]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82 * - enable syscall per default because its emulated by KVM
83 * - enable LME and LMA per default on 64 bit KVM
84 */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32 __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64 __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 #define KVM_NR_SHARED_MSRS 16
138
139 struct kvm_shared_msrs_global {
140 int nr;
141 u32 msrs[KVM_NR_SHARED_MSRS];
142 };
143
144 struct kvm_shared_msrs {
145 struct user_return_notifier urn;
146 bool registered;
147 struct kvm_shared_msr_values {
148 u64 host;
149 u64 curr;
150 } values[KVM_NR_SHARED_MSRS];
151 };
152
153 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
154 static struct kvm_shared_msrs __percpu *shared_msrs;
155
156 struct kvm_stats_debugfs_item debugfs_entries[] = {
157 { "pf_fixed", VCPU_STAT(pf_fixed) },
158 { "pf_guest", VCPU_STAT(pf_guest) },
159 { "tlb_flush", VCPU_STAT(tlb_flush) },
160 { "invlpg", VCPU_STAT(invlpg) },
161 { "exits", VCPU_STAT(exits) },
162 { "io_exits", VCPU_STAT(io_exits) },
163 { "mmio_exits", VCPU_STAT(mmio_exits) },
164 { "signal_exits", VCPU_STAT(signal_exits) },
165 { "irq_window", VCPU_STAT(irq_window_exits) },
166 { "nmi_window", VCPU_STAT(nmi_window_exits) },
167 { "halt_exits", VCPU_STAT(halt_exits) },
168 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
169 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
170 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
171 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
172 { "hypercalls", VCPU_STAT(hypercalls) },
173 { "request_irq", VCPU_STAT(request_irq_exits) },
174 { "irq_exits", VCPU_STAT(irq_exits) },
175 { "host_state_reload", VCPU_STAT(host_state_reload) },
176 { "efer_reload", VCPU_STAT(efer_reload) },
177 { "fpu_reload", VCPU_STAT(fpu_reload) },
178 { "insn_emulation", VCPU_STAT(insn_emulation) },
179 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
180 { "irq_injections", VCPU_STAT(irq_injections) },
181 { "nmi_injections", VCPU_STAT(nmi_injections) },
182 { "req_event", VCPU_STAT(req_event) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 { "mmu_flooded", VM_STAT(mmu_flooded) },
188 { "mmu_recycled", VM_STAT(mmu_recycled) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 { "mmu_unsync", VM_STAT(mmu_unsync) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 { "largepages", VM_STAT(lpages) },
193 { "max_mmu_page_hash_collisions",
194 VM_STAT(max_mmu_page_hash_collisions) },
195 { NULL }
196 };
197
198 u64 __read_mostly host_xcr0;
199
200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
201
202 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
203 {
204 int i;
205 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
206 vcpu->arch.apf.gfns[i] = ~0;
207 }
208
209 static void kvm_on_user_return(struct user_return_notifier *urn)
210 {
211 unsigned slot;
212 struct kvm_shared_msrs *locals
213 = container_of(urn, struct kvm_shared_msrs, urn);
214 struct kvm_shared_msr_values *values;
215 unsigned long flags;
216
217 /*
218 * Disabling irqs at this point since the following code could be
219 * interrupted and executed through kvm_arch_hardware_disable()
220 */
221 local_irq_save(flags);
222 if (locals->registered) {
223 locals->registered = false;
224 user_return_notifier_unregister(urn);
225 }
226 local_irq_restore(flags);
227 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
228 values = &locals->values[slot];
229 if (values->host != values->curr) {
230 wrmsrl(shared_msrs_global.msrs[slot], values->host);
231 values->curr = values->host;
232 }
233 }
234 }
235
236 static void shared_msr_update(unsigned slot, u32 msr)
237 {
238 u64 value;
239 unsigned int cpu = smp_processor_id();
240 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
241
242 /* only read, and nobody should modify it at this time,
243 * so don't need lock */
244 if (slot >= shared_msrs_global.nr) {
245 printk(KERN_ERR "kvm: invalid MSR slot!");
246 return;
247 }
248 rdmsrl_safe(msr, &value);
249 smsr->values[slot].host = value;
250 smsr->values[slot].curr = value;
251 }
252
253 void kvm_define_shared_msr(unsigned slot, u32 msr)
254 {
255 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
256 shared_msrs_global.msrs[slot] = msr;
257 if (slot >= shared_msrs_global.nr)
258 shared_msrs_global.nr = slot + 1;
259 }
260 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
261
262 static void kvm_shared_msr_cpu_online(void)
263 {
264 unsigned i;
265
266 for (i = 0; i < shared_msrs_global.nr; ++i)
267 shared_msr_update(i, shared_msrs_global.msrs[i]);
268 }
269
270 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
271 {
272 unsigned int cpu = smp_processor_id();
273 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274 int err;
275
276 if (((value ^ smsr->values[slot].curr) & mask) == 0)
277 return 0;
278 smsr->values[slot].curr = value;
279 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
280 if (err)
281 return 1;
282
283 if (!smsr->registered) {
284 smsr->urn.on_user_return = kvm_on_user_return;
285 user_return_notifier_register(&smsr->urn);
286 smsr->registered = true;
287 }
288 return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
291
292 static void drop_user_return_notifiers(void)
293 {
294 unsigned int cpu = smp_processor_id();
295 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296
297 if (smsr->registered)
298 kvm_on_user_return(&smsr->urn);
299 }
300
301 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
302 {
303 return vcpu->arch.apic_base;
304 }
305 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
306
307 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
308 {
309 u64 old_state = vcpu->arch.apic_base &
310 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311 u64 new_state = msr_info->data &
312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
314 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
315
316 if (!msr_info->host_initiated &&
317 ((msr_info->data & reserved_bits) != 0 ||
318 new_state == X2APIC_ENABLE ||
319 (new_state == MSR_IA32_APICBASE_ENABLE &&
320 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
321 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
322 old_state == 0)))
323 return 1;
324
325 kvm_lapic_set_base(vcpu, msr_info->data);
326 return 0;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
329
330 asmlinkage __visible void kvm_spurious_fault(void)
331 {
332 /* Fault while not rebooting. We want the trace. */
333 BUG();
334 }
335 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
336
337 #define EXCPT_BENIGN 0
338 #define EXCPT_CONTRIBUTORY 1
339 #define EXCPT_PF 2
340
341 static int exception_class(int vector)
342 {
343 switch (vector) {
344 case PF_VECTOR:
345 return EXCPT_PF;
346 case DE_VECTOR:
347 case TS_VECTOR:
348 case NP_VECTOR:
349 case SS_VECTOR:
350 case GP_VECTOR:
351 return EXCPT_CONTRIBUTORY;
352 default:
353 break;
354 }
355 return EXCPT_BENIGN;
356 }
357
358 #define EXCPT_FAULT 0
359 #define EXCPT_TRAP 1
360 #define EXCPT_ABORT 2
361 #define EXCPT_INTERRUPT 3
362
363 static int exception_type(int vector)
364 {
365 unsigned int mask;
366
367 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
368 return EXCPT_INTERRUPT;
369
370 mask = 1 << vector;
371
372 /* #DB is trap, as instruction watchpoints are handled elsewhere */
373 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
374 return EXCPT_TRAP;
375
376 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
377 return EXCPT_ABORT;
378
379 /* Reserved exceptions will result in fault */
380 return EXCPT_FAULT;
381 }
382
383 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
384 unsigned nr, bool has_error, u32 error_code,
385 bool reinject)
386 {
387 u32 prev_nr;
388 int class1, class2;
389
390 kvm_make_request(KVM_REQ_EVENT, vcpu);
391
392 if (!vcpu->arch.exception.pending) {
393 queue:
394 if (has_error && !is_protmode(vcpu))
395 has_error = false;
396 vcpu->arch.exception.pending = true;
397 vcpu->arch.exception.has_error_code = has_error;
398 vcpu->arch.exception.nr = nr;
399 vcpu->arch.exception.error_code = error_code;
400 vcpu->arch.exception.reinject = reinject;
401 return;
402 }
403
404 /* to check exception */
405 prev_nr = vcpu->arch.exception.nr;
406 if (prev_nr == DF_VECTOR) {
407 /* triple fault -> shutdown */
408 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
409 return;
410 }
411 class1 = exception_class(prev_nr);
412 class2 = exception_class(nr);
413 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
414 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
415 /* generate double fault per SDM Table 5-5 */
416 vcpu->arch.exception.pending = true;
417 vcpu->arch.exception.has_error_code = true;
418 vcpu->arch.exception.nr = DF_VECTOR;
419 vcpu->arch.exception.error_code = 0;
420 } else
421 /* replace previous exception with a new one in a hope
422 that instruction re-execution will regenerate lost
423 exception */
424 goto queue;
425 }
426
427 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
428 {
429 kvm_multiple_exception(vcpu, nr, false, 0, false);
430 }
431 EXPORT_SYMBOL_GPL(kvm_queue_exception);
432
433 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
434 {
435 kvm_multiple_exception(vcpu, nr, false, 0, true);
436 }
437 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
438
439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
440 {
441 if (err)
442 kvm_inject_gp(vcpu, 0);
443 else
444 return kvm_skip_emulated_instruction(vcpu);
445
446 return 1;
447 }
448 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
449
450 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
451 {
452 ++vcpu->stat.pf_guest;
453 vcpu->arch.exception.nested_apf =
454 is_guest_mode(vcpu) && fault->async_page_fault;
455 if (vcpu->arch.exception.nested_apf)
456 vcpu->arch.apf.nested_apf_token = fault->address;
457 else
458 vcpu->arch.cr2 = fault->address;
459 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
460 }
461 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
462
463 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
464 {
465 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
466 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
467 else
468 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
469
470 return fault->nested_page_fault;
471 }
472
473 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
474 {
475 atomic_inc(&vcpu->arch.nmi_queued);
476 kvm_make_request(KVM_REQ_NMI, vcpu);
477 }
478 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
479
480 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
481 {
482 kvm_multiple_exception(vcpu, nr, true, error_code, false);
483 }
484 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
485
486 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
487 {
488 kvm_multiple_exception(vcpu, nr, true, error_code, true);
489 }
490 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
491
492 /*
493 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
494 * a #GP and return false.
495 */
496 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
497 {
498 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
499 return true;
500 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
501 return false;
502 }
503 EXPORT_SYMBOL_GPL(kvm_require_cpl);
504
505 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
506 {
507 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
508 return true;
509
510 kvm_queue_exception(vcpu, UD_VECTOR);
511 return false;
512 }
513 EXPORT_SYMBOL_GPL(kvm_require_dr);
514
515 /*
516 * This function will be used to read from the physical memory of the currently
517 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
518 * can read from guest physical or from the guest's guest physical memory.
519 */
520 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
521 gfn_t ngfn, void *data, int offset, int len,
522 u32 access)
523 {
524 struct x86_exception exception;
525 gfn_t real_gfn;
526 gpa_t ngpa;
527
528 ngpa = gfn_to_gpa(ngfn);
529 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
530 if (real_gfn == UNMAPPED_GVA)
531 return -EFAULT;
532
533 real_gfn = gpa_to_gfn(real_gfn);
534
535 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
536 }
537 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
538
539 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
540 void *data, int offset, int len, u32 access)
541 {
542 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
543 data, offset, len, access);
544 }
545
546 /*
547 * Load the pae pdptrs. Return true is they are all valid.
548 */
549 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
550 {
551 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
552 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
553 int i;
554 int ret;
555 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
556
557 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
558 offset * sizeof(u64), sizeof(pdpte),
559 PFERR_USER_MASK|PFERR_WRITE_MASK);
560 if (ret < 0) {
561 ret = 0;
562 goto out;
563 }
564 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
565 if ((pdpte[i] & PT_PRESENT_MASK) &&
566 (pdpte[i] &
567 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
568 ret = 0;
569 goto out;
570 }
571 }
572 ret = 1;
573
574 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
575 __set_bit(VCPU_EXREG_PDPTR,
576 (unsigned long *)&vcpu->arch.regs_avail);
577 __set_bit(VCPU_EXREG_PDPTR,
578 (unsigned long *)&vcpu->arch.regs_dirty);
579 out:
580
581 return ret;
582 }
583 EXPORT_SYMBOL_GPL(load_pdptrs);
584
585 bool pdptrs_changed(struct kvm_vcpu *vcpu)
586 {
587 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
588 bool changed = true;
589 int offset;
590 gfn_t gfn;
591 int r;
592
593 if (is_long_mode(vcpu) || !is_pae(vcpu))
594 return false;
595
596 if (!test_bit(VCPU_EXREG_PDPTR,
597 (unsigned long *)&vcpu->arch.regs_avail))
598 return true;
599
600 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
601 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
602 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
603 PFERR_USER_MASK | PFERR_WRITE_MASK);
604 if (r < 0)
605 goto out;
606 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
607 out:
608
609 return changed;
610 }
611 EXPORT_SYMBOL_GPL(pdptrs_changed);
612
613 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
614 {
615 unsigned long old_cr0 = kvm_read_cr0(vcpu);
616 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
617
618 cr0 |= X86_CR0_ET;
619
620 #ifdef CONFIG_X86_64
621 if (cr0 & 0xffffffff00000000UL)
622 return 1;
623 #endif
624
625 cr0 &= ~CR0_RESERVED_BITS;
626
627 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
628 return 1;
629
630 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
631 return 1;
632
633 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
634 #ifdef CONFIG_X86_64
635 if ((vcpu->arch.efer & EFER_LME)) {
636 int cs_db, cs_l;
637
638 if (!is_pae(vcpu))
639 return 1;
640 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
641 if (cs_l)
642 return 1;
643 } else
644 #endif
645 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
646 kvm_read_cr3(vcpu)))
647 return 1;
648 }
649
650 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
651 return 1;
652
653 kvm_x86_ops->set_cr0(vcpu, cr0);
654
655 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
656 kvm_clear_async_pf_completion_queue(vcpu);
657 kvm_async_pf_hash_reset(vcpu);
658 }
659
660 if ((cr0 ^ old_cr0) & update_bits)
661 kvm_mmu_reset_context(vcpu);
662
663 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
664 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
665 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
666 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
667
668 return 0;
669 }
670 EXPORT_SYMBOL_GPL(kvm_set_cr0);
671
672 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
673 {
674 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
675 }
676 EXPORT_SYMBOL_GPL(kvm_lmsw);
677
678 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
681 !vcpu->guest_xcr0_loaded) {
682 /* kvm_set_xcr() also depends on this */
683 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
684 vcpu->guest_xcr0_loaded = 1;
685 }
686 }
687
688 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
689 {
690 if (vcpu->guest_xcr0_loaded) {
691 if (vcpu->arch.xcr0 != host_xcr0)
692 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
693 vcpu->guest_xcr0_loaded = 0;
694 }
695 }
696
697 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699 u64 xcr0 = xcr;
700 u64 old_xcr0 = vcpu->arch.xcr0;
701 u64 valid_bits;
702
703 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
704 if (index != XCR_XFEATURE_ENABLED_MASK)
705 return 1;
706 if (!(xcr0 & XFEATURE_MASK_FP))
707 return 1;
708 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
709 return 1;
710
711 /*
712 * Do not allow the guest to set bits that we do not support
713 * saving. However, xcr0 bit 0 is always set, even if the
714 * emulated CPU does not support XSAVE (see fx_init).
715 */
716 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
717 if (xcr0 & ~valid_bits)
718 return 1;
719
720 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
721 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
722 return 1;
723
724 if (xcr0 & XFEATURE_MASK_AVX512) {
725 if (!(xcr0 & XFEATURE_MASK_YMM))
726 return 1;
727 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
728 return 1;
729 }
730 vcpu->arch.xcr0 = xcr0;
731
732 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
733 kvm_update_cpuid(vcpu);
734 return 0;
735 }
736
737 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
738 {
739 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
740 __kvm_set_xcr(vcpu, index, xcr)) {
741 kvm_inject_gp(vcpu, 0);
742 return 1;
743 }
744 return 0;
745 }
746 EXPORT_SYMBOL_GPL(kvm_set_xcr);
747
748 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
749 {
750 unsigned long old_cr4 = kvm_read_cr4(vcpu);
751 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
752 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
753
754 if (cr4 & CR4_RESERVED_BITS)
755 return 1;
756
757 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
758 return 1;
759
760 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
761 return 1;
762
763 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
764 return 1;
765
766 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
767 return 1;
768
769 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
770 return 1;
771
772 if (is_long_mode(vcpu)) {
773 if (!(cr4 & X86_CR4_PAE))
774 return 1;
775 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
776 && ((cr4 ^ old_cr4) & pdptr_bits)
777 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
778 kvm_read_cr3(vcpu)))
779 return 1;
780
781 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
782 if (!guest_cpuid_has_pcid(vcpu))
783 return 1;
784
785 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
786 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
787 return 1;
788 }
789
790 if (kvm_x86_ops->set_cr4(vcpu, cr4))
791 return 1;
792
793 if (((cr4 ^ old_cr4) & pdptr_bits) ||
794 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
795 kvm_mmu_reset_context(vcpu);
796
797 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
798 kvm_update_cpuid(vcpu);
799
800 return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr4);
803
804 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
805 {
806 #ifdef CONFIG_X86_64
807 cr3 &= ~CR3_PCID_INVD;
808 #endif
809
810 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
811 kvm_mmu_sync_roots(vcpu);
812 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
813 return 0;
814 }
815
816 if (is_long_mode(vcpu)) {
817 if (cr3 & CR3_L_MODE_RESERVED_BITS)
818 return 1;
819 } else if (is_pae(vcpu) && is_paging(vcpu) &&
820 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
821 return 1;
822
823 vcpu->arch.cr3 = cr3;
824 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
825 kvm_mmu_new_cr3(vcpu);
826 return 0;
827 }
828 EXPORT_SYMBOL_GPL(kvm_set_cr3);
829
830 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
831 {
832 if (cr8 & CR8_RESERVED_BITS)
833 return 1;
834 if (lapic_in_kernel(vcpu))
835 kvm_lapic_set_tpr(vcpu, cr8);
836 else
837 vcpu->arch.cr8 = cr8;
838 return 0;
839 }
840 EXPORT_SYMBOL_GPL(kvm_set_cr8);
841
842 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
843 {
844 if (lapic_in_kernel(vcpu))
845 return kvm_lapic_get_cr8(vcpu);
846 else
847 return vcpu->arch.cr8;
848 }
849 EXPORT_SYMBOL_GPL(kvm_get_cr8);
850
851 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
852 {
853 int i;
854
855 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
856 for (i = 0; i < KVM_NR_DB_REGS; i++)
857 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
858 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
859 }
860 }
861
862 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
863 {
864 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
866 }
867
868 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
869 {
870 unsigned long dr7;
871
872 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
873 dr7 = vcpu->arch.guest_debug_dr7;
874 else
875 dr7 = vcpu->arch.dr7;
876 kvm_x86_ops->set_dr7(vcpu, dr7);
877 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
878 if (dr7 & DR7_BP_EN_MASK)
879 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
880 }
881
882 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
883 {
884 u64 fixed = DR6_FIXED_1;
885
886 if (!guest_cpuid_has_rtm(vcpu))
887 fixed |= DR6_RTM;
888 return fixed;
889 }
890
891 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893 switch (dr) {
894 case 0 ... 3:
895 vcpu->arch.db[dr] = val;
896 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
897 vcpu->arch.eff_db[dr] = val;
898 break;
899 case 4:
900 /* fall through */
901 case 6:
902 if (val & 0xffffffff00000000ULL)
903 return -1; /* #GP */
904 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
905 kvm_update_dr6(vcpu);
906 break;
907 case 5:
908 /* fall through */
909 default: /* 7 */
910 if (val & 0xffffffff00000000ULL)
911 return -1; /* #GP */
912 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
913 kvm_update_dr7(vcpu);
914 break;
915 }
916
917 return 0;
918 }
919
920 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922 if (__kvm_set_dr(vcpu, dr, val)) {
923 kvm_inject_gp(vcpu, 0);
924 return 1;
925 }
926 return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_dr);
929
930 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
931 {
932 switch (dr) {
933 case 0 ... 3:
934 *val = vcpu->arch.db[dr];
935 break;
936 case 4:
937 /* fall through */
938 case 6:
939 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
940 *val = vcpu->arch.dr6;
941 else
942 *val = kvm_x86_ops->get_dr6(vcpu);
943 break;
944 case 5:
945 /* fall through */
946 default: /* 7 */
947 *val = vcpu->arch.dr7;
948 break;
949 }
950 return 0;
951 }
952 EXPORT_SYMBOL_GPL(kvm_get_dr);
953
954 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
955 {
956 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
957 u64 data;
958 int err;
959
960 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
961 if (err)
962 return err;
963 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
964 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
965 return err;
966 }
967 EXPORT_SYMBOL_GPL(kvm_rdpmc);
968
969 /*
970 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
971 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
972 *
973 * This list is modified at module load time to reflect the
974 * capabilities of the host cpu. This capabilities test skips MSRs that are
975 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
976 * may depend on host virtualization features rather than host cpu features.
977 */
978
979 static u32 msrs_to_save[] = {
980 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
981 MSR_STAR,
982 #ifdef CONFIG_X86_64
983 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
984 #endif
985 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
986 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, MSR_IA32_SPEC_CTRL,
987 };
988
989 static unsigned num_msrs_to_save;
990
991 static u32 emulated_msrs[] = {
992 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
993 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
994 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
995 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
996 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
997 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
998 HV_X64_MSR_RESET,
999 HV_X64_MSR_VP_INDEX,
1000 HV_X64_MSR_VP_RUNTIME,
1001 HV_X64_MSR_SCONTROL,
1002 HV_X64_MSR_STIMER0_CONFIG,
1003 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1004 MSR_KVM_PV_EOI_EN,
1005
1006 MSR_IA32_TSC_ADJUST,
1007 MSR_IA32_TSCDEADLINE,
1008 MSR_IA32_MISC_ENABLE,
1009 MSR_IA32_MCG_STATUS,
1010 MSR_IA32_MCG_CTL,
1011 MSR_IA32_MCG_EXT_CTL,
1012 MSR_IA32_SMBASE,
1013 MSR_PLATFORM_INFO,
1014 MSR_MISC_FEATURES_ENABLES,
1015 MSR_AMD64_VIRT_SPEC_CTRL,
1016 };
1017
1018 static unsigned num_emulated_msrs;
1019
1020 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1021 {
1022 if (efer & efer_reserved_bits)
1023 return false;
1024
1025 if (efer & EFER_FFXSR) {
1026 struct kvm_cpuid_entry2 *feat;
1027
1028 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1029 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1030 return false;
1031 }
1032
1033 if (efer & EFER_SVME) {
1034 struct kvm_cpuid_entry2 *feat;
1035
1036 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1037 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1038 return false;
1039 }
1040
1041 return true;
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1044
1045 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1046 {
1047 u64 old_efer = vcpu->arch.efer;
1048
1049 if (!kvm_valid_efer(vcpu, efer))
1050 return 1;
1051
1052 if (is_paging(vcpu)
1053 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1054 return 1;
1055
1056 efer &= ~EFER_LMA;
1057 efer |= vcpu->arch.efer & EFER_LMA;
1058
1059 kvm_x86_ops->set_efer(vcpu, efer);
1060
1061 /* Update reserved bits */
1062 if ((efer ^ old_efer) & EFER_NX)
1063 kvm_mmu_reset_context(vcpu);
1064
1065 return 0;
1066 }
1067
1068 void kvm_enable_efer_bits(u64 mask)
1069 {
1070 efer_reserved_bits &= ~mask;
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1073
1074 /*
1075 * Writes msr value into into the appropriate "register".
1076 * Returns 0 on success, non-0 otherwise.
1077 * Assumes vcpu_load() was already called.
1078 */
1079 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1080 {
1081 switch (msr->index) {
1082 case MSR_FS_BASE:
1083 case MSR_GS_BASE:
1084 case MSR_KERNEL_GS_BASE:
1085 case MSR_CSTAR:
1086 case MSR_LSTAR:
1087 if (is_noncanonical_address(msr->data))
1088 return 1;
1089 break;
1090 case MSR_IA32_SYSENTER_EIP:
1091 case MSR_IA32_SYSENTER_ESP:
1092 /*
1093 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1094 * non-canonical address is written on Intel but not on
1095 * AMD (which ignores the top 32-bits, because it does
1096 * not implement 64-bit SYSENTER).
1097 *
1098 * 64-bit code should hence be able to write a non-canonical
1099 * value on AMD. Making the address canonical ensures that
1100 * vmentry does not fail on Intel after writing a non-canonical
1101 * value, and that something deterministic happens if the guest
1102 * invokes 64-bit SYSENTER.
1103 */
1104 msr->data = get_canonical(msr->data);
1105 }
1106 return kvm_x86_ops->set_msr(vcpu, msr);
1107 }
1108 EXPORT_SYMBOL_GPL(kvm_set_msr);
1109
1110 /*
1111 * Adapt set_msr() to msr_io()'s calling convention
1112 */
1113 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1114 {
1115 struct msr_data msr;
1116 int r;
1117
1118 msr.index = index;
1119 msr.host_initiated = true;
1120 r = kvm_get_msr(vcpu, &msr);
1121 if (r)
1122 return r;
1123
1124 *data = msr.data;
1125 return 0;
1126 }
1127
1128 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1129 {
1130 struct msr_data msr;
1131
1132 msr.data = *data;
1133 msr.index = index;
1134 msr.host_initiated = true;
1135 return kvm_set_msr(vcpu, &msr);
1136 }
1137
1138 #ifdef CONFIG_X86_64
1139 struct pvclock_gtod_data {
1140 seqcount_t seq;
1141
1142 struct { /* extract of a clocksource struct */
1143 int vclock_mode;
1144 u64 cycle_last;
1145 u64 mask;
1146 u32 mult;
1147 u32 shift;
1148 } clock;
1149
1150 u64 boot_ns;
1151 u64 nsec_base;
1152 u64 wall_time_sec;
1153 };
1154
1155 static struct pvclock_gtod_data pvclock_gtod_data;
1156
1157 static void update_pvclock_gtod(struct timekeeper *tk)
1158 {
1159 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1160 u64 boot_ns;
1161
1162 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1163
1164 write_seqcount_begin(&vdata->seq);
1165
1166 /* copy pvclock gtod data */
1167 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1168 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1169 vdata->clock.mask = tk->tkr_mono.mask;
1170 vdata->clock.mult = tk->tkr_mono.mult;
1171 vdata->clock.shift = tk->tkr_mono.shift;
1172
1173 vdata->boot_ns = boot_ns;
1174 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1175
1176 vdata->wall_time_sec = tk->xtime_sec;
1177
1178 write_seqcount_end(&vdata->seq);
1179 }
1180 #endif
1181
1182 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1183 {
1184 /*
1185 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1186 * vcpu_enter_guest. This function is only called from
1187 * the physical CPU that is running vcpu.
1188 */
1189 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1190 }
1191
1192 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1193 {
1194 int version;
1195 int r;
1196 struct pvclock_wall_clock wc;
1197 struct timespec64 boot;
1198
1199 if (!wall_clock)
1200 return;
1201
1202 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1203 if (r)
1204 return;
1205
1206 if (version & 1)
1207 ++version; /* first time write, random junk */
1208
1209 ++version;
1210
1211 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1212 return;
1213
1214 /*
1215 * The guest calculates current wall clock time by adding
1216 * system time (updated by kvm_guest_time_update below) to the
1217 * wall clock specified here. guest system time equals host
1218 * system time for us, thus we must fill in host boot time here.
1219 */
1220 getboottime64(&boot);
1221
1222 if (kvm->arch.kvmclock_offset) {
1223 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1224 boot = timespec64_sub(boot, ts);
1225 }
1226 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1227 wc.nsec = boot.tv_nsec;
1228 wc.version = version;
1229
1230 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1231
1232 version++;
1233 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1234 }
1235
1236 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1237 {
1238 do_shl32_div32(dividend, divisor);
1239 return dividend;
1240 }
1241
1242 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1243 s8 *pshift, u32 *pmultiplier)
1244 {
1245 uint64_t scaled64;
1246 int32_t shift = 0;
1247 uint64_t tps64;
1248 uint32_t tps32;
1249
1250 tps64 = base_hz;
1251 scaled64 = scaled_hz;
1252 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1253 tps64 >>= 1;
1254 shift--;
1255 }
1256
1257 tps32 = (uint32_t)tps64;
1258 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1259 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1260 scaled64 >>= 1;
1261 else
1262 tps32 <<= 1;
1263 shift++;
1264 }
1265
1266 *pshift = shift;
1267 *pmultiplier = div_frac(scaled64, tps32);
1268
1269 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1270 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1271 }
1272
1273 #ifdef CONFIG_X86_64
1274 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1275 #endif
1276
1277 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1278 static unsigned long max_tsc_khz;
1279
1280 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1281 {
1282 u64 v = (u64)khz * (1000000 + ppm);
1283 do_div(v, 1000000);
1284 return v;
1285 }
1286
1287 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1288 {
1289 u64 ratio;
1290
1291 /* Guest TSC same frequency as host TSC? */
1292 if (!scale) {
1293 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1294 return 0;
1295 }
1296
1297 /* TSC scaling supported? */
1298 if (!kvm_has_tsc_control) {
1299 if (user_tsc_khz > tsc_khz) {
1300 vcpu->arch.tsc_catchup = 1;
1301 vcpu->arch.tsc_always_catchup = 1;
1302 return 0;
1303 } else {
1304 WARN(1, "user requested TSC rate below hardware speed\n");
1305 return -1;
1306 }
1307 }
1308
1309 /* TSC scaling required - calculate ratio */
1310 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1311 user_tsc_khz, tsc_khz);
1312
1313 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1314 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1315 user_tsc_khz);
1316 return -1;
1317 }
1318
1319 vcpu->arch.tsc_scaling_ratio = ratio;
1320 return 0;
1321 }
1322
1323 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1324 {
1325 u32 thresh_lo, thresh_hi;
1326 int use_scaling = 0;
1327
1328 /* tsc_khz can be zero if TSC calibration fails */
1329 if (user_tsc_khz == 0) {
1330 /* set tsc_scaling_ratio to a safe value */
1331 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1332 return -1;
1333 }
1334
1335 /* Compute a scale to convert nanoseconds in TSC cycles */
1336 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1337 &vcpu->arch.virtual_tsc_shift,
1338 &vcpu->arch.virtual_tsc_mult);
1339 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1340
1341 /*
1342 * Compute the variation in TSC rate which is acceptable
1343 * within the range of tolerance and decide if the
1344 * rate being applied is within that bounds of the hardware
1345 * rate. If so, no scaling or compensation need be done.
