]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/x86/kvm/x86.c
Merge tag 'wireless-drivers-for-davem-2017-08-25' of git://git.kernel.org/pub/scm...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82 * - enable syscall per default because its emulated by KVM
83 * - enable LME and LMA per default on 64 bit KVM
84 */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32 __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64 __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 #define KVM_NR_SHARED_MSRS 16
138
139 struct kvm_shared_msrs_global {
140 int nr;
141 u32 msrs[KVM_NR_SHARED_MSRS];
142 };
143
144 struct kvm_shared_msrs {
145 struct user_return_notifier urn;
146 bool registered;
147 struct kvm_shared_msr_values {
148 u64 host;
149 u64 curr;
150 } values[KVM_NR_SHARED_MSRS];
151 };
152
153 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
154 static struct kvm_shared_msrs __percpu *shared_msrs;
155
156 struct kvm_stats_debugfs_item debugfs_entries[] = {
157 { "pf_fixed", VCPU_STAT(pf_fixed) },
158 { "pf_guest", VCPU_STAT(pf_guest) },
159 { "tlb_flush", VCPU_STAT(tlb_flush) },
160 { "invlpg", VCPU_STAT(invlpg) },
161 { "exits", VCPU_STAT(exits) },
162 { "io_exits", VCPU_STAT(io_exits) },
163 { "mmio_exits", VCPU_STAT(mmio_exits) },
164 { "signal_exits", VCPU_STAT(signal_exits) },
165 { "irq_window", VCPU_STAT(irq_window_exits) },
166 { "nmi_window", VCPU_STAT(nmi_window_exits) },
167 { "halt_exits", VCPU_STAT(halt_exits) },
168 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
169 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
170 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
171 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
172 { "hypercalls", VCPU_STAT(hypercalls) },
173 { "request_irq", VCPU_STAT(request_irq_exits) },
174 { "irq_exits", VCPU_STAT(irq_exits) },
175 { "host_state_reload", VCPU_STAT(host_state_reload) },
176 { "efer_reload", VCPU_STAT(efer_reload) },
177 { "fpu_reload", VCPU_STAT(fpu_reload) },
178 { "insn_emulation", VCPU_STAT(insn_emulation) },
179 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
180 { "irq_injections", VCPU_STAT(irq_injections) },
181 { "nmi_injections", VCPU_STAT(nmi_injections) },
182 { "req_event", VCPU_STAT(req_event) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 { "mmu_flooded", VM_STAT(mmu_flooded) },
188 { "mmu_recycled", VM_STAT(mmu_recycled) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 { "mmu_unsync", VM_STAT(mmu_unsync) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 { "largepages", VM_STAT(lpages) },
193 { "max_mmu_page_hash_collisions",
194 VM_STAT(max_mmu_page_hash_collisions) },
195 { NULL }
196 };
197
198 u64 __read_mostly host_xcr0;
199
200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
201
202 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
203 {
204 int i;
205 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
206 vcpu->arch.apf.gfns[i] = ~0;
207 }
208
209 static void kvm_on_user_return(struct user_return_notifier *urn)
210 {
211 unsigned slot;
212 struct kvm_shared_msrs *locals
213 = container_of(urn, struct kvm_shared_msrs, urn);
214 struct kvm_shared_msr_values *values;
215 unsigned long flags;
216
217 /*
218 * Disabling irqs at this point since the following code could be
219 * interrupted and executed through kvm_arch_hardware_disable()
220 */
221 local_irq_save(flags);
222 if (locals->registered) {
223 locals->registered = false;
224 user_return_notifier_unregister(urn);
225 }
226 local_irq_restore(flags);
227 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
228 values = &locals->values[slot];
229 if (values->host != values->curr) {
230 wrmsrl(shared_msrs_global.msrs[slot], values->host);
231 values->curr = values->host;
232 }
233 }
234 }
235
236 static void shared_msr_update(unsigned slot, u32 msr)
237 {
238 u64 value;
239 unsigned int cpu = smp_processor_id();
240 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
241
242 /* only read, and nobody should modify it at this time,
243 * so don't need lock */
244 if (slot >= shared_msrs_global.nr) {
245 printk(KERN_ERR "kvm: invalid MSR slot!");
246 return;
247 }
248 rdmsrl_safe(msr, &value);
249 smsr->values[slot].host = value;
250 smsr->values[slot].curr = value;
251 }
252
253 void kvm_define_shared_msr(unsigned slot, u32 msr)
254 {
255 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
256 shared_msrs_global.msrs[slot] = msr;
257 if (slot >= shared_msrs_global.nr)
258 shared_msrs_global.nr = slot + 1;
259 }
260 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
261
262 static void kvm_shared_msr_cpu_online(void)
263 {
264 unsigned i;
265
266 for (i = 0; i < shared_msrs_global.nr; ++i)
267 shared_msr_update(i, shared_msrs_global.msrs[i]);
268 }
269
270 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
271 {
272 unsigned int cpu = smp_processor_id();
273 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274 int err;
275
276 if (((value ^ smsr->values[slot].curr) & mask) == 0)
277 return 0;
278 smsr->values[slot].curr = value;
279 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
280 if (err)
281 return 1;
282
283 if (!smsr->registered) {
284 smsr->urn.on_user_return = kvm_on_user_return;
285 user_return_notifier_register(&smsr->urn);
286 smsr->registered = true;
287 }
288 return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
291
292 static void drop_user_return_notifiers(void)
293 {
294 unsigned int cpu = smp_processor_id();
295 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296
297 if (smsr->registered)
298 kvm_on_user_return(&smsr->urn);
299 }
300
301 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
302 {
303 return vcpu->arch.apic_base;
304 }
305 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
306
307 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
308 {
309 u64 old_state = vcpu->arch.apic_base &
310 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311 u64 new_state = msr_info->data &
312 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
314 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
315
316 if (!msr_info->host_initiated &&
317 ((msr_info->data & reserved_bits) != 0 ||
318 new_state == X2APIC_ENABLE ||
319 (new_state == MSR_IA32_APICBASE_ENABLE &&
320 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
321 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
322 old_state == 0)))
323 return 1;
324
325 kvm_lapic_set_base(vcpu, msr_info->data);
326 return 0;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
329
330 asmlinkage __visible void kvm_spurious_fault(void)
331 {
332 /* Fault while not rebooting. We want the trace. */
333 BUG();
334 }
335 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
336
337 #define EXCPT_BENIGN 0
338 #define EXCPT_CONTRIBUTORY 1
339 #define EXCPT_PF 2
340
341 static int exception_class(int vector)
342 {
343 switch (vector) {
344 case PF_VECTOR:
345 return EXCPT_PF;
346 case DE_VECTOR:
347 case TS_VECTOR:
348 case NP_VECTOR:
349 case SS_VECTOR:
350 case GP_VECTOR:
351 return EXCPT_CONTRIBUTORY;
352 default:
353 break;
354 }
355 return EXCPT_BENIGN;
356 }
357
358 #define EXCPT_FAULT 0
359 #define EXCPT_TRAP 1
360 #define EXCPT_ABORT 2
361 #define EXCPT_INTERRUPT 3
362
363 static int exception_type(int vector)
364 {
365 unsigned int mask;
366
367 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
368 return EXCPT_INTERRUPT;
369
370 mask = 1 << vector;
371
372 /* #DB is trap, as instruction watchpoints are handled elsewhere */
373 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
374 return EXCPT_TRAP;
375
376 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
377 return EXCPT_ABORT;
378
379 /* Reserved exceptions will result in fault */
380 return EXCPT_FAULT;
381 }
382
383 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
384 unsigned nr, bool has_error, u32 error_code,
385 bool reinject)
386 {
387 u32 prev_nr;
388 int class1, class2;
389
390 kvm_make_request(KVM_REQ_EVENT, vcpu);
391
392 if (!vcpu->arch.exception.pending) {
393 queue:
394 if (has_error && !is_protmode(vcpu))
395 has_error = false;
396 vcpu->arch.exception.pending = true;
397 vcpu->arch.exception.has_error_code = has_error;
398 vcpu->arch.exception.nr = nr;
399 vcpu->arch.exception.error_code = error_code;
400 vcpu->arch.exception.reinject = reinject;
401 return;
402 }
403
404 /* to check exception */
405 prev_nr = vcpu->arch.exception.nr;
406 if (prev_nr == DF_VECTOR) {
407 /* triple fault -> shutdown */
408 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
409 return;
410 }
411 class1 = exception_class(prev_nr);
412 class2 = exception_class(nr);
413 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
414 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
415 /* generate double fault per SDM Table 5-5 */
416 vcpu->arch.exception.pending = true;
417 vcpu->arch.exception.has_error_code = true;
418 vcpu->arch.exception.nr = DF_VECTOR;
419 vcpu->arch.exception.error_code = 0;
420 } else
421 /* replace previous exception with a new one in a hope
422 that instruction re-execution will regenerate lost
423 exception */
424 goto queue;
425 }
426
427 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
428 {
429 kvm_multiple_exception(vcpu, nr, false, 0, false);
430 }
431 EXPORT_SYMBOL_GPL(kvm_queue_exception);
432
433 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
434 {
435 kvm_multiple_exception(vcpu, nr, false, 0, true);
436 }
437 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
438
439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
440 {
441 if (err)
442 kvm_inject_gp(vcpu, 0);
443 else
444 return kvm_skip_emulated_instruction(vcpu);
445
446 return 1;
447 }
448 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
449
450 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
451 {
452 ++vcpu->stat.pf_guest;
453 vcpu->arch.exception.nested_apf =
454 is_guest_mode(vcpu) && fault->async_page_fault;
455 if (vcpu->arch.exception.nested_apf)
456 vcpu->arch.apf.nested_apf_token = fault->address;
457 else
458 vcpu->arch.cr2 = fault->address;
459 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
460 }
461 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
462
463 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
464 {
465 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
466 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
467 else
468 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
469
470 return fault->nested_page_fault;
471 }
472
473 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
474 {
475 atomic_inc(&vcpu->arch.nmi_queued);
476 kvm_make_request(KVM_REQ_NMI, vcpu);
477 }
478 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
479
480 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
481 {
482 kvm_multiple_exception(vcpu, nr, true, error_code, false);
483 }
484 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
485
486 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
487 {
488 kvm_multiple_exception(vcpu, nr, true, error_code, true);
489 }
490 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
491
492 /*
493 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
494 * a #GP and return false.
