
4920 "mov %c[r12](%[svm]), %%r12 \n\t"
4921 "mov %c[r13](%[svm]), %%r13 \n\t"
4922 "mov %c[r14](%[svm]), %%r14 \n\t"
4923 "mov %c[r15](%[svm]), %%r15 \n\t"
4924 #endif
4925
4926 /* Enter guest mode */
4927 "push %%" _ASM_AX " \n\t"
4928 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4929 __ex(SVM_VMLOAD) "\n\t"
4930 __ex(SVM_VMRUN) "\n\t"
4931 __ex(SVM_VMSAVE) "\n\t"
4932 "pop %%" _ASM_AX " \n\t"
4933
4934 /* Save guest registers, load host registers */
4935 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4936 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4937 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4938 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4939 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4940 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4941 #ifdef CONFIG_X86_64
4942 "mov %%r8, %c[r8](%[svm]) \n\t"
4943 "mov %%r9, %c[r9](%[svm]) \n\t"
4944 "mov %%r10, %c[r10](%[svm]) \n\t"
4945 "mov %%r11, %c[r11](%[svm]) \n\t"
4946 "mov %%r12, %c[r12](%[svm]) \n\t"
4947 "mov %%r13, %c[r13](%[svm]) \n\t"
4948 "mov %%r14, %c[r14](%[svm]) \n\t"
4949 "mov %%r15, %c[r15](%[svm]) \n\t"
4950 #endif
4951 /*
4952 * Clear host registers marked as clobbered to prevent
4953 * speculative use.
4954 */
4955 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
4956 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
4957 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
4958 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
4959 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
4960 #ifdef CONFIG_X86_64
4961 "xor %%r8, %%r8 \n\t"
4962 "xor %%r9, %%r9 \n\t"
4963 "xor %%r10, %%r10 \n\t"
4964 "xor %%r11, %%r11 \n\t"
4965 "xor %%r12, %%r12 \n\t"
4966 "xor %%r13, %%r13 \n\t"
4967 "xor %%r14, %%r14 \n\t"
4968 "xor %%r15, %%r15 \n\t"
4969 #endif
4970 "pop %%" _ASM_BP
4971 :
4972 : [svm]"a"(svm),
4973 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4974 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4975 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4976 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4977 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4978 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4979 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4980 #ifdef CONFIG_X86_64
4981 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4982 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4983 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4984 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4985 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4986 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4987 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4988 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4989 #endif
4990 : "cc", "memory"
4991 #ifdef CONFIG_X86_64
4992 , "rbx", "rcx", "rdx", "rsi", "rdi"
4993 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4994 #else
4995 , "ebx", "ecx", "edx", "esi", "edi"
4996 #endif
4997 );
4998
4999 /* Eliminate branch target predictions from guest mode */
5000 vmexit_fill_RSB();
5001
5002 x86_spec_ctrl_restore_host(svm->spec_ctrl);
5003
5004 #ifdef CONFIG_X86_64
5005 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5006 #else
5007 loadsegment(fs, svm->host.fs);
5008 #ifndef CONFIG_X86_32_LAZY_GS
5009 loadsegment(gs, svm->host.gs);
5010 #endif
5011 #endif
5012
5013 reload_tss(vcpu);
5014
5015 local_irq_disable();
5016
5017 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5018 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5019 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5020 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5021
5022 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5023 kvm_before_handle_nmi(&svm->vcpu);
5024
5025 stgi();
5026
5027 /* Any pending NMI will happen here */
5028
5029 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5030 kvm_after_handle_nmi(&svm->vcpu);
5031
5032 sync_cr8_to_lapic(vcpu);
5033
5034 svm->next_rip = 0;
5035
5036 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5037
5038 /* if exit due to PF check for async PF */
5039 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5040 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5041
5042 if (npt_enabled) {
5043 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5044 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5045 }
5046
5047 /*
5048 * We need to handle MC intercepts here before the vcpu has a chance to
5049 * change the physical cpu
5050 */
5051 if (unlikely(svm->vmcb->control.exit_code ==
5052 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5053 svm_handle_mce(svm);
5054
5055 mark_all_clean(svm->vmcb);
5056 }
5057 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5058
5059 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5060 {
5061 struct vcpu_svm *svm = to_svm(vcpu);