1346 */
1347 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1348 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1349 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1350 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1351 use_scaling = 1;
1352 }
1353 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1354 }
1355
1356 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1357 {
1358 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1359 vcpu->arch.virtual_tsc_mult,
1360 vcpu->arch.virtual_tsc_shift);
1361 tsc += vcpu->arch.this_tsc_write;
1362 return tsc;
1363 }
1364
1365 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1366 {
1367 #ifdef CONFIG_X86_64
1368 bool vcpus_matched;
1369 struct kvm_arch *ka = &vcpu->kvm->arch;
1370 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1371
1372 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1373 atomic_read(&vcpu->kvm->online_vcpus));
1374
1375 /*
1376 * Once the masterclock is enabled, always perform request in
1377 * order to update it.
1378 *
1379 * In order to enable masterclock, the host clocksource must be TSC
1380 * and the vcpus need to have matched TSCs. When that happens,
1381 * perform request to enable masterclock.
1382 */
1383 if (ka->use_master_clock ||
1384 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1385 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1386
1387 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1388 atomic_read(&vcpu->kvm->online_vcpus),
1389 ka->use_master_clock, gtod->clock.vclock_mode);
1390 #endif
1391 }
1392
1393 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1394 {
1395 u64 curr_offset = vcpu->arch.tsc_offset;
1396 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1397 }
1398
1399 /*
1400 * Multiply tsc by a fixed point number represented by ratio.
1401 *
1402 * The most significant 64-N bits (mult) of ratio represent the
1403 * integral part of the fixed point number; the remaining N bits
1404 * (frac) represent the fractional part, ie. ratio represents a fixed
1405 * point number (mult + frac * 2^(-N)).
1406 *
1407 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1408 */
1409 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1410 {
1411 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1412 }
1413
1414 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1415 {
1416 u64 _tsc = tsc;
1417 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1418
1419 if (ratio != kvm_default_tsc_scaling_ratio)
1420 _tsc = __scale_tsc(ratio, tsc);
1421
1422 return _tsc;
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1425
1426 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1427 {
1428 u64 tsc;
1429
1430 tsc = kvm_scale_tsc(vcpu, rdtsc());
1431
1432 return target_tsc - tsc;
1433 }
1434
1435 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1436 {
1437 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1438 }
1439 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1440
1441 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1442 {
1443 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1444 vcpu->arch.tsc_offset = offset;
1445 }
1446
1447 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1448 {
1449 struct kvm *kvm = vcpu->kvm;
1450 u64 offset, ns, elapsed;
1451 unsigned long flags;
1452 bool matched;
1453 bool already_matched;
1454 u64 data = msr->data;
1455 bool synchronizing = false;
1456
1457 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1458 offset = kvm_compute_tsc_offset(vcpu, data);
1459 ns = ktime_get_boot_ns();
1460 elapsed = ns - kvm->arch.last_tsc_nsec;
1461
1462 if (vcpu->arch.virtual_tsc_khz) {
1463 if (data == 0 && msr->host_initiated) {
1464 /*
1465 * detection of vcpu initialization -- need to sync
1466 * with other vCPUs. This particularly helps to keep
1467 * kvm_clock stable after CPU hotplug
1468 */
1469 synchronizing = true;
1470 } else {
1471 u64 tsc_exp = kvm->arch.last_tsc_write +
1472 nsec_to_cycles(vcpu, elapsed);
1473 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1474 /*
1475 * Special case: TSC write with a small delta (1 second)
1476 * of virtual cycle time against real time is
1477 * interpreted as an attempt to synchronize the CPU.
1478 */
1479 synchronizing = data < tsc_exp + tsc_hz &&
1480 data + tsc_hz > tsc_exp;
1481 }
1482 }
1483
1484 /*
1485 * For a reliable TSC, we can match TSC offsets, and for an unstable
1486 * TSC, we add elapsed time in this computation. We could let the
1487 * compensation code attempt to catch up if we fall behind, but
1488 * it's better to try to match offsets from the beginning.
1489 */
1490 if (synchronizing &&
1491 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1492 if (!check_tsc_unstable()) {
1493 offset = kvm->arch.cur_tsc_offset;
1494 pr_debug("kvm: matched tsc offset for %llu\n", data);
1495 } else {
1496 u64 delta = nsec_to_cycles(vcpu, elapsed);
1497 data += delta;
1498 offset = kvm_compute_tsc_offset(vcpu, data);
1499 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1500 }
1501 matched = true;
1502 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1503 } else {
1504 /*
1505 * We split periods of matched TSC writes into generations.
1506 * For each generation, we track the original measured
1507 * nanosecond time, offset, and write, so if TSCs are in
1508 * sync, we can match exact offset, and if not, we can match
1509 * exact software computation in compute_guest_tsc()
1510 *
1511 * These values are tracked in kvm->arch.cur_xxx variables.
1512 */
1513 kvm->arch.cur_tsc_generation++;
1514 kvm->arch.cur_tsc_nsec = ns;
1515 kvm->arch.cur_tsc_write = data;
1516 kvm->arch.cur_tsc_offset = offset;
1517 matched = false;
1518 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1519 kvm->arch.cur_tsc_generation, data);
1520 }
1521
1522 /*
1523 * We also track th most recent recorded KHZ, write and time to
1524 * allow the matching interval to be extended at each write.
1525 */
1526 kvm->arch.last_tsc_nsec = ns;
1527 kvm->arch.last_tsc_write = data;
1528 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1529
1530 vcpu->arch.last_guest_tsc = data;
1531
1532 /* Keep track of which generation this VCPU has synchronized to */
1533 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1534 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1535 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1536
1537 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1538 update_ia32_tsc_adjust_msr(vcpu, offset);
1539 kvm_vcpu_write_tsc_offset(vcpu, offset);
1540 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1541
1542 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1543 if (!matched) {
1544 kvm->arch.nr_vcpus_matched_tsc = 0;
1545 } else if (!already_matched) {
1546 kvm->arch.nr_vcpus_matched_tsc++;
1547 }
1548
1549 kvm_track_tsc_matching(vcpu);
1550 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1551 }
1552
1553 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1554
1555 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1556 s64 adjustment)
1557 {
1558 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1559 }
1560
1561 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1562 {
1563 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1564 WARN_ON(adjustment < 0);
1565 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1566 adjust_tsc_offset_guest(vcpu, adjustment);
1567 }
1568
1569 #ifdef CONFIG_X86_64
1570
1571 static u64 read_tsc(void)
1572 {
1573 u64 ret = (u64)rdtsc_ordered();
1574 u64 last = pvclock_gtod_data.clock.cycle_last;
1575
1576 if (likely(ret >= last))
1577 return ret;
1578
1579 /*
1580 * GCC likes to generate cmov here, but this branch is extremely
1581 * predictable (it's just a function of time and the likely is
1582 * very likely) and there's a data dependence, so force GCC
1583 * to generate a branch instead. I don't barrier() because
1584 * we don't actually need a barrier, and if this function
1585 * ever gets inlined it will generate worse code.
1586 */
1587 asm volatile ("");
1588 return last;
1589 }
1590
1591 static inline u64 vgettsc(u64 *cycle_now)
1592 {
1593 long v;
1594 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1595
1596 *cycle_now = read_tsc();
1597
1598 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1599 return v * gtod->clock.mult;
1600 }
1601
1602 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1603 {
1604 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1605 unsigned long seq;
1606 int mode;
1607 u64 ns;
1608
1609 do {
1610 seq = read_seqcount_begin(&gtod->seq);
1611 mode = gtod->clock.vclock_mode;
1612 ns = gtod->nsec_base;
1613 ns += vgettsc(cycle_now);
1614 ns >>= gtod->clock.shift;
1615 ns += gtod->boot_ns;
1616 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1617 *t = ns;
1618
1619 return mode;
1620 }
1621
1622 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1623 {
1624 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1625 unsigned long seq;
1626 int mode;
1627 u64 ns;
1628
1629 do {
1630 seq = read_seqcount_begin(&gtod->seq);
1631 mode = gtod->clock.vclock_mode;
1632 ts->tv_sec = gtod->wall_time_sec;
1633 ns = gtod->nsec_base;
1634 ns += vgettsc(cycle_now);
1635 ns >>= gtod->clock.shift;
1636 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1637
1638 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1639 ts->tv_nsec = ns;
1640
1641 return mode;
1642 }
1643
1644 /* returns true if host is using tsc clocksource */
1645 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1646 {
1647 /* checked again under seqlock below */
1648 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1649 return false;
1650
1651 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1652 }
1653
1654 /* returns true if host is using tsc clocksource */
1655 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1656 u64 *cycle_now)
1657 {
1658 /* checked again under seqlock below */
1659 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1660 return false;
1661
1662 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1663 }
1664 #endif
1665
1666 /*
1667 *
1668 * Assuming a stable TSC across physical CPUS, and a stable TSC
1669 * across virtual CPUs, the following condition is possible.
1670 * Each numbered line represents an event visible to both
1671 * CPUs at the next numbered event.
1672 *
1673 * "timespecX" represents host monotonic time. "tscX" represents
1674 * RDTSC value.
1675 *
1676 * VCPU0 on CPU0 | VCPU1 on CPU1
1677 *
1678 * 1. read timespec0,tsc0
1679 * 2. | timespec1 = timespec0 + N
1680 * | tsc1 = tsc0 + M
1681 * 3. transition to guest | transition to guest
1682 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1683 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1684 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1685 *
1686 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1687 *
1688 * - ret0 < ret1
1689 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1690 * ...
1691 * - 0 < N - M => M < N
1692 *
1693 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1694 * always the case (the difference between two distinct xtime instances
1695 * might be smaller then the difference between corresponding TSC reads,
1696 * when updating guest vcpus pvclock areas).
1697 *
1698 * To avoid that problem, do not allow visibility of distinct
1699 * system_timestamp/tsc_timestamp values simultaneously: use a master
1700 * copy of host monotonic time values. Update that master copy
1701 * in lockstep.
1702 *
1703 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1704 *
1705 */
1706
1707 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1708 {
1709 #ifdef CONFIG_X86_64
1710 struct kvm_arch *ka = &kvm->arch;
1711 int vclock_mode;
1712 bool host_tsc_clocksource, vcpus_matched;
1713
1714 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1715 atomic_read(&kvm->online_vcpus));
1716
1717 /*
1718 * If the host uses TSC clock, then passthrough TSC as stable
1719 * to the guest.
1720 */
1721 host_tsc_clocksource = kvm_get_time_and_clockread(
1722 &ka->master_kernel_ns,
1723 &ka->master_cycle_now);
1724
1725 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1726 && !ka->backwards_tsc_observed
1727 && !ka->boot_vcpu_runs_old_kvmclock;
1728
1729 if (ka->use_master_clock)
1730 atomic_set(&kvm_guest_has_master_clock, 1);
1731
1732 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1733 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1734 vcpus_matched);
1735 #endif
1736 }
1737
1738 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1739 {
1740 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1741 }
1742
1743 static void kvm_gen_update_masterclock(struct kvm *kvm)
1744 {
1745 #ifdef CONFIG_X86_64
1746 int i;
1747 struct kvm_vcpu *vcpu;
1748 struct kvm_arch *ka = &kvm->arch;
1749
1750 spin_lock(&ka->pvclock_gtod_sync_lock);
1751 kvm_make_mclock_inprogress_request(kvm);
1752 /* no guest entries from this point */
1753 pvclock_update_vm_gtod_copy(kvm);
1754
1755 kvm_for_each_vcpu(i, vcpu, kvm)
1756 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1757
1758 /* guest entries allowed */
1759 kvm_for_each_vcpu(i, vcpu, kvm)
1760 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1761
1762 spin_unlock(&ka->pvclock_gtod_sync_lock);
1763 #endif
1764 }
1765
1766 u64 get_kvmclock_ns(struct kvm *kvm)
1767 {
1768 struct kvm_arch *ka = &kvm->arch;
1769 struct pvclock_vcpu_time_info hv_clock;
1770 u64 ret;
1771
1772 spin_lock(&ka->pvclock_gtod_sync_lock);
1773 if (!ka->use_master_clock) {
1774 spin_unlock(&ka->pvclock_gtod_sync_lock);
1775 return ktime_get_boot_ns() + ka->kvmclock_offset;
1776 }
1777
1778 hv_clock.tsc_timestamp = ka->master_cycle_now;
1779 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1780 spin_unlock(&ka->pvclock_gtod_sync_lock);
1781
1782 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1783 get_cpu();
1784
1785 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1786 &hv_clock.tsc_shift,
1787 &hv_clock.tsc_to_system_mul);
1788 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1789
1790 put_cpu();
1791
1792 return ret;
1793 }
1794
1795 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1796 {
1797 struct kvm_vcpu_arch *vcpu = &v->arch;
1798 struct pvclock_vcpu_time_info guest_hv_clock;
1799
1800 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1801 &guest_hv_clock, sizeof(guest_hv_clock))))
1802 return;
1803
1804 /* This VCPU is paused, but it's legal for a guest to read another
1805 * VCPU's kvmclock, so we really have to follow the specification where
1806 * it says that version is odd if data is being modified, and even after
1807 * it is consistent.
1808 *
1809 * Version field updates must be kept separate. This is because
1810 * kvm_write_guest_cached might use a "rep movs" instruction, and
1811 * writes within a string instruction are weakly ordered. So there
1812 * are three writes overall.
1813 *
1814 * As a small optimization, only write the version field in the first
1815 * and third write. The vcpu->pv_time cache is still valid, because the
1816 * version field is the first in the struct.
1817 */
1818 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1819
1820 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1821 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1822 &vcpu->hv_clock,
1823 sizeof(vcpu->hv_clock.version));
1824
1825 smp_wmb();
1826
1827 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1828 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1829
1830 if (vcpu->pvclock_set_guest_stopped_request) {
1831 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1832 vcpu->pvclock_set_guest_stopped_request = false;
1833 }
1834
1835 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1836
1837 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1838 &vcpu->hv_clock,
1839 sizeof(vcpu->hv_clock));
1840
1841 smp_wmb();
1842
1843 vcpu->hv_clock.version++;
1844 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1845 &vcpu->hv_clock,
1846 sizeof(vcpu->hv_clock.version));
1847 }
1848
1849 static int kvm_guest_time_update(struct kvm_vcpu *v)
1850 {
1851 unsigned long flags, tgt_tsc_khz;
1852 struct kvm_vcpu_arch *vcpu = &v->arch;
1853 struct kvm_arch *ka = &v->kvm->arch;
1854 s64 kernel_ns;
1855 u64 tsc_timestamp, host_tsc;
1856 u8 pvclock_flags;
1857 bool use_master_clock;
1858
1859 kernel_ns = 0;
1860 host_tsc = 0;
1861
1862 /*
1863 * If the host uses TSC clock, then passthrough TSC as stable
1864 * to the guest.
1865 */
1866 spin_lock(&ka->pvclock_gtod_sync_lock);
1867 use_master_clock = ka->use_master_clock;
1868 if (use_master_clock) {
1869 host_tsc = ka->master_cycle_now;
1870 kernel_ns = ka->master_kernel_ns;
1871 }
1872 spin_unlock(&ka->pvclock_gtod_sync_lock);
1873
1874 /* Keep irq disabled to prevent changes to the clock */
1875 local_irq_save(flags);
1876 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1877 if (unlikely(tgt_tsc_khz == 0)) {
1878 local_irq_restore(flags);
1879 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1880 return 1;
1881 }
1882 if (!use_master_clock) {
1883 host_tsc = rdtsc();
1884 kernel_ns = ktime_get_boot_ns();
1885 }
1886
1887 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1888
1889 /*
1890 * We may have to catch up the TSC to match elapsed wall clock
1891 * time for two reasons, even if kvmclock is used.
1892 * 1) CPU could have been running below the maximum TSC rate
1893 * 2) Broken TSC compensation resets the base at each VCPU
1894 * entry to avoid unknown leaps of TSC even when running
1895 * again on the same CPU. This may cause apparent elapsed
1896 * time to disappear, and the guest to stand still or run
1897 * very slowly.
1898 */
1899 if (vcpu->tsc_catchup) {
1900 u64 tsc = compute_guest_tsc(v, kernel_ns);
1901 if (tsc > tsc_timestamp) {
1902 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1903 tsc_timestamp = tsc;
1904 }
1905 }
1906
1907 local_irq_restore(flags);
1908
1909 /* With all the info we got, fill in the values */
1910
1911 if (kvm_has_tsc_control)
1912 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1913
1914 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1915 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1916 &vcpu->hv_clock.tsc_shift,
1917 &vcpu->hv_clock.tsc_to_system_mul);
1918 vcpu->hw_tsc_khz = tgt_tsc_khz;
1919 }
1920
1921 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1922 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1923 vcpu->last_guest_tsc = tsc_timestamp;
1924
1925 /* If the host uses TSC clocksource, then it is stable */
1926 pvclock_flags = 0;
1927 if (use_master_clock)
1928 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1929
1930 vcpu->hv_clock.flags = pvclock_flags;
1931
1932 if (vcpu->pv_time_enabled)
1933 kvm_setup_pvclock_page(v);
1934 if (v == kvm_get_vcpu(v->kvm, 0))
1935 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1936 return 0;
1937 }
1938
1939 /*
1940 * kvmclock updates which are isolated to a given vcpu, such as
1941 * vcpu->cpu migration, should not allow system_timestamp from
1942 * the rest of the vcpus to remain static. Otherwise ntp frequency
1943 * correction applies to one vcpu's system_timestamp but not
1944 * the others.
1945 *
1946 * So in those cases, request a kvmclock update for all vcpus.
1947 * We need to rate-limit these requests though, as they can
1948 * considerably slow guests that have a large number of vcpus.
1949 * The time for a remote vcpu to update its kvmclock is bound
1950 * by the delay we use to rate-limit the updates.
1951 */
1952
1953 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1954
1955 static void kvmclock_update_fn(struct work_struct *work)
1956 {
1957 int i;
1958 struct delayed_work *dwork = to_delayed_work(work);
1959 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960 kvmclock_update_work);
1961 struct kvm *kvm = container_of(ka, struct kvm, arch);
1962 struct kvm_vcpu *vcpu;
1963
1964 kvm_for_each_vcpu(i, vcpu, kvm) {
1965 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1966 kvm_vcpu_kick(vcpu);
1967 }
1968 }
1969
1970 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1971 {
1972 struct kvm *kvm = v->kvm;
1973
1974 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1975 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1976 KVMCLOCK_UPDATE_DELAY);
1977 }
1978
1979 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1980
1981 static void kvmclock_sync_fn(struct work_struct *work)
1982 {
1983 struct delayed_work *dwork = to_delayed_work(work);
1984 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1985 kvmclock_sync_work);
1986 struct kvm *kvm = container_of(ka, struct kvm, arch);
1987
1988 if (!kvmclock_periodic_sync)
1989 return;
1990
1991 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1992 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1993 KVMCLOCK_SYNC_PERIOD);
1994 }
1995
1996 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1997 {
1998 u64 mcg_cap = vcpu->arch.mcg_cap;
1999 unsigned bank_num = mcg_cap & 0xff;
2000
2001 switch (msr) {
2002 case MSR_IA32_MCG_STATUS:
2003 vcpu->arch.mcg_status = data;
2004 break;
2005 case MSR_IA32_MCG_CTL:
2006 if (!(mcg_cap & MCG_CTL_P))
2007 return 1;
2008 if (data != 0 && data != ~(u64)0)
2009 return -1;
2010 vcpu->arch.mcg_ctl = data;
2011 break;
2012 default:
2013 if (msr >= MSR_IA32_MC0_CTL &&
2014 msr < MSR_IA32_MCx_CTL(bank_num)) {
2015 u32 offset = msr - MSR_IA32_MC0_CTL;
2016 /* only 0 or all 1s can be written to IA32_MCi_CTL
2017 * some Linux kernels though clear bit 10 in bank 4 to
2018 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2019 * this to avoid an uncatched #GP in the guest
2020 */
2021 if ((offset & 0x3) == 0 &&
2022 data != 0 && (data | (1 << 10)) != ~(u64)0)
2023 return -1;
2024 vcpu->arch.mce_banks[offset] = data;
2025 break;
2026 }
2027 return 1;
2028 }
2029 return 0;
2030 }
2031
2032 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2033 {
2034 struct kvm *kvm = vcpu->kvm;
2035 int lm = is_long_mode(vcpu);
2036 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2037 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2038 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2039 : kvm->arch.xen_hvm_config.blob_size_32;
2040 u32 page_num = data & ~PAGE_MASK;
2041 u64 page_addr = data & PAGE_MASK;
2042 u8 *page;
2043 int r;
2044
2045 r = -E2BIG;
2046 if (page_num >= blob_size)
2047 goto out;
2048 r = -ENOMEM;
2049 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2050 if (IS_ERR(page)) {
2051 r = PTR_ERR(page);
2052 goto out;
2053 }
2054 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2055 goto out_free;
2056 r = 0;
2057 out_free:
2058 kfree(page);
2059 out:
2060 return r;
2061 }
2062
2063 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2064 {
2065 gpa_t gpa = data & ~0x3f;
2066
2067 /* Bits 3:5 are reserved, Should be zero */
2068 if (data & 0x38)
2069 return 1;
2070
2071 vcpu->arch.apf.msr_val = data;
2072
2073 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2074 kvm_clear_async_pf_completion_queue(vcpu);
2075 kvm_async_pf_hash_reset(vcpu);
2076 return 0;
2077 }
2078
2079 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2080 sizeof(u32)))
2081 return 1;
2082
2083 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2084 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2085 kvm_async_pf_wakeup_all(vcpu);
2086 return 0;
2087 }
2088
2089 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2090 {
2091 vcpu->arch.pv_time_enabled = false;
2092 }
2093
2094 static void record_steal_time(struct kvm_vcpu *vcpu)
2095 {
2096 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2097 return;
2098
2099 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2100 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2101 return;
2102
2103 vcpu->arch.st.steal.preempted = 0;
2104
2105 if (vcpu->arch.st.steal.version & 1)
2106 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2107
2108 vcpu->arch.st.steal.version += 1;
2109
2110 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2111 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2112
2113 smp_wmb();
2114
2115 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2116 vcpu->arch.st.last_steal;
2117 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2118
2119 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2120 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2121
2122 smp_wmb();
2123
2124 vcpu->arch.st.steal.version += 1;
2125
2126 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2127 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2128 }
2129
2130 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2131 {
2132 bool pr = false;
2133 u32 msr = msr_info->index;
2134 u64 data = msr_info->data;
2135
2136 switch (msr) {
2137 case MSR_AMD64_NB_CFG:
2138 case MSR_IA32_UCODE_REV:
2139 case MSR_IA32_UCODE_WRITE:
2140 case MSR_VM_HSAVE_PA:
2141 case MSR_AMD64_PATCH_LOADER:
2142 case MSR_AMD64_BU_CFG2:
2143 case MSR_AMD64_DC_CFG:
2144 break;
2145
2146 case MSR_EFER:
2147 return set_efer(vcpu, data);
2148 case MSR_K7_HWCR:
2149 data &= ~(u64)0x40; /* ignore flush filter disable */
2150 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2151 data &= ~(u64)0x8; /* ignore TLB cache disable */
2152 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2153 if (data != 0) {
2154 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2155 data);
2156 return 1;
2157 }
2158 break;
2159 case MSR_FAM10H_MMIO_CONF_BASE:
2160 if (data != 0) {
2161 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2162 "0x%llx\n", data);
2163 return 1;
2164 }
2165 break;
2166 case MSR_IA32_DEBUGCTLMSR:
2167 if (!data) {
2168 /* We support the non-activated case already */
2169 break;
2170 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2171 /* Values other than LBR and BTF are vendor-specific,
2172 thus reserved and should throw a #GP */
2173 return 1;
2174 }
2175 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2176 __func__, data);
2177 break;
2178 case 0x200 ... 0x2ff:
2179 return kvm_mtrr_set_msr(vcpu, msr, data);
2180 case MSR_IA32_APICBASE:
2181 return kvm_set_apic_base(vcpu, msr_info);
2182 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2183 return kvm_x2apic_msr_write(vcpu, msr, data);
2184 case MSR_IA32_TSCDEADLINE:
2185 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2186 break;
2187 case MSR_IA32_TSC_ADJUST:
2188 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2189 if (!msr_info->host_initiated) {
2190 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2191 adjust_tsc_offset_guest(vcpu, adj);
2192 }
2193 vcpu->arch.ia32_tsc_adjust_msr = data;
2194 }
2195 break;
2196 case MSR_IA32_MISC_ENABLE:
2197 vcpu->arch.ia32_misc_enable_msr = data;
2198 break;
2199 case MSR_IA32_SMBASE:
2200 if (!msr_info->host_initiated)
2201 return 1;
2202 vcpu->arch.smbase = data;
2203 break;
2204 case MSR_KVM_WALL_CLOCK_NEW:
2205 case MSR_KVM_WALL_CLOCK:
2206 vcpu->kvm->arch.wall_clock = data;
2207 kvm_write_wall_clock(vcpu->kvm, data);
2208 break;
2209 case MSR_KVM_SYSTEM_TIME_NEW:
2210 case MSR_KVM_SYSTEM_TIME: {
2211 struct kvm_arch *ka = &vcpu->kvm->arch;
2212
2213 kvmclock_reset(vcpu);
2214
2215 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2216 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2217
2218 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2219 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2220
2221 ka->boot_vcpu_runs_old_kvmclock = tmp;
2222 }
2223
2224 vcpu->arch.time = data;
2225 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2226
2227 /* we verify if the enable bit is set... */
2228 if (!(data & 1))
2229 break;
2230
2231 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2232 &vcpu->arch.pv_time, data & ~1ULL,
2233 sizeof(struct pvclock_vcpu_time_info)))
2234 vcpu->arch.pv_time_enabled = false;
2235 else
2236 vcpu->arch.pv_time_enabled = true;
2237
2238 break;
2239 }
2240 case MSR_KVM_ASYNC_PF_EN:
2241 if (kvm_pv_enable_async_pf(vcpu, data))
2242 return 1;
2243 break;
2244 case MSR_KVM_STEAL_TIME:
2245
2246 if (unlikely(!sched_info_on()))
2247 return 1;
2248
2249 if (data & KVM_STEAL_RESERVED_MASK)
2250 return 1;
2251
2252 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2253 data & KVM_STEAL_VALID_BITS,
2254 sizeof(struct kvm_steal_time)))
2255 return 1;
2256
2257 vcpu->arch.st.msr_val = data;
2258
2259 if (!(data & KVM_MSR_ENABLED))
2260 break;
2261
2262 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2263
2264 break;
2265 case MSR_KVM_PV_EOI_EN:
2266 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2267 return 1;
2268 break;
2269
2270 case MSR_IA32_MCG_CTL:
2271 case MSR_IA32_MCG_STATUS:
2272 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2273 return set_msr_mce(vcpu, msr, data);
2274
2275 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2276 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2277 pr = true; /* fall through */
2278 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2279 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2280 if (kvm_pmu_is_valid_msr(vcpu, msr))
2281 return kvm_pmu_set_msr(vcpu, msr_info);
2282
2283 if (pr || data != 0)
2284 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2285 "0x%x data 0x%llx\n", msr, data);
2286 break;
2287 case MSR_K7_CLK_CTL:
2288 /*
2289 * Ignore all writes to this no longer documented MSR.
2290 * Writes are only relevant for old K7 processors,
2291 * all pre-dating SVM, but a recommended workaround from
2292 * AMD for these chips. It is possible to specify the
2293 * affected processor models on the command line, hence
2294 * the need to ignore the workaround.
2295 */
2296 break;
2297 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2298 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2299 case HV_X64_MSR_CRASH_CTL:
2300 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2301 return kvm_hv_set_msr_common(vcpu, msr, data,
2302 msr_info->host_initiated);
2303 case MSR_IA32_BBL_CR_CTL3:
2304 /* Drop writes to this legacy MSR -- see rdmsr
2305 * counterpart for further detail.