495 */
496 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
497 {
498 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
499 return true;
500 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
501 return false;
502 }
503 EXPORT_SYMBOL_GPL(kvm_require_cpl);
504
505 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
506 {
507 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
508 return true;
509
510 kvm_queue_exception(vcpu, UD_VECTOR);
511 return false;
512 }
513 EXPORT_SYMBOL_GPL(kvm_require_dr);
514
515 /*
516 * This function will be used to read from the physical memory of the currently
517 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
518 * can read from guest physical or from the guest's guest physical memory.
519 */
520 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
521 gfn_t ngfn, void *data, int offset, int len,
522 u32 access)
523 {
524 struct x86_exception exception;
525 gfn_t real_gfn;
526 gpa_t ngpa;
527
528 ngpa = gfn_to_gpa(ngfn);
529 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
530 if (real_gfn == UNMAPPED_GVA)
531 return -EFAULT;
532
533 real_gfn = gpa_to_gfn(real_gfn);
534
535 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
536 }
537 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
538
539 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
540 void *data, int offset, int len, u32 access)
541 {
542 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
543 data, offset, len, access);
544 }
545
546 /*
547 * Load the pae pdptrs. Return true is they are all valid.
548 */
549 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
550 {
551 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
552 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
553 int i;
554 int ret;
555 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
556
557 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
558 offset * sizeof(u64), sizeof(pdpte),
559 PFERR_USER_MASK|PFERR_WRITE_MASK);
560 if (ret < 0) {
561 ret = 0;
562 goto out;
563 }
564 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
565 if ((pdpte[i] & PT_PRESENT_MASK) &&
566 (pdpte[i] &
567 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
568 ret = 0;
569 goto out;
570 }
571 }
572 ret = 1;
573
574 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
575 __set_bit(VCPU_EXREG_PDPTR,
576 (unsigned long *)&vcpu->arch.regs_avail);
577 __set_bit(VCPU_EXREG_PDPTR,
578 (unsigned long *)&vcpu->arch.regs_dirty);
579 out:
580
581 return ret;
582 }
583 EXPORT_SYMBOL_GPL(load_pdptrs);
584
585 bool pdptrs_changed(struct kvm_vcpu *vcpu)
586 {
587 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
588 bool changed = true;
589 int offset;
590 gfn_t gfn;
591 int r;
592
593 if (is_long_mode(vcpu) || !is_pae(vcpu))
594 return false;
595
596 if (!test_bit(VCPU_EXREG_PDPTR,
597 (unsigned long *)&vcpu->arch.regs_avail))
598 return true;
599
600 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
601 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
602 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
603 PFERR_USER_MASK | PFERR_WRITE_MASK);
604 if (r < 0)
605 goto out;
606 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
607 out:
608
609 return changed;
610 }
611 EXPORT_SYMBOL_GPL(pdptrs_changed);
612
613 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
614 {
615 unsigned long old_cr0 = kvm_read_cr0(vcpu);
616 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
617
618 cr0 |= X86_CR0_ET;
619
620 #ifdef CONFIG_X86_64
621 if (cr0 & 0xffffffff00000000UL)
622 return 1;
623 #endif
624
625 cr0 &= ~CR0_RESERVED_BITS;
626
627 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
628 return 1;
629
630 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
631 return 1;
632
633 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
634 #ifdef CONFIG_X86_64
635 if ((vcpu->arch.efer & EFER_LME)) {
636 int cs_db, cs_l;
637
638 if (!is_pae(vcpu))
639 return 1;
640 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
641 if (cs_l)
642 return 1;
643 } else
644 #endif
645 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
646 kvm_read_cr3(vcpu)))
647 return 1;
648 }
649
650 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
651 return 1;
652
653 kvm_x86_ops->set_cr0(vcpu, cr0);
654
655 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
656 kvm_clear_async_pf_completion_queue(vcpu);
657 kvm_async_pf_hash_reset(vcpu);
658 }
659
660 if ((cr0 ^ old_cr0) & update_bits)
661 kvm_mmu_reset_context(vcpu);
662
663 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
664 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
665 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
666 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
667
668 return 0;
669 }
670 EXPORT_SYMBOL_GPL(kvm_set_cr0);
671
672 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
673 {
674 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
675 }
676 EXPORT_SYMBOL_GPL(kvm_lmsw);
677
678 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
681 !vcpu->guest_xcr0_loaded) {
682 /* kvm_set_xcr() also depends on this */
683 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
684 vcpu->guest_xcr0_loaded = 1;
685 }
686 }
687
688 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
689 {
690 if (vcpu->guest_xcr0_loaded) {
691 if (vcpu->arch.xcr0 != host_xcr0)
692 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
693 vcpu->guest_xcr0_loaded = 0;
694 }
695 }
696
697 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699 u64 xcr0 = xcr;
700 u64 old_xcr0 = vcpu->arch.xcr0;
701 u64 valid_bits;
702
703 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
704 if (index != XCR_XFEATURE_ENABLED_MASK)
705 return 1;
706 if (!(xcr0 & XFEATURE_MASK_FP))
707 return 1;
708 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
709 return 1;
710
711 /*
712 * Do not allow the guest to set bits that we do not support
713 * saving. However, xcr0 bit 0 is always set, even if the
714 * emulated CPU does not support XSAVE (see fx_init).