5062
5063 svm->vmcb->save.cr3 = root;
5064 mark_dirty(svm->vmcb, VMCB_CR);
5065 svm_flush_tlb(vcpu);
5066 }
5067
5068 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5069 {
5070 struct vcpu_svm *svm = to_svm(vcpu);
5071
5072 svm->vmcb->control.nested_cr3 = root;
5073 mark_dirty(svm->vmcb, VMCB_NPT);
5074
5075 /* Also sync guest cr3 here in case we live migrate */
5076 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5077 mark_dirty(svm->vmcb, VMCB_CR);
5078
5079 svm_flush_tlb(vcpu);
5080 }
5081
5082 static int is_disabled(void)
5083 {
5084 u64 vm_cr;
5085
5086 rdmsrl(MSR_VM_CR, vm_cr);
5087 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5088 return 1;
5089
5090 return 0;
5091 }
5092
5093 static void
5094 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5095 {
5096 /*
5097 * Patch in the VMMCALL instruction:
5098 */
5099 hypercall[0] = 0x0f;
5100 hypercall[1] = 0x01;
5101 hypercall[2] = 0xd9;
5102 }
5103
5104 static void svm_check_processor_compat(void *rtn)
5105 {
5106 *(int *)rtn = 0;
5107 }
5108
5109 static bool svm_cpu_has_accelerated_tpr(void)
5110 {
5111 return false;
5112 }
5113
5114 static bool svm_has_high_real_mode_segbase(void)
5115 {
5116 return true;
5117 }
5118
5119 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5120 {
5121 return 0;
5122 }
5123
5124 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5125 {
5126 struct vcpu_svm *svm = to_svm(vcpu);
5127 struct kvm_cpuid_entry2 *entry;
5128
5129 /* Update nrips enabled cache */
5130 svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
5131
5132 if (!kvm_vcpu_apicv_active(vcpu))
5133 return;
5134
5135 entry = kvm_find_cpuid_entry(vcpu, 1, 0);
5136 if (entry)
5137 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5138 }
5139
5140 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5141 {
5142 switch (func) {
5143 case 0x1:
5144 if (avic)
5145 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5146 break;
5147 case 0x80000001:
5148 if (nested)
5149 entry->ecx |= (1 << 2); /* Set SVM bit */
5150 break;
5151 case 0x8000000A:
5152 entry->eax = 1; /* SVM revision 1 */
5153 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5154 ASID emulation to nested SVM */
5155 entry->ecx = 0; /* Reserved */
5156 entry->edx = 0; /* Per default do not support any
5157 additional features */
5158
5159 /* Support next_rip if host supports it */
5160 if (boot_cpu_has(X86_FEATURE_NRIPS))
5161 entry->edx |= SVM_FEATURE_NRIP;
5162
5163 /* Support NPT for the guest if enabled */
5164 if (npt_enabled)
5165 entry->edx |= SVM_FEATURE_NPT;
5166
5167 break;
5168 }
5169 }
5170
5171 static int svm_get_lpage_level(void)
5172 {
5173 return PT_PDPE_LEVEL;
5174 }
5175
5176 static bool svm_rdtscp_supported(void)
5177 {
5178 return boot_cpu_has(X86_FEATURE_RDTSCP);
5179 }
5180
5181 static bool svm_invpcid_supported(void)
5182 {
5183 return false;
5184 }
5185
5186 static bool svm_mpx_supported(void)
5187 {
5188 return false;
5189 }
5190
5191 static bool svm_xsaves_supported(void)
5192 {
5193 return false;
5194 }
5195
5196 static bool svm_has_wbinvd_exit(void)
5197 {
5198 return true;
5199 }
5200
5201 #define PRE_EX(exit) { .exit_code = (exit), \
5202 .stage = X86_ICPT_PRE_EXCEPT, }
5203 #define POST_EX(exit) { .exit_code = (exit), \
5204 .stage = X86_ICPT_POST_EXCEPT, }
5205 #define POST_MEM(exit) { .exit_code = (exit), \
5206 .stage = X86_ICPT_POST_MEMACCESS, }
5207
5208 static const struct __x86_intercept {
5209 u32 exit_code;
5210 enum x86_intercept_stage stage;
5211 } x86_intercept_map[] = {
5212 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5213 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5214 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5215 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5216 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5217 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5218 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5219 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5220 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5221 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5222 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5223 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5224 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5225 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5226 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5227 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5228 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5229 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5230 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5231 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5232 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5233 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5234 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5235 