2306 */
2307 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2308 break;
2309 case MSR_AMD64_OSVW_ID_LENGTH:
2310 if (!guest_cpuid_has_osvw(vcpu))
2311 return 1;
2312 vcpu->arch.osvw.length = data;
2313 break;
2314 case MSR_AMD64_OSVW_STATUS:
2315 if (!guest_cpuid_has_osvw(vcpu))
2316 return 1;
2317 vcpu->arch.osvw.status = data;
2318 break;
2319 case MSR_PLATFORM_INFO:
2320 if (!msr_info->host_initiated ||
2321 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2322 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2323 cpuid_fault_enabled(vcpu)))
2324 return 1;
2325 vcpu->arch.msr_platform_info = data;
2326 break;
2327 case MSR_MISC_FEATURES_ENABLES:
2328 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2329 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2330 !supports_cpuid_fault(vcpu)))
2331 return 1;
2332 vcpu->arch.msr_misc_features_enables = data;
2333 break;
2334 default:
2335 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2336 return xen_hvm_config(vcpu, data);
2337 if (kvm_pmu_is_valid_msr(vcpu, msr))
2338 return kvm_pmu_set_msr(vcpu, msr_info);
2339 if (!ignore_msrs) {
2340 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2341 msr, data);
2342 return 1;
2343 } else {
2344 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2345 msr, data);
2346 break;
2347 }
2348 }
2349 return 0;
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2352
2353
2354 /*
2355 * Reads an msr value (of 'msr_index') into 'pdata'.
2356 * Returns 0 on success, non-0 otherwise.
2357 * Assumes vcpu_load() was already called.
2358 */
2359 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2360 {
2361 return kvm_x86_ops->get_msr(vcpu, msr);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_get_msr);
2364
2365 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2366 {
2367 u64 data;
2368 u64 mcg_cap = vcpu->arch.mcg_cap;
2369 unsigned bank_num = mcg_cap & 0xff;
2370
2371 switch (msr) {
2372 case MSR_IA32_P5_MC_ADDR:
2373 case MSR_IA32_P5_MC_TYPE:
2374 data = 0;
2375 break;
2376 case MSR_IA32_MCG_CAP:
2377 data = vcpu->arch.mcg_cap;
2378 break;
2379 case MSR_IA32_MCG_CTL:
2380 if (!(mcg_cap & MCG_CTL_P))
2381 return 1;
2382 data = vcpu->arch.mcg_ctl;
2383 break;
2384 case MSR_IA32_MCG_STATUS:
2385 data = vcpu->arch.mcg_status;
2386 break;
2387 default:
2388 if (msr >= MSR_IA32_MC0_CTL &&
2389 msr < MSR_IA32_MCx_CTL(bank_num)) {
2390 u32 offset = msr - MSR_IA32_MC0_CTL;
2391 data = vcpu->arch.mce_banks[offset];
2392 break;
2393 }
2394 return 1;
2395 }
2396 *pdata = data;
2397 return 0;
2398 }
2399
2400 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2401 {
2402 switch (msr_info->index) {
2403 case MSR_IA32_PLATFORM_ID:
2404 case MSR_IA32_EBL_CR_POWERON:
2405 case MSR_IA32_DEBUGCTLMSR:
2406 case MSR_IA32_LASTBRANCHFROMIP:
2407 case MSR_IA32_LASTBRANCHTOIP:
2408 case MSR_IA32_LASTINTFROMIP:
2409 case MSR_IA32_LASTINTTOIP:
2410 case MSR_K8_SYSCFG:
2411 case MSR_K8_TSEG_ADDR:
2412 case MSR_K8_TSEG_MASK:
2413 case MSR_K7_HWCR:
2414 case MSR_VM_HSAVE_PA:
2415 case MSR_K8_INT_PENDING_MSG:
2416 case MSR_AMD64_NB_CFG:
2417 case MSR_FAM10H_MMIO_CONF_BASE:
2418 case MSR_AMD64_BU_CFG2:
2419 case MSR_IA32_PERF_CTL:
2420 case MSR_AMD64_DC_CFG:
2421 msr_info->data = 0;
2422 break;
2423 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2424 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2425 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2426 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2427 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2428 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2429 msr_info->data = 0;
2430 break;
2431 case MSR_IA32_UCODE_REV:
2432 msr_info->data = 0x100000000ULL;
2433 break;
2434 case MSR_MTRRcap:
2435 case 0x200 ... 0x2ff:
2436 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2437 case 0xcd: /* fsb frequency */
2438 msr_info->data = 3;
2439 break;
2440 /*
2441 * MSR_EBC_FREQUENCY_ID
2442 * Conservative value valid for even the basic CPU models.
2443 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2444 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2445 * and 266MHz for model 3, or 4. Set Core Clock
2446 * Frequency to System Bus Frequency Ratio to 1 (bits
2447 * 31:24) even though these are only valid for CPU
2448 * models > 2, however guests may end up dividing or
2449 * multiplying by zero otherwise.
2450 */
2451 case MSR_EBC_FREQUENCY_ID:
2452 msr_info->data = 1 << 24;
2453 break;
2454 case MSR_IA32_APICBASE:
2455 msr_info->data = kvm_get_apic_base(vcpu);
2456 break;
2457 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2458 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2459 break;
2460 case MSR_IA32_TSCDEADLINE:
2461 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2462 break;
2463 case MSR_IA32_TSC_ADJUST:
2464 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2465 break;
2466 case MSR_IA32_MISC_ENABLE:
2467 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2468 break;
2469 case MSR_IA32_SMBASE:
2470 if (!msr_info->host_initiated)
2471 return 1;
2472 msr_info->data = vcpu->arch.smbase;
2473 break;
2474 case MSR_IA32_PERF_STATUS:
2475 /* TSC increment by tick */
2476 msr_info->data = 1000ULL;
2477 /* CPU multiplier */
2478 msr_info->data |= (((uint64_t)4ULL) << 40);
2479 break;
2480 case MSR_EFER:
2481 msr_info->data = vcpu->arch.efer;
2482 break;
2483 case MSR_KVM_WALL_CLOCK:
2484 case MSR_KVM_WALL_CLOCK_NEW:
2485 msr_info->data = vcpu->kvm->arch.wall_clock;
2486 break;
2487 case MSR_KVM_SYSTEM_TIME:
2488 case MSR_KVM_SYSTEM_TIME_NEW:
2489 msr_info->data = vcpu->arch.time;
2490 break;
2491 case MSR_KVM_ASYNC_PF_EN:
2492 msr_info->data = vcpu->arch.apf.msr_val;
2493 break;
2494 case MSR_KVM_STEAL_TIME:
2495 msr_info->data = vcpu->arch.st.msr_val;
2496 break;
2497 case MSR_KVM_PV_EOI_EN:
2498 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2499 break;
2500 case MSR_IA32_P5_MC_ADDR:
2501 case MSR_IA32_P5_MC_TYPE:
2502 case MSR_IA32_MCG_CAP:
2503 case MSR_IA32_MCG_CTL:
2504 case MSR_IA32_MCG_STATUS:
2505 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2506 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2507 case MSR_K7_CLK_CTL:
2508 /*
2509 * Provide expected ramp-up count for K7. All other
2510 * are set to zero, indicating minimum divisors for
2511 * every field.
2512 *
2513 * This prevents guest kernels on AMD host with CPU
2514 * type 6, model 8 and higher from exploding due to
2515 * the rdmsr failing.
2516 */
2517 msr_info->data = 0x20000000;
2518 break;
2519 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2520 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2521 case HV_X64_MSR_CRASH_CTL:
2522 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2523 return kvm_hv_get_msr_common(vcpu,
2524 msr_info->index, &msr_info->data);
2525 break;
2526 case MSR_IA32_BBL_CR_CTL3:
2527 /* This legacy MSR exists but isn't fully documented in current
2528 * silicon. It is however accessed by winxp in very narrow
2529 * scenarios where it sets bit #19, itself documented as
2530 * a "reserved" bit. Best effort attempt to source coherent
2531 * read data here should the balance of the register be
2532 * interpreted by the guest:
2533 *
2534 * L2 cache control register 3: 64GB range, 256KB size,
2535 * enabled, latency 0x1, configured
2536 */
2537 msr_info->data = 0xbe702111;
2538 break;
2539 case MSR_AMD64_OSVW_ID_LENGTH:
2540 if (!guest_cpuid_has_osvw(vcpu))
2541 return 1;
2542 msr_info->data = vcpu->arch.osvw.length;
2543 break;
2544 case MSR_AMD64_OSVW_STATUS:
2545 if (!guest_cpuid_has_osvw(vcpu))
2546 return 1;
2547 msr_info->data = vcpu->arch.osvw.status;
2548 break;
2549 case MSR_PLATFORM_INFO:
2550 msr_info->data = vcpu->arch.msr_platform_info;
2551 break;
2552 case MSR_MISC_FEATURES_ENABLES:
2553 msr_info->data = vcpu->arch.msr_misc_features_enables;
2554 break;
2555 default:
2556 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2557 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2558 if (!ignore_msrs) {
2559 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2560 msr_info->index);
2561 return 1;
2562 } else {
2563 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2564 msr_info->data = 0;
2565 }
2566 break;
2567 }
2568 return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2571
2572 /*
2573 * Read or write a bunch of msrs. All parameters are kernel addresses.
2574 *
2575 * @return number of msrs set successfully.
2576 */
2577 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2578 struct kvm_msr_entry *entries,
2579 int (*do_msr)(struct kvm_vcpu *vcpu,
2580 unsigned index, u64 *data))
2581 {
2582 int i, idx;
2583
2584 idx = srcu_read_lock(&vcpu->kvm->srcu);
2585 for (i = 0; i < msrs->nmsrs; ++i)
2586 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2587 break;
2588 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2589
2590 return i;
2591 }
2592
2593 /*
2594 * Read or write a bunch of msrs. Parameters are user addresses.
2595 *
2596 * @return number of msrs set successfully.
2597 */
2598 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2599 int (*do_msr)(struct kvm_vcpu *vcpu,
2600 unsigned index, u64 *data),
2601 int writeback)
2602 {
2603 struct kvm_msrs msrs;
2604 struct kvm_msr_entry *entries;
2605 int r, n;
2606 unsigned size;
2607
2608 r = -EFAULT;
2609 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2610 goto out;
2611
2612 r = -E2BIG;
2613 if (msrs.nmsrs >= MAX_IO_MSRS)
2614 goto out;
2615
2616 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2617 entries = memdup_user(user_msrs->entries, size);
2618 if (IS_ERR(entries)) {
2619 r = PTR_ERR(entries);
2620 goto out;
2621 }
2622
2623 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2624 if (r < 0)
2625 goto out_free;
2626
2627 r = -EFAULT;
2628 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2629 goto out_free;
2630
2631 r = n;
2632
2633 out_free:
2634 kfree(entries);
2635 out:
2636 return r;
2637 }
2638
2639 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2640 {
2641 int r;
2642
2643 switch (ext) {
2644 case KVM_CAP_IRQCHIP:
2645 case KVM_CAP_HLT:
2646 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2647 case KVM_CAP_SET_TSS_ADDR:
2648 case KVM_CAP_EXT_CPUID:
2649 case KVM_CAP_EXT_EMUL_CPUID:
2650 case KVM_CAP_CLOCKSOURCE:
2651 case KVM_CAP_PIT:
2652 case KVM_CAP_NOP_IO_DELAY:
2653 case KVM_CAP_MP_STATE:
2654 case KVM_CAP_SYNC_MMU:
2655 case KVM_CAP_USER_NMI:
2656 case KVM_CAP_REINJECT_CONTROL:
2657 case KVM_CAP_IRQ_INJECT_STATUS:
2658 case KVM_CAP_IOEVENTFD:
2659 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2660 case KVM_CAP_PIT2:
2661 case KVM_CAP_PIT_STATE2:
2662 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2663 case KVM_CAP_XEN_HVM:
2664 case KVM_CAP_VCPU_EVENTS:
2665 case KVM_CAP_HYPERV:
2666 case KVM_CAP_HYPERV_VAPIC:
2667 case KVM_CAP_HYPERV_SPIN:
2668 case KVM_CAP_HYPERV_SYNIC:
2669 case KVM_CAP_HYPERV_SYNIC2:
2670 case KVM_CAP_HYPERV_VP_INDEX:
2671 case KVM_CAP_PCI_SEGMENT:
2672 case KVM_CAP_DEBUGREGS:
2673 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2674 case KVM_CAP_XSAVE:
2675 case KVM_CAP_ASYNC_PF:
2676 case KVM_CAP_GET_TSC_KHZ:
2677 case KVM_CAP_KVMCLOCK_CTRL:
2678 case KVM_CAP_READONLY_MEM:
2679 case KVM_CAP_HYPERV_TIME:
2680 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2681 case KVM_CAP_TSC_DEADLINE_TIMER:
2682 case KVM_CAP_ENABLE_CAP_VM:
2683 case KVM_CAP_DISABLE_QUIRKS:
2684 case KVM_CAP_SET_BOOT_CPU_ID:
2685 case KVM_CAP_SPLIT_IRQCHIP:
2686 case KVM_CAP_IMMEDIATE_EXIT:
2687 r = 1;
2688 break;
2689 case KVM_CAP_ADJUST_CLOCK:
2690 r = KVM_CLOCK_TSC_STABLE;
2691 break;
2692 case KVM_CAP_X86_GUEST_MWAIT:
2693 r = kvm_mwait_in_guest();
2694 break;
2695 case KVM_CAP_X86_SMM:
2696 /* SMBASE is usually relocated above 1M on modern chipsets,
2697 * and SMM handlers might indeed rely on 4G segment limits,
2698 * so do not report SMM to be available if real mode is
2699 * emulated via vm86 mode. Still, do not go to great lengths
2700 * to avoid userspace's usage of the feature, because it is a
2701 * fringe case that is not enabled except via specific settings
2702 * of the module parameters.
2703 */
2704 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2705 break;
2706 case KVM_CAP_VAPIC:
2707 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2708 break;
2709 case KVM_CAP_NR_VCPUS:
2710 r = KVM_SOFT_MAX_VCPUS;
2711 break;
2712 case KVM_CAP_MAX_VCPUS:
2713 r = KVM_MAX_VCPUS;
2714 break;
2715 case KVM_CAP_NR_MEMSLOTS:
2716 r = KVM_USER_MEM_SLOTS;
2717 break;
2718 case KVM_CAP_PV_MMU: /* obsolete */
2719 r = 0;
2720 break;
2721 case KVM_CAP_MCE:
2722 r = KVM_MAX_MCE_BANKS;
2723 break;
2724 case KVM_CAP_XCRS:
2725 r = boot_cpu_has(X86_FEATURE_XSAVE);
2726 break;
2727 case KVM_CAP_TSC_CONTROL:
2728 r = kvm_has_tsc_control;
2729 break;
2730 case KVM_CAP_X2APIC_API:
2731 r = KVM_X2APIC_API_VALID_FLAGS;
2732 break;
2733 default:
2734 r = 0;
2735 break;
2736 }
2737 return r;
2738
2739 }
2740
2741 long kvm_arch_dev_ioctl(struct file *filp,
2742 unsigned int ioctl, unsigned long arg)
2743 {
2744 void __user *argp = (void __user *)arg;
2745 long r;
2746
2747 switch (ioctl) {
2748 case KVM_GET_MSR_INDEX_LIST: {
2749 struct kvm_msr_list __user *user_msr_list = argp;
2750 struct kvm_msr_list msr_list;
2751 unsigned n;
2752
2753 r = -EFAULT;
2754 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2755 goto out;
2756 n = msr_list.nmsrs;
2757 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2758 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2759 goto out;
2760 r = -E2BIG;
2761 if (n < msr_list.nmsrs)
2762 goto out;
2763 r = -EFAULT;
2764 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2765 num_msrs_to_save * sizeof(u32)))
2766 goto out;
2767 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2768 &emulated_msrs,
2769 num_emulated_msrs * sizeof(u32)))
2770 goto out;
2771 r = 0;
2772 break;
2773 }
2774 case KVM_GET_SUPPORTED_CPUID:
2775 case KVM_GET_EMULATED_CPUID: {
2776 struct kvm_cpuid2 __user *cpuid_arg = argp;
2777 struct kvm_cpuid2 cpuid;
2778
2779 r = -EFAULT;
2780 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2781 goto out;
2782
2783 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2784 ioctl);
2785 if (r)
2786 goto out;
2787
2788 r = -EFAULT;
2789 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2790 goto out;
2791 r = 0;
2792 break;
2793 }
2794 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2795 r = -EFAULT;
2796 if (copy_to_user(argp, &kvm_mce_cap_supported,
2797 sizeof(kvm_mce_cap_supported)))
2798 goto out;
2799 r = 0;
2800 break;
2801 }
2802 default:
2803 r = -EINVAL;
2804 }
2805 out:
2806 return r;
2807 }
2808
2809 static void wbinvd_ipi(void *garbage)
2810 {
2811 wbinvd();
2812 }
2813
2814 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2815 {
2816 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2817 }
2818
2819 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2820 {
2821 /* Address WBINVD may be executed by guest */
2822 if (need_emulate_wbinvd(vcpu)) {
2823 if (kvm_x86_ops->has_wbinvd_exit())
2824 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2825 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2826 smp_call_function_single(vcpu->cpu,
2827 wbinvd_ipi, NULL, 1);
2828 }
2829
2830 kvm_x86_ops->vcpu_load(vcpu, cpu);
2831
2832 /* Apply any externally detected TSC adjustments (due to suspend) */
2833 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2834 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2835 vcpu->arch.tsc_offset_adjustment = 0;
2836 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2837 }
2838
2839 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2840 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2841 rdtsc() - vcpu->arch.last_host_tsc;
2842 if (tsc_delta < 0)
2843 mark_tsc_unstable("KVM discovered backwards TSC");
2844
2845 if (check_tsc_unstable()) {
2846 u64 offset = kvm_compute_tsc_offset(vcpu,
2847 vcpu->arch.last_guest_tsc);
2848 kvm_vcpu_write_tsc_offset(vcpu, offset);
2849 vcpu->arch.tsc_catchup = 1;
2850 }
2851
2852 if (kvm_lapic_hv_timer_in_use(vcpu))
2853 kvm_lapic_restart_hv_timer(vcpu);
2854
2855 /*
2856 * On a host with synchronized TSC, there is no need to update
2857 * kvmclock on vcpu->cpu migration
2858 */
2859 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2860 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2861 if (vcpu->cpu != cpu)
2862 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2863 vcpu->cpu = cpu;
2864 }
2865
2866 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2867 }
2868
2869 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2870 {
2871 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2872 return;
2873
2874 vcpu->arch.st.steal.preempted = 1;
2875
2876 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2877 &vcpu->arch.st.steal.preempted,
2878 offsetof(struct kvm_steal_time, preempted),
2879 sizeof(vcpu->arch.st.steal.preempted));
2880 }
2881
2882 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2883 {
2884 int idx;
2885 /*
2886 * Disable page faults because we're in atomic context here.
2887 * kvm_write_guest_offset_cached() would call might_fault()
2888 * that relies on pagefault_disable() to tell if there's a
2889 * bug. NOTE: the write to guest memory may not go through if
2890 * during postcopy live migration or if there's heavy guest
2891 * paging.
2892 */
2893 pagefault_disable();
2894 /*
2895 * kvm_memslots() will be called by
2896 * kvm_write_guest_offset_cached() so take the srcu lock.
2897 */
2898 idx = srcu_read_lock(&vcpu->kvm->srcu);
2899 kvm_steal_time_set_preempted(vcpu);
2900 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2901 pagefault_enable();
2902 kvm_x86_ops->vcpu_put(vcpu);
2903 kvm_put_guest_fpu(vcpu);
2904 vcpu->arch.last_host_tsc = rdtsc();
2905 }
2906
2907 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2908 struct kvm_lapic_state *s)
2909 {
2910 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2911 kvm_x86_ops->sync_pir_to_irr(vcpu);
2912
2913 return kvm_apic_get_state(vcpu, s);
2914 }
2915
2916 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2917 struct kvm_lapic_state *s)
2918 {
2919 int r;
2920
2921 r = kvm_apic_set_state(vcpu, s);
2922 if (r)
2923 return r;
2924 update_cr8_intercept(vcpu);
2925
2926 return 0;
2927 }
2928
2929 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2930 {
2931 return (!lapic_in_kernel(vcpu) ||
2932 kvm_apic_accept_pic_intr(vcpu));
2933 }
2934
2935 /*
2936 * if userspace requested an interrupt window, check that the
2937 * interrupt window is open.
2938 *
2939 * No need to exit to userspace if we already have an interrupt queued.
2940 */
2941 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2942 {
2943 return kvm_arch_interrupt_allowed(vcpu) &&
2944 !kvm_cpu_has_interrupt(vcpu) &&
2945 !kvm_event_needs_reinjection(vcpu) &&
2946 kvm_cpu_accept_dm_intr(vcpu);
2947 }
2948
2949 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2950 struct kvm_interrupt *irq)
2951 {
2952 if (irq->irq >= KVM_NR_INTERRUPTS)
2953 return -EINVAL;
2954
2955 if (!irqchip_in_kernel(vcpu->kvm)) {
2956 kvm_queue_interrupt(vcpu, irq->irq, false);
2957 kvm_make_request(KVM_REQ_EVENT, vcpu);
2958 return 0;
2959 }
2960
2961 /*
2962 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2963 * fail for in-kernel 8259.
2964 */
2965 if (pic_in_kernel(vcpu->kvm))
2966 return -ENXIO;
2967
2968 if (vcpu->arch.pending_external_vector != -1)
2969 return -EEXIST;
2970
2971 vcpu->arch.pending_external_vector = irq->irq;
2972 kvm_make_request(KVM_REQ_EVENT, vcpu);
2973 return 0;
2974 }
2975
2976 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2977 {
2978 kvm_inject_nmi(vcpu);
2979
2980 return 0;
2981 }
2982
2983 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2984 {
2985 kvm_make_request(KVM_REQ_SMI, vcpu);
2986
2987 return 0;
2988 }
2989
2990 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2991 struct kvm_tpr_access_ctl *tac)
2992 {
2993 if (tac->flags)
2994 return -EINVAL;
2995 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2996 return 0;
2997 }
2998
2999 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3000 u64 mcg_cap)
3001 {
3002 int r;
3003 unsigned bank_num = mcg_cap & 0xff, bank;
3004
3005 r = -EINVAL;
3006 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3007 goto out;
3008 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3009 goto out;
3010 r = 0;
3011 vcpu->arch.mcg_cap = mcg_cap;
3012 /* Init IA32_MCG_CTL to all 1s */
3013 if (mcg_cap & MCG_CTL_P)
3014 vcpu->arch.mcg_ctl = ~(u64)0;
3015 /* Init IA32_MCi_CTL to all 1s */
3016 for (bank = 0; bank < bank_num; bank++)
3017 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3018
3019 if (kvm_x86_ops->setup_mce)
3020 kvm_x86_ops->setup_mce(vcpu);
3021 out:
3022 return r;
3023 }
3024
3025 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3026 struct kvm_x86_mce *mce)
3027 {
3028 u64 mcg_cap = vcpu->arch.mcg_cap;
3029 unsigned bank_num = mcg_cap & 0xff;
3030 u64 *banks = vcpu->arch.mce_banks;
3031
3032 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3033 return -EINVAL;
3034 /*
3035 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3036 * reporting is disabled
3037 */
3038 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3039 vcpu->arch.mcg_ctl != ~(u64)0)
3040 return 0;
3041 banks += 4 * mce->bank;
3042 /*
3043 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3044 * reporting is disabled for the bank
3045 */
3046 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3047 return 0;
3048 if (mce->status & MCI_STATUS_UC) {
3049 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3050 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3051 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3052 return 0;
3053 }
3054 if (banks[1] & MCI_STATUS_VAL)
3055 mce->status |= MCI_STATUS_OVER;
3056 banks[2] = mce->addr;
3057 banks[3] = mce->misc;
3058 vcpu->arch.mcg_status = mce->mcg_status;
3059 banks[1] = mce->status;
3060 kvm_queue_exception(vcpu, MC_VECTOR);
3061 } else if (!(banks[1] & MCI_STATUS_VAL)
3062 || !(banks[1] & MCI_STATUS_UC)) {
3063 if (banks[1] & MCI_STATUS_VAL)
3064 mce->status |= MCI_STATUS_OVER;
3065 banks[2] = mce->addr;
3066 banks[3] = mce->misc;
3067 banks[1] = mce->status;
3068 } else
3069 banks[1] |= MCI_STATUS_OVER;
3070 return 0;
3071 }
3072
3073 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3074 struct kvm_vcpu_events *events)
3075 {
3076 process_nmi(vcpu);
3077 events->exception.injected =
3078 vcpu->arch.exception.pending &&
3079 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3080 events->exception.nr = vcpu->arch.exception.nr;
3081 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3082 events->exception.pad = 0;
3083 events->exception.error_code = vcpu->arch.exception.error_code;
3084
3085 events->interrupt.injected =
3086 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3087 events->interrupt.nr = vcpu->arch.interrupt.nr;
3088 events->interrupt.soft = 0;
3089 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3090
3091 events->nmi.injected = vcpu->arch.nmi_injected;
3092 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3093 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3094 events->nmi.pad = 0;
3095
3096 events->sipi_vector = 0; /* never valid when reporting to user space */
3097
3098 events->smi.smm = is_smm(vcpu);
3099 events->smi.pending = vcpu->arch.smi_pending;
3100 events->smi.smm_inside_nmi =
3101 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3102 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3103
3104 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3105 | KVM_VCPUEVENT_VALID_SHADOW
3106 | KVM_VCPUEVENT_VALID_SMM);
3107 memset(&events->reserved, 0, sizeof(events->reserved));
3108 }
3109
3110 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3111
3112 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3113 struct kvm_vcpu_events *events)
3114 {
3115 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3116 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3117 | KVM_VCPUEVENT_VALID_SHADOW
3118 | KVM_VCPUEVENT_VALID_SMM))
3119 return -EINVAL;
3120
3121 if (events->exception.injected &&
3122 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3123 is_guest_mode(vcpu)))
3124 return -EINVAL;
3125
3126 /* INITs are latched while in SMM */
3127 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3128 (events->smi.smm || events->smi.pending) &&
3129 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3130 return -EINVAL;
3131
3132 process_nmi(vcpu);
3133 vcpu->arch.exception.pending = events->exception.injected;
3134 vcpu->arch.exception.nr = events->exception.nr;
3135 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3136 vcpu->arch.exception.error_code = events->exception.error_code;
3137
3138 vcpu->arch.interrupt.pending = events->interrupt.injected;
3139 vcpu->arch.interrupt.nr = events->interrupt.nr;
3140 vcpu->arch.interrupt.soft = events->interrupt.soft;
3141 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3142 kvm_x86_ops->set_interrupt_shadow(vcpu,
3143 events->interrupt.shadow);
3144
3145 vcpu->arch.nmi_injected = events->nmi.injected;
3146 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3147 vcpu->arch.nmi_pending = events->nmi.pending;
3148 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3149
3150 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3151 lapic_in_kernel(vcpu))
3152 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3153
3154 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3155 u32 hflags = vcpu->arch.hflags;
3156 if (events->smi.smm)
3157 hflags |= HF_SMM_MASK;
3158 else
3159 hflags &= ~HF_SMM_MASK;
3160 kvm_set_hflags(vcpu, hflags);
3161
3162 vcpu->arch.smi_pending = events->smi.pending;
3163
3164 if (events->smi.smm) {
3165 if (events->smi.smm_inside_nmi)
3166 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3167 else
3168 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3169 if (lapic_in_kernel(vcpu)) {
3170 if (events->smi.latched_init)
3171 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3172 else
3173 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3174 }
3175 }
3176 }
3177
3178 kvm_make_request(KVM_REQ_EVENT, vcpu);
3179
3180 return 0;
3181 }
3182
3183 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3184 struct kvm_debugregs *dbgregs)
3185 {
3186 unsigned long val;
3187
3188 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3189 kvm_get_dr(vcpu, 6, &val);
3190 dbgregs->dr6 = val;
3191 dbgregs->dr7 = vcpu->arch.dr7;
3192 dbgregs->flags = 0;
3193 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3194 }
3195
3196 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3197 struct kvm_debugregs *dbgregs)
3198 {
3199 if (dbgregs->flags)
3200 return -EINVAL;
3201
3202 if (dbgregs->dr6 & ~0xffffffffull)
3203 return -EINVAL;
3204 if (dbgregs->dr7 & ~0xffffffffull)
3205 return -EINVAL;
3206
3207 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3208 kvm_update_dr0123(vcpu);
3209 vcpu->arch.dr6 = dbgregs->dr6;
3210 kvm_update_dr6(vcpu);
3211 vcpu->arch.dr7 = dbgregs->dr7;
3212 kvm_update_dr7(vcpu);
3213
3214 return 0;
3215 }
3216
3217 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3218
3219 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3220 {
3221 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3222 u64 xstate_bv = xsave->header.xfeatures;
3223 u64 valid;
3224
3225 /*
3226 * Copy legacy XSAVE area, to avoid complications with CPUID
3227 * leaves 0 and 1 in the loop below.
3228 */
3229 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3230
3231 /* Set XSTATE_BV */
3232 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3233 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3234
3235 /*
3236 * Copy each region from the possibly compacted offset to the
3237 * non-compacted offset.