715 */
716 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
717 if (xcr0 & ~valid_bits)
718 return 1;
719
720 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
721 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
722 return 1;
723
724 if (xcr0 & XFEATURE_MASK_AVX512) {
725 if (!(xcr0 & XFEATURE_MASK_YMM))
726 return 1;
727 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
728 return 1;
729 }
730 vcpu->arch.xcr0 = xcr0;
731
732 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
733 kvm_update_cpuid(vcpu);
734 return 0;
735 }
736
737 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
738 {
739 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
740 __kvm_set_xcr(vcpu, index, xcr)) {
741 kvm_inject_gp(vcpu, 0);
742 return 1;
743 }
744 return 0;
745 }
746 EXPORT_SYMBOL_GPL(kvm_set_xcr);
747
748 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
749 {
750 unsigned long old_cr4 = kvm_read_cr4(vcpu);
751 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
752 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
753
754 if (cr4 & CR4_RESERVED_BITS)
755 return 1;
756
757 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
758 return 1;
759
760 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
761 return 1;
762
763 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
764 return 1;
765
766 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
767 return 1;
768
769 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
770 return 1;
771
772 if (is_long_mode(vcpu)) {
773 if (!(cr4 & X86_CR4_PAE))
774 return 1;
775 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
776 && ((cr4 ^ old_cr4) & pdptr_bits)
777 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
778 kvm_read_cr3(vcpu)))
779 return 1;
780
781 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
782 if (!guest_cpuid_has_pcid(vcpu))
783 return 1;
784
785 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
786 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
787 return 1;
788 }
789
790 if (kvm_x86_ops->set_cr4(vcpu, cr4))
791 return 1;
792
793 if (((cr4 ^ old_cr4) & pdptr_bits) ||
794 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
795 kvm_mmu_reset_context(vcpu);
796
797 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
798 kvm_update_cpuid(vcpu);
799
800 return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr4);
803
804 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
805 {
806 #ifdef CONFIG_X86_64
807 cr3 &= ~CR3_PCID_INVD;
808 #endif
809
810 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
811 kvm_mmu_sync_roots(vcpu);
812 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
813 return 0;
814 }
815
816 if (is_long_mode(vcpu)) {
817 if (cr3 & CR3_L_MODE_RESERVED_BITS)
818 return 1;
819 } else if (is_pae(vcpu) && is_paging(vcpu) &&
820 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
821 return 1;
822
823 vcpu->arch.cr3 = cr3;
824 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
825 kvm_mmu_new_cr3(vcpu);
826 return 0;
827 }
828 EXPORT_SYMBOL_GPL(kvm_set_cr3);
829
830 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
831 {
832 if (cr8 & CR8_RESERVED_BITS)
833 return 1;
834 if (lapic_in_kernel(vcpu))
835 kvm_lapic_set_tpr(vcpu, cr8);
836 else
837 vcpu->arch.cr8 = cr8;
838 return 0;
839 }
840 EXPORT_SYMBOL_GPL(kvm_set_cr8);
841
842 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
843 {
844 if (lapic_in_kernel(vcpu))
845 return kvm_lapic_get_cr8(vcpu);
846 else
847 return vcpu->arch.cr8;
848 }
849 EXPORT_SYMBOL_GPL(kvm_get_cr8);
850
851 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
852 {
853 int i;
854
855 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
856 for (i = 0; i < KVM_NR_DB_REGS; i++)
857 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
858 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
859 }
860 }
861
862 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
863 {
864 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
866 }
867
868 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
869 {
870 unsigned long dr7;
871
872 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
873 dr7 = vcpu->arch.guest_debug_dr7;
874 else
875 dr7 = vcpu->arch.dr7;
876 kvm_x86_ops->set_dr7(vcpu, dr7);
877 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
878 if (dr7 & DR7_BP_EN_MASK)
879 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
880 }
881
882 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
883 {
884 u64 fixed = DR6_FIXED_1;
885
886 if (!guest_cpuid_has_rtm(vcpu))
887 fixed |= DR6_RTM;
888 return fixed;
889 }
890
891 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893 switch (dr) {
894 case 0 ... 3:
895 vcpu->arch.db[dr] = val;
896 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
897 vcpu->arch.eff_db[dr] = val;
898 break;
899 case 4:
900 /* fall through */
901 case 6:
902 if (val & 0xffffffff00000000ULL)
903 return -1; /* #GP */
904 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
905 kvm_update_dr6(vcpu);
906 break;
907 case 5:
908 /* fall through */
909 default: /* 7 */
910 if (val & 0xffffffff00000000ULL)
911 return -1; /* #GP */
912 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
913 kvm_update_dr7(vcpu);
914 break;
915 }
916
917 return 0;
918 }
919
920 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922 if (__kvm_set_dr(vcpu, dr, val)) {
923 kvm_inject_gp(vcpu, 0);
924 return 1;
925 }
926 return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_dr);
929
930 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
931 {
932 switch (dr) {
933 case 0 ... 3:
934 *val = vcpu->arch.db[dr];
935 break;
936 case 4:
937 /* fall through */
938 case 6:
939 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
940 *val = vcpu->arch.dr6;
941 else
942 *val = kvm_x86_ops->get_dr6(vcpu);
943 break;
944 case 5:
945 /* fall through */
946 default: /* 7 */
947 *val = vcpu->arch.dr7;
948 break;
949 }
950 return 0;
951 }
952 EXPORT_SYMBOL_GPL(kvm_get_dr);
953
954 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
955 {
956 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
957 u64 data;
958 int err;
959
960 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
961 if (err)
962 return err;
963 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
964 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
965 return err;
966 }
967 EXPORT_SYMBOL_GPL(kvm_rdpmc);
968
969 /*
970 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
971 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
972 *
973 * This list is modified at module load time to reflect the
974 * capabilities of the host cpu. This capabilities test skips MSRs that are
975 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
976 * may depend on host virtualization features rather than host cpu features.
977 */
978
979 static u32 msrs_to_save[] = {
980 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
981 MSR_STAR,
982 #ifdef CONFIG_X86_64
983 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
984 #endif
985 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
986 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
987 };
988
989 static unsigned num_msrs_to_save;
990
991 static u32 emulated_msrs[] = {
992 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
993 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
994 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
995 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
996 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
997 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
998 HV_X64_MSR_RESET,
999 HV_X64_MSR_VP_INDEX,
1000 HV_X64_MSR_VP_RUNTIME,
1001 HV_X64_MSR_SCONTROL,
1002 HV_X64_MSR_STIMER0_CONFIG,
1003 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1004 MSR_KVM_PV_EOI_EN,
1005
1006 MSR_IA32_TSC_ADJUST,
1007 MSR_IA32_TSCDEADLINE,
1008 MSR_IA32_MISC_ENABLE,
1009 MSR_IA32_MCG_STATUS,
1010 MSR_IA32_MCG_CTL,
1011 MSR_IA32_MCG_EXT_CTL,
1012 MSR_IA32_SMBASE,
1013 MSR_PLATFORM_INFO,
1014 MSR_MISC_FEATURES_ENABLES,
1015 };
1016
1017 static unsigned num_emulated_msrs;
1018
1019 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1020 {
1021 if (efer & efer_reserved_bits)
1022 return false;
1023
1024 if (efer & EFER_FFXSR) {
1025 struct kvm_cpuid_entry2 *feat;
1026
1027 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1028 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1029 return false;
1030 }
1031
1032 if (efer & EFER_SVME) {
1033 struct kvm_cpuid_entry2 *feat;
1034
1035 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1036 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1037 return false;
1038 }
1039
1040 return true;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1043
1044 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1045 {
1046 u64 old_efer = vcpu->arch.efer;
1047
1048 if (!kvm_valid_efer(vcpu, efer))
1049 return 1;
1050
1051 if (is_paging(vcpu)
1052 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1053 return 1;
1054
1055 efer &= ~EFER_LMA;
1056 efer |= vcpu->arch.efer & EFER_LMA;
1057
1058 kvm_x86_ops->set_efer(vcpu, efer);
1059
1060 /* Update reserved bits */
1061 if ((efer ^ old_efer) & EFER_NX)
1062 kvm_mmu_reset_context(vcpu);
1063
1064 return 0;
1065 }
1066
1067 void kvm_enable_efer_bits(u64 mask)
1068 {
1069 efer_reserved_bits &= ~mask;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1072
1073 /*
1074 * Writes msr value into into the appropriate "register".
1075 * Returns 0 on success, non-0 otherwise.
1076 * Assumes vcpu_load() was already called.
1077 */
1078 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1079 {
1080 switch (msr->index) {
1081 case MSR_FS_BASE:
1082 case MSR_GS_BASE:
1083 case MSR_KERNEL_GS_BASE:
1084 case MSR_CSTAR:
1085 case MSR_LSTAR:
1086 if (is_noncanonical_address(msr->data))
1087 return 1;
1088 break;
1089 case MSR_IA32_SYSENTER_EIP:
1090 case MSR_IA32_SYSENTER_ESP:
1091 /*
1092 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1093 * non-canonical address is written on Intel but not on
1094 * AMD (which ignores the top 32-bits, because it does
1095 * not implement 64-bit SYSENTER).