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5236 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5237 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5238 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5239 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5240 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5241 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5242 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5243 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5244 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5245 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5246 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5247 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5248 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5249 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5250 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5251 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5252 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5253 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5254 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5255 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5256 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5257 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5258 };
5259
5260 #undef PRE_EX
5261 #undef POST_EX
5262 #undef POST_MEM
5263
5264 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5265 struct x86_instruction_info *info,
5266 enum x86_intercept_stage stage)
5267 {
5268 struct vcpu_svm *svm = to_svm(vcpu);
5269 int vmexit, ret = X86EMUL_CONTINUE;
5270 struct __x86_intercept icpt_info;
5271 struct vmcb *vmcb = svm->vmcb;
5272
5273 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5274 goto out;
5275
5276 icpt_info = x86_intercept_map[info->intercept];
5277
5278 if (stage != icpt_info.stage)
5279 goto out;
5280
5281 switch (icpt_info.exit_code) {
5282 case SVM_EXIT_READ_CR0:
5283 if (info->intercept == x86_intercept_cr_read)
5284 icpt_info.exit_code += info->modrm_reg;
5285 break;
5286 case SVM_EXIT_WRITE_CR0: {
5287 unsigned long cr0, val;
5288 u64 intercept;
5289
5290 if (info->intercept == x86_intercept_cr_write)
5291 icpt_info.exit_code += info->modrm_reg;
5292
5293 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5294 info->intercept == x86_intercept_clts)
5295 break;
5296
5297 intercept = svm->nested.intercept;
5298
5299 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5300 break;
5301
5302 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5303 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5304
5305 if (info->intercept == x86_intercept_lmsw) {
5306 cr0 &= 0xfUL;
5307 val &= 0xfUL;
5308 /* lmsw can't clear PE - catch this here */
5309 if (cr0 & X86_CR0_PE)
5310 val |= X86_CR0_PE;
5311 }
5312
5313 if (cr0 ^ val)
5314 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5315
5316 break;
5317 }
5318 case SVM_EXIT_READ_DR0:
5319 case SVM_EXIT_WRITE_DR0:
5320 icpt_info.exit_code += info->modrm_reg;
5321 break;
5322 case SVM_EXIT_MSR:
5323 if (info->intercept == x86_intercept_wrmsr)
5324 vmcb->control.exit_info_1 = 1;
5325 else
5326 vmcb->control.exit_info_1 = 0;
5327 break;
5328 case SVM_EXIT_PAUSE:
5329 /*
5330 * We get this for NOP only, but pause
5331 * is rep not, check this here
5332 */
5333 if (info->rep_prefix != REPE_PREFIX)
5334 goto out;
5335 case SVM_EXIT_IOIO: {
5336 u64 exit_info;
5337 u32 bytes;
5338
5339 if (info->intercept == x86_intercept_in ||
5340 info->intercept == x86_intercept_ins) {
5341 exit_info = ((info->src_val & 0xffff) << 16) |
5342 SVM_IOIO_TYPE_MASK;
5343 bytes = info->dst_bytes;
5344 } else {
5345 exit_info = (info->dst_val & 0xffff) << 16;
5346 bytes = info->src_bytes;
5347 }
5348
5349 if (info->intercept == x86_intercept_outs ||
5350 info->intercept == x86_intercept_ins)
5351 exit_info |= SVM_IOIO_STR_MASK;
5352
5353 if (info->rep_prefix)
5354 exit_info |= SVM_IOIO_REP_MASK;
5355
5356 bytes = min(bytes, 4u);
5357
5358 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5359
5360 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5361
5362 vmcb->control.exit_info_1 = exit_info;
5363 vmcb->control.exit_info_2 = info->next_rip;
5364
5365 break;
5366 }
5367 default:
5368 break;
5369 }
5370
5371 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5372 if (static_cpu_has(X86_FEATURE_NRIPS))
5373 vmcb->control.next_rip = info->next_rip;
5374 vmcb->control.exit_code = icpt_info.exit_code;
5375 vmexit = nested_svm_exit_handled(svm);
5376
5377 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5378 : X86EMUL_CONTINUE;
5379
5380 out:
5381 return ret;
5382 }
5383
5384 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5385 {
5386 local_irq_enable();
5387 /*
5388 * We must have an instruction with interrupts enabled, so
5389 * the timer interrupt isn't delayed by the interrupt shadow.