3238 */
3239 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3240 while (valid) {
3241 u64 feature = valid & -valid;
3242 int index = fls64(feature) - 1;
3243 void *src = get_xsave_addr(xsave, feature);
3244
3245 if (src) {
3246 u32 size, offset, ecx, edx;
3247 cpuid_count(XSTATE_CPUID, index,
3248 &size, &offset, &ecx, &edx);
3249 if (feature == XFEATURE_MASK_PKRU)
3250 memcpy(dest + offset, &vcpu->arch.pkru,
3251 sizeof(vcpu->arch.pkru));
3252 else
3253 memcpy(dest + offset, src, size);
3254
3255 }
3256
3257 valid -= feature;
3258 }
3259 }
3260
3261 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3262 {
3263 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3264 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3265 u64 valid;
3266
3267 /*
3268 * Copy legacy XSAVE area, to avoid complications with CPUID
3269 * leaves 0 and 1 in the loop below.
3270 */
3271 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3272
3273 /* Set XSTATE_BV and possibly XCOMP_BV. */
3274 xsave->header.xfeatures = xstate_bv;
3275 if (boot_cpu_has(X86_FEATURE_XSAVES))
3276 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3277
3278 /*
3279 * Copy each region from the non-compacted offset to the
3280 * possibly compacted offset.
3281 */
3282 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3283 while (valid) {
3284 u64 feature = valid & -valid;
3285 int index = fls64(feature) - 1;
3286 void *dest = get_xsave_addr(xsave, feature);
3287
3288 if (dest) {
3289 u32 size, offset, ecx, edx;
3290 cpuid_count(XSTATE_CPUID, index,
3291 &size, &offset, &ecx, &edx);
3292 if (feature == XFEATURE_MASK_PKRU)
3293 memcpy(&vcpu->arch.pkru, src + offset,
3294 sizeof(vcpu->arch.pkru));
3295 else
3296 memcpy(dest, src + offset, size);
3297 }
3298
3299 valid -= feature;
3300 }
3301 }
3302
3303 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3304 struct kvm_xsave *guest_xsave)
3305 {
3306 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3307 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3308 fill_xsave((u8 *) guest_xsave->region, vcpu);
3309 } else {
3310 memcpy(guest_xsave->region,
3311 &vcpu->arch.guest_fpu.state.fxsave,
3312 sizeof(struct fxregs_state));
3313 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3314 XFEATURE_MASK_FPSSE;
3315 }
3316 }
3317
3318 #define XSAVE_MXCSR_OFFSET 24
3319
3320 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3321 struct kvm_xsave *guest_xsave)
3322 {
3323 u64 xstate_bv =
3324 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3325 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3326
3327 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3328 /*
3329 * Here we allow setting states that are not present in
3330 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3331 * with old userspace.
3332 */
3333 if (xstate_bv & ~kvm_supported_xcr0() ||
3334 mxcsr & ~mxcsr_feature_mask)
3335 return -EINVAL;
3336 load_xsave(vcpu, (u8 *)guest_xsave->region);
3337 } else {
3338 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3339 mxcsr & ~mxcsr_feature_mask)
3340 return -EINVAL;
3341 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3342 guest_xsave->region, sizeof(struct fxregs_state));
3343 }
3344 return 0;
3345 }
3346
3347 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3348 struct kvm_xcrs *guest_xcrs)
3349 {
3350 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3351 guest_xcrs->nr_xcrs = 0;
3352 return;
3353 }
3354
3355 guest_xcrs->nr_xcrs = 1;
3356 guest_xcrs->flags = 0;
3357 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3358 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3359 }
3360
3361 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3362 struct kvm_xcrs *guest_xcrs)
3363 {
3364 int i, r = 0;
3365
3366 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3367 return -EINVAL;
3368
3369 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3370 return -EINVAL;
3371
3372 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3373 /* Only support XCR0 currently */
3374 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3375 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3376 guest_xcrs->xcrs[i].value);
3377 break;
3378 }
3379 if (r)
3380 r = -EINVAL;
3381 return r;
3382 }
3383
3384 /*
3385 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3386 * stopped by the hypervisor. This function will be called from the host only.
3387 * EINVAL is returned when the host attempts to set the flag for a guest that
3388 * does not support pv clocks.
3389 */
3390 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3391 {
3392 if (!vcpu->arch.pv_time_enabled)
3393 return -EINVAL;
3394 vcpu->arch.pvclock_set_guest_stopped_request = true;
3395 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3396 return 0;
3397 }
3398
3399 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3400 struct kvm_enable_cap *cap)
3401 {
3402 if (cap->flags)
3403 return -EINVAL;
3404
3405 switch (cap->cap) {
3406 case KVM_CAP_HYPERV_SYNIC2:
3407 if (cap->args[0])
3408 return -EINVAL;
3409 case KVM_CAP_HYPERV_SYNIC:
3410 if (!irqchip_in_kernel(vcpu->kvm))
3411 return -EINVAL;
3412 return kvm_hv_activate_synic(vcpu, cap->cap ==
3413 KVM_CAP_HYPERV_SYNIC2);
3414 default:
3415 return -EINVAL;
3416 }
3417 }
3418
3419 long kvm_arch_vcpu_ioctl(struct file *filp,
3420 unsigned int ioctl, unsigned long arg)
3421 {
3422 struct kvm_vcpu *vcpu = filp->private_data;
3423 void __user *argp = (void __user *)arg;
3424 int r;
3425 union {
3426 struct kvm_lapic_state *lapic;
3427 struct kvm_xsave *xsave;
3428 struct kvm_xcrs *xcrs;
3429 void *buffer;
3430 } u;
3431
3432 u.buffer = NULL;
3433 switch (ioctl) {
3434 case KVM_GET_LAPIC: {
3435 r = -EINVAL;
3436 if (!lapic_in_kernel(vcpu))
3437 goto out;
3438 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3439
3440 r = -ENOMEM;
3441 if (!u.lapic)
3442 goto out;
3443 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3444 if (r)
3445 goto out;
3446 r = -EFAULT;
3447 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3448 goto out;
3449 r = 0;
3450 break;
3451 }
3452 case KVM_SET_LAPIC: {
3453 r = -EINVAL;
3454 if (!lapic_in_kernel(vcpu))
3455 goto out;
3456 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3457 if (IS_ERR(u.lapic))
3458 return PTR_ERR(u.lapic);
3459
3460 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3461 break;
3462 }
3463 case KVM_INTERRUPT: {
3464 struct kvm_interrupt irq;
3465
3466 r = -EFAULT;
3467 if (copy_from_user(&irq, argp, sizeof irq))
3468 goto out;
3469 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3470 break;
3471 }
3472 case KVM_NMI: {
3473 r = kvm_vcpu_ioctl_nmi(vcpu);
3474 break;
3475 }
3476 case KVM_SMI: {
3477 r = kvm_vcpu_ioctl_smi(vcpu);
3478 break;
3479 }
3480 case KVM_SET_CPUID: {
3481 struct kvm_cpuid __user *cpuid_arg = argp;
3482 struct kvm_cpuid cpuid;
3483
3484 r = -EFAULT;
3485 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3486 goto out;
3487 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3488 break;
3489 }
3490 case KVM_SET_CPUID2: {
3491 struct kvm_cpuid2 __user *cpuid_arg = argp;
3492 struct kvm_cpuid2 cpuid;
3493
3494 r = -EFAULT;
3495 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3496 goto out;
3497 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3498 cpuid_arg->entries);
3499 break;
3500 }
3501 case KVM_GET_CPUID2: {
3502 struct kvm_cpuid2 __user *cpuid_arg = argp;
3503 struct kvm_cpuid2 cpuid;
3504
3505 r = -EFAULT;
3506 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3507 goto out;
3508 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3509 cpuid_arg->entries);
3510 if (r)
3511 goto out;
3512 r = -EFAULT;
3513 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3514 goto out;
3515 r = 0;
3516 break;
3517 }
3518 case KVM_GET_MSRS:
3519 r = msr_io(vcpu, argp, do_get_msr, 1);
3520 break;
3521 case KVM_SET_MSRS:
3522 r = msr_io(vcpu, argp, do_set_msr, 0);
3523 break;
3524 case KVM_TPR_ACCESS_REPORTING: {
3525 struct kvm_tpr_access_ctl tac;
3526
3527 r = -EFAULT;
3528 if (copy_from_user(&tac, argp, sizeof tac))
3529 goto out;
3530 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3531 if (r)
3532 goto out;
3533 r = -EFAULT;
3534 if (copy_to_user(argp, &tac, sizeof tac))
3535 goto out;
3536 r = 0;
3537 break;
3538 };
3539 case KVM_SET_VAPIC_ADDR: {
3540 struct kvm_vapic_addr va;
3541 int idx;
3542
3543 r = -EINVAL;
3544 if (!lapic_in_kernel(vcpu))
3545 goto out;
3546 r = -EFAULT;
3547 if (copy_from_user(&va, argp, sizeof va))
3548 goto out;
3549 idx = srcu_read_lock(&vcpu->kvm->srcu);
3550 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3551 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3552 break;
3553 }
3554 case KVM_X86_SETUP_MCE: {
3555 u64 mcg_cap;
3556
3557 r = -EFAULT;
3558 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3559 goto out;
3560 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3561 break;
3562 }
3563 case KVM_X86_SET_MCE: {
3564 struct kvm_x86_mce mce;
3565
3566 r = -EFAULT;
3567 if (copy_from_user(&mce, argp, sizeof mce))
3568 goto out;
3569 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3570 break;
3571 }
3572 case KVM_GET_VCPU_EVENTS: {
3573 struct kvm_vcpu_events events;
3574
3575 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3576
3577 r = -EFAULT;
3578 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3579 break;
3580 r = 0;
3581 break;
3582 }
3583 case KVM_SET_VCPU_EVENTS: {
3584 struct kvm_vcpu_events events;
3585
3586 r = -EFAULT;
3587 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3588 break;
3589
3590 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3591 break;
3592 }
3593 case KVM_GET_DEBUGREGS: {
3594 struct kvm_debugregs dbgregs;
3595
3596 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3597
3598 r = -EFAULT;
3599 if (copy_to_user(argp, &dbgregs,
3600 sizeof(struct kvm_debugregs)))
3601 break;
3602 r = 0;
3603 break;
3604 }
3605 case KVM_SET_DEBUGREGS: {
3606 struct kvm_debugregs dbgregs;
3607
3608 r = -EFAULT;
3609 if (copy_from_user(&dbgregs, argp,
3610 sizeof(struct kvm_debugregs)))
3611 break;
3612
3613 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3614 break;
3615 }
3616 case KVM_GET_XSAVE: {
3617 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3618 r = -ENOMEM;
3619 if (!u.xsave)
3620 break;
3621
3622 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3623
3624 r = -EFAULT;
3625 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3626 break;
3627 r = 0;
3628 break;
3629 }
3630 case KVM_SET_XSAVE: {
3631 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3632 if (IS_ERR(u.xsave))
3633 return PTR_ERR(u.xsave);
3634
3635 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3636 break;
3637 }
3638 case KVM_GET_XCRS: {
3639 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3640 r = -ENOMEM;
3641 if (!u.xcrs)
3642 break;
3643
3644 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3645
3646 r = -EFAULT;
3647 if (copy_to_user(argp, u.xcrs,
3648 sizeof(struct kvm_xcrs)))
3649 break;
3650 r = 0;
3651 break;
3652 }
3653 case KVM_SET_XCRS: {
3654 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3655 if (IS_ERR(u.xcrs))
3656 return PTR_ERR(u.xcrs);
3657
3658 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3659 break;
3660 }
3661 case KVM_SET_TSC_KHZ: {
3662 u32 user_tsc_khz;
3663
3664 r = -EINVAL;
3665 user_tsc_khz = (u32)arg;
3666
3667 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3668 goto out;
3669
3670 if (user_tsc_khz == 0)
3671 user_tsc_khz = tsc_khz;
3672
3673 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3674 r = 0;
3675
3676 goto out;
3677 }
3678 case KVM_GET_TSC_KHZ: {
3679 r = vcpu->arch.virtual_tsc_khz;
3680 goto out;
3681 }
3682 case KVM_KVMCLOCK_CTRL: {
3683 r = kvm_set_guest_paused(vcpu);
3684 goto out;
3685 }
3686 case KVM_ENABLE_CAP: {
3687 struct kvm_enable_cap cap;
3688
3689 r = -EFAULT;
3690 if (copy_from_user(&cap, argp, sizeof(cap)))
3691 goto out;
3692 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3693 break;
3694 }
3695 default:
3696 r = -EINVAL;
3697 }
3698 out:
3699 kfree(u.buffer);
3700 return r;
3701 }
3702
3703 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3704 {
3705 return VM_FAULT_SIGBUS;
3706 }
3707
3708 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3709 {
3710 int ret;
3711
3712 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3713 return -EINVAL;
3714 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3715 return ret;
3716 }
3717
3718 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3719 u64 ident_addr)
3720 {
3721 kvm->arch.ept_identity_map_addr = ident_addr;
3722 return 0;
3723 }
3724
3725 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3726 u32 kvm_nr_mmu_pages)
3727 {
3728 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3729 return -EINVAL;
3730
3731 mutex_lock(&kvm->slots_lock);
3732
3733 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3734 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3735
3736 mutex_unlock(&kvm->slots_lock);
3737 return 0;
3738 }
3739
3740 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3741 {
3742 return kvm->arch.n_max_mmu_pages;
3743 }
3744
3745 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3746 {
3747 struct kvm_pic *pic = kvm->arch.vpic;
3748 int r;
3749
3750 r = 0;
3751 switch (chip->chip_id) {
3752 case KVM_IRQCHIP_PIC_MASTER:
3753 memcpy(&chip->chip.pic, &pic->pics[0],
3754 sizeof(struct kvm_pic_state));
3755 break;
3756 case KVM_IRQCHIP_PIC_SLAVE:
3757 memcpy(&chip->chip.pic, &pic->pics[1],
3758 sizeof(struct kvm_pic_state));
3759 break;
3760 case KVM_IRQCHIP_IOAPIC:
3761 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3762 break;
3763 default:
3764 r = -EINVAL;
3765 break;
3766 }
3767 return r;
3768 }
3769
3770 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3771 {
3772 struct kvm_pic *pic = kvm->arch.vpic;
3773 int r;
3774
3775 r = 0;
3776 switch (chip->chip_id) {
3777 case KVM_IRQCHIP_PIC_MASTER:
3778 spin_lock(&pic->lock);
3779 memcpy(&pic->pics[0], &chip->chip.pic,
3780 sizeof(struct kvm_pic_state));
3781 spin_unlock(&pic->lock);
3782 break;
3783 case KVM_IRQCHIP_PIC_SLAVE:
3784 spin_lock(&pic->lock);
3785 memcpy(&pic->pics[1], &chip->chip.pic,
3786 sizeof(struct kvm_pic_state));
3787 spin_unlock(&pic->lock);
3788 break;
3789 case KVM_IRQCHIP_IOAPIC:
3790 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3791 break;
3792 default:
3793 r = -EINVAL;
3794 break;
3795 }
3796 kvm_pic_update_irq(pic);
3797 return r;
3798 }
3799
3800 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3801 {
3802 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3803
3804 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3805
3806 mutex_lock(&kps->lock);
3807 memcpy(ps, &kps->channels, sizeof(*ps));
3808 mutex_unlock(&kps->lock);
3809 return 0;
3810 }
3811
3812 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3813 {
3814 int i;
3815 struct kvm_pit *pit = kvm->arch.vpit;
3816
3817 mutex_lock(&pit->pit_state.lock);
3818 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3819 for (i = 0; i < 3; i++)
3820 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3821 mutex_unlock(&pit->pit_state.lock);
3822 return 0;
3823 }
3824
3825 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3826 {
3827 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3828 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3829 sizeof(ps->channels));
3830 ps->flags = kvm->arch.vpit->pit_state.flags;
3831 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3832 memset(&ps->reserved, 0, sizeof(ps->reserved));
3833 return 0;
3834 }
3835
3836 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3837 {
3838 int start = 0;
3839 int i;
3840 u32 prev_legacy, cur_legacy;
3841 struct kvm_pit *pit = kvm->arch.vpit;
3842
3843 mutex_lock(&pit->pit_state.lock);
3844 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3845 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3846 if (!prev_legacy && cur_legacy)
3847 start = 1;
3848 memcpy(&pit->pit_state.channels, &ps->channels,
3849 sizeof(pit->pit_state.channels));
3850 pit->pit_state.flags = ps->flags;
3851 for (i = 0; i < 3; i++)
3852 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3853 start && i == 0);
3854 mutex_unlock(&pit->pit_state.lock);
3855 return 0;
3856 }
3857
3858 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3859 struct kvm_reinject_control *control)
3860 {
3861 struct kvm_pit *pit = kvm->arch.vpit;
3862
3863 if (!pit)
3864 return -ENXIO;
3865
3866 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3867 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3868 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3869 */
3870 mutex_lock(&pit->pit_state.lock);
3871 kvm_pit_set_reinject(pit, control->pit_reinject);
3872 mutex_unlock(&pit->pit_state.lock);
3873
3874 return 0;
3875 }
3876
3877 /**
3878 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3879 * @kvm: kvm instance
3880 * @log: slot id and address to which we copy the log
3881 *
3882 * Steps 1-4 below provide general overview of dirty page logging. See
3883 * kvm_get_dirty_log_protect() function description for additional details.
3884 *
3885 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3886 * always flush the TLB (step 4) even if previous step failed and the dirty
3887 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3888 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3889 * writes will be marked dirty for next log read.
3890 *
3891 * 1. Take a snapshot of the bit and clear it if needed.
3892 * 2. Write protect the corresponding page.
3893 * 3. Copy the snapshot to the userspace.
3894 * 4. Flush TLB's if needed.
3895 */
3896 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3897 {
3898 bool is_dirty = false;
3899 int r;
3900
3901 mutex_lock(&kvm->slots_lock);
3902
3903 /*
3904 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3905 */
3906 if (kvm_x86_ops->flush_log_dirty)
3907 kvm_x86_ops->flush_log_dirty(kvm);
3908
3909 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3910
3911 /*
3912 * All the TLBs can be flushed out of mmu lock, see the comments in
3913 * kvm_mmu_slot_remove_write_access().
3914 */
3915 lockdep_assert_held(&kvm->slots_lock);
3916 if (is_dirty)
3917 kvm_flush_remote_tlbs(kvm);
3918
3919 mutex_unlock(&kvm->slots_lock);
3920 return r;
3921 }
3922
3923 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3924 bool line_status)
3925 {
3926 if (!irqchip_in_kernel(kvm))
3927 return -ENXIO;
3928
3929 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3930 irq_event->irq, irq_event->level,
3931 line_status);
3932 return 0;
3933 }
3934
3935 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3936 struct kvm_enable_cap *cap)
3937 {
3938 int r;
3939
3940 if (cap->flags)
3941 return -EINVAL;
3942
3943 switch (cap->cap) {
3944 case KVM_CAP_DISABLE_QUIRKS:
3945 kvm->arch.disabled_quirks = cap->args[0];
3946 r = 0;
3947 break;
3948 case KVM_CAP_SPLIT_IRQCHIP: {
3949 mutex_lock(&kvm->lock);
3950 r = -EINVAL;
3951 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3952 goto split_irqchip_unlock;
3953 r = -EEXIST;
3954 if (irqchip_in_kernel(kvm))
3955 goto split_irqchip_unlock;
3956 if (kvm->created_vcpus)
3957 goto split_irqchip_unlock;
3958 r = kvm_setup_empty_irq_routing(kvm);
3959 if (r)
3960 goto split_irqchip_unlock;
3961 /* Pairs with irqchip_in_kernel. */
3962 smp_wmb();
3963 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3964 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3965 r = 0;
3966 split_irqchip_unlock:
3967 mutex_unlock(&kvm->lock);
3968 break;
3969 }
3970 case KVM_CAP_X2APIC_API:
3971 r = -EINVAL;
3972 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3973 break;
3974
3975 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3976 kvm->arch.x2apic_format = true;
3977 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3978 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3979
3980 r = 0;
3981 break;
3982 default:
3983 r = -EINVAL;
3984 break;
3985 }
3986 return r;
3987 }
3988
3989 long kvm_arch_vm_ioctl(struct file *filp,
3990 unsigned int ioctl, unsigned long arg)
3991 {
3992 struct kvm *kvm = filp->private_data;
3993 void __user *argp = (void __user *)arg;
3994 int r = -ENOTTY;
3995 /*
3996 * This union makes it completely explicit to gcc-3.x
3997 * that these two variables' stack usage should be
3998 * combined, not added together.
3999 */
4000 union {
4001 struct kvm_pit_state ps;
4002 struct kvm_pit_state2 ps2;
4003 struct kvm_pit_config pit_config;
4004 } u;
4005
4006 switch (ioctl) {
4007 case KVM_SET_TSS_ADDR:
4008 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4009 break;
4010 case KVM_SET_IDENTITY_MAP_ADDR: {
4011 u64 ident_addr;
4012
4013 r = -EFAULT;
4014 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4015 goto out;
4016 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4017 break;
4018 }
4019 case KVM_SET_NR_MMU_PAGES:
4020 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4021 break;
4022 case KVM_GET_NR_MMU_PAGES:
4023 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4024 break;
4025 case KVM_CREATE_IRQCHIP: {
4026 mutex_lock(&kvm->lock);
4027
4028 r = -EEXIST;
4029 if (irqchip_in_kernel(kvm))
4030 goto create_irqchip_unlock;
4031
4032 r = -EINVAL;
4033 if (kvm->created_vcpus)
4034 goto create_irqchip_unlock;
4035
4036 r = kvm_pic_init(kvm);
4037 if (r)
4038 goto create_irqchip_unlock;
4039
4040 r = kvm_ioapic_init(kvm);
4041 if (r) {
4042 kvm_pic_destroy(kvm);
4043 goto create_irqchip_unlock;
4044 }
4045
4046 r = kvm_setup_default_irq_routing(kvm);
4047 if (r) {
4048 kvm_ioapic_destroy(kvm);
4049 kvm_pic_destroy(kvm);
4050 goto create_irqchip_unlock;
4051 }
4052 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4053 smp_wmb();
4054 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4055 create_irqchip_unlock:
4056 mutex_unlock(&kvm->lock);
4057 break;
4058 }
4059 case KVM_CREATE_PIT:
4060 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4061 goto create_pit;
4062 case KVM_CREATE_PIT2:
4063 r = -EFAULT;
4064 if (copy_from_user(&u.pit_config, argp,
4065 sizeof(struct kvm_pit_config)))
4066 goto out;
4067 create_pit:
4068 mutex_lock(&kvm->lock);
4069 r = -EEXIST;
4070 if (kvm->arch.vpit)
4071 goto create_pit_unlock;
4072 r = -ENOMEM;
4073 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4074 if (kvm->arch.vpit)
4075 r = 0;
4076 create_pit_unlock:
4077 mutex_unlock(&kvm->lock);
4078 break;
4079 case KVM_GET_IRQCHIP: {
4080 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4081 struct kvm_irqchip *chip;
4082
4083 chip = memdup_user(argp, sizeof(*chip));
4084 if (IS_ERR(chip)) {
4085 r = PTR_ERR(chip);
4086 goto out;
4087 }
4088
4089 r = -ENXIO;
4090 if (!irqchip_kernel(kvm))
4091 goto get_irqchip_out;
4092 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4093 if (r)
4094 goto get_irqchip_out;
4095 r = -EFAULT;
4096 if (copy_to_user(argp, chip, sizeof *chip))
4097 goto get_irqchip_out;
4098 r = 0;
4099 get_irqchip_out:
4100 kfree(chip);
4101 break;
4102 }
4103 case KVM_SET_IRQCHIP: {
4104 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4105 struct kvm_irqchip *chip;
4106
4107 chip = memdup_user(argp, sizeof(*chip));
4108 if (IS_ERR(chip)) {
4109 r = PTR_ERR(chip);
4110 goto out;
4111 }
4112
4113 r = -ENXIO;
4114 if (!irqchip_kernel(kvm))
4115 goto set_irqchip_out;
4116 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4117 if (r)
4118 goto set_irqchip_out;
4119 r = 0;
4120 set_irqchip_out:
4121 kfree(chip);
4122 break;
4123 }
4124 case KVM_GET_PIT: {
4125 r = -EFAULT;
4126 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4127 goto out;
4128 r = -ENXIO;
4129 if (!kvm->arch.vpit)
4130 goto out;
4131 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4132 if (r)
4133 goto out;
4134 r = -EFAULT;
4135 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4136 goto out;
4137 r = 0;
4138 break;
4139 }
4140 case KVM_SET_PIT: {
4141 r = -EFAULT;
4142 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4143 goto out;
4144 r = -ENXIO;
4145 if (!kvm->arch.vpit)
4146 goto out;
4147 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4148 break;
4149 }
4150 case KVM_GET_PIT2: {
4151 r = -ENXIO;
4152 if (!kvm->arch.vpit)
4153 goto out;
4154 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4155 if (r)
4156 goto out;
4157 r = -EFAULT;
4158 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4159 goto out;
4160 r = 0;
4161 break;
4162 }
4163 case KVM_SET_PIT2: {
4164 r = -EFAULT;
4165 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4166 goto out;
4167 r = -ENXIO;
4168 if (!kvm->arch.vpit)
4169 goto out;
4170 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4171 break;
4172 }
4173 case KVM_REINJECT_CONTROL: {
4174 struct kvm_reinject_control control;
4175 r = -EFAULT;
4176 if (copy_from_user(&control, argp, sizeof(control)))
4177 goto out;
4178 r = kvm_vm_ioctl_reinject(kvm, &control);
4179 break;
4180 }
4181 case KVM_SET_BOOT_CPU_ID:
4182 r = 0;
4183 mutex_lock(&kvm->lock);
4184 if (kvm->created_vcpus)
4185 r = -EBUSY;
4186 else
4187 kvm->arch.bsp_vcpu_id = arg;
4188 mutex_unlock(&kvm->lock);
4189 break;
4190 case KVM_XEN_HVM_CONFIG: {
4191 r = -EFAULT;
4192 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4193 sizeof(struct kvm_xen_hvm_config)))
4194 goto out;
4195 r = -EINVAL;
4196 if (kvm->arch.xen_hvm_config.flags)
4197 goto out;
4198 r = 0;
4199 break;
4200 }
4201 case KVM_SET_CLOCK: {
4202 struct kvm_clock_data user_ns;
4203 u64 now_ns;
4204
4205 r = -EFAULT;
4206 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4207 goto out;
4208
4209 r = -EINVAL;
4210 if (user_ns.flags)
4211 goto out;
4212
4213 r = 0;
4214 /*
4215 * TODO: userspace has to take care of races with VCPU_RUN, so
4216 * kvm_gen_update_masterclock() can be cut down to locked
4217 * pvclock_update_vm_gtod_copy().
4218 */
4219 kvm_gen_update_masterclock(kvm);
4220 now_ns = get_kvmclock_ns(kvm);
4221 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4222 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4223 break;
4224 }
4225 case KVM_GET_CLOCK: {
4226 struct kvm_clock_data user_ns;
4227 u64 now_ns;
4228
4229 now_ns = get_kvmclock_ns(kvm);
4230 user_ns.clock = now_ns;
4231 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4232 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4233
4234 r = -EFAULT;
4235 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4236 goto out;
4237 r = 0;
4238 break;
4239 }
4240 case KVM_ENABLE_CAP: {
4241 struct kvm_enable_cap cap;
4242
4243 r = -EFAULT;
4244 if (copy_from_user(&cap, argp, sizeof(cap)))
4245 goto out;
4246 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4247 break;
4248 }
4249 default:
4250 r = -ENOTTY;
4251 }
4252 out:
4253 return r;
4254 }
4255
4256 static void kvm_init_msr_list(void)
4257 {
4258 u32 dummy[2];
4259 unsigned i, j;
4260
4261 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4262 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4263 continue;
4264
4265 /*
4266 * Even MSRs that are valid in the host may not be exposed
4267 * to the guests in some cases.