1096 *
1097 * 64-bit code should hence be able to write a non-canonical
1098 * value on AMD. Making the address canonical ensures that
1099 * vmentry does not fail on Intel after writing a non-canonical
1100 * value, and that something deterministic happens if the guest
1101 * invokes 64-bit SYSENTER.
1102 */
1103 msr->data = get_canonical(msr->data);
1104 }
1105 return kvm_x86_ops->set_msr(vcpu, msr);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_set_msr);
1108
1109 /*
1110 * Adapt set_msr() to msr_io()'s calling convention
1111 */
1112 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1113 {
1114 struct msr_data msr;
1115 int r;
1116
1117 msr.index = index;
1118 msr.host_initiated = true;
1119 r = kvm_get_msr(vcpu, &msr);
1120 if (r)
1121 return r;
1122
1123 *data = msr.data;
1124 return 0;
1125 }
1126
1127 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1128 {
1129 struct msr_data msr;
1130
1131 msr.data = *data;
1132 msr.index = index;
1133 msr.host_initiated = true;
1134 return kvm_set_msr(vcpu, &msr);
1135 }
1136
1137 #ifdef CONFIG_X86_64
1138 struct pvclock_gtod_data {
1139 seqcount_t seq;
1140
1141 struct { /* extract of a clocksource struct */
1142 int vclock_mode;
1143 u64 cycle_last;
1144 u64 mask;
1145 u32 mult;
1146 u32 shift;
1147 } clock;
1148
1149 u64 boot_ns;
1150 u64 nsec_base;
1151 u64 wall_time_sec;
1152 };
1153
1154 static struct pvclock_gtod_data pvclock_gtod_data;
1155
1156 static void update_pvclock_gtod(struct timekeeper *tk)
1157 {
1158 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1159 u64 boot_ns;
1160
1161 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1162
1163 write_seqcount_begin(&vdata->seq);
1164
1165 /* copy pvclock gtod data */
1166 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1167 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1168 vdata->clock.mask = tk->tkr_mono.mask;
1169 vdata->clock.mult = tk->tkr_mono.mult;
1170 vdata->clock.shift = tk->tkr_mono.shift;
1171
1172 vdata->boot_ns = boot_ns;
1173 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1174
1175 vdata->wall_time_sec = tk->xtime_sec;
1176
1177 write_seqcount_end(&vdata->seq);
1178 }
1179 #endif
1180
1181 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1182 {
1183 /*
1184 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1185 * vcpu_enter_guest. This function is only called from
1186 * the physical CPU that is running vcpu.
1187 */
1188 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1189 }
1190
1191 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1192 {
1193 int version;
1194 int r;
1195 struct pvclock_wall_clock wc;
1196 struct timespec64 boot;
1197
1198 if (!wall_clock)
1199 return;
1200
1201 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1202 if (r)
1203 return;
1204
1205 if (version & 1)
1206 ++version; /* first time write, random junk */
1207
1208 ++version;
1209
1210 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1211 return;
1212
1213 /*
1214 * The guest calculates current wall clock time by adding
1215 * system time (updated by kvm_guest_time_update below) to the
1216 * wall clock specified here. guest system time equals host
1217 * system time for us, thus we must fill in host boot time here.
1218 */
1219 getboottime64(&boot);
1220
1221 if (kvm->arch.kvmclock_offset) {
1222 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1223 boot = timespec64_sub(boot, ts);
1224 }
1225 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1226 wc.nsec = boot.tv_nsec;
1227 wc.version = version;
1228
1229 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1230
1231 version++;
1232 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1233 }
1234
1235 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1236 {
1237 do_shl32_div32(dividend, divisor);
1238 return dividend;
1239 }
1240
1241 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1242 s8 *pshift, u32 *pmultiplier)
1243 {
1244 uint64_t scaled64;
1245 int32_t shift = 0;
1246 uint64_t tps64;
1247 uint32_t tps32;
1248
1249 tps64 = base_hz;
1250 scaled64 = scaled_hz;
1251 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1252 tps64 >>= 1;
1253 shift--;
1254 }
1255
1256 tps32 = (uint32_t)tps64;
1257 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1258 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1259 scaled64 >>= 1;
1260 else
1261 tps32 <<= 1;
1262 shift++;
1263 }
1264
1265 *pshift = shift;
1266 *pmultiplier = div_frac(scaled64, tps32);
1267
1268 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1269 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1270 }
1271
1272 #ifdef CONFIG_X86_64
1273 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1274 #endif
1275
1276 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1277 static unsigned long max_tsc_khz;
1278
1279 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1280 {
1281 u64 v = (u64)khz * (1000000 + ppm);
1282 do_div(v, 1000000);
1283 return v;
1284 }
1285
1286 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1287 {
1288 u64 ratio;
1289
1290 /* Guest TSC same frequency as host TSC? */
1291 if (!scale) {
1292 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1293 return 0;
1294 }
1295
1296 /* TSC scaling supported? */
1297 if (!kvm_has_tsc_control) {
1298 if (user_tsc_khz > tsc_khz) {
1299 vcpu->arch.tsc_catchup = 1;
1300 vcpu->arch.tsc_always_catchup = 1;
1301 return 0;
1302 } else {
1303 WARN(1, "user requested TSC rate below hardware speed\n");
1304 return -1;
1305 }
1306 }
1307
1308 /* TSC scaling required - calculate ratio */
1309 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1310 user_tsc_khz, tsc_khz);
1311
1312 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1313 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1314 user_tsc_khz);
1315 return -1;
1316 }
1317
1318 vcpu->arch.tsc_scaling_ratio = ratio;
1319 return 0;
1320 }
1321
1322 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1323 {
1324 u32 thresh_lo, thresh_hi;
1325 int use_scaling = 0;
1326
1327 /* tsc_khz can be zero if TSC calibration fails */
1328 if (user_tsc_khz == 0) {
1329 /* set tsc_scaling_ratio to a safe value */
1330 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1331 return -1;
1332 }
1333
1334 /* Compute a scale to convert nanoseconds in TSC cycles */
1335 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1336 &vcpu->arch.virtual_tsc_shift,
1337 &vcpu->arch.virtual_tsc_mult);
1338 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1339
1340 /*
1341 * Compute the variation in TSC rate which is acceptable
1342 * within the range of tolerance and decide if the
1343 * rate being applied is within that bounds of the hardware
1344 * rate. If so, no scaling or compensation need be done.
1345 */
1346 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1347 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1348 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1349 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1350 use_scaling = 1;
1351 }
1352 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1353 }
1354
1355 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1356 {
1357 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1358 vcpu->arch.virtual_tsc_mult,
1359 vcpu->arch.virtual_tsc_shift);
1360 tsc += vcpu->arch.this_tsc_write;
1361 return tsc;
1362 }
1363
1364 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1365 {
1366 #ifdef CONFIG_X86_64
1367 bool vcpus_matched;
1368 struct kvm_arch *ka = &vcpu->kvm->arch;
1369 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1370
1371 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1372 atomic_read(&vcpu->kvm->online_vcpus));
1373
1374 /*
1375 * Once the masterclock is enabled, always perform request in
1376 * order to update it.
1377 *
1378 * In order to enable masterclock, the host clocksource must be TSC
1379 * and the vcpus need to have matched TSCs. When that happens,
1380 * perform request to enable masterclock.
1381 */
1382 if (ka->use_master_clock ||
1383 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1384 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1385
1386 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1387 atomic_read(&vcpu->kvm->online_vcpus),
1388 ka->use_master_clock, gtod->clock.vclock_mode);
1389 #endif
1390 }
1391
1392 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1393 {
1394 u64 curr_offset = vcpu->arch.tsc_offset;
1395 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1396 }
1397
1398 /*
1399 * Multiply tsc by a fixed point number represented by ratio.
1400 *
1401 * The most significant 64-N bits (mult) of ratio represent the
1402 * integral part of the fixed point number; the remaining N bits
1403 * (frac) represent the fractional part, ie. ratio represents a fixed
1404 * point number (mult + frac * 2^(-N)).