5390 */
5391 asm("nop");
5392 local_irq_disable();
5393 }
5394
5395 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5396 {
5397 }
5398
5399 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5400 {
5401 if (avic_handle_apic_id_update(vcpu) != 0)
5402 return;
5403 if (avic_handle_dfr_update(vcpu) != 0)
5404 return;
5405 avic_handle_ldr_update(vcpu);
5406 }
5407
5408 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5409 {
5410 /* [63:9] are reserved. */
5411 vcpu->arch.mcg_cap &= 0x1ff;
5412 }
5413
5414 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5415 .cpu_has_kvm_support = has_svm,
5416 .disabled_by_bios = is_disabled,
5417 .hardware_setup = svm_hardware_setup,
5418 .hardware_unsetup = svm_hardware_unsetup,
5419 .check_processor_compatibility = svm_check_processor_compat,
5420 .hardware_enable = svm_hardware_enable,
5421 .hardware_disable = svm_hardware_disable,
5422 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5423 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5424
5425 .vcpu_create = svm_create_vcpu,
5426 .vcpu_free = svm_free_vcpu,
5427 .vcpu_reset = svm_vcpu_reset,
5428
5429 .vm_init = avic_vm_init,
5430 .vm_destroy = avic_vm_destroy,
5431
5432 .prepare_guest_switch = svm_prepare_guest_switch,
5433 .vcpu_load = svm_vcpu_load,
5434 .vcpu_put = svm_vcpu_put,
5435 .vcpu_blocking = svm_vcpu_blocking,
5436 .vcpu_unblocking = svm_vcpu_unblocking,
5437
5438 .update_bp_intercept = update_bp_intercept,
5439 .get_msr = svm_get_msr,
5440 .set_msr = svm_set_msr,
5441 .get_segment_base = svm_get_segment_base,
5442 .get_segment = svm_get_segment,
5443 .set_segment = svm_set_segment,
5444 .get_cpl = svm_get_cpl,
5445 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5446 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5447 .decache_cr3 = svm_decache_cr3,
5448 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5449 .set_cr0 = svm_set_cr0,
5450 .set_cr3 = svm_set_cr3,
5451 .set_cr4 = svm_set_cr4,
5452 .set_efer = svm_set_efer,
5453 .get_idt = svm_get_idt,
5454 .set_idt = svm_set_idt,
5455 .get_gdt = svm_get_gdt,
5456 .set_gdt = svm_set_gdt,
5457 .get_dr6 = svm_get_dr6,
5458 .set_dr6 = svm_set_dr6,
5459 .set_dr7 = svm_set_dr7,
5460 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5461 .cache_reg = svm_cache_reg,
5462 .get_rflags = svm_get_rflags,
5463 .set_rflags = svm_set_rflags,
5464
5465 .tlb_flush = svm_flush_tlb,
5466
5467 .run = svm_vcpu_run,
5468 .handle_exit = handle_exit,
5469 .skip_emulated_instruction = skip_emulated_instruction,
5470 .set_interrupt_shadow = svm_set_interrupt_shadow,
5471 .get_interrupt_shadow = svm_get_interrupt_shadow,
5472 .patch_hypercall = svm_patch_hypercall,
5473 .set_irq = svm_set_irq,
5474 .set_nmi = svm_inject_nmi,
5475 .queue_exception = svm_queue_exception,
5476 .cancel_injection = svm_cancel_injection,
5477 .interrupt_allowed = svm_interrupt_allowed,
5478 .nmi_allowed = svm_nmi_allowed,
5479 .get_nmi_mask = svm_get_nmi_mask,
5480 .set_nmi_mask = svm_set_nmi_mask,
5481 .enable_nmi_window = enable_nmi_window,
5482 .enable_irq_window = enable_irq_window,
5483 .update_cr8_intercept = update_cr8_intercept,
5484 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5485 .get_enable_apicv = svm_get_enable_apicv,
5486 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5487 .load_eoi_exitmap = svm_load_eoi_exitmap,
5488 .hwapic_irr_update = svm_hwapic_irr_update,
5489 .hwapic_isr_update = svm_hwapic_isr_update,
5490 .apicv_post_state_restore = avic_post_state_restore,
5491
5492 .set_tss_addr = svm_set_tss_addr,
5493 .get_tdp_level = get_npt_level,
5494 .get_mt_mask = svm_get_mt_mask,
5495
5496 .get_exit_info = svm_get_exit_info,
5497
5498 .get_lpage_level = svm_get_lpage_level,
5499
5500 .cpuid_update = svm_cpuid_update,
5501
5502 .rdtscp_supported = svm_rdtscp_supported,
5503 .invpcid_supported = svm_invpcid_supported,
5504 .mpx_supported = svm_mpx_supported,
5505 .xsaves_supported = svm_xsaves_supported,
5506
5507 .set_supported_cpuid = svm_set_supported_cpuid,
5508
5509 .has_wbinvd_exit = svm_has_wbinvd_exit,
5510
5511 .write_tsc_offset = svm_write_tsc_offset,
5512
5513 .set_tdp_cr3 = set_tdp_cr3,
5514
5515 .check_intercept = svm_check_intercept,
5516 .handle_external_intr = svm_handle_external_intr,
5517
5518 .sched_in = svm_sched_in,
5519
5520 .pmu_ops = &amd_pmu_ops,
5521 .deliver_posted_interrupt = svm_deliver_avic_intr,
5522 .update_pi_irte = svm_update_pi_irte,
5523 .setup_mce = svm_setup_mce,
5524 };
5525
5526 static int __init svm_init(void)
5527 {
5528 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5529 __alignof__(struct vcpu_svm), THIS_MODULE);
5530 }
5531
5532 static void __exit svm_exit(void)
5533 {
5534 kvm_exit();
5535 }
5536
5537 module_init(svm_init)
5538 module_exit(svm_exit)