4268 */
4269 switch (msrs_to_save[i]) {
4270 case MSR_IA32_BNDCFGS:
4271 if (!kvm_x86_ops->mpx_supported())
4272 continue;
4273 break;
4274 case MSR_TSC_AUX:
4275 if (!kvm_x86_ops->rdtscp_supported())
4276 continue;
4277 break;
4278 default:
4279 break;
4280 }
4281
4282 if (j < i)
4283 msrs_to_save[j] = msrs_to_save[i];
4284 j++;
4285 }
4286 num_msrs_to_save = j;
4287
4288 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4289 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4290 continue;
4291
4292 if (j < i)
4293 emulated_msrs[j] = emulated_msrs[i];
4294 j++;
4295 }
4296 num_emulated_msrs = j;
4297 }
4298
4299 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4300 const void *v)
4301 {
4302 int handled = 0;
4303 int n;
4304
4305 do {
4306 n = min(len, 8);
4307 if (!(lapic_in_kernel(vcpu) &&
4308 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4309 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4310 break;
4311 handled += n;
4312 addr += n;
4313 len -= n;
4314 v += n;
4315 } while (len);
4316
4317 return handled;
4318 }
4319
4320 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4321 {
4322 int handled = 0;
4323 int n;
4324
4325 do {
4326 n = min(len, 8);
4327 if (!(lapic_in_kernel(vcpu) &&
4328 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4329 addr, n, v))
4330 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4331 break;
4332 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4333 handled += n;
4334 addr += n;
4335 len -= n;
4336 v += n;
4337 } while (len);
4338
4339 return handled;
4340 }
4341
4342 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4343 struct kvm_segment *var, int seg)
4344 {
4345 kvm_x86_ops->set_segment(vcpu, var, seg);
4346 }
4347
4348 void kvm_get_segment(struct kvm_vcpu *vcpu,
4349 struct kvm_segment *var, int seg)
4350 {
4351 kvm_x86_ops->get_segment(vcpu, var, seg);
4352 }
4353
4354 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4355 struct x86_exception *exception)
4356 {
4357 gpa_t t_gpa;
4358
4359 BUG_ON(!mmu_is_nested(vcpu));
4360
4361 /* NPT walks are always user-walks */
4362 access |= PFERR_USER_MASK;
4363 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4364
4365 return t_gpa;
4366 }
4367
4368 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4369 struct x86_exception *exception)
4370 {
4371 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4372 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4373 }
4374
4375 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4376 struct x86_exception *exception)
4377 {
4378 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4379 access |= PFERR_FETCH_MASK;
4380 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4381 }
4382
4383 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4384 struct x86_exception *exception)
4385 {
4386 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4387 access |= PFERR_WRITE_MASK;
4388 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4389 }
4390
4391 /* uses this to access any guest's mapped memory without checking CPL */
4392 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4393 struct x86_exception *exception)
4394 {
4395 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4396 }
4397
4398 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4399 struct kvm_vcpu *vcpu, u32 access,
4400 struct x86_exception *exception)
4401 {
4402 void *data = val;
4403 int r = X86EMUL_CONTINUE;
4404
4405 while (bytes) {
4406 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4407 exception);
4408 unsigned offset = addr & (PAGE_SIZE-1);
4409 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4410 int ret;
4411
4412 if (gpa == UNMAPPED_GVA)
4413 return X86EMUL_PROPAGATE_FAULT;
4414 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4415 offset, toread);
4416 if (ret < 0) {
4417 r = X86EMUL_IO_NEEDED;
4418 goto out;
4419 }
4420
4421 bytes -= toread;
4422 data += toread;
4423 addr += toread;
4424 }
4425 out:
4426 return r;
4427 }
4428
4429 /* used for instruction fetching */
4430 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4431 gva_t addr, void *val, unsigned int bytes,
4432 struct x86_exception *exception)
4433 {
4434 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4435 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4436 unsigned offset;
4437 int ret;
4438
4439 /* Inline kvm_read_guest_virt_helper for speed. */
4440 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4441 exception);
4442 if (unlikely(gpa == UNMAPPED_GVA))
4443 return X86EMUL_PROPAGATE_FAULT;
4444
4445 offset = addr & (PAGE_SIZE-1);
4446 if (WARN_ON(offset + bytes > PAGE_SIZE))
4447 bytes = (unsigned)PAGE_SIZE - offset;
4448 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4449 offset, bytes);
4450 if (unlikely(ret < 0))
4451 return X86EMUL_IO_NEEDED;
4452
4453 return X86EMUL_CONTINUE;
4454 }
4455
4456 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4457 gva_t addr, void *val, unsigned int bytes,
4458 struct x86_exception *exception)
4459 {
4460 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4461 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4462
4463 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4464 exception);
4465 }
4466 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4467
4468 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4469 gva_t addr, void *val, unsigned int bytes,
4470 struct x86_exception *exception)
4471 {
4472 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4473 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4474 }
4475
4476 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4477 unsigned long addr, void *val, unsigned int bytes)
4478 {
4479 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4480 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4481
4482 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4483 }
4484
4485 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4486 gva_t addr, void *val,
4487 unsigned int bytes,
4488 struct x86_exception *exception)
4489 {
4490 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4491 void *data = val;
4492 int r = X86EMUL_CONTINUE;
4493
4494 while (bytes) {
4495 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4496 PFERR_WRITE_MASK,
4497 exception);
4498 unsigned offset = addr & (PAGE_SIZE-1);
4499 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4500 int ret;
4501
4502 if (gpa == UNMAPPED_GVA)
4503 return X86EMUL_PROPAGATE_FAULT;
4504 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4505 if (ret < 0) {
4506 r = X86EMUL_IO_NEEDED;
4507 goto out;
4508 }
4509
4510 bytes -= towrite;
4511 data += towrite;
4512 addr += towrite;
4513 }
4514 out:
4515 return r;
4516 }
4517 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4518
4519 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4520 gpa_t gpa, bool write)
4521 {
4522 /* For APIC access vmexit */
4523 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4524 return 1;
4525
4526 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4527 trace_vcpu_match_mmio(gva, gpa, write, true);
4528 return 1;
4529 }
4530
4531 return 0;
4532 }
4533
4534 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4535 gpa_t *gpa, struct x86_exception *exception,
4536 bool write)
4537 {
4538 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4539 | (write ? PFERR_WRITE_MASK : 0);
4540
4541 /*
4542 * currently PKRU is only applied to ept enabled guest so
4543 * there is no pkey in EPT page table for L1 guest or EPT
4544 * shadow page table for L2 guest.
4545 */
4546 if (vcpu_match_mmio_gva(vcpu, gva)
4547 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4548 vcpu->arch.access, 0, access)) {
4549 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4550 (gva & (PAGE_SIZE - 1));
4551 trace_vcpu_match_mmio(gva, *gpa, write, false);
4552 return 1;
4553 }
4554
4555 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4556
4557 if (*gpa == UNMAPPED_GVA)
4558 return -1;
4559
4560 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4561 }
4562
4563 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4564 const void *val, int bytes)
4565 {
4566 int ret;
4567
4568 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4569 if (ret < 0)
4570 return 0;
4571 kvm_page_track_write(vcpu, gpa, val, bytes);
4572 return 1;
4573 }
4574
4575 struct read_write_emulator_ops {
4576 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4577 int bytes);
4578 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4579 void *val, int bytes);
4580 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4581 int bytes, void *val);
4582 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4583 void *val, int bytes);
4584 bool write;
4585 };
4586
4587 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4588 {
4589 if (vcpu->mmio_read_completed) {
4590 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4591 vcpu->mmio_fragments[0].gpa, val);
4592 vcpu->mmio_read_completed = 0;
4593 return 1;
4594 }
4595
4596 return 0;
4597 }
4598
4599 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4600 void *val, int bytes)
4601 {
4602 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4603 }
4604
4605 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4606 void *val, int bytes)
4607 {
4608 return emulator_write_phys(vcpu, gpa, val, bytes);
4609 }
4610
4611 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4612 {
4613 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4614 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4615 }
4616
4617 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4618 void *val, int bytes)
4619 {
4620 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4621 return X86EMUL_IO_NEEDED;
4622 }
4623
4624 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4625 void *val, int bytes)
4626 {
4627 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4628
4629 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4630 return X86EMUL_CONTINUE;
4631 }
4632
4633 static const struct read_write_emulator_ops read_emultor = {
4634 .read_write_prepare = read_prepare,
4635 .read_write_emulate = read_emulate,
4636 .read_write_mmio = vcpu_mmio_read,
4637 .read_write_exit_mmio = read_exit_mmio,
4638 };
4639
4640 static const struct read_write_emulator_ops write_emultor = {
4641 .read_write_emulate = write_emulate,
4642 .read_write_mmio = write_mmio,
4643 .read_write_exit_mmio = write_exit_mmio,
4644 .write = true,
4645 };
4646
4647 static int emulator_read_write_onepage(unsigned long addr, void *val,
4648 unsigned int bytes,
4649 struct x86_exception *exception,
4650 struct kvm_vcpu *vcpu,
4651 const struct read_write_emulator_ops *ops)
4652 {
4653 gpa_t gpa;
4654 int handled, ret;
4655 bool write = ops->write;
4656 struct kvm_mmio_fragment *frag;
4657 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4658
4659 /*
4660 * If the exit was due to a NPF we may already have a GPA.
4661 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4662 * Note, this cannot be used on string operations since string
4663 * operation using rep will only have the initial GPA from the NPF
4664 * occurred.
4665 */
4666 if (vcpu->arch.gpa_available &&
4667 emulator_can_use_gpa(ctxt) &&
4668 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4669 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4670 gpa = exception->address;
4671 goto mmio;
4672 }
4673
4674 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4675
4676 if (ret < 0)
4677 return X86EMUL_PROPAGATE_FAULT;
4678
4679 /* For APIC access vmexit */
4680 if (ret)
4681 goto mmio;
4682
4683 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4684 return X86EMUL_CONTINUE;
4685
4686 mmio:
4687 /*
4688 * Is this MMIO handled locally?
4689 */
4690 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4691 if (handled == bytes)
4692 return X86EMUL_CONTINUE;
4693
4694 gpa += handled;
4695 bytes -= handled;
4696 val += handled;
4697
4698 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4699 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4700 frag->gpa = gpa;
4701 frag->data = val;
4702 frag->len = bytes;
4703 return X86EMUL_CONTINUE;
4704 }
4705
4706 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4707 unsigned long addr,
4708 void *val, unsigned int bytes,
4709 struct x86_exception *exception,
4710 const struct read_write_emulator_ops *ops)
4711 {
4712 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4713 gpa_t gpa;
4714 int rc;
4715
4716 if (ops->read_write_prepare &&
4717 ops->read_write_prepare(vcpu, val, bytes))
4718 return X86EMUL_CONTINUE;
4719
4720 vcpu->mmio_nr_fragments = 0;
4721
4722 /* Crossing a page boundary? */
4723 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4724 int now;
4725
4726 now = -addr & ~PAGE_MASK;
4727 rc = emulator_read_write_onepage(addr, val, now, exception,
4728 vcpu, ops);
4729
4730 if (rc != X86EMUL_CONTINUE)
4731 return rc;
4732 addr += now;
4733 if (ctxt->mode != X86EMUL_MODE_PROT64)
4734 addr = (u32)addr;
4735 val += now;
4736 bytes -= now;
4737 }
4738
4739 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4740 vcpu, ops);
4741 if (rc != X86EMUL_CONTINUE)
4742 return rc;
4743
4744 if (!vcpu->mmio_nr_fragments)
4745 return rc;
4746
4747 gpa = vcpu->mmio_fragments[0].gpa;
4748
4749 vcpu->mmio_needed = 1;
4750 vcpu->mmio_cur_fragment = 0;
4751
4752 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4753 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4754 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4755 vcpu->run->mmio.phys_addr = gpa;
4756
4757 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4758 }
4759
4760 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4761 unsigned long addr,
4762 void *val,
4763 unsigned int bytes,
4764 struct x86_exception *exception)
4765 {
4766 return emulator_read_write(ctxt, addr, val, bytes,
4767 exception, &read_emultor);
4768 }
4769
4770 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4771 unsigned long addr,
4772 const void *val,
4773 unsigned int bytes,
4774 struct x86_exception *exception)
4775 {
4776 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4777 exception, &write_emultor);
4778 }
4779
4780 #define CMPXCHG_TYPE(t, ptr, old, new) \
4781 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4782
4783 #ifdef CONFIG_X86_64
4784 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4785 #else
4786 # define CMPXCHG64(ptr, old, new) \
4787 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4788 #endif
4789
4790 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4791 unsigned long addr,
4792 const void *old,
4793 const void *new,
4794 unsigned int bytes,
4795 struct x86_exception *exception)
4796 {
4797 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798 gpa_t gpa;
4799 struct page *page;
4800 char *kaddr;
4801 bool exchanged;
4802
4803 /* guests cmpxchg8b have to be emulated atomically */
4804 if (bytes > 8 || (bytes & (bytes - 1)))
4805 goto emul_write;
4806
4807 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4808
4809 if (gpa == UNMAPPED_GVA ||
4810 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4811 goto emul_write;
4812
4813 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4814 goto emul_write;
4815
4816 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4817 if (is_error_page(page))
4818 goto emul_write;
4819
4820 kaddr = kmap_atomic(page);
4821 kaddr += offset_in_page(gpa);
4822 switch (bytes) {
4823 case 1:
4824 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4825 break;
4826 case 2:
4827 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4828 break;
4829 case 4:
4830 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4831 break;
4832 case 8:
4833 exchanged = CMPXCHG64(kaddr, old, new);
4834 break;
4835 default:
4836 BUG();
4837 }
4838 kunmap_atomic(kaddr);
4839 kvm_release_page_dirty(page);
4840
4841 if (!exchanged)
4842 return X86EMUL_CMPXCHG_FAILED;
4843
4844 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4845 kvm_page_track_write(vcpu, gpa, new, bytes);
4846
4847 return X86EMUL_CONTINUE;
4848
4849 emul_write:
4850 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4851
4852 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4853 }
4854
4855 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4856 {
4857 int r = 0, i;
4858
4859 for (i = 0; i < vcpu->arch.pio.count; i++) {
4860 if (vcpu->arch.pio.in)
4861 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4862 vcpu->arch.pio.size, pd);
4863 else
4864 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4865 vcpu->arch.pio.port, vcpu->arch.pio.size,
4866 pd);
4867 if (r)
4868 break;
4869 pd += vcpu->arch.pio.size;
4870 }
4871 return r;
4872 }
4873
4874 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4875 unsigned short port, void *val,
4876 unsigned int count, bool in)
4877 {
4878 vcpu->arch.pio.port = port;
4879 vcpu->arch.pio.in = in;
4880 vcpu->arch.pio.count = count;
4881 vcpu->arch.pio.size = size;
4882
4883 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4884 vcpu->arch.pio.count = 0;
4885 return 1;
4886 }
4887
4888 vcpu->run->exit_reason = KVM_EXIT_IO;
4889 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4890 vcpu->run->io.size = size;
4891 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4892 vcpu->run->io.count = count;
4893 vcpu->run->io.port = port;
4894
4895 return 0;
4896 }
4897
4898 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4899 int size, unsigned short port, void *val,
4900 unsigned int count)
4901 {
4902 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4903 int ret;
4904
4905 if (vcpu->arch.pio.count)
4906 goto data_avail;
4907
4908 memset(vcpu->arch.pio_data, 0, size * count);
4909
4910 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4911 if (ret) {
4912 data_avail:
4913 memcpy(val, vcpu->arch.pio_data, size * count);
4914 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4915 vcpu->arch.pio.count = 0;
4916 return 1;
4917 }
4918
4919 return 0;
4920 }
4921
4922 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4923 int size, unsigned short port,
4924 const void *val, unsigned int count)
4925 {
4926 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4927
4928 memcpy(vcpu->arch.pio_data, val, size * count);
4929 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4930 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4931 }
4932
4933 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4934 {
4935 return kvm_x86_ops->get_segment_base(vcpu, seg);
4936 }
4937
4938 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4939 {
4940 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4941 }
4942
4943 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4944 {
4945 if (!need_emulate_wbinvd(vcpu))
4946 return X86EMUL_CONTINUE;
4947
4948 if (kvm_x86_ops->has_wbinvd_exit()) {
4949 int cpu = get_cpu();
4950
4951 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4952 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4953 wbinvd_ipi, NULL, 1);
4954 put_cpu();
4955 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4956 } else
4957 wbinvd();
4958 return X86EMUL_CONTINUE;
4959 }
4960
4961 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4962 {
4963 kvm_emulate_wbinvd_noskip(vcpu);
4964 return kvm_skip_emulated_instruction(vcpu);
4965 }
4966 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4967
4968
4969
4970 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4971 {
4972 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4973 }
4974
4975 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4976 unsigned long *dest)
4977 {
4978 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4979 }
4980
4981 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4982 unsigned long value)
4983 {
4984
4985 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4986 }
4987
4988 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4989 {
4990 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4991 }
4992
4993 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4994 {
4995 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4996 unsigned long value;
4997
4998 switch (cr) {
4999 case 0:
5000 value = kvm_read_cr0(vcpu);
5001 break;
5002 case 2:
5003 value = vcpu->arch.cr2;
5004 break;
5005 case 3:
5006 value = kvm_read_cr3(vcpu);
5007 break;
5008 case 4:
5009 value = kvm_read_cr4(vcpu);
5010 break;
5011 case 8:
5012 value = kvm_get_cr8(vcpu);
5013 break;
5014 default:
5015 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5016 return 0;
5017 }
5018
5019 return value;
5020 }
5021
5022 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5023 {
5024 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5025 int res = 0;
5026
5027 switch (cr) {
5028 case 0:
5029 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5030 break;
5031 case 2:
5032 vcpu->arch.cr2 = val;
5033 break;
5034 case 3:
5035 res = kvm_set_cr3(vcpu, val);
5036 break;
5037 case 4:
5038 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5039 break;
5040 case 8:
5041 res = kvm_set_cr8(vcpu, val);
5042 break;
5043 default:
5044 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5045 res = -1;
5046 }
5047
5048 return res;
5049 }
5050
5051 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5052 {
5053 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5054 }
5055
5056 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5057 {
5058 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5059 }
5060
5061 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5062 {
5063 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5064 }
5065
5066 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5067 {
5068 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5069 }
5070
5071 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5072 {
5073 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5074 }
5075
5076 static unsigned long emulator_get_cached_segment_base(
5077 struct x86_emulate_ctxt *ctxt, int seg)
5078 {
5079 return get_segment_base(emul_to_vcpu(ctxt), seg);
5080 }
5081
5082 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5083 struct desc_struct *desc, u32 *base3,
5084 int seg)
5085 {
5086 struct kvm_segment var;
5087
5088 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5089 *selector = var.selector;
5090
5091 if (var.unusable) {
5092 memset(desc, 0, sizeof(*desc));
5093 if (base3)
5094 *base3 = 0;
5095 return false;
5096 }
5097
5098 if (var.g)
5099 var.limit >>= 12;
5100 set_desc_limit(desc, var.limit);
5101 set_desc_base(desc, (unsigned long)var.base);
5102 #ifdef CONFIG_X86_64
5103 if (base3)
5104 *base3 = var.base >> 32;
5105 #endif
5106 desc->type = var.type;
5107 desc->s = var.s;
5108 desc->dpl = var.dpl;
5109 desc->p = var.present;
5110 desc->avl = var.avl;
5111 desc->l = var.l;
5112 desc->d = var.db;
5113 desc->g = var.g;
5114
5115 return true;
5116 }
5117
5118 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5119 struct desc_struct *desc, u32 base3,
5120 int seg)
5121 {
5122 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5123 struct kvm_segment var;
5124
5125 var.selector = selector;
5126 var.base = get_desc_base(desc);
5127 #ifdef CONFIG_X86_64
5128 var.base |= ((u64)base3) << 32;
5129 #endif
5130 var.limit = get_desc_limit(desc);
5131 if (desc->g)
5132 var.limit = (var.limit << 12) | 0xfff;
5133 var.type = desc->type;
5134 var.dpl = desc->dpl;
5135 var.db = desc->d;
5136 var.s = desc->s;
5137 var.l = desc->l;
5138 var.g = desc->g;
5139 var.avl = desc->avl;
5140 var.present = desc->p;
5141 var.unusable = !var.present;
5142 var.padding = 0;
5143
5144 kvm_set_segment(vcpu, &var, seg);
5145 return;
5146 }
5147
5148 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5149 u32 msr_index, u64 *pdata)
5150 {
5151 struct msr_data msr;
5152 int r;
5153
5154 msr.index = msr_index;
5155 msr.host_initiated = false;
5156 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5157 if (r)
5158 return r;
5159
5160 *pdata = msr.data;
5161 return 0;
5162 }
5163
5164 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5165 u32 msr_index, u64 data)
5166 {
5167 struct msr_data msr;
5168
5169 msr.data = data;
5170 msr.index = msr_index;
5171 msr.host_initiated = false;
5172 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5173 }
5174
5175 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5176 {
5177 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5178
5179 return vcpu->arch.smbase;
5180 }
5181
5182 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5183 {
5184 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5185
5186 vcpu->arch.smbase = smbase;
5187 }
5188
5189 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5190 u32 pmc)
5191 {
5192 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5193 }
5194
5195 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5196 u32 pmc, u64 *pdata)
5197 {
5198 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5199 }
5200
5201 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5202 {
5203 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5204 }
5205
5206 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5207 {
5208 preempt_disable();
5209 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5210 }
5211
5212 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5213 {
5214 preempt_enable();
5215 }
5216
5217 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5218 struct x86_instruction_info *info,
5219 enum x86_intercept_stage stage)
5220 {
5221 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5222 }
5223
5224 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5225 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5226 {
5227 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5228 }
5229
5230 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5231 {
5232 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5233 }
5234
5235 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5236 {
5237 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5238 }
5239
5240 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5241 {
5242 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5243 }
5244
5245 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5246 {
5247 return emul_to_vcpu(ctxt)->arch.hflags;
5248 }
5249
5250 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5251 {
5252 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5253 }
5254
5255 static const struct x86_emulate_ops emulate_ops = {
5256 .read_gpr = emulator_read_gpr,
5257 .write_gpr = emulator_write_gpr,
5258 .read_std = kvm_read_guest_virt_system,
5259 .write_std = kvm_write_guest_virt_system,
5260 .read_phys = kvm_read_guest_phys_system,
5261 .fetch = kvm_fetch_guest_virt,
5262 .read_emulated = emulator_read_emulated,
5263 .write_emulated = emulator_write_emulated,
5264 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5265 .invlpg = emulator_invlpg,
5266 .pio_in_emulated = emulator_pio_in_emulated,
5267 .pio_out_emulated = emulator_pio_out_emulated,
5268 .get_segment = emulator_get_segment,
5269 .set_segment = emulator_set_segment,
5270 .get_cached_segment_base = emulator_get_cached_segment_base,
5271 .get_gdt = emulator_get_gdt,
5272 .get_idt = emulator_get_idt,
5273 .set_gdt = emulator_set_gdt,
5274 .set_idt = emulator_set_idt,
5275 .get_cr = emulator_get_cr,
5276 .set_cr = emulator_set_cr,
5277 .cpl = emulator_get_cpl,
5278 .get_dr = emulator_get_dr,
5279 .set_dr = emulator_set_dr,
5280 .get_smbase = emulator_get_smbase,
5281 .set_smbase = emulator_set_smbase,
5282 .set_msr = emulator_set_msr,
5283 .get_msr = emulator_get_msr,
5284 .check_pmc = emulator_check_pmc,
5285 .read_pmc = emulator_read_pmc,
5286 .halt = emulator_halt,
5287 .wbinvd = emulator_wbinvd,
5288 .fix_hypercall = emulator_fix_hypercall,
5289 .get_fpu = emulator_get_fpu,
5290 .put_fpu = emulator_put_fpu,
5291 .intercept = emulator_intercept,
5292 .get_cpuid = emulator_get_cpuid,
5293 .set_nmi_mask = emulator_set_nmi_mask,
5294 .get_hflags = emulator_get_hflags,
5295 .set_hflags = emulator_set_hflags,
5296 };
5297
5298 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5299 {
5300 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5301 /*
5302 * an sti; sti; sequence only disable interrupts for the first
5303 * instruction. So, if the last instruction, be it emulated or
5304 * not, left the system with the INT_STI flag enabled, it
5305 * means that the last instruction is an sti. We should not
5306 * leave the flag on in this case. The same goes for mov ss
5307 */
5308 if (int_shadow & mask)
5309 mask = 0;
5310 if (unlikely(int_shadow || mask)) {
5311 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5312 if (!mask)
5313 kvm_make_request(KVM_REQ_EVENT, vcpu);
5314 }
5315 }
5316
5317 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5318 {
5319 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5320 if (ctxt->exception.vector == PF_VECTOR)
5321 return kvm_propagate_fault(vcpu, &ctxt->exception);
5322
5323 if (ctxt->exception.error_code_valid)
5324 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5325 ctxt->exception.error_code);
5326 else
5327 kvm_queue_exception(vcpu, ctxt->exception.vector);
5328 return false;
5329 }
5330
5331 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5332 {
5333 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5334 int cs_db, cs_l;
5335
5336 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5337
5338 ctxt->eflags = kvm_get_rflags(vcpu);
5339 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5340
5341 ctxt->eip = kvm_rip_read(vcpu);
5342 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5343 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5344 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5345 cs_db ? X86EMUL_MODE_PROT32 :
5346 X86EMUL_MODE_PROT16;
5347 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5348 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5349 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5350
5351 init_decode_cache(ctxt);
5352 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5353 }
5354
5355 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5356 {
5357 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5358 int ret;
5359
5360 init_emulate_ctxt(vcpu);
5361
5362 ctxt->op_bytes = 2;
5363 ctxt->ad_bytes = 2;
5364 ctxt->_eip = ctxt->eip + inc_eip;
5365 ret = emulate_int_real(ctxt, irq);
5366
5367 if (ret != X86EMUL_CONTINUE)
5368 return EMULATE_FAIL;
5369
5370 ctxt->eip = ctxt->_eip;
5371 kvm_rip_write(vcpu, ctxt->eip);
5372 kvm_set_rflags(vcpu, ctxt->eflags);
5373
5374 if (irq == NMI_VECTOR)
5375 vcpu->arch.nmi_pending = 0;
5376 else
5377 vcpu->arch.interrupt.pending = false;
5378
5379 return EMULATE_DONE;
5380 }
5381 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5382
5383 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5384 {
5385 int r = EMULATE_DONE;
5386
5387 ++vcpu->stat.insn_emulation_fail;
5388 trace_kvm_emulate_insn_failed(vcpu);
5389 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5390 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5391 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5392 vcpu->run->internal.ndata = 0;
5393 r = EMULATE_FAIL;
5394 }
5395 kvm_queue_exception(vcpu, UD_VECTOR);
5396
5397 return r;
5398 }
5399
5400 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5401 bool write_fault_to_shadow_pgtable,
5402 int emulation_type)
5403 {
5404 gpa_t gpa = cr2;
5405 kvm_pfn_t pfn;
5406
5407 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5408 return false;
5409
5410 if (!vcpu->arch.mmu.direct_map) {
5411 /*
5412 * Write permission should be allowed since only
5413 * write access need to be emulated.
5414 */
5415 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5416
5417 /*
5418 * If the mapping is invalid in guest, let cpu retry
5419 * it to generate fault.
5420 */
5421 if (gpa == UNMAPPED_GVA)
5422 return true;
5423 }
5424
5425 /*
5426 * Do not retry the unhandleable instruction if it faults on the
5427 * readonly host memory, otherwise it will goto a infinite loop:
5428 * retry instruction -> write #PF -> emulation fail -> retry
5429 * instruction -> ...
5430 */
5431 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5432
5433 /*
5434 * If the instruction failed on the error pfn, it can not be fixed,
5435 * report the error to userspace.
5436 */
5437 if (is_error_noslot_pfn(pfn))
5438 return false;
5439
5440 kvm_release_pfn_clean(pfn);
5441
5442 /* The instructions are well-emulated on direct mmu. */
5443 if (vcpu->arch.mmu.direct_map) {
5444 unsigned int indirect_shadow_pages;
5445
5446 spin_lock(&vcpu->kvm->mmu_lock);
5447 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5448 spin_unlock(&vcpu->kvm->mmu_lock);
5449
5450 if (indirect_shadow_pages)
5451 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5452
5453 return true;
5454 }
5455
5456 /*
5457 * if emulation was due to access to shadowed page table
5458 * and it failed try to unshadow page and re-enter the
5459 * guest to let CPU execute the instruction.
5460 */
5461 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5462
5463 /*
5464 * If the access faults on its page table, it can not
5465 * be fixed by unprotecting shadow page and it should
5466 * be reported to userspace.
5467 */
5468 return !write_fault_to_shadow_pgtable;
5469 }
5470
5471 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5472 unsigned long cr2, int emulation_type)
5473 {
5474 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5475 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5476
5477 last_retry_eip = vcpu->arch.last_retry_eip;
5478 last_retry_addr = vcpu->arch.last_retry_addr;
5479
5480 /*
5481 * If the emulation is caused by #PF and it is non-page_table
5482 * writing instruction, it means the VM-EXIT is caused by shadow
5483 * page protected, we can zap the shadow page and retry this
5484 * instruction directly.
5485 *
5486 * Note: if the guest uses a non-page-table modifying instruction
5487 * on the PDE that points to the instruction, then we will unmap
5488 * the instruction and go to an infinite loop. So, we cache the
5489 * last retried eip and the last fault address, if we meet the eip
5490 * and the address again, we can break out of the potential infinite
5491 * loop.
5492 */
5493 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5494
5495 if (!(emulation_type & EMULTYPE_RETRY))
5496 return false;
5497
5498 if (x86_page_table_writing_insn(ctxt))
5499 return false;
5500
5501 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5502 return false;
5503
5504 vcpu->arch.last_retry_eip = ctxt->eip;
5505 vcpu->arch.last_retry_addr = cr2;
5506
5507 if (!vcpu->arch.mmu.direct_map)
5508 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5509
5510 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5511
5512 return true;
5513 }
5514
5515 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5516 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5517
5518 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5519 {
5520 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5521 /* This is a good place to trace that we are exiting SMM. */
5522 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5523
5524 /* Process a latched INIT or SMI, if any. */
5525 kvm_make_request(KVM_REQ_EVENT, vcpu);
5526 }
5527
5528 kvm_mmu_reset_context(vcpu);
5529 }
5530
5531 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5532 {
5533 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5534
5535 vcpu->arch.hflags = emul_flags;
5536
5537 if (changed & HF_SMM_MASK)
5538 kvm_smm_changed(vcpu);
5539 }
5540
5541 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5542 unsigned long *db)
5543 {
5544 u32 dr6 = 0;
5545 int i;
5546 u32 enable, rwlen;
5547
5548 enable = dr7;
5549 rwlen = dr7 >> 16;
5550 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5551 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5552 dr6 |= (1 << i);
5553 return dr6;
5554 }
5555
5556 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5557 {
5558 struct kvm_run *kvm_run = vcpu->run;
5559
5560 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5561 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5562 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5563 kvm_run->debug.arch.exception = DB_VECTOR;
5564 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5565 *r = EMULATE_USER_EXIT;
5566 } else {
5567 /*
5568 * "Certain debug exceptions may clear bit 0-3. The
5569 * remaining contents of the DR6 register are never
5570 * cleared by the processor".