1405 *
1406 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1407 */
1408 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1409 {
1410 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1411 }
1412
1413 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1414 {
1415 u64 _tsc = tsc;
1416 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1417
1418 if (ratio != kvm_default_tsc_scaling_ratio)
1419 _tsc = __scale_tsc(ratio, tsc);
1420
1421 return _tsc;
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1424
1425 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1426 {
1427 u64 tsc;
1428
1429 tsc = kvm_scale_tsc(vcpu, rdtsc());
1430
1431 return target_tsc - tsc;
1432 }
1433
1434 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1435 {
1436 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1439
1440 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1441 {
1442 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1443 vcpu->arch.tsc_offset = offset;
1444 }
1445
1446 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1447 {
1448 struct kvm *kvm = vcpu->kvm;
1449 u64 offset, ns, elapsed;
1450 unsigned long flags;
1451 bool matched;
1452 bool already_matched;
1453 u64 data = msr->data;
1454 bool synchronizing = false;
1455
1456 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1457 offset = kvm_compute_tsc_offset(vcpu, data);
1458 ns = ktime_get_boot_ns();
1459 elapsed = ns - kvm->arch.last_tsc_nsec;
1460
1461 if (vcpu->arch.virtual_tsc_khz) {
1462 if (data == 0 && msr->host_initiated) {
1463 /*
1464 * detection of vcpu initialization -- need to sync
1465 * with other vCPUs. This particularly helps to keep
1466 * kvm_clock stable after CPU hotplug
1467 */
1468 synchronizing = true;
1469 } else {
1470 u64 tsc_exp = kvm->arch.last_tsc_write +
1471 nsec_to_cycles(vcpu, elapsed);
1472 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1473 /*
1474 * Special case: TSC write with a small delta (1 second)
1475 * of virtual cycle time against real time is
1476 * interpreted as an attempt to synchronize the CPU.
1477 */
1478 synchronizing = data < tsc_exp + tsc_hz &&
1479 data + tsc_hz > tsc_exp;
1480 }
1481 }
1482
1483 /*
1484 * For a reliable TSC, we can match TSC offsets, and for an unstable
1485 * TSC, we add elapsed time in this computation. We could let the
1486 * compensation code attempt to catch up if we fall behind, but
1487 * it's better to try to match offsets from the beginning.
1488 */
1489 if (synchronizing &&
1490 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1491 if (!check_tsc_unstable()) {
1492 offset = kvm->arch.cur_tsc_offset;
1493 pr_debug("kvm: matched tsc offset for %llu\n", data);
1494 } else {
1495 u64 delta = nsec_to_cycles(vcpu, elapsed);
1496 data += delta;
1497 offset = kvm_compute_tsc_offset(vcpu, data);
1498 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1499 }
1500 matched = true;
1501 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1502 } else {
1503 /*
1504 * We split periods of matched TSC writes into generations.
1505 * For each generation, we track the original measured
1506 * nanosecond time, offset, and write, so if TSCs are in
1507 * sync, we can match exact offset, and if not, we can match
1508 * exact software computation in compute_guest_tsc()
1509 *
1510 * These values are tracked in kvm->arch.cur_xxx variables.
1511 */
1512 kvm->arch.cur_tsc_generation++;
1513 kvm->arch.cur_tsc_nsec = ns;
1514 kvm->arch.cur_tsc_write = data;
1515 kvm->arch.cur_tsc_offset = offset;
1516 matched = false;
1517 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1518 kvm->arch.cur_tsc_generation, data);
1519 }
1520
1521 /*
1522 * We also track th most recent recorded KHZ, write and time to
1523 * allow the matching interval to be extended at each write.
1524 */
1525 kvm->arch.last_tsc_nsec = ns;
1526 kvm->arch.last_tsc_write = data;
1527 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1528
1529 vcpu->arch.last_guest_tsc = data;
1530
1531 /* Keep track of which generation this VCPU has synchronized to */
1532 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1533 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1534 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1535
1536 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1537 update_ia32_tsc_adjust_msr(vcpu, offset);
1538 kvm_vcpu_write_tsc_offset(vcpu, offset);
1539 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1540
1541 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1542 if (!matched) {
1543 kvm->arch.nr_vcpus_matched_tsc = 0;
1544 } else if (!already_matched) {
1545 kvm->arch.nr_vcpus_matched_tsc++;
1546 }
1547
1548 kvm_track_tsc_matching(vcpu);
1549 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1550 }
1551
1552 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1553
1554 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1555 s64 adjustment)
1556 {
1557 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1558 }
1559
1560 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1561 {
1562 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1563 WARN_ON(adjustment < 0);
1564 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1565 adjust_tsc_offset_guest(vcpu, adjustment);
1566 }
1567
1568 #ifdef CONFIG_X86_64
1569
1570 static u64 read_tsc(void)
1571 {
1572 u64 ret = (u64)rdtsc_ordered();
1573 u64 last = pvclock_gtod_data.clock.cycle_last;
1574
1575 if (likely(ret >= last))
1576 return ret;
1577
1578 /*
1579 * GCC likes to generate cmov here, but this branch is extremely
1580 * predictable (it's just a function of time and the likely is
1581 * very likely) and there's a data dependence, so force GCC
1582 * to generate a branch instead. I don't barrier() because
1583 * we don't actually need a barrier, and if this function
1584 * ever gets inlined it will generate worse code.
1585 */
1586 asm volatile ("");
1587 return last;
1588 }
1589
1590 static inline u64 vgettsc(u64 *cycle_now)
1591 {
1592 long v;
1593 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1594
1595 *cycle_now = read_tsc();
1596
1597 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1598 return v * gtod->clock.mult;
1599 }
1600
1601 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1602 {
1603 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1604 unsigned long seq;
1605 int mode;
1606 u64 ns;
1607
1608 do {
1609 seq = read_seqcount_begin(&gtod->seq);
1610 mode = gtod->clock.vclock_mode;
1611 ns = gtod->nsec_base;
1612 ns += vgettsc(cycle_now);
1613 ns >>= gtod->clock.shift;
1614 ns += gtod->boot_ns;
1615 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1616 *t = ns;
1617
1618 return mode;
1619 }
1620
1621 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1622 {
1623 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1624 unsigned long seq;
1625 int mode;
1626 u64 ns;
1627
1628 do {
1629 seq = read_seqcount_begin(&gtod->seq);
1630 mode = gtod->clock.vclock_mode;
1631 ts->tv_sec = gtod->wall_time_sec;
1632 ns = gtod->nsec_base;
1633 ns += vgettsc(cycle_now);
1634 ns >>= gtod->clock.shift;
1635 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1636
1637 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1638 ts->tv_nsec = ns;
1639
1640 return mode;
1641 }
1642
1643 /* returns true if host is using tsc clocksource */
1644 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1645 {
1646 /* checked again under seqlock below */
1647 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1648 return false;
1649
1650 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1651 }
1652
1653 /* returns true if host is using tsc clocksource */
1654 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1655 u64 *cycle_now)
1656 {
1657 /* checked again under seqlock below */
1658 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1659 return false;
1660
1661 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1662 }
1663 #endif
1664
1665 /*
1666 *
1667 * Assuming a stable TSC across physical CPUS, and a stable TSC
1668 * across virtual CPUs, the following condition is possible.
1669 * Each numbered line represents an event visible to both
1670 * CPUs at the next numbered event.
1671 *
1672 * "timespecX" represents host monotonic time. "tscX" represents
1673 * RDTSC value.
1674 *
1675 * VCPU0 on CPU0 | VCPU1 on CPU1
1676 *
1677 * 1. read timespec0,tsc0
1678 * 2. | timespec1 = timespec0 + N
1679 * | tsc1 = tsc0 + M
1680 * 3. transition to guest | transition to guest
1681 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1682 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1683 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1684 *
1685 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1686 *
1687 * - ret0 < ret1
1688 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1689 * ...
1690 * - 0 < N - M => M < N
1691 *
1692 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1693 * always the case (the difference between two distinct xtime instances
1694 * might be smaller then the difference between corresponding TSC reads,
1695 * when updating guest vcpus pvclock areas).
1696 *
1697 * To avoid that problem, do not allow visibility of distinct
1698 * system_timestamp/tsc_timestamp values simultaneously: use a master
1699 * copy of host monotonic time values. Update that master copy
1700 * in lockstep.
1701 *
1702 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1703 *
1704 */
1705
1706 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1707 {
1708 #ifdef CONFIG_X86_64
1709 struct kvm_arch *ka = &kvm->arch;
1710 int vclock_mode;
1711 bool host_tsc_clocksource, vcpus_matched;
1712
1713 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1714 atomic_read(&kvm->online_vcpus));
1715
1716 /*
1717 * If the host uses TSC clock, then passthrough TSC as stable
1718 * to the guest.