5571 */
5572 vcpu->arch.dr6 &= ~15;
5573 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5574 kvm_queue_exception(vcpu, DB_VECTOR);
5575 }
5576 }
5577
5578 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5579 {
5580 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5581 int r = EMULATE_DONE;
5582
5583 kvm_x86_ops->skip_emulated_instruction(vcpu);
5584
5585 /*
5586 * rflags is the old, "raw" value of the flags. The new value has
5587 * not been saved yet.
5588 *
5589 * This is correct even for TF set by the guest, because "the
5590 * processor will not generate this exception after the instruction
5591 * that sets the TF flag".
5592 */
5593 if (unlikely(rflags & X86_EFLAGS_TF))
5594 kvm_vcpu_do_singlestep(vcpu, &r);
5595 return r == EMULATE_DONE;
5596 }
5597 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5598
5599 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5600 {
5601 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5602 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5603 struct kvm_run *kvm_run = vcpu->run;
5604 unsigned long eip = kvm_get_linear_rip(vcpu);
5605 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5606 vcpu->arch.guest_debug_dr7,
5607 vcpu->arch.eff_db);
5608
5609 if (dr6 != 0) {
5610 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5611 kvm_run->debug.arch.pc = eip;
5612 kvm_run->debug.arch.exception = DB_VECTOR;
5613 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5614 *r = EMULATE_USER_EXIT;
5615 return true;
5616 }
5617 }
5618
5619 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5620 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5621 unsigned long eip = kvm_get_linear_rip(vcpu);
5622 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5623 vcpu->arch.dr7,
5624 vcpu->arch.db);
5625
5626 if (dr6 != 0) {
5627 vcpu->arch.dr6 &= ~15;
5628 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5629 kvm_queue_exception(vcpu, DB_VECTOR);
5630 *r = EMULATE_DONE;
5631 return true;
5632 }
5633 }
5634
5635 return false;
5636 }
5637
5638 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5639 unsigned long cr2,
5640 int emulation_type,
5641 void *insn,
5642 int insn_len)
5643 {
5644 int r;
5645 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5646 bool writeback = true;
5647 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5648
5649 /*
5650 * Clear write_fault_to_shadow_pgtable here to ensure it is
5651 * never reused.
5652 */
5653 vcpu->arch.write_fault_to_shadow_pgtable = false;
5654 kvm_clear_exception_queue(vcpu);
5655
5656 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5657 init_emulate_ctxt(vcpu);
5658
5659 /*
5660 * We will reenter on the same instruction since
5661 * we do not set complete_userspace_io. This does not
5662 * handle watchpoints yet, those would be handled in
5663 * the emulate_ops.
5664 */
5665 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5666 return r;
5667
5668 ctxt->interruptibility = 0;
5669 ctxt->have_exception = false;
5670 ctxt->exception.vector = -1;
5671 ctxt->perm_ok = false;
5672
5673 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5674
5675 r = x86_decode_insn(ctxt, insn, insn_len);
5676
5677 trace_kvm_emulate_insn_start(vcpu);
5678 ++vcpu->stat.insn_emulation;
5679 if (r != EMULATION_OK) {
5680 if (emulation_type & EMULTYPE_TRAP_UD)
5681 return EMULATE_FAIL;
5682 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5683 emulation_type))
5684 return EMULATE_DONE;
5685 if (emulation_type & EMULTYPE_SKIP)
5686 return EMULATE_FAIL;
5687 return handle_emulation_failure(vcpu);
5688 }
5689 }
5690
5691 if (emulation_type & EMULTYPE_SKIP) {
5692 kvm_rip_write(vcpu, ctxt->_eip);
5693 if (ctxt->eflags & X86_EFLAGS_RF)
5694 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5695 return EMULATE_DONE;
5696 }
5697
5698 if (retry_instruction(ctxt, cr2, emulation_type))
5699 return EMULATE_DONE;
5700
5701 /* this is needed for vmware backdoor interface to work since it
5702 changes registers values during IO operation */
5703 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5704 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5705 emulator_invalidate_register_cache(ctxt);
5706 }
5707
5708 restart:
5709 /* Save the faulting GPA (cr2) in the address field */
5710 ctxt->exception.address = cr2;
5711
5712 r = x86_emulate_insn(ctxt);
5713
5714 if (r == EMULATION_INTERCEPTED)
5715 return EMULATE_DONE;
5716
5717 if (r == EMULATION_FAILED) {
5718 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5719 emulation_type))
5720 return EMULATE_DONE;
5721
5722 return handle_emulation_failure(vcpu);
5723 }
5724
5725 if (ctxt->have_exception) {
5726 r = EMULATE_DONE;
5727 if (inject_emulated_exception(vcpu))
5728 return r;
5729 } else if (vcpu->arch.pio.count) {
5730 if (!vcpu->arch.pio.in) {
5731 /* FIXME: return into emulator if single-stepping. */
5732 vcpu->arch.pio.count = 0;
5733 } else {
5734 writeback = false;
5735 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5736 }
5737 r = EMULATE_USER_EXIT;
5738 } else if (vcpu->mmio_needed) {
5739 if (!vcpu->mmio_is_write)
5740 writeback = false;
5741 r = EMULATE_USER_EXIT;
5742 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5743 } else if (r == EMULATION_RESTART)
5744 goto restart;
5745 else
5746 r = EMULATE_DONE;
5747
5748 if (writeback) {
5749 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5750 toggle_interruptibility(vcpu, ctxt->interruptibility);
5751 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5752 kvm_rip_write(vcpu, ctxt->eip);
5753 if (r == EMULATE_DONE &&
5754 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5755 kvm_vcpu_do_singlestep(vcpu, &r);
5756 if (!ctxt->have_exception ||
5757 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5758 __kvm_set_rflags(vcpu, ctxt->eflags);
5759
5760 /*
5761 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5762 * do nothing, and it will be requested again as soon as
5763 * the shadow expires. But we still need to check here,
5764 * because POPF has no interrupt shadow.
5765 */
5766 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5767 kvm_make_request(KVM_REQ_EVENT, vcpu);
5768 } else
5769 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5770
5771 return r;
5772 }
5773 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5774
5775 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5776 {
5777 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5778 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5779 size, port, &val, 1);
5780 /* do not return to emulator after return from userspace */
5781 vcpu->arch.pio.count = 0;
5782 return ret;
5783 }
5784 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5785
5786 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5787 {
5788 unsigned long val;
5789
5790 /* We should only ever be called with arch.pio.count equal to 1 */
5791 BUG_ON(vcpu->arch.pio.count != 1);
5792
5793 /* For size less than 4 we merge, else we zero extend */
5794 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5795 : 0;
5796
5797 /*
5798 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5799 * the copy and tracing
5800 */
5801 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5802 vcpu->arch.pio.port, &val, 1);
5803 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5804
5805 return 1;
5806 }
5807
5808 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5809 {
5810 unsigned long val;
5811 int ret;
5812
5813 /* For size less than 4 we merge, else we zero extend */
5814 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5815
5816 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5817 &val, 1);
5818 if (ret) {
5819 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5820 return ret;
5821 }
5822
5823 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5824
5825 return 0;
5826 }
5827 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5828
5829 static int kvmclock_cpu_down_prep(unsigned int cpu)
5830 {
5831 __this_cpu_write(cpu_tsc_khz, 0);
5832 return 0;
5833 }
5834
5835 static void tsc_khz_changed(void *data)
5836 {
5837 struct cpufreq_freqs *freq = data;
5838 unsigned long khz = 0;
5839
5840 if (data)
5841 khz = freq->new;
5842 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5843 khz = cpufreq_quick_get(raw_smp_processor_id());
5844 if (!khz)
5845 khz = tsc_khz;
5846 __this_cpu_write(cpu_tsc_khz, khz);
5847 }
5848
5849 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5850 void *data)
5851 {
5852 struct cpufreq_freqs *freq = data;
5853 struct kvm *kvm;
5854 struct kvm_vcpu *vcpu;
5855 int i, send_ipi = 0;
5856
5857 /*
5858 * We allow guests to temporarily run on slowing clocks,
5859 * provided we notify them after, or to run on accelerating
5860 * clocks, provided we notify them before. Thus time never
5861 * goes backwards.
5862 *
5863 * However, we have a problem. We can't atomically update
5864 * the frequency of a given CPU from this function; it is
5865 * merely a notifier, which can be called from any CPU.
5866 * Changing the TSC frequency at arbitrary points in time
5867 * requires a recomputation of local variables related to
5868 * the TSC for each VCPU. We must flag these local variables
5869 * to be updated and be sure the update takes place with the
5870 * new frequency before any guests proceed.
5871 *
5872 * Unfortunately, the combination of hotplug CPU and frequency
5873 * change creates an intractable locking scenario; the order
5874 * of when these callouts happen is undefined with respect to
5875 * CPU hotplug, and they can race with each other. As such,
5876 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5877 * undefined; you can actually have a CPU frequency change take
5878 * place in between the computation of X and the setting of the
5879 * variable. To protect against this problem, all updates of
5880 * the per_cpu tsc_khz variable are done in an interrupt
5881 * protected IPI, and all callers wishing to update the value
5882 * must wait for a synchronous IPI to complete (which is trivial
5883 * if the caller is on the CPU already). This establishes the
5884 * necessary total order on variable updates.
5885 *
5886 * Note that because a guest time update may take place
5887 * anytime after the setting of the VCPU's request bit, the
5888 * correct TSC value must be set before the request. However,
5889 * to ensure the update actually makes it to any guest which
5890 * starts running in hardware virtualization between the set
5891 * and the acquisition of the spinlock, we must also ping the
5892 * CPU after setting the request bit.
5893 *
5894 */
5895
5896 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5897 return 0;
5898 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5899 return 0;
5900
5901 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5902
5903 spin_lock(&kvm_lock);
5904 list_for_each_entry(kvm, &vm_list, vm_list) {
5905 kvm_for_each_vcpu(i, vcpu, kvm) {
5906 if (vcpu->cpu != freq->cpu)
5907 continue;
5908 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5909 if (vcpu->cpu != smp_processor_id())
5910 send_ipi = 1;
5911 }
5912 }
5913 spin_unlock(&kvm_lock);
5914
5915 if (freq->old < freq->new && send_ipi) {
5916 /*
5917 * We upscale the frequency. Must make the guest
5918 * doesn't see old kvmclock values while running with
5919 * the new frequency, otherwise we risk the guest sees
5920 * time go backwards.
5921 *
5922 * In case we update the frequency for another cpu
5923 * (which might be in guest context) send an interrupt
5924 * to kick the cpu out of guest context. Next time
5925 * guest context is entered kvmclock will be updated,
5926 * so the guest will not see stale values.
5927 */
5928 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5929 }
5930 return 0;
5931 }
5932
5933 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5934 .notifier_call = kvmclock_cpufreq_notifier
5935 };
5936
5937 static int kvmclock_cpu_online(unsigned int cpu)
5938 {
5939 tsc_khz_changed(NULL);
5940 return 0;
5941 }
5942
5943 static void kvm_timer_init(void)
5944 {
5945 max_tsc_khz = tsc_khz;
5946
5947 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5948 #ifdef CONFIG_CPU_FREQ
5949 struct cpufreq_policy policy;
5950 int cpu;
5951
5952 memset(&policy, 0, sizeof(policy));
5953 cpu = get_cpu();
5954 cpufreq_get_policy(&policy, cpu);
5955 if (policy.cpuinfo.max_freq)
5956 max_tsc_khz = policy.cpuinfo.max_freq;
5957 put_cpu();
5958 #endif
5959 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5960 CPUFREQ_TRANSITION_NOTIFIER);
5961 }
5962 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5963
5964 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5965 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5966 }
5967
5968 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5969
5970 int kvm_is_in_guest(void)
5971 {
5972 return __this_cpu_read(current_vcpu) != NULL;
5973 }
5974
5975 static int kvm_is_user_mode(void)
5976 {
5977 int user_mode = 3;
5978
5979 if (__this_cpu_read(current_vcpu))
5980 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5981
5982 return user_mode != 0;
5983 }
5984
5985 static unsigned long kvm_get_guest_ip(void)
5986 {
5987 unsigned long ip = 0;
5988
5989 if (__this_cpu_read(current_vcpu))
5990 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5991
5992 return ip;
5993 }
5994
5995 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5996 .is_in_guest = kvm_is_in_guest,
5997 .is_user_mode = kvm_is_user_mode,
5998 .get_guest_ip = kvm_get_guest_ip,
5999 };
6000
6001 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6002 {
6003 __this_cpu_write(current_vcpu, vcpu);
6004 }
6005 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6006
6007 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6008 {
6009 __this_cpu_write(current_vcpu, NULL);
6010 }
6011 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6012
6013 static void kvm_set_mmio_spte_mask(void)
6014 {
6015 u64 mask;
6016 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6017
6018 /*
6019 * Set the reserved bits and the present bit of an paging-structure
6020 * entry to generate page fault with PFER.RSV = 1.
6021 */
6022 /* Mask the reserved physical address bits. */
6023 mask = rsvd_bits(maxphyaddr, 51);
6024
6025 /* Set the present bit. */
6026 mask |= 1ull;
6027
6028 #ifdef CONFIG_X86_64
6029 /*
6030 * If reserved bit is not supported, clear the present bit to disable
6031 * mmio page fault.
6032 */
6033 if (maxphyaddr == 52)
6034 mask &= ~1ull;
6035 #endif
6036
6037 kvm_mmu_set_mmio_spte_mask(mask, mask);
6038 }
6039
6040 #ifdef CONFIG_X86_64
6041 static void pvclock_gtod_update_fn(struct work_struct *work)
6042 {
6043 struct kvm *kvm;
6044
6045 struct kvm_vcpu *vcpu;
6046 int i;
6047
6048 spin_lock(&kvm_lock);
6049 list_for_each_entry(kvm, &vm_list, vm_list)
6050 kvm_for_each_vcpu(i, vcpu, kvm)
6051 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6052 atomic_set(&kvm_guest_has_master_clock, 0);
6053 spin_unlock(&kvm_lock);
6054 }
6055
6056 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6057
6058 /*
6059 * Notification about pvclock gtod data update.
6060 */
6061 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6062 void *priv)
6063 {
6064 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6065 struct timekeeper *tk = priv;
6066
6067 update_pvclock_gtod(tk);
6068
6069 /* disable master clock if host does not trust, or does not
6070 * use, TSC clocksource
6071 */
6072 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6073 atomic_read(&kvm_guest_has_master_clock) != 0)
6074 queue_work(system_long_wq, &pvclock_gtod_work);
6075
6076 return 0;
6077 }
6078
6079 static struct notifier_block pvclock_gtod_notifier = {
6080 .notifier_call = pvclock_gtod_notify,
6081 };
6082 #endif
6083
6084 int kvm_arch_init(void *opaque)
6085 {
6086 int r;
6087 struct kvm_x86_ops *ops = opaque;
6088
6089 if (kvm_x86_ops) {
6090 printk(KERN_ERR "kvm: already loaded the other module\n");
6091 r = -EEXIST;
6092 goto out;
6093 }
6094
6095 if (!ops->cpu_has_kvm_support()) {
6096 printk(KERN_ERR "kvm: no hardware support\n");
6097 r = -EOPNOTSUPP;
6098 goto out;
6099 }
6100 if (ops->disabled_by_bios()) {
6101 printk(KERN_WARNING "kvm: disabled by bios\n");
6102 r = -EOPNOTSUPP;
6103 goto out;
6104 }
6105
6106 r = -ENOMEM;
6107 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6108 if (!shared_msrs) {
6109 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6110 goto out;
6111 }
6112
6113 r = kvm_mmu_module_init();
6114 if (r)
6115 goto out_free_percpu;
6116
6117 kvm_set_mmio_spte_mask();
6118
6119 kvm_x86_ops = ops;
6120
6121 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6122 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6123 PT_PRESENT_MASK, 0);
6124 kvm_timer_init();
6125
6126 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6127
6128 if (boot_cpu_has(X86_FEATURE_XSAVE))
6129 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6130
6131 kvm_lapic_init();
6132 #ifdef CONFIG_X86_64
6133 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6134 #endif
6135
6136 return 0;
6137
6138 out_free_percpu:
6139 free_percpu(shared_msrs);
6140 out:
6141 return r;
6142 }
6143
6144 void kvm_arch_exit(void)
6145 {
6146 kvm_lapic_exit();
6147 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6148
6149 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6150 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6151 CPUFREQ_TRANSITION_NOTIFIER);
6152 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6153 #ifdef CONFIG_X86_64
6154 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6155 #endif
6156 kvm_x86_ops = NULL;
6157 kvm_mmu_module_exit();
6158 free_percpu(shared_msrs);
6159 }
6160
6161 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6162 {
6163 ++vcpu->stat.halt_exits;
6164 if (lapic_in_kernel(vcpu)) {
6165 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6166 return 1;
6167 } else {
6168 vcpu->run->exit_reason = KVM_EXIT_HLT;
6169 return 0;
6170 }
6171 }
6172 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6173
6174 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6175 {
6176 int ret = kvm_skip_emulated_instruction(vcpu);
6177 /*
6178 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6179 * KVM_EXIT_DEBUG here.
6180 */
6181 return kvm_vcpu_halt(vcpu) && ret;
6182 }
6183 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6184
6185 #ifdef CONFIG_X86_64
6186 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6187 unsigned long clock_type)
6188 {
6189 struct kvm_clock_pairing clock_pairing;
6190 struct timespec ts;
6191 u64 cycle;
6192 int ret;
6193
6194 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6195 return -KVM_EOPNOTSUPP;
6196
6197 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6198 return -KVM_EOPNOTSUPP;
6199
6200 clock_pairing.sec = ts.tv_sec;
6201 clock_pairing.nsec = ts.tv_nsec;
6202 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6203 clock_pairing.flags = 0;
6204
6205 ret = 0;
6206 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6207 sizeof(struct kvm_clock_pairing)))
6208 ret = -KVM_EFAULT;
6209
6210 return ret;
6211 }
6212 #endif
6213
6214 /*
6215 * kvm_pv_kick_cpu_op: Kick a vcpu.
6216 *
6217 * @apicid - apicid of vcpu to be kicked.
6218 */
6219 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6220 {
6221 struct kvm_lapic_irq lapic_irq;
6222
6223 lapic_irq.shorthand = 0;
6224 lapic_irq.dest_mode = 0;
6225 lapic_irq.level = 0;
6226 lapic_irq.dest_id = apicid;
6227 lapic_irq.msi_redir_hint = false;
6228
6229 lapic_irq.delivery_mode = APIC_DM_REMRD;
6230 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6231 }
6232
6233 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6234 {
6235 vcpu->arch.apicv_active = false;
6236 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6237 }
6238
6239 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6240 {
6241 unsigned long nr, a0, a1, a2, a3, ret;
6242 int op_64_bit, r;
6243
6244 r = kvm_skip_emulated_instruction(vcpu);
6245
6246 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6247 return kvm_hv_hypercall(vcpu);
6248
6249 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6250 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6251 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6252 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6253 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6254
6255 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6256
6257 op_64_bit = is_64_bit_mode(vcpu);
6258 if (!op_64_bit) {
6259 nr &= 0xFFFFFFFF;
6260 a0 &= 0xFFFFFFFF;
6261 a1 &= 0xFFFFFFFF;
6262 a2 &= 0xFFFFFFFF;
6263 a3 &= 0xFFFFFFFF;
6264 }
6265
6266 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6267 ret = -KVM_EPERM;
6268 goto out;
6269 }
6270
6271 switch (nr) {
6272 case KVM_HC_VAPIC_POLL_IRQ:
6273 ret = 0;
6274 break;
6275 case KVM_HC_KICK_CPU:
6276 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6277 ret = 0;
6278 break;
6279 #ifdef CONFIG_X86_64
6280 case KVM_HC_CLOCK_PAIRING:
6281 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6282 break;
6283 #endif
6284 default:
6285 ret = -KVM_ENOSYS;
6286 break;
6287 }
6288 out:
6289 if (!op_64_bit)
6290 ret = (u32)ret;
6291 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6292 ++vcpu->stat.hypercalls;
6293 return r;
6294 }
6295 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6296
6297 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6298 {
6299 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6300 char instruction[3];
6301 unsigned long rip = kvm_rip_read(vcpu);
6302
6303 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6304
6305 return emulator_write_emulated(ctxt, rip, instruction, 3,
6306 &ctxt->exception);
6307 }
6308
6309 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6310 {
6311 return vcpu->run->request_interrupt_window &&
6312 likely(!pic_in_kernel(vcpu->kvm));
6313 }
6314
6315 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6316 {
6317 struct kvm_run *kvm_run = vcpu->run;
6318
6319 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6320 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6321 kvm_run->cr8 = kvm_get_cr8(vcpu);
6322 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6323 kvm_run->ready_for_interrupt_injection =
6324 pic_in_kernel(vcpu->kvm) ||
6325 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6326 }
6327
6328 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6329 {
6330 int max_irr, tpr;
6331
6332 if (!kvm_x86_ops->update_cr8_intercept)
6333 return;
6334
6335 if (!lapic_in_kernel(vcpu))
6336 return;
6337
6338 if (vcpu->arch.apicv_active)
6339 return;
6340
6341 if (!vcpu->arch.apic->vapic_addr)
6342 max_irr = kvm_lapic_find_highest_irr(vcpu);
6343 else
6344 max_irr = -1;
6345
6346 if (max_irr != -1)
6347 max_irr >>= 4;
6348
6349 tpr = kvm_lapic_get_cr8(vcpu);
6350
6351 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6352 }
6353
6354 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6355 {
6356 int r;
6357
6358 /* try to reinject previous events if any */
6359 if (vcpu->arch.exception.pending) {
6360 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6361 vcpu->arch.exception.has_error_code,
6362 vcpu->arch.exception.error_code);
6363
6364 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6365 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6366 X86_EFLAGS_RF);
6367
6368 if (vcpu->arch.exception.nr == DB_VECTOR &&
6369 (vcpu->arch.dr7 & DR7_GD)) {
6370 vcpu->arch.dr7 &= ~DR7_GD;
6371 kvm_update_dr7(vcpu);
6372 }
6373
6374 kvm_x86_ops->queue_exception(vcpu);
6375 return 0;
6376 }
6377
6378 if (vcpu->arch.nmi_injected) {
6379 kvm_x86_ops->set_nmi(vcpu);
6380 return 0;
6381 }
6382
6383 if (vcpu->arch.interrupt.pending) {
6384 kvm_x86_ops->set_irq(vcpu);
6385 return 0;
6386 }
6387
6388 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6389 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6390 if (r != 0)
6391 return r;
6392 }
6393
6394 /* try to inject new event if pending */
6395 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6396 vcpu->arch.smi_pending = false;
6397 enter_smm(vcpu);
6398 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6399 --vcpu->arch.nmi_pending;
6400 vcpu->arch.nmi_injected = true;
6401 kvm_x86_ops->set_nmi(vcpu);
6402 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6403 /*
6404 * Because interrupts can be injected asynchronously, we are
6405 * calling check_nested_events again here to avoid a race condition.
6406 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6407 * proposal and current concerns. Perhaps we should be setting
6408 * KVM_REQ_EVENT only on certain events and not unconditionally?
6409 */
6410 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6411 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6412 if (r != 0)
6413 return r;
6414 }
6415 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6416 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6417 false);
6418 kvm_x86_ops->set_irq(vcpu);
6419 }
6420 }
6421
6422 return 0;
6423 }
6424
6425 static void process_nmi(struct kvm_vcpu *vcpu)
6426 {
6427 unsigned limit = 2;
6428
6429 /*
6430 * x86 is limited to one NMI running, and one NMI pending after it.
6431 * If an NMI is already in progress, limit further NMIs to just one.
6432 * Otherwise, allow two (and we'll inject the first one immediately).
6433 */
6434 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6435 limit = 1;
6436
6437 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6438 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6439 kvm_make_request(KVM_REQ_EVENT, vcpu);
6440 }
6441
6442 #define put_smstate(type, buf, offset, val) \
6443 *(type *)((buf) + (offset) - 0x7e00) = val
6444
6445 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6446 {
6447 u32 flags = 0;
6448 flags |= seg->g << 23;
6449 flags |= seg->db << 22;
6450 flags |= seg->l << 21;
6451 flags |= seg->avl << 20;
6452 flags |= seg->present << 15;
6453 flags |= seg->dpl << 13;
6454 flags |= seg->s << 12;
6455 flags |= seg->type << 8;
6456 return flags;
6457 }
6458
6459 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6460 {
6461 struct kvm_segment seg;
6462 int offset;
6463
6464 kvm_get_segment(vcpu, &seg, n);
6465 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6466
6467 if (n < 3)
6468 offset = 0x7f84 + n * 12;
6469 else
6470 offset = 0x7f2c + (n - 3) * 12;
6471
6472 put_smstate(u32, buf, offset + 8, seg.base);
6473 put_smstate(u32, buf, offset + 4, seg.limit);
6474 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6475 }
6476
6477 #ifdef CONFIG_X86_64
6478 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6479 {
6480 struct kvm_segment seg;
6481 int offset;
6482 u16 flags;
6483
6484 kvm_get_segment(vcpu, &seg, n);
6485 offset = 0x7e00 + n * 16;
6486
6487 flags = enter_smm_get_segment_flags(&seg) >> 8;
6488 put_smstate(u16, buf, offset, seg.selector);
6489 put_smstate(u16, buf, offset + 2, flags);
6490 put_smstate(u32, buf, offset + 4, seg.limit);
6491 put_smstate(u64, buf, offset + 8, seg.base);
6492 }
6493 #endif
6494
6495 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6496 {
6497 struct desc_ptr dt;
6498 struct kvm_segment seg;
6499 unsigned long val;
6500 int i;
6501
6502 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6503 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6504 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6505 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6506
6507 for (i = 0; i < 8; i++)
6508 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6509
6510 kvm_get_dr(vcpu, 6, &val);
6511 put_smstate(u32, buf, 0x7fcc, (u32)val);
6512 kvm_get_dr(vcpu, 7, &val);
6513 put_smstate(u32, buf, 0x7fc8, (u32)val);
6514
6515 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6516 put_smstate(u32, buf, 0x7fc4, seg.selector);
6517 put_smstate(u32, buf, 0x7f64, seg.base);
6518 put_smstate(u32, buf, 0x7f60, seg.limit);
6519 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6520
6521 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6522 put_smstate(u32, buf, 0x7fc0, seg.selector);
6523 put_smstate(u32, buf, 0x7f80, seg.base);
6524 put_smstate(u32, buf, 0x7f7c, seg.limit);
6525 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6526
6527 kvm_x86_ops->get_gdt(vcpu, &dt);
6528 put_smstate(u32, buf, 0x7f74, dt.address);
6529 put_smstate(u32, buf, 0x7f70, dt.size);
6530
6531 kvm_x86_ops->get_idt(vcpu, &dt);
6532 put_smstate(u32, buf, 0x7f58, dt.address);
6533 put_smstate(u32, buf, 0x7f54, dt.size);
6534
6535 for (i = 0; i < 6; i++)
6536 enter_smm_save_seg_32(vcpu, buf, i);
6537
6538 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6539
6540 /* revision id */
6541 put_smstate(u32, buf, 0x7efc, 0x00020000);
6542 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6543 }
6544
6545 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6546 {
6547 #ifdef CONFIG_X86_64
6548 struct desc_ptr dt;
6549 struct kvm_segment seg;
6550 unsigned long val;
6551 int i;
6552
6553 for (i = 0; i < 16; i++)
6554 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6555
6556 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6557 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6558
6559 kvm_get_dr(vcpu, 6, &val);
6560 put_smstate(u64, buf, 0x7f68, val);
6561 kvm_get_dr(vcpu, 7, &val);
6562 put_smstate(u64, buf, 0x7f60, val);
6563
6564 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6565 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6566 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6567
6568 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6569
6570 /* revision id */
6571 put_smstate(u32, buf, 0x7efc, 0x00020064);
6572
6573 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6574
6575 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6576 put_smstate(u16, buf, 0x7e90, seg.selector);
6577 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6578 put_smstate(u32, buf, 0x7e94, seg.limit);
6579 put_smstate(u64, buf, 0x7e98, seg.base);
6580
6581 kvm_x86_ops->get_idt(vcpu, &dt);
6582 put_smstate(u32, buf, 0x7e84, dt.size);
6583 put_smstate(u64, buf, 0x7e88, dt.address);
6584
6585 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6586 put_smstate(u16, buf, 0x7e70, seg.selector);
6587 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6588 put_smstate(u32, buf, 0x7e74, seg.limit);
6589 put_smstate(u64, buf, 0x7e78, seg.base);
6590
6591 kvm_x86_ops->get_gdt(vcpu, &dt);
6592 put_smstate(u32, buf, 0x7e64, dt.size);
6593 put_smstate(u64, buf, 0x7e68, dt.address);
6594
6595 for (i = 0; i < 6; i++)
6596 enter_smm_save_seg_64(vcpu, buf, i);
6597 #else
6598 WARN_ON_ONCE(1);
6599 #endif
6600 }
6601
6602 static void enter_smm(struct kvm_vcpu *vcpu)
6603 {
6604 struct kvm_segment cs, ds;
6605 struct desc_ptr dt;
6606 char buf[512];
6607 u32 cr0;
6608
6609 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6610 vcpu->arch.hflags |= HF_SMM_MASK;
6611 memset(buf, 0, 512);
6612 if (guest_cpuid_has_longmode(vcpu))
6613 enter_smm_save_state_64(vcpu, buf);
6614 else
6615 enter_smm_save_state_32(vcpu, buf);
6616
6617 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6618
6619 if (kvm_x86_ops->get_nmi_mask(vcpu))
6620 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6621 else
6622 kvm_x86_ops->set_nmi_mask(vcpu, true);
6623
6624 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6625 kvm_rip_write(vcpu, 0x8000);
6626
6627 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6628 kvm_x86_ops->set_cr0(vcpu, cr0);
6629 vcpu->arch.cr0 = cr0;
6630
6631 kvm_x86_ops->set_cr4(vcpu, 0);
6632
6633 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6634 dt.address = dt.size = 0;
6635 kvm_x86_ops->set_idt(vcpu, &dt);
6636
6637 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6638
6639 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6640 cs.base = vcpu->arch.smbase;
6641
6642 ds.selector = 0;
6643 ds.base = 0;
6644
6645 cs.limit = ds.limit = 0xffffffff;
6646 cs.type = ds.type = 0x3;
6647 cs.dpl = ds.dpl = 0;
6648 cs.db = ds.db = 0;
6649 cs.s = ds.s = 1;
6650 cs.l = ds.l = 0;
6651 cs.g = ds.g = 1;
6652 cs.avl = ds.avl = 0;
6653 cs.present = ds.present = 1;
6654 cs.unusable = ds.unusable = 0;
6655 cs.padding = ds.padding = 0;
6656
6657 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6658 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6659 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6660 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6661 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6662 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6663
6664 if (guest_cpuid_has_longmode(vcpu))
6665 kvm_x86_ops->set_efer(vcpu, 0);
6666
6667 kvm_update_cpuid(vcpu);
6668 kvm_mmu_reset_context(vcpu);
6669 }
6670
6671 static void process_smi(struct kvm_vcpu *vcpu)
6672 {
6673 vcpu->arch.smi_pending = true;
6674 kvm_make_request(KVM_REQ_EVENT, vcpu);
6675 }
6676
6677 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6678 {
6679 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6680 }
6681
6682 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6683 {
6684 u64 eoi_exit_bitmap[4];
6685
6686 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6687 return;
6688
6689 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6690
6691 if (irqchip_split(vcpu->kvm))
6692 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6693 else {
6694 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6695 kvm_x86_ops->sync_pir_to_irr(vcpu);
6696 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6697 }
6698 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6699 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6700 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6701 }
6702
6703 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6704 {
6705 ++vcpu->stat.tlb_flush;
6706 kvm_x86_ops->tlb_flush(vcpu);
6707 }
6708
6709 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6710 unsigned long start, unsigned long end)
6711 {
6712 unsigned long apic_address;
6713
6714 /*
6715 * The physical address of apic access page is stored in the VMCS.