1719 */
1720 host_tsc_clocksource = kvm_get_time_and_clockread(
1721 &ka->master_kernel_ns,
1722 &ka->master_cycle_now);
1723
1724 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1725 && !ka->backwards_tsc_observed
1726 && !ka->boot_vcpu_runs_old_kvmclock;
1727
1728 if (ka->use_master_clock)
1729 atomic_set(&kvm_guest_has_master_clock, 1);
1730
1731 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1732 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1733 vcpus_matched);
1734 #endif
1735 }
1736
1737 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1738 {
1739 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1740 }
1741
1742 static void kvm_gen_update_masterclock(struct kvm *kvm)
1743 {
1744 #ifdef CONFIG_X86_64
1745 int i;
1746 struct kvm_vcpu *vcpu;
1747 struct kvm_arch *ka = &kvm->arch;
1748
1749 spin_lock(&ka->pvclock_gtod_sync_lock);
1750 kvm_make_mclock_inprogress_request(kvm);
1751 /* no guest entries from this point */
1752 pvclock_update_vm_gtod_copy(kvm);
1753
1754 kvm_for_each_vcpu(i, vcpu, kvm)
1755 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1756
1757 /* guest entries allowed */
1758 kvm_for_each_vcpu(i, vcpu, kvm)
1759 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1760
1761 spin_unlock(&ka->pvclock_gtod_sync_lock);
1762 #endif
1763 }
1764
1765 u64 get_kvmclock_ns(struct kvm *kvm)
1766 {
1767 struct kvm_arch *ka = &kvm->arch;
1768 struct pvclock_vcpu_time_info hv_clock;
1769 u64 ret;
1770
1771 spin_lock(&ka->pvclock_gtod_sync_lock);
1772 if (!ka->use_master_clock) {
1773 spin_unlock(&ka->pvclock_gtod_sync_lock);
1774 return ktime_get_boot_ns() + ka->kvmclock_offset;
1775 }
1776
1777 hv_clock.tsc_timestamp = ka->master_cycle_now;
1778 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1779 spin_unlock(&ka->pvclock_gtod_sync_lock);
1780
1781 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1782 get_cpu();
1783
1784 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1785 &hv_clock.tsc_shift,
1786 &hv_clock.tsc_to_system_mul);
1787 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1788
1789 put_cpu();
1790
1791 return ret;
1792 }
1793
1794 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1795 {
1796 struct kvm_vcpu_arch *vcpu = &v->arch;
1797 struct pvclock_vcpu_time_info guest_hv_clock;
1798
1799 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1800 &guest_hv_clock, sizeof(guest_hv_clock))))
1801 return;
1802
1803 /* This VCPU is paused, but it's legal for a guest to read another
1804 * VCPU's kvmclock, so we really have to follow the specification where
1805 * it says that version is odd if data is being modified, and even after
1806 * it is consistent.
1807 *
1808 * Version field updates must be kept separate. This is because
1809 * kvm_write_guest_cached might use a "rep movs" instruction, and
1810 * writes within a string instruction are weakly ordered. So there
1811 * are three writes overall.
1812 *
1813 * As a small optimization, only write the version field in the first
1814 * and third write. The vcpu->pv_time cache is still valid, because the
1815 * version field is the first in the struct.
1816 */
1817 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1818
1819 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1820 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1821 &vcpu->hv_clock,
1822 sizeof(vcpu->hv_clock.version));
1823
1824 smp_wmb();
1825
1826 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1827 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1828
1829 if (vcpu->pvclock_set_guest_stopped_request) {
1830 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1831 vcpu->pvclock_set_guest_stopped_request = false;
1832 }
1833
1834 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1835
1836 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837 &vcpu->hv_clock,
1838 sizeof(vcpu->hv_clock));
1839
1840 smp_wmb();
1841
1842 vcpu->hv_clock.version++;
1843 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844 &vcpu->hv_clock,
1845 sizeof(vcpu->hv_clock.version));
1846 }
1847
1848 static int kvm_guest_time_update(struct kvm_vcpu *v)
1849 {
1850 unsigned long flags, tgt_tsc_khz;
1851 struct kvm_vcpu_arch *vcpu = &v->arch;
1852 struct kvm_arch *ka = &v->kvm->arch;
1853 s64 kernel_ns;
1854 u64 tsc_timestamp, host_tsc;
1855 u8 pvclock_flags;
1856 bool use_master_clock;
1857
1858 kernel_ns = 0;
1859 host_tsc = 0;
1860
1861 /*
1862 * If the host uses TSC clock, then passthrough TSC as stable
1863 * to the guest.
1864 */
1865 spin_lock(&ka->pvclock_gtod_sync_lock);
1866 use_master_clock = ka->use_master_clock;
1867 if (use_master_clock) {
1868 host_tsc = ka->master_cycle_now;
1869 kernel_ns = ka->master_kernel_ns;
1870 }
1871 spin_unlock(&ka->pvclock_gtod_sync_lock);
1872
1873 /* Keep irq disabled to prevent changes to the clock */
1874 local_irq_save(flags);
1875 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1876 if (unlikely(tgt_tsc_khz == 0)) {
1877 local_irq_restore(flags);
1878 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1879 return 1;
1880 }
1881 if (!use_master_clock) {
1882 host_tsc = rdtsc();
1883 kernel_ns = ktime_get_boot_ns();
1884 }
1885
1886 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1887
1888 /*
1889 * We may have to catch up the TSC to match elapsed wall clock
1890 * time for two reasons, even if kvmclock is used.
1891 * 1) CPU could have been running below the maximum TSC rate
1892 * 2) Broken TSC compensation resets the base at each VCPU
1893 * entry to avoid unknown leaps of TSC even when running
1894 * again on the same CPU. This may cause apparent elapsed
1895 * time to disappear, and the guest to stand still or run
1896 * very slowly.
1897 */
1898 if (vcpu->tsc_catchup) {
1899 u64 tsc = compute_guest_tsc(v, kernel_ns);
1900 if (tsc > tsc_timestamp) {
1901 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1902 tsc_timestamp = tsc;
1903 }
1904 }
1905
1906 local_irq_restore(flags);
1907
1908 /* With all the info we got, fill in the values */
1909
1910 if (kvm_has_tsc_control)
1911 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1912
1913 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1914 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1915 &vcpu->hv_clock.tsc_shift,
1916 &vcpu->hv_clock.tsc_to_system_mul);
1917 vcpu->hw_tsc_khz = tgt_tsc_khz;
1918 }
1919
1920 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1921 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1922 vcpu->last_guest_tsc = tsc_timestamp;
1923
1924 /* If the host uses TSC clocksource, then it is stable */
1925 pvclock_flags = 0;
1926 if (use_master_clock)
1927 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1928
1929 vcpu->hv_clock.flags = pvclock_flags;
1930
1931 if (vcpu->pv_time_enabled)
1932 kvm_setup_pvclock_page(v);
1933 if (v == kvm_get_vcpu(v->kvm, 0))
1934 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1935 return 0;
1936 }
1937
1938 /*
1939 * kvmclock updates which are isolated to a given vcpu, such as
1940 * vcpu->cpu migration, should not allow system_timestamp from
1941 * the rest of the vcpus to remain static. Otherwise ntp frequency
1942 * correction applies to one vcpu's system_timestamp but not
1943 * the others.
1944 *
1945 * So in those cases, request a kvmclock update for all vcpus.
1946 * We need to rate-limit these requests though, as they can
1947 * considerably slow guests that have a large number of vcpus.
1948 * The time for a remote vcpu to update its kvmclock is bound
1949 * by the delay we use to rate-limit the updates.