6716 * Update it when it becomes invalid.
6717 */
6718 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6719 if (start <= apic_address && apic_address < end)
6720 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6721 }
6722
6723 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6724 {
6725 struct page *page = NULL;
6726
6727 if (!lapic_in_kernel(vcpu))
6728 return;
6729
6730 if (!kvm_x86_ops->set_apic_access_page_addr)
6731 return;
6732
6733 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6734 if (is_error_page(page))
6735 return;
6736 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6737
6738 /*
6739 * Do not pin apic access page in memory, the MMU notifier
6740 * will call us again if it is migrated or swapped out.
6741 */
6742 put_page(page);
6743 }
6744 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6745
6746 /*
6747 * Returns 1 to let vcpu_run() continue the guest execution loop without
6748 * exiting to the userspace. Otherwise, the value will be returned to the
6749 * userspace.
6750 */
6751 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6752 {
6753 int r;
6754 bool req_int_win =
6755 dm_request_for_irq_injection(vcpu) &&
6756 kvm_cpu_accept_dm_intr(vcpu);
6757
6758 bool req_immediate_exit = false;
6759
6760 if (kvm_request_pending(vcpu)) {
6761 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6762 kvm_mmu_unload(vcpu);
6763 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6764 __kvm_migrate_timers(vcpu);
6765 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6766 kvm_gen_update_masterclock(vcpu->kvm);
6767 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6768 kvm_gen_kvmclock_update(vcpu);
6769 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6770 r = kvm_guest_time_update(vcpu);
6771 if (unlikely(r))
6772 goto out;
6773 }
6774 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6775 kvm_mmu_sync_roots(vcpu);
6776 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6777 kvm_vcpu_flush_tlb(vcpu);
6778 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6779 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6780 r = 0;
6781 goto out;
6782 }
6783 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6784 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6785 r = 0;
6786 goto out;
6787 }
6788 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6789 /* Page is swapped out. Do synthetic halt */
6790 vcpu->arch.apf.halted = true;
6791 r = 1;
6792 goto out;
6793 }
6794 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6795 record_steal_time(vcpu);
6796 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6797 process_smi(vcpu);
6798 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6799 process_nmi(vcpu);
6800 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6801 kvm_pmu_handle_event(vcpu);
6802 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6803 kvm_pmu_deliver_pmi(vcpu);
6804 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6805 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6806 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6807 vcpu->arch.ioapic_handled_vectors)) {
6808 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6809 vcpu->run->eoi.vector =
6810 vcpu->arch.pending_ioapic_eoi;
6811 r = 0;
6812 goto out;
6813 }
6814 }
6815 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6816 vcpu_scan_ioapic(vcpu);
6817 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6818 kvm_vcpu_reload_apic_access_page(vcpu);
6819 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6820 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6821 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6822 r = 0;
6823 goto out;
6824 }
6825 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6826 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6827 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6828 r = 0;
6829 goto out;
6830 }
6831 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6832 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6833 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6834 r = 0;
6835 goto out;
6836 }
6837
6838 /*
6839 * KVM_REQ_HV_STIMER has to be processed after
6840 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6841 * depend on the guest clock being up-to-date
6842 */
6843 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6844 kvm_hv_process_stimers(vcpu);
6845 }
6846
6847 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6848 ++vcpu->stat.req_event;
6849 kvm_apic_accept_events(vcpu);
6850 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6851 r = 1;
6852 goto out;
6853 }
6854
6855 if (inject_pending_event(vcpu, req_int_win) != 0)
6856 req_immediate_exit = true;
6857 else {
6858 /* Enable NMI/IRQ window open exits if needed.
6859 *
6860 * SMIs have two cases: 1) they can be nested, and
6861 * then there is nothing to do here because RSM will
6862 * cause a vmexit anyway; 2) or the SMI can be pending
6863 * because inject_pending_event has completed the
6864 * injection of an IRQ or NMI from the previous vmexit,
6865 * and then we request an immediate exit to inject the SMI.
6866 */
6867 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6868 req_immediate_exit = true;
6869 if (vcpu->arch.nmi_pending)
6870 kvm_x86_ops->enable_nmi_window(vcpu);
6871 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6872 kvm_x86_ops->enable_irq_window(vcpu);
6873 }
6874
6875 if (kvm_lapic_enabled(vcpu)) {
6876 update_cr8_intercept(vcpu);
6877 kvm_lapic_sync_to_vapic(vcpu);
6878 }
6879 }
6880
6881 r = kvm_mmu_reload(vcpu);
6882 if (unlikely(r)) {
6883 goto cancel_injection;
6884 }
6885
6886 preempt_disable();
6887
6888 kvm_x86_ops->prepare_guest_switch(vcpu);
6889 kvm_load_guest_fpu(vcpu);
6890
6891 /*
6892 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6893 * IPI are then delayed after guest entry, which ensures that they
6894 * result in virtual interrupt delivery.
6895 */
6896 local_irq_disable();
6897 vcpu->mode = IN_GUEST_MODE;
6898
6899 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6900
6901 /*
6902 * 1) We should set ->mode before checking ->requests. Please see
6903 * the comment in kvm_vcpu_exiting_guest_mode().
6904 *
6905 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6906 * pairs with the memory barrier implicit in pi_test_and_set_on
6907 * (see vmx_deliver_posted_interrupt).
6908 *
6909 * 3) This also orders the write to mode from any reads to the page
6910 * tables done while the VCPU is running. Please see the comment
6911 * in kvm_flush_remote_tlbs.
6912 */
6913 smp_mb__after_srcu_read_unlock();
6914
6915 /*
6916 * This handles the case where a posted interrupt was
6917 * notified with kvm_vcpu_kick.
6918 */
6919 if (kvm_lapic_enabled(vcpu)) {
6920 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6921 kvm_x86_ops->sync_pir_to_irr(vcpu);
6922 }
6923
6924 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6925 || need_resched() || signal_pending(current)) {
6926 vcpu->mode = OUTSIDE_GUEST_MODE;
6927 smp_wmb();
6928 local_irq_enable();
6929 preempt_enable();
6930 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6931 r = 1;
6932 goto cancel_injection;
6933 }
6934
6935 kvm_load_guest_xcr0(vcpu);
6936
6937 if (req_immediate_exit) {
6938 kvm_make_request(KVM_REQ_EVENT, vcpu);
6939 smp_send_reschedule(vcpu->cpu);
6940 }
6941
6942 trace_kvm_entry(vcpu->vcpu_id);
6943 wait_lapic_expire(vcpu);
6944 guest_enter_irqoff();
6945
6946 if (unlikely(vcpu->arch.switch_db_regs)) {
6947 set_debugreg(0, 7);
6948 set_debugreg(vcpu->arch.eff_db[0], 0);
6949 set_debugreg(vcpu->arch.eff_db[1], 1);
6950 set_debugreg(vcpu->arch.eff_db[2], 2);
6951 set_debugreg(vcpu->arch.eff_db[3], 3);
6952 set_debugreg(vcpu->arch.dr6, 6);
6953 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6954 }
6955
6956 kvm_x86_ops->run(vcpu);
6957
6958 /*
6959 * Do this here before restoring debug registers on the host. And
6960 * since we do this before handling the vmexit, a DR access vmexit
6961 * can (a) read the correct value of the debug registers, (b) set
6962 * KVM_DEBUGREG_WONT_EXIT again.
6963 */
6964 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6965 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6966 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6967 kvm_update_dr0123(vcpu);
6968 kvm_update_dr6(vcpu);
6969 kvm_update_dr7(vcpu);
6970 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6971 }
6972
6973 /*
6974 * If the guest has used debug registers, at least dr7
6975 * will be disabled while returning to the host.
6976 * If we don't have active breakpoints in the host, we don't
6977 * care about the messed up debug address registers. But if
6978 * we have some of them active, restore the old state.
6979 */
6980 if (hw_breakpoint_active())
6981 hw_breakpoint_restore();
6982
6983 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6984
6985 vcpu->mode = OUTSIDE_GUEST_MODE;
6986 smp_wmb();
6987
6988 kvm_put_guest_xcr0(vcpu);
6989
6990 kvm_x86_ops->handle_external_intr(vcpu);
6991
6992 ++vcpu->stat.exits;
6993
6994 guest_exit_irqoff();
6995
6996 local_irq_enable();
6997 preempt_enable();
6998
6999 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7000
7001 /*
7002 * Profile KVM exit RIPs:
7003 */
7004 if (unlikely(prof_on == KVM_PROFILING)) {
7005 unsigned long rip = kvm_rip_read(vcpu);
7006 profile_hit(KVM_PROFILING, (void *)rip);
7007 }
7008
7009 if (unlikely(vcpu->arch.tsc_always_catchup))
7010 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7011
7012 if (vcpu->arch.apic_attention)
7013 kvm_lapic_sync_from_vapic(vcpu);
7014
7015 r = kvm_x86_ops->handle_exit(vcpu);
7016 return r;
7017
7018 cancel_injection:
7019 kvm_x86_ops->cancel_injection(vcpu);
7020 if (unlikely(vcpu->arch.apic_attention))
7021 kvm_lapic_sync_from_vapic(vcpu);
7022 out:
7023 return r;
7024 }
7025
7026 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7027 {
7028 if (!kvm_arch_vcpu_runnable(vcpu) &&
7029 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7030 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7031 kvm_vcpu_block(vcpu);
7032 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7033
7034 if (kvm_x86_ops->post_block)
7035 kvm_x86_ops->post_block(vcpu);
7036
7037 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7038 return 1;
7039 }
7040
7041 kvm_apic_accept_events(vcpu);
7042 switch(vcpu->arch.mp_state) {
7043 case KVM_MP_STATE_HALTED:
7044 vcpu->arch.pv.pv_unhalted = false;
7045 vcpu->arch.mp_state =
7046 KVM_MP_STATE_RUNNABLE;
7047 case KVM_MP_STATE_RUNNABLE:
7048 vcpu->arch.apf.halted = false;
7049 break;
7050 case KVM_MP_STATE_INIT_RECEIVED:
7051 break;
7052 default:
7053 return -EINTR;
7054 break;
7055 }
7056 return 1;
7057 }
7058
7059 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7060 {
7061 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7062 kvm_x86_ops->check_nested_events(vcpu, false);
7063
7064 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7065 !vcpu->arch.apf.halted);
7066 }
7067
7068 static int vcpu_run(struct kvm_vcpu *vcpu)
7069 {
7070 int r;
7071 struct kvm *kvm = vcpu->kvm;
7072
7073 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7074
7075 for (;;) {
7076 if (kvm_vcpu_running(vcpu)) {
7077 r = vcpu_enter_guest(vcpu);
7078 } else {
7079 r = vcpu_block(kvm, vcpu);
7080 }
7081
7082 if (r <= 0)
7083 break;
7084
7085 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7086 if (kvm_cpu_has_pending_timer(vcpu))
7087 kvm_inject_pending_timer_irqs(vcpu);
7088
7089 if (dm_request_for_irq_injection(vcpu) &&
7090 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7091 r = 0;
7092 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7093 ++vcpu->stat.request_irq_exits;
7094 break;
7095 }
7096
7097 kvm_check_async_pf_completion(vcpu);
7098
7099 if (signal_pending(current)) {
7100 r = -EINTR;
7101 vcpu->run->exit_reason = KVM_EXIT_INTR;
7102 ++vcpu->stat.signal_exits;
7103 break;
7104 }
7105 if (need_resched()) {
7106 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7107 cond_resched();
7108 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7109 }
7110 }
7111
7112 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7113
7114 return r;
7115 }
7116
7117 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7118 {
7119 int r;
7120 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7121 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7122 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7123 if (r != EMULATE_DONE)
7124 return 0;
7125 return 1;
7126 }
7127
7128 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7129 {
7130 BUG_ON(!vcpu->arch.pio.count);
7131
7132 return complete_emulated_io(vcpu);
7133 }
7134
7135 /*
7136 * Implements the following, as a state machine:
7137 *
7138 * read:
7139 * for each fragment
7140 * for each mmio piece in the fragment
7141 * write gpa, len
7142 * exit
7143 * copy data
7144 * execute insn
7145 *
7146 * write:
7147 * for each fragment
7148 * for each mmio piece in the fragment
7149 * write gpa, len
7150 * copy data
7151 * exit
7152 */
7153 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7154 {
7155 struct kvm_run *run = vcpu->run;
7156 struct kvm_mmio_fragment *frag;
7157 unsigned len;
7158
7159 BUG_ON(!vcpu->mmio_needed);
7160
7161 /* Complete previous fragment */
7162 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7163 len = min(8u, frag->len);
7164 if (!vcpu->mmio_is_write)
7165 memcpy(frag->data, run->mmio.data, len);
7166
7167 if (frag->len <= 8) {
7168 /* Switch to the next fragment. */
7169 frag++;
7170 vcpu->mmio_cur_fragment++;
7171 } else {
7172 /* Go forward to the next mmio piece. */
7173 frag->data += len;
7174 frag->gpa += len;
7175 frag->len -= len;
7176 }
7177
7178 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7179 vcpu->mmio_needed = 0;
7180
7181 /* FIXME: return into emulator if single-stepping. */
7182 if (vcpu->mmio_is_write)
7183 return 1;
7184 vcpu->mmio_read_completed = 1;
7185 return complete_emulated_io(vcpu);
7186 }
7187
7188 run->exit_reason = KVM_EXIT_MMIO;
7189 run->mmio.phys_addr = frag->gpa;
7190 if (vcpu->mmio_is_write)
7191 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7192 run->mmio.len = min(8u, frag->len);
7193 run->mmio.is_write = vcpu->mmio_is_write;
7194 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7195 return 0;
7196 }
7197
7198
7199 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7200 {
7201 struct fpu *fpu = &current->thread.fpu;
7202 int r;
7203 sigset_t sigsaved;
7204
7205 fpu__activate_curr(fpu);
7206
7207 if (vcpu->sigset_active)
7208 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7209
7210 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7211 kvm_vcpu_block(vcpu);
7212 kvm_apic_accept_events(vcpu);
7213 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7214 r = -EAGAIN;
7215 goto out;
7216 }
7217
7218 /* re-sync apic's tpr */
7219 if (!lapic_in_kernel(vcpu)) {
7220 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7221 r = -EINVAL;
7222 goto out;
7223 }
7224 }
7225
7226 if (unlikely(vcpu->arch.complete_userspace_io)) {
7227 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7228 vcpu->arch.complete_userspace_io = NULL;
7229 r = cui(vcpu);
7230 if (r <= 0)
7231 goto out;
7232 } else
7233 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7234
7235 if (kvm_run->immediate_exit)
7236 r = -EINTR;
7237 else
7238 r = vcpu_run(vcpu);
7239
7240 out:
7241 post_kvm_run_save(vcpu);
7242 if (vcpu->sigset_active)
7243 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7244
7245 return r;
7246 }
7247
7248 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7249 {
7250 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7251 /*
7252 * We are here if userspace calls get_regs() in the middle of
7253 * instruction emulation. Registers state needs to be copied
7254 * back from emulation context to vcpu. Userspace shouldn't do
7255 * that usually, but some bad designed PV devices (vmware
7256 * backdoor interface) need this to work
7257 */
7258 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7259 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7260 }
7261 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7262 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7263 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7264 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7265 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7266 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7267 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7268 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7269 #ifdef CONFIG_X86_64
7270 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7271 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7272 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7273 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7274 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7275 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7276 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7277 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7278 #endif
7279
7280 regs->rip = kvm_rip_read(vcpu);
7281 regs->rflags = kvm_get_rflags(vcpu);
7282
7283 return 0;
7284 }
7285
7286 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7287 {
7288 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7289 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7290
7291 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7292 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7293 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7294 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7295 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7296 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7297 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7298 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7299 #ifdef CONFIG_X86_64
7300 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7301 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7302 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7303 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7304 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7305 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7306 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7307 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7308 #endif
7309
7310 kvm_rip_write(vcpu, regs->rip);
7311 kvm_set_rflags(vcpu, regs->rflags);
7312
7313 vcpu->arch.exception.pending = false;
7314
7315 kvm_make_request(KVM_REQ_EVENT, vcpu);
7316
7317 return 0;
7318 }
7319
7320 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7321 {
7322 struct kvm_segment cs;
7323
7324 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7325 *db = cs.db;
7326 *l = cs.l;
7327 }
7328 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7329
7330 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7331 struct kvm_sregs *sregs)
7332 {
7333 struct desc_ptr dt;
7334
7335 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7336 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7337 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7338 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7339 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7340 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7341
7342 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7343 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7344
7345 kvm_x86_ops->get_idt(vcpu, &dt);
7346 sregs->idt.limit = dt.size;
7347 sregs->idt.base = dt.address;
7348 kvm_x86_ops->get_gdt(vcpu, &dt);
7349 sregs->gdt.limit = dt.size;
7350 sregs->gdt.base = dt.address;
7351
7352 sregs->cr0 = kvm_read_cr0(vcpu);
7353 sregs->cr2 = vcpu->arch.cr2;
7354 sregs->cr3 = kvm_read_cr3(vcpu);
7355 sregs->cr4 = kvm_read_cr4(vcpu);
7356 sregs->cr8 = kvm_get_cr8(vcpu);
7357 sregs->efer = vcpu->arch.efer;
7358 sregs->apic_base = kvm_get_apic_base(vcpu);
7359
7360 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7361
7362 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7363 set_bit(vcpu->arch.interrupt.nr,
7364 (unsigned long *)sregs->interrupt_bitmap);
7365
7366 return 0;
7367 }
7368
7369 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7370 struct kvm_mp_state *mp_state)
7371 {
7372 kvm_apic_accept_events(vcpu);
7373 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7374 vcpu->arch.pv.pv_unhalted)
7375 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7376 else
7377 mp_state->mp_state = vcpu->arch.mp_state;
7378
7379 return 0;
7380 }
7381
7382 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7383 struct kvm_mp_state *mp_state)
7384 {
7385 if (!lapic_in_kernel(vcpu) &&
7386 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7387 return -EINVAL;
7388
7389 /* INITs are latched while in SMM */
7390 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7391 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7392 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7393 return -EINVAL;
7394
7395 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7396 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7397 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7398 } else
7399 vcpu->arch.mp_state = mp_state->mp_state;
7400 kvm_make_request(KVM_REQ_EVENT, vcpu);
7401 return 0;
7402 }
7403
7404 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7405 int reason, bool has_error_code, u32 error_code)
7406 {
7407 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7408 int ret;
7409
7410 init_emulate_ctxt(vcpu);
7411
7412 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7413 has_error_code, error_code);
7414
7415 if (ret)
7416 return EMULATE_FAIL;
7417
7418 kvm_rip_write(vcpu, ctxt->eip);
7419 kvm_set_rflags(vcpu, ctxt->eflags);
7420 kvm_make_request(KVM_REQ_EVENT, vcpu);
7421 return EMULATE_DONE;
7422 }
7423 EXPORT_SYMBOL_GPL(kvm_task_switch);
7424
7425 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7426 struct kvm_sregs *sregs)
7427 {
7428 struct msr_data apic_base_msr;
7429 int mmu_reset_needed = 0;
7430 int pending_vec, max_bits, idx;
7431 struct desc_ptr dt;
7432
7433 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7434 return -EINVAL;
7435
7436 dt.size = sregs->idt.limit;
7437 dt.address = sregs->idt.base;
7438 kvm_x86_ops->set_idt(vcpu, &dt);
7439 dt.size = sregs->gdt.limit;
7440 dt.address = sregs->gdt.base;
7441 kvm_x86_ops->set_gdt(vcpu, &dt);
7442
7443 vcpu->arch.cr2 = sregs->cr2;
7444 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7445 vcpu->arch.cr3 = sregs->cr3;
7446 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7447
7448 kvm_set_cr8(vcpu, sregs->cr8);
7449
7450 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7451 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7452 apic_base_msr.data = sregs->apic_base;
7453 apic_base_msr.host_initiated = true;
7454 kvm_set_apic_base(vcpu, &apic_base_msr);
7455
7456 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7457 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7458 vcpu->arch.cr0 = sregs->cr0;
7459
7460 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7461 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7462 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7463 kvm_update_cpuid(vcpu);
7464
7465 idx = srcu_read_lock(&vcpu->kvm->srcu);
7466 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7467 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7468 mmu_reset_needed = 1;
7469 }
7470 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7471
7472 if (mmu_reset_needed)
7473 kvm_mmu_reset_context(vcpu);
7474
7475 max_bits = KVM_NR_INTERRUPTS;
7476 pending_vec = find_first_bit(
7477 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7478 if (pending_vec < max_bits) {
7479 kvm_queue_interrupt(vcpu, pending_vec, false);
7480 pr_debug("Set back pending irq %d\n", pending_vec);
7481 }
7482
7483 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7484 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7485 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7486 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7487 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7488 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7489
7490 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7491 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7492
7493 update_cr8_intercept(vcpu);
7494
7495 /* Older userspace won't unhalt the vcpu on reset. */
7496 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7497 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7498 !is_protmode(vcpu))
7499 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7500
7501 kvm_make_request(KVM_REQ_EVENT, vcpu);
7502
7503 return 0;
7504 }
7505
7506 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7507 struct kvm_guest_debug *dbg)
7508 {
7509 unsigned long rflags;
7510 int i, r;
7511
7512 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7513 r = -EBUSY;
7514 if (vcpu->arch.exception.pending)
7515 goto out;
7516 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7517 kvm_queue_exception(vcpu, DB_VECTOR);
7518 else
7519 kvm_queue_exception(vcpu, BP_VECTOR);
7520 }
7521
7522 /*
7523 * Read rflags as long as potentially injected trace flags are still
7524 * filtered out.
7525 */
7526 rflags = kvm_get_rflags(vcpu);
7527
7528 vcpu->guest_debug = dbg->control;
7529 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7530 vcpu->guest_debug = 0;
7531
7532 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7533 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7534 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7535 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7536 } else {
7537 for (i = 0; i < KVM_NR_DB_REGS; i++)
7538 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7539 }
7540 kvm_update_dr7(vcpu);
7541
7542 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7543 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7544 get_segment_base(vcpu, VCPU_SREG_CS);
7545
7546 /*
7547 * Trigger an rflags update that will inject or remove the trace
7548 * flags.
7549 */
7550 kvm_set_rflags(vcpu, rflags);
7551
7552 kvm_x86_ops->update_bp_intercept(vcpu);
7553
7554 r = 0;
7555
7556 out:
7557
7558 return r;
7559 }
7560
7561 /*
7562 * Translate a guest virtual address to a guest physical address.
7563 */
7564 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7565 struct kvm_translation *tr)
7566 {
7567 unsigned long vaddr = tr->linear_address;
7568 gpa_t gpa;
7569 int idx;
7570
7571 idx = srcu_read_lock(&vcpu->kvm->srcu);
7572 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7573 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7574 tr->physical_address = gpa;
7575 tr->valid = gpa != UNMAPPED_GVA;
7576 tr->writeable = 1;
7577 tr->usermode = 0;
7578
7579 return 0;
7580 }
7581
7582 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7583 {
7584 struct fxregs_state *fxsave =
7585 &vcpu->arch.guest_fpu.state.fxsave;
7586
7587 memcpy(fpu->fpr, fxsave->st_space, 128);
7588 fpu->fcw = fxsave->cwd;
7589 fpu->fsw = fxsave->swd;
7590 fpu->ftwx = fxsave->twd;
7591 fpu->last_opcode = fxsave->fop;
7592 fpu->last_ip = fxsave->rip;
7593 fpu->last_dp = fxsave->rdp;
7594 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7595
7596 return 0;
7597 }
7598
7599 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7600 {
7601 struct fxregs_state *fxsave =
7602 &vcpu->arch.guest_fpu.state.fxsave;
7603
7604 memcpy(fxsave->st_space, fpu->fpr, 128);
7605 fxsave->cwd = fpu->fcw;
7606 fxsave->swd = fpu->fsw;
7607 fxsave->twd = fpu->ftwx;
7608 fxsave->fop = fpu->last_opcode;
7609 fxsave->rip = fpu->last_ip;
7610 fxsave->rdp = fpu->last_dp;
7611 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7612
7613 return 0;
7614 }
7615
7616 static void fx_init(struct kvm_vcpu *vcpu)
7617 {
7618 fpstate_init(&vcpu->arch.guest_fpu.state);
7619 if (boot_cpu_has(X86_FEATURE_XSAVES))
7620 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7621 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7622
7623 /*
7624 * Ensure guest xcr0 is valid for loading
7625 */
7626 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7627
7628 vcpu->arch.cr0 |= X86_CR0_ET;
7629 }
7630
7631 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7632 {
7633 if (vcpu->guest_fpu_loaded)
7634 return;
7635
7636 /*
7637 * Restore all possible states in the guest,
7638 * and assume host would use all available bits.
7639 * Guest xcr0 would be loaded later.