1950 */
1951
1952 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1953
1954 static void kvmclock_update_fn(struct work_struct *work)
1955 {
1956 int i;
1957 struct delayed_work *dwork = to_delayed_work(work);
1958 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1959 kvmclock_update_work);
1960 struct kvm *kvm = container_of(ka, struct kvm, arch);
1961 struct kvm_vcpu *vcpu;
1962
1963 kvm_for_each_vcpu(i, vcpu, kvm) {
1964 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1965 kvm_vcpu_kick(vcpu);
1966 }
1967 }
1968
1969 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1970 {
1971 struct kvm *kvm = v->kvm;
1972
1973 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1974 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1975 KVMCLOCK_UPDATE_DELAY);
1976 }
1977
1978 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1979
1980 static void kvmclock_sync_fn(struct work_struct *work)
1981 {
1982 struct delayed_work *dwork = to_delayed_work(work);
1983 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1984 kvmclock_sync_work);
1985 struct kvm *kvm = container_of(ka, struct kvm, arch);
1986
1987 if (!kvmclock_periodic_sync)
1988 return;
1989
1990 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1991 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1992 KVMCLOCK_SYNC_PERIOD);
1993 }
1994
1995 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1996 {
1997 u64 mcg_cap = vcpu->arch.mcg_cap;
1998 unsigned bank_num = mcg_cap & 0xff;
1999
2000 switch (msr) {
2001 case MSR_IA32_MCG_STATUS:
2002 vcpu->arch.mcg_status = data;
2003 break;
2004 case MSR_IA32_MCG_CTL:
2005 if (!(mcg_cap & MCG_CTL_P))
2006 return 1;
2007 if (data != 0 && data != ~(u64)0)
2008 return -1;
2009 vcpu->arch.mcg_ctl = data;
2010 break;
2011 default:
2012 if (msr >= MSR_IA32_MC0_CTL &&
2013 msr < MSR_IA32_MCx_CTL(bank_num)) {
2014 u32 offset = msr - MSR_IA32_MC0_CTL;
2015 /* only 0 or all 1s can be written to IA32_MCi_CTL
2016 * some Linux kernels though clear bit 10 in bank 4 to
2017 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2018 * this to avoid an uncatched #GP in the guest
2019 */
2020 if ((offset & 0x3) == 0 &&
2021 data != 0 && (data | (1 << 10)) != ~(u64)0)
2022 return -1;
2023 vcpu->arch.mce_banks[offset] = data;
2024 break;
2025 }
2026 return 1;
2027 }
2028 return 0;
2029 }
2030
2031 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2032 {
2033 struct kvm *kvm = vcpu->kvm;
2034 int lm = is_long_mode(vcpu);
2035 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2036 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2037 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2038 : kvm->arch.xen_hvm_config.blob_size_32;
2039 u32 page_num = data & ~PAGE_MASK;
2040 u64 page_addr = data & PAGE_MASK;
2041 u8 *page;
2042 int r;
2043
2044 r = -E2BIG;
2045 if (page_num >= blob_size)
2046 goto out;
2047 r = -ENOMEM;
2048 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2049 if (IS_ERR(page)) {
2050 r = PTR_ERR(page);
2051 goto out;
2052 }
2053 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2054 goto out_free;
2055 r = 0;
2056 out_free:
2057 kfree(page);
2058 out:
2059 return r;
2060 }
2061
2062 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2063 {
2064 gpa_t gpa = data & ~0x3f;
2065
2066 /* Bits 3:5 are reserved, Should be zero */
2067 if (data & 0x38)
2068 return 1;
2069
2070 vcpu->arch.apf.msr_val = data;
2071
2072 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2073 kvm_clear_async_pf_completion_queue(vcpu);
2074 kvm_async_pf_hash_reset(vcpu);
2075 return 0;
2076 }
2077
2078 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2079 sizeof(u32)))
2080 return 1;
2081
2082 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2083 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2084 kvm_async_pf_wakeup_all(vcpu);
2085 return 0;
2086 }
2087
2088 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2089 {
2090 vcpu->arch.pv_time_enabled = false;
2091 }
2092
2093 static void record_steal_time(struct kvm_vcpu *vcpu)
2094 {
2095 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2096 return;
2097
2098 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2099 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2100 return;
2101
2102 vcpu->arch.st.steal.preempted = 0;
2103
2104 if (vcpu->arch.st.steal.version & 1)
2105 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2106
2107 vcpu->arch.st.steal.version += 1;
2108
2109 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2110 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2111
2112 smp_wmb();
2113
2114 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2115 vcpu->arch.st.last_steal;
2116 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117
2118 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2119 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2120
2121 smp_wmb();
2122
2123 vcpu->arch.st.steal.version += 1;
2124
2125 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2126 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2127 }
2128
2129 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2130 {
2131 bool pr = false;
2132 u32 msr = msr_info->index;
2133 u64 data = msr_info->data;
2134
2135 switch (msr) {
2136 case MSR_AMD64_NB_CFG:
2137 case MSR_IA32_UCODE_REV:
2138 case MSR_IA32_UCODE_WRITE:
2139 case MSR_VM_HSAVE_PA:
2140 case MSR_AMD64_PATCH_LOADER:
2141 case MSR_AMD64_BU_CFG2:
2142 case MSR_AMD64_DC_CFG:
2143 break;
2144
2145 case MSR_EFER:
2146 return set_efer(vcpu, data);
2147 case MSR_K7_HWCR:
2148 data &= ~(u64)0x40; /* ignore flush filter disable */
2149 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2150 data &= ~(u64)0x8; /* ignore TLB cache disable */
2151 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2152 if (data != 0) {
2153 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2154 data);
2155 return 1;
2156 }
2157 break;
2158 case MSR_FAM10H_MMIO_CONF_BASE:
2159 if (data != 0) {
2160 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2161 "0x%llx\n", data);
2162 return 1;
2163 }
2164 break;
2165 case MSR_IA32_DEBUGCTLMSR:
2166 if (!data) {
2167 /* We support the non-activated case already */
2168 break;
2169 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2170 /* Values other than LBR and BTF are vendor-specific,
2171 thus reserved and should throw a #GP */
2172 return 1;
2173 }
2174 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2175 __func__, data);
2176 break;
2177 case 0x200 ... 0x2ff:
2178 return kvm_mtrr_set_msr(vcpu, msr, data);
2179 case MSR_IA32_APICBASE:
2180 return kvm_set_apic_base(vcpu, msr_info);
2181 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2182 return kvm_x2apic_msr_write(vcpu, msr, data);
2183 case MSR_IA32_TSCDEADLINE:
2184 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2185 break;
2186 case MSR_IA32_TSC_ADJUST:
2187 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2188 if (!msr_info->host_initiated) {
2189 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2190 adjust_tsc_offset_guest(vcpu, adj);
2191 }
2192 vcpu->arch.ia32_tsc_adjust_msr = data;
2193 }
2194 break;
2195 case MSR_IA32_MISC_ENABLE:
2196 vcpu->arch.ia32_misc_enable_msr = data;
2197 break;
2198 case MSR_IA32_SMBASE:
2199 if (!msr_info->host_initiated)
2200 return 1;
2201 vcpu->arch.smbase = data;
2202 break;
2203 case MSR_KVM_WALL_CLOCK_NEW:
2204 case MSR_KVM_WALL_CLOCK:
2205 vcpu->kvm->arch.wall_clock = data;
2206 kvm_write_wall_clock(vcpu->kvm, data);
2207 break;
2208 case MSR_KVM_SYSTEM_TIME_NEW:
2209 case MSR_KVM_SYSTEM_TIME: {
2210 struct kvm_arch *ka = &vcpu->kvm->arch;
2211
2212 kvmclock_reset(vcpu);
2213
2214 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2215 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2216
2217 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2218 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2219
2220 ka->boot_vcpu_runs_old_kvmclock = tmp;
2221 }
2222
2223 vcpu->arch.time = data;
2224 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2225
2226 /* we verify if the enable bit is set... */
2227 if (!(data & 1))
2228 break;
2229
2230 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2231 &vcpu->arch.pv_time, data & ~1ULL,
2232 sizeof(struct pvclock_vcpu_time_info)))
2233 vcpu->arch.pv_time_enabled = false;
2234 else
2235 vcpu->arch.pv_time_enabled = true;
2236
2237 break;
2238 }
2239 case MSR_KVM_ASYNC_PF_EN:
2240 if (kvm_pv_enable_async_pf(vcpu, data))
2241 return 1;
2242 break;
2243 case MSR_KVM_STEAL_TIME:
2244
2245 if (unlikely(!sched_info_on()))
2246 return 1;
2247
2248 if (data & KVM_STEAL_RESERVED_MASK)
2249 return 1;
2250
2251 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2252 data & KVM_STEAL_VALID_BITS,
2253 sizeof(struct kvm_steal_time)))
2254 return 1;
2255
2256 vcpu->arch.st.msr_val = data;
2257
2258 if (!(data & KVM_MSR_ENABLED))
2259 break;
2260
2261 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2262
2263 break;
2264 case MSR_KVM_PV_EOI_EN:
2265 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2266 return 1;
2267 break;
2268
2269 case MSR_IA32_MCG_CTL:
2270 case MSR_IA32_MCG_STATUS:
2271 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2272 return set_msr_mce(vcpu, msr, data);
2273
2274 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2275 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2276 pr = true; /* fall through */
2277 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2278 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2279 if (kvm_pmu_is_valid_msr(vcpu, msr))
2280 return kvm_pmu_set_msr(vcpu, msr_info);
2281
2282 if (pr || data != 0)
2283 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2284 "0x%x data 0x%llx\n", msr, data);
2285 break;
2286 case MSR_K7_CLK_CTL:
2287 /*
2288 * Ignore all writes to this no longer documented MSR.