7640 */
7641 vcpu->guest_fpu_loaded = 1;
7642 __kernel_fpu_begin();
7643 /* PKRU is separately restored in kvm_x86_ops->run. */
7644 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7645 ~XFEATURE_MASK_PKRU);
7646 trace_kvm_fpu(1);
7647 }
7648
7649 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7650 {
7651 if (!vcpu->guest_fpu_loaded)
7652 return;
7653
7654 vcpu->guest_fpu_loaded = 0;
7655 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7656 __kernel_fpu_end();
7657 ++vcpu->stat.fpu_reload;
7658 trace_kvm_fpu(0);
7659 }
7660
7661 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7662 {
7663 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7664
7665 kvmclock_reset(vcpu);
7666
7667 kvm_x86_ops->vcpu_free(vcpu);
7668 free_cpumask_var(wbinvd_dirty_mask);
7669 }
7670
7671 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7672 unsigned int id)
7673 {
7674 struct kvm_vcpu *vcpu;
7675
7676 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7677 printk_once(KERN_WARNING
7678 "kvm: SMP vm created on host with unstable TSC; "
7679 "guest TSC will not be reliable\n");
7680
7681 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7682
7683 return vcpu;
7684 }
7685
7686 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7687 {
7688 int r;
7689
7690 kvm_vcpu_mtrr_init(vcpu);
7691 r = vcpu_load(vcpu);
7692 if (r)
7693 return r;
7694 kvm_vcpu_reset(vcpu, false);
7695 kvm_mmu_setup(vcpu);
7696 vcpu_put(vcpu);
7697 return r;
7698 }
7699
7700 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7701 {
7702 struct msr_data msr;
7703 struct kvm *kvm = vcpu->kvm;
7704
7705 kvm_hv_vcpu_postcreate(vcpu);
7706
7707 if (vcpu_load(vcpu))
7708 return;
7709 msr.data = 0x0;
7710 msr.index = MSR_IA32_TSC;
7711 msr.host_initiated = true;
7712 kvm_write_tsc(vcpu, &msr);
7713 vcpu_put(vcpu);
7714
7715 if (!kvmclock_periodic_sync)
7716 return;
7717
7718 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7719 KVMCLOCK_SYNC_PERIOD);
7720 }
7721
7722 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7723 {
7724 int r;
7725 vcpu->arch.apf.msr_val = 0;
7726
7727 r = vcpu_load(vcpu);
7728 BUG_ON(r);
7729 kvm_mmu_unload(vcpu);
7730 vcpu_put(vcpu);
7731
7732 kvm_x86_ops->vcpu_free(vcpu);
7733 }
7734
7735 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7736 {
7737 vcpu->arch.hflags = 0;
7738
7739 vcpu->arch.smi_pending = 0;
7740 atomic_set(&vcpu->arch.nmi_queued, 0);
7741 vcpu->arch.nmi_pending = 0;
7742 vcpu->arch.nmi_injected = false;
7743 kvm_clear_interrupt_queue(vcpu);
7744 kvm_clear_exception_queue(vcpu);
7745
7746 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7747 kvm_update_dr0123(vcpu);
7748 vcpu->arch.dr6 = DR6_INIT;
7749 kvm_update_dr6(vcpu);
7750 vcpu->arch.dr7 = DR7_FIXED_1;
7751 kvm_update_dr7(vcpu);
7752
7753 vcpu->arch.cr2 = 0;
7754
7755 kvm_make_request(KVM_REQ_EVENT, vcpu);
7756 vcpu->arch.apf.msr_val = 0;
7757 vcpu->arch.st.msr_val = 0;
7758
7759 kvmclock_reset(vcpu);
7760
7761 kvm_clear_async_pf_completion_queue(vcpu);
7762 kvm_async_pf_hash_reset(vcpu);
7763 vcpu->arch.apf.halted = false;
7764
7765 if (!init_event) {
7766 kvm_pmu_reset(vcpu);
7767 vcpu->arch.smbase = 0x30000;
7768
7769 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7770 vcpu->arch.msr_misc_features_enables = 0;
7771 }
7772
7773 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7774 vcpu->arch.regs_avail = ~0;
7775 vcpu->arch.regs_dirty = ~0;
7776
7777 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7778 }
7779
7780 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7781 {
7782 struct kvm_segment cs;
7783
7784 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7785 cs.selector = vector << 8;
7786 cs.base = vector << 12;
7787 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7788 kvm_rip_write(vcpu, 0);
7789 }
7790
7791 int kvm_arch_hardware_enable(void)
7792 {
7793 struct kvm *kvm;
7794 struct kvm_vcpu *vcpu;
7795 int i;
7796 int ret;
7797 u64 local_tsc;
7798 u64 max_tsc = 0;
7799 bool stable, backwards_tsc = false;
7800
7801 kvm_shared_msr_cpu_online();
7802 ret = kvm_x86_ops->hardware_enable();
7803 if (ret != 0)
7804 return ret;
7805
7806 local_tsc = rdtsc();
7807 stable = !check_tsc_unstable();
7808 list_for_each_entry(kvm, &vm_list, vm_list) {
7809 kvm_for_each_vcpu(i, vcpu, kvm) {
7810 if (!stable && vcpu->cpu == smp_processor_id())
7811 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7812 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7813 backwards_tsc = true;
7814 if (vcpu->arch.last_host_tsc > max_tsc)
7815 max_tsc = vcpu->arch.last_host_tsc;
7816 }
7817 }
7818 }
7819
7820 /*
7821 * Sometimes, even reliable TSCs go backwards. This happens on
7822 * platforms that reset TSC during suspend or hibernate actions, but
7823 * maintain synchronization. We must compensate. Fortunately, we can
7824 * detect that condition here, which happens early in CPU bringup,
7825 * before any KVM threads can be running. Unfortunately, we can't
7826 * bring the TSCs fully up to date with real time, as we aren't yet far
7827 * enough into CPU bringup that we know how much real time has actually
7828 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7829 * variables that haven't been updated yet.
7830 *
7831 * So we simply find the maximum observed TSC above, then record the
7832 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7833 * the adjustment will be applied. Note that we accumulate
7834 * adjustments, in case multiple suspend cycles happen before some VCPU
7835 * gets a chance to run again. In the event that no KVM threads get a
7836 * chance to run, we will miss the entire elapsed period, as we'll have
7837 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7838 * loose cycle time. This isn't too big a deal, since the loss will be
7839 * uniform across all VCPUs (not to mention the scenario is extremely
7840 * unlikely). It is possible that a second hibernate recovery happens
7841 * much faster than a first, causing the observed TSC here to be
7842 * smaller; this would require additional padding adjustment, which is
7843 * why we set last_host_tsc to the local tsc observed here.
7844 *
7845 * N.B. - this code below runs only on platforms with reliable TSC,
7846 * as that is the only way backwards_tsc is set above. Also note
7847 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7848 * have the same delta_cyc adjustment applied if backwards_tsc
7849 * is detected. Note further, this adjustment is only done once,
7850 * as we reset last_host_tsc on all VCPUs to stop this from being
7851 * called multiple times (one for each physical CPU bringup).
7852 *
7853 * Platforms with unreliable TSCs don't have to deal with this, they
7854 * will be compensated by the logic in vcpu_load, which sets the TSC to
7855 * catchup mode. This will catchup all VCPUs to real time, but cannot
7856 * guarantee that they stay in perfect synchronization.
7857 */
7858 if (backwards_tsc) {
7859 u64 delta_cyc = max_tsc - local_tsc;
7860 list_for_each_entry(kvm, &vm_list, vm_list) {
7861 kvm->arch.backwards_tsc_observed = true;
7862 kvm_for_each_vcpu(i, vcpu, kvm) {
7863 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7864 vcpu->arch.last_host_tsc = local_tsc;
7865 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7866 }
7867
7868 /*
7869 * We have to disable TSC offset matching.. if you were
7870 * booting a VM while issuing an S4 host suspend....
7871 * you may have some problem. Solving this issue is
7872 * left as an exercise to the reader.
7873 */
7874 kvm->arch.last_tsc_nsec = 0;
7875 kvm->arch.last_tsc_write = 0;
7876 }
7877
7878 }
7879 return 0;
7880 }
7881
7882 void kvm_arch_hardware_disable(void)
7883 {
7884 kvm_x86_ops->hardware_disable();
7885 drop_user_return_notifiers();
7886 }
7887
7888 int kvm_arch_hardware_setup(void)
7889 {
7890 int r;
7891
7892 r = kvm_x86_ops->hardware_setup();
7893 if (r != 0)
7894 return r;
7895
7896 if (kvm_has_tsc_control) {
7897 /*
7898 * Make sure the user can only configure tsc_khz values that
7899 * fit into a signed integer.
7900 * A min value is not calculated needed because it will always
7901 * be 1 on all machines.
7902 */
7903 u64 max = min(0x7fffffffULL,
7904 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7905 kvm_max_guest_tsc_khz = max;
7906
7907 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7908 }
7909
7910 kvm_init_msr_list();
7911 return 0;
7912 }
7913
7914 void kvm_arch_hardware_unsetup(void)
7915 {
7916 kvm_x86_ops->hardware_unsetup();
7917 }
7918
7919 void kvm_arch_check_processor_compat(void *rtn)
7920 {
7921 kvm_x86_ops->check_processor_compatibility(rtn);
7922 }
7923
7924 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7925 {
7926 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7927 }
7928 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7929
7930 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7931 {
7932 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7933 }
7934
7935 struct static_key kvm_no_apic_vcpu __read_mostly;
7936 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7937
7938 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7939 {
7940 struct page *page;
7941 struct kvm *kvm;
7942 int r;
7943
7944 BUG_ON(vcpu->kvm == NULL);
7945 kvm = vcpu->kvm;
7946
7947 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7948 vcpu->arch.pv.pv_unhalted = false;
7949 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7950 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7951 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7952 else
7953 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7954
7955 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7956 if (!page) {
7957 r = -ENOMEM;
7958 goto fail;
7959 }
7960 vcpu->arch.pio_data = page_address(page);
7961
7962 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7963
7964 r = kvm_mmu_create(vcpu);
7965 if (r < 0)
7966 goto fail_free_pio_data;
7967
7968 if (irqchip_in_kernel(kvm)) {
7969 r = kvm_create_lapic(vcpu);
7970 if (r < 0)
7971 goto fail_mmu_destroy;
7972 } else
7973 static_key_slow_inc(&kvm_no_apic_vcpu);
7974
7975 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7976 GFP_KERNEL);
7977 if (!vcpu->arch.mce_banks) {
7978 r = -ENOMEM;
7979 goto fail_free_lapic;
7980 }
7981 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7982
7983 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7984 r = -ENOMEM;
7985 goto fail_free_mce_banks;
7986 }
7987
7988 fx_init(vcpu);
7989
7990 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7991 vcpu->arch.pv_time_enabled = false;
7992
7993 vcpu->arch.guest_supported_xcr0 = 0;
7994 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7995
7996 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7997
7998 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7999
8000 kvm_async_pf_hash_reset(vcpu);
8001 kvm_pmu_init(vcpu);
8002
8003 vcpu->arch.pending_external_vector = -1;
8004
8005 kvm_hv_vcpu_init(vcpu);
8006
8007 return 0;
8008
8009 fail_free_mce_banks:
8010 kfree(vcpu->arch.mce_banks);
8011 fail_free_lapic:
8012 kvm_free_lapic(vcpu);
8013 fail_mmu_destroy:
8014 kvm_mmu_destroy(vcpu);
8015 fail_free_pio_data:
8016 free_page((unsigned long)vcpu->arch.pio_data);
8017 fail:
8018 return r;
8019 }
8020
8021 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8022 {
8023 int idx;
8024
8025 kvm_hv_vcpu_uninit(vcpu);
8026 kvm_pmu_destroy(vcpu);
8027 kfree(vcpu->arch.mce_banks);
8028 kvm_free_lapic(vcpu);
8029 idx = srcu_read_lock(&vcpu->kvm->srcu);
8030 kvm_mmu_destroy(vcpu);
8031 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8032 free_page((unsigned long)vcpu->arch.pio_data);
8033 if (!lapic_in_kernel(vcpu))
8034 static_key_slow_dec(&kvm_no_apic_vcpu);
8035 }
8036
8037 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8038 {
8039 kvm_x86_ops->sched_in(vcpu, cpu);
8040 }
8041
8042 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8043 {
8044 if (type)
8045 return -EINVAL;
8046
8047 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8048 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8049 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8050 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8051 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8052
8053 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8054 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8055 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8056 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8057 &kvm->arch.irq_sources_bitmap);
8058
8059 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8060 mutex_init(&kvm->arch.apic_map_lock);
8061 mutex_init(&kvm->arch.hyperv.hv_lock);
8062 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8063
8064 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8065 pvclock_update_vm_gtod_copy(kvm);
8066
8067 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8068 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8069
8070 kvm_page_track_init(kvm);
8071 kvm_mmu_init_vm(kvm);
8072
8073 if (kvm_x86_ops->vm_init)
8074 return kvm_x86_ops->vm_init(kvm);
8075
8076 return 0;
8077 }
8078
8079 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8080 {
8081 int r;
8082 r = vcpu_load(vcpu);
8083 BUG_ON(r);
8084 kvm_mmu_unload(vcpu);
8085 vcpu_put(vcpu);
8086 }
8087
8088 static void kvm_free_vcpus(struct kvm *kvm)
8089 {
8090 unsigned int i;
8091 struct kvm_vcpu *vcpu;
8092
8093 /*
8094 * Unpin any mmu pages first.
8095 */
8096 kvm_for_each_vcpu(i, vcpu, kvm) {
8097 kvm_clear_async_pf_completion_queue(vcpu);
8098 kvm_unload_vcpu_mmu(vcpu);
8099 }
8100 kvm_for_each_vcpu(i, vcpu, kvm)
8101 kvm_arch_vcpu_free(vcpu);
8102
8103 mutex_lock(&kvm->lock);
8104 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8105 kvm->vcpus[i] = NULL;
8106
8107 atomic_set(&kvm->online_vcpus, 0);
8108 mutex_unlock(&kvm->lock);
8109 }
8110
8111 void kvm_arch_sync_events(struct kvm *kvm)
8112 {
8113 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8114 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8115 kvm_free_pit(kvm);
8116 }
8117
8118 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8119 {
8120 int i, r;
8121 unsigned long hva;
8122 struct kvm_memslots *slots = kvm_memslots(kvm);
8123 struct kvm_memory_slot *slot, old;
8124
8125 /* Called with kvm->slots_lock held. */
8126 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8127 return -EINVAL;
8128
8129 slot = id_to_memslot(slots, id);
8130 if (size) {
8131 if (slot->npages)
8132 return -EEXIST;
8133
8134 /*
8135 * MAP_SHARED to prevent internal slot pages from being moved
8136 * by fork()/COW.
8137 */
8138 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8139 MAP_SHARED | MAP_ANONYMOUS, 0);
8140 if (IS_ERR((void *)hva))
8141 return PTR_ERR((void *)hva);
8142 } else {
8143 if (!slot->npages)
8144 return 0;
8145
8146 hva = 0;
8147 }
8148
8149 old = *slot;
8150 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8151 struct kvm_userspace_memory_region m;
8152
8153 m.slot = id | (i << 16);
8154 m.flags = 0;
8155 m.guest_phys_addr = gpa;
8156 m.userspace_addr = hva;
8157 m.memory_size = size;
8158 r = __kvm_set_memory_region(kvm, &m);
8159 if (r < 0)
8160 return r;
8161 }
8162
8163 if (!size) {
8164 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8165 WARN_ON(r < 0);
8166 }
8167
8168 return 0;
8169 }
8170 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8171
8172 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8173 {
8174 int r;
8175
8176 mutex_lock(&kvm->slots_lock);
8177 r = __x86_set_memory_region(kvm, id, gpa, size);
8178 mutex_unlock(&kvm->slots_lock);
8179
8180 return r;
8181 }
8182 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8183
8184 void kvm_arch_destroy_vm(struct kvm *kvm)
8185 {
8186 if (current->mm == kvm->mm) {
8187 /*
8188 * Free memory regions allocated on behalf of userspace,
8189 * unless the the memory map has changed due to process exit
8190 * or fd copying.
8191 */
8192 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8193 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8194 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8195 }
8196 if (kvm_x86_ops->vm_destroy)
8197 kvm_x86_ops->vm_destroy(kvm);
8198 kvm_pic_destroy(kvm);
8199 kvm_ioapic_destroy(kvm);
8200 kvm_free_vcpus(kvm);
8201 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8202 kvm_mmu_uninit_vm(kvm);
8203 kvm_page_track_cleanup(kvm);
8204 }
8205
8206 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8207 struct kvm_memory_slot *dont)
8208 {
8209 int i;
8210
8211 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8212 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8213 kvfree(free->arch.rmap[i]);
8214 free->arch.rmap[i] = NULL;
8215 }
8216 if (i == 0)
8217 continue;
8218
8219 if (!dont || free->arch.lpage_info[i - 1] !=
8220 dont->arch.lpage_info[i - 1]) {
8221 kvfree(free->arch.lpage_info[i - 1]);
8222 free->arch.lpage_info[i - 1] = NULL;
8223 }
8224 }
8225
8226 kvm_page_track_free_memslot(free, dont);
8227 }
8228
8229 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8230 unsigned long npages)
8231 {
8232 int i;
8233
8234 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8235 struct kvm_lpage_info *linfo;
8236 unsigned long ugfn;
8237 int lpages;
8238 int level = i + 1;
8239
8240 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8241 slot->base_gfn, level) + 1;
8242
8243 slot->arch.rmap[i] =
8244 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8245 if (!slot->arch.rmap[i])
8246 goto out_free;
8247 if (i == 0)
8248 continue;
8249
8250 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8251 if (!linfo)
8252 goto out_free;
8253
8254 slot->arch.lpage_info[i - 1] = linfo;
8255
8256 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8257 linfo[0].disallow_lpage = 1;
8258 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8259 linfo[lpages - 1].disallow_lpage = 1;
8260 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8261 /*
8262 * If the gfn and userspace address are not aligned wrt each
8263 * other, or if explicitly asked to, disable large page
8264 * support for this slot
8265 */
8266 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8267 !kvm_largepages_enabled()) {
8268 unsigned long j;
8269
8270 for (j = 0; j < lpages; ++j)
8271 linfo[j].disallow_lpage = 1;
8272 }
8273 }
8274
8275 if (kvm_page_track_create_memslot(slot, npages))
8276 goto out_free;
8277
8278 return 0;
8279
8280 out_free:
8281 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8282 kvfree(slot->arch.rmap[i]);
8283 slot->arch.rmap[i] = NULL;
8284 if (i == 0)
8285 continue;
8286
8287 kvfree(slot->arch.lpage_info[i - 1]);
8288 slot->arch.lpage_info[i - 1] = NULL;
8289 }
8290 return -ENOMEM;
8291 }
8292
8293 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8294 {
8295 /*
8296 * memslots->generation has been incremented.
8297 * mmio generation may have reached its maximum value.
8298 */
8299 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8300 }
8301
8302 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8303 struct kvm_memory_slot *memslot,
8304 const struct kvm_userspace_memory_region *mem,
8305 enum kvm_mr_change change)
8306 {
8307 return 0;
8308 }
8309
8310 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8311 struct kvm_memory_slot *new)
8312 {
8313 /* Still write protect RO slot */
8314 if (new->flags & KVM_MEM_READONLY) {
8315 kvm_mmu_slot_remove_write_access(kvm, new);
8316 return;
8317 }
8318
8319 /*
8320 * Call kvm_x86_ops dirty logging hooks when they are valid.
8321 *
8322 * kvm_x86_ops->slot_disable_log_dirty is called when:
8323 *
8324 * - KVM_MR_CREATE with dirty logging is disabled
8325 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8326 *
8327 * The reason is, in case of PML, we need to set D-bit for any slots
8328 * with dirty logging disabled in order to eliminate unnecessary GPA
8329 * logging in PML buffer (and potential PML buffer full VMEXT). This
8330 * guarantees leaving PML enabled during guest's lifetime won't have
8331 * any additonal overhead from PML when guest is running with dirty
8332 * logging disabled for memory slots.
8333 *
8334 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8335 * to dirty logging mode.
8336 *
8337 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8338 *
8339 * In case of write protect:
8340 *
8341 * Write protect all pages for dirty logging.
8342 *
8343 * All the sptes including the large sptes which point to this
8344 * slot are set to readonly. We can not create any new large
8345 * spte on this slot until the end of the logging.
8346 *
8347 * See the comments in fast_page_fault().
8348 */
8349 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8350 if (kvm_x86_ops->slot_enable_log_dirty)
8351 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8352 else
8353 kvm_mmu_slot_remove_write_access(kvm, new);
8354 } else {
8355 if (kvm_x86_ops->slot_disable_log_dirty)
8356 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8357 }
8358 }
8359
8360 void kvm_arch_commit_memory_region(struct kvm *kvm,
8361 const struct kvm_userspace_memory_region *mem,
8362 const struct kvm_memory_slot *old,
8363 const struct kvm_memory_slot *new,
8364 enum kvm_mr_change change)
8365 {
8366 int nr_mmu_pages = 0;
8367
8368 if (!kvm->arch.n_requested_mmu_pages)
8369 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8370
8371 if (nr_mmu_pages)
8372 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8373
8374 /*
8375 * Dirty logging tracks sptes in 4k granularity, meaning that large
8376 * sptes have to be split. If live migration is successful, the guest
8377 * in the source machine will be destroyed and large sptes will be
8378 * created in the destination. However, if the guest continues to run
8379 * in the source machine (for example if live migration fails), small
8380 * sptes will remain around and cause bad performance.
8381 *
8382 * Scan sptes if dirty logging has been stopped, dropping those
8383 * which can be collapsed into a single large-page spte. Later
8384 * page faults will create the large-page sptes.
8385 */
8386 if ((change != KVM_MR_DELETE) &&
8387 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8388 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8389 kvm_mmu_zap_collapsible_sptes(kvm, new);
8390
8391 /*
8392 * Set up write protection and/or dirty logging for the new slot.
8393 *
8394 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8395 * been zapped so no dirty logging staff is needed for old slot. For
8396 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8397 * new and it's also covered when dealing with the new slot.
8398 *
8399 * FIXME: const-ify all uses of struct kvm_memory_slot.
8400 */
8401 if (change != KVM_MR_DELETE)
8402 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8403 }
8404
8405 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8406 {
8407 kvm_mmu_invalidate_zap_all_pages(kvm);
8408 }
8409
8410 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8411 struct kvm_memory_slot *slot)
8412 {
8413 kvm_page_track_flush_slot(kvm, slot);
8414 }
8415
8416 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8417 {
8418 if (!list_empty_careful(&vcpu->async_pf.done))
8419 return true;
8420
8421 if (kvm_apic_has_events(vcpu))
8422 return true;
8423
8424 if (vcpu->arch.pv.pv_unhalted)
8425 return true;
8426
8427 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8428 (vcpu->arch.nmi_pending &&
8429 kvm_x86_ops->nmi_allowed(vcpu)))
8430 return true;
8431
8432 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8433 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8434 return true;
8435
8436 if (kvm_arch_interrupt_allowed(vcpu) &&
8437 kvm_cpu_has_interrupt(vcpu))
8438 return true;
8439
8440 if (kvm_hv_has_stimer_pending(vcpu))
8441 return true;
8442
8443 return false;
8444 }
8445
8446 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8447 {
8448 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8449 }
8450
8451 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8452 {
8453 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8454 }
8455
8456 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8457 {
8458 return kvm_x86_ops->interrupt_allowed(vcpu);
8459 }
8460
8461 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8462 {
8463 if (is_64_bit_mode(vcpu))
8464 return kvm_rip_read(vcpu);
8465 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8466 kvm_rip_read(vcpu));
8467 }
8468 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8469
8470 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8471 {
8472 return kvm_get_linear_rip(vcpu) == linear_rip;
8473 }
8474 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8475
8476 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8477 {
8478 unsigned long rflags;
8479
8480 rflags = kvm_x86_ops->get_rflags(vcpu);
8481 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8482 rflags &= ~X86_EFLAGS_TF;
8483 return rflags;
8484 }
8485 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8486
8487 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8488 {
8489 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8490 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8491 rflags |= X86_EFLAGS_TF;
8492 kvm_x86_ops->set_rflags(vcpu, rflags);
8493 }
8494
8495 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8496 {
8497 __kvm_set_rflags(vcpu, rflags);
8498 kvm_make_request(KVM_REQ_EVENT, vcpu);
8499 }
8500 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8501
8502 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8503 {
8504 int r;
8505
8506 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8507 work->wakeup_all)
8508 return;
8509
8510 r = kvm_mmu_reload(vcpu);
8511 if (unlikely(r))
8512 return;
8513
8514 if (!vcpu->arch.mmu.direct_map &&
8515 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8516 return;
8517
8518 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8519 }
8520
8521 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8522 {
8523 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8524 }
8525
8526 static inline u32 kvm_async_pf_next_probe(u32 key)
8527 {
8528 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8529 }
8530
8531 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8532 {
8533 u32 key = kvm_async_pf_hash_fn(gfn);
8534
8535 while (vcpu->arch.apf.gfns[key] != ~0)
8536 key = kvm_async_pf_next_probe(key);
8537
8538 vcpu->arch.apf.gfns[key] = gfn;
8539 }
8540
8541 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8542 {
8543 int i;
8544 u32 key = kvm_async_pf_hash_fn(gfn);
8545
8546 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8547 (vcpu->arch.apf.gfns[key] != gfn &&
8548 vcpu->arch.apf.gfns[key] != ~0); i++)
8549 key = kvm_async_pf_next_probe(key);
8550
8551 return key;
8552 }
8553
8554 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8555 {
8556 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8557 }
8558
8559 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8560 {
8561 u32 i, j, k;
8562
8563 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8564 while (true) {
8565 vcpu->arch.apf.gfns[i] = ~0;
8566 do {
8567 j = kvm_async_pf_next_probe(j);
8568 if (vcpu->arch.apf.gfns[j] == ~0)
8569 return;
8570 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8571 /*
8572 * k lies cyclically in ]i,j]
8573 * | i.k.j |
8574 * |....j i.k.| or |.k..j i...|
8575 */
8576 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8577 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8578 i = j;
8579 }
8580 }
8581
8582 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8583 {
8584
8585 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8586 sizeof(val));
8587 }
8588
8589 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8590 struct kvm_async_pf *work)
8591 {
8592 struct x86_exception fault;
8593
8594 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8595 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8596
8597 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8598 (vcpu->arch.apf.send_user_only &&
8599 kvm_x86_ops->get_cpl(vcpu) == 0))
8600 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8601 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8602 fault.vector = PF_VECTOR;
8603 fault.error_code_valid = true;
8604 fault.error_code = 0;
8605 fault.nested_page_fault = false;
8606 fault.address = work->arch.token;
8607 fault.async_page_fault = true;
8608 kvm_inject_page_fault(vcpu, &fault);
8609 }
8610 }
8611
8612 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8613 struct kvm_async_pf *work)
8614 {
8615 struct x86_exception fault;
8616
8617 if (work->wakeup_all)
8618 work->arch.token = ~0; /* broadcast wakeup */
8619 else
8620 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8621 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8622
8623 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8624 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8625 fault.vector = PF_VECTOR;
8626 fault.error_code_valid = true;
8627 fault.error_code = 0;
8628 fault.nested_page_fault = false;
8629 fault.address = work->arch.token;
8630 fault.async_page_fault = true;
8631 kvm_inject_page_fault(vcpu, &fault);
8632 }
8633 vcpu->arch.apf.halted = false;
8634 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8635 }
8636
8637 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8638 {
8639 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8640 return true;
8641 else
8642 return kvm_can_do_async_pf(vcpu);
8643 }
8644
8645 void kvm_arch_start_assignment(struct kvm *kvm)
8646 {
8647 atomic_inc(&kvm->arch.assigned_device_count);
8648 }
8649 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8650
8651 void kvm_arch_end_assignment(struct kvm *kvm)
8652 {
8653 atomic_dec(&kvm->arch.assigned_device_count);
8654 }
8655 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8656
8657 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8658 {
8659 return atomic_read(&kvm->arch.assigned_device_count);
8660 }
8661 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8662
8663 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8664 {
8665 atomic_inc(&kvm->arch.noncoherent_dma_count);
8666 }
8667 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8668
8669 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8670 {
8671 atomic_dec(&kvm->arch.noncoherent_dma_count);
8672 }
8673 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8674
8675 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8676 {
8677 return atomic_read(&kvm->arch.noncoherent_dma_count);
8678 }
8679 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8680
8681 bool kvm_arch_has_irq_bypass(void)
8682 {
8683 return kvm_x86_ops->update_pi_irte != NULL;
8684 }
8685
8686 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8687 struct irq_bypass_producer *prod)
8688 {
8689 struct kvm_kernel_irqfd *irqfd =
8690 container_of(cons, struct kvm_kernel_irqfd, consumer);
8691
8692 irqfd->producer = prod;
8693
8694 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8695 prod->irq, irqfd->gsi, 1);
8696 }
8697
8698 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8699 struct irq_bypass_producer *prod)
8700 {
8701 int ret;
8702 struct kvm_kernel_irqfd *irqfd =
8703 container_of(cons, struct kvm_kernel_irqfd, consumer);
8704
8705 WARN_ON(irqfd->producer != prod);
8706 irqfd->producer = NULL;
8707
8708 /*
8709 * When producer of consumer is unregistered, we change back to
8710 * remapped mode, so we can re-use the current implementation
8711 * when the irq is masked/disabled or the consumer side (KVM
8712 * int this case doesn't want to receive the interrupts.
8713 */
8714 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8715 if (ret)
8716 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8717 " fails: %d\n", irqfd->consumer.token, ret);
8718 }
8719
8720 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8721 uint32_t guest_irq, bool set)
8722 {
8723 if (!kvm_x86_ops->update_pi_irte)
8724 return -EINVAL;
8725
8726 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8727 }
8728
8729 bool kvm_vector_hashing_enabled(void)
8730 {
8731 return vector_hashing;
8732 }
8733 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8734
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8745 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8746 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8747 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8748 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8749 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8750 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8751 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8752 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8753 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);