2289 * Writes are only relevant for old K7 processors,
2290 * all pre-dating SVM, but a recommended workaround from
2291 * AMD for these chips. It is possible to specify the
2292 * affected processor models on the command line, hence
2293 * the need to ignore the workaround.
2294 */
2295 break;
2296 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2297 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2298 case HV_X64_MSR_CRASH_CTL:
2299 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2300 return kvm_hv_set_msr_common(vcpu, msr, data,
2301 msr_info->host_initiated);
2302 case MSR_IA32_BBL_CR_CTL3:
2303 /* Drop writes to this legacy MSR -- see rdmsr
2304 * counterpart for further detail.
2305 */
2306 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2307 break;
2308 case MSR_AMD64_OSVW_ID_LENGTH:
2309 if (!guest_cpuid_has_osvw(vcpu))
2310 return 1;
2311 vcpu->arch.osvw.length = data;
2312 break;
2313 case MSR_AMD64_OSVW_STATUS:
2314 if (!guest_cpuid_has_osvw(vcpu))
2315 return 1;
2316 vcpu->arch.osvw.status = data;
2317 break;
2318 case MSR_PLATFORM_INFO:
2319 if (!msr_info->host_initiated ||
2320 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2321 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2322 cpuid_fault_enabled(vcpu)))
2323 return 1;
2324 vcpu->arch.msr_platform_info = data;
2325 break;
2326 case MSR_MISC_FEATURES_ENABLES:
2327 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2328 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2329 !supports_cpuid_fault(vcpu)))
2330 return 1;
2331 vcpu->arch.msr_misc_features_enables = data;
2332 break;
2333 default:
2334 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2335 return xen_hvm_config(vcpu, data);
2336 if (kvm_pmu_is_valid_msr(vcpu, msr))
2337 return kvm_pmu_set_msr(vcpu, msr_info);
2338 if (!ignore_msrs) {
2339 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2340 msr, data);
2341 return 1;
2342 } else {
2343 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2344 msr, data);
2345 break;
2346 }
2347 }
2348 return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2351
2352
2353 /*
2354 * Reads an msr value (of 'msr_index') into 'pdata'.
2355 * Returns 0 on success, non-0 otherwise.
2356 * Assumes vcpu_load() was already called.
2357 */
2358 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2359 {
2360 return kvm_x86_ops->get_msr(vcpu, msr);
2361 }
2362 EXPORT_SYMBOL_GPL(kvm_get_msr);
2363
2364 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2365 {
2366 u64 data;
2367 u64 mcg_cap = vcpu->arch.mcg_cap;
2368 unsigned bank_num = mcg_cap & 0xff;
2369
2370 switch (msr) {
2371 case MSR_IA32_P5_MC_ADDR:
2372 case MSR_IA32_P5_MC_TYPE:
2373 data = 0;
2374 break;
2375 case MSR_IA32_MCG_CAP:
2376 data = vcpu->arch.mcg_cap;
2377 break;
2378 case MSR_IA32_MCG_CTL:
2379 if (!(mcg_cap & MCG_CTL_P))
2380 return 1;
2381 data = vcpu->arch.mcg_ctl;
2382 break;
2383 case MSR_IA32_MCG_STATUS:
2384 data = vcpu->arch.mcg_status;
2385 break;
2386 default:
2387 if (msr >= MSR_IA32_MC0_CTL &&
2388 msr < MSR_IA32_MCx_CTL(bank_num)) {
2389 u32 offset = msr - MSR_IA32_MC0_CTL;
2390 data = vcpu->arch.mce_banks[offset];
2391 break;
2392 }
2393 return 1;
2394 }
2395 *pdata = data;
2396 return 0;
2397 }
2398
2399 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2400 {
2401 switch (msr_info->index) {
2402 case MSR_IA32_PLATFORM_ID:
2403 case MSR_IA32_EBL_CR_POWERON:
2404 case MSR_IA32_DEBUGCTLMSR:
2405 case MSR_IA32_LASTBRANCHFROMIP:
2406 case MSR_IA32_LASTBRANCHTOIP:
2407 case MSR_IA32_LASTINTFROMIP:
2408 case MSR_IA32_LASTINTTOIP:
2409 case MSR_K8_SYSCFG:
2410 case MSR_K8_TSEG_ADDR:
2411 case MSR_K8_TSEG_MASK:
2412 case MSR_K7_HWCR:
2413 case MSR_VM_HSAVE_PA:
2414 case MSR_K8_INT_PENDING_MSG:
2415 case MSR_AMD64_NB_CFG:
2416 case MSR_FAM10H_MMIO_CONF_BASE:
2417 case MSR_AMD64_BU_CFG2:
2418 case MSR_IA32_PERF_CTL:
2419 case MSR_AMD64_DC_CFG:
2420 msr_info->data = 0;
2421 break;
2422 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2423 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2424 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2425 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2426 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2427 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2428 msr_info->data = 0;
2429 break;
2430 case MSR_IA32_UCODE_REV:
2431 msr_info->data = 0x100000000ULL;
2432 break;
2433 case MSR_MTRRcap:
2434 case 0x200 ... 0x2ff:
2435 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2436 case 0xcd: /* fsb frequency */
2437 msr_info->data = 3;
2438 break;
2439 /*
2440 * MSR_EBC_FREQUENCY_ID
2441 * Conservative value valid for even the basic CPU models.
2442 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2443 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2444 * and 266MHz for model 3, or 4. Set Core Clock
2445 * Frequency to System Bus Frequency Ratio to 1 (bits
2446 * 31:24) even though these are only valid for CPU
2447 * models > 2, however guests may end up dividing or
2448 * multiplying by zero otherwise.
2449 */
2450 case MSR_EBC_FREQUENCY_ID:
2451 msr_info->data = 1 << 24;
2452 break;
2453 case MSR_IA32_APICBASE:
2454 msr_info->data = kvm_get_apic_base(vcpu);
2455 break;
2456 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2457 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2458 break;
2459 case MSR_IA32_TSCDEADLINE:
2460 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2461 break;
2462 case MSR_IA32_TSC_ADJUST:
2463 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2464 break;
2465 case MSR_IA32_MISC_ENABLE:
2466 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2467 break;
2468 case MSR_IA32_SMBASE:
2469 if (!msr_info->host_initiated)
2470 return 1;
2471 msr_info->data = vcpu->arch.smbase;
2472 break;
2473 case MSR_IA32_PERF_STATUS:
2474 /* TSC increment by tick */
2475 msr_info->data = 1000ULL;
2476 /* CPU multiplier */
2477 msr_info->data |= (((uint64_t)4ULL) << 40);
2478 break;
2479 case MSR_EFER:
2480 msr_info->data = vcpu->arch.efer;
2481 break;
2482 case MSR_KVM_WALL_CLOCK:
2483 case MSR_KVM_WALL_CLOCK_NEW:
2484 msr_info->data = vcpu->kvm->arch.wall_clock;
2485 break;
2486 case MSR_KVM_SYSTEM_TIME:
2487 case MSR_KVM_SYSTEM_TIME_NEW:
2488 msr_info->data = vcpu->arch.time;
2489 break;
2490 case MSR_KVM_ASYNC_PF_EN:
2491 msr_info->data = vcpu->arch.apf.msr_val;
2492 break;
2493 case MSR_KVM_STEAL_TIME:
2494 msr_info->data = vcpu->arch.st.msr_val;
2495 break;
2496 case MSR_KVM_PV_EOI_EN:
2497 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2498 break;
2499 case MSR_IA32_P5_MC_ADDR:
2500 case MSR_IA32_P5_MC_TYPE:
2501 case MSR_IA32_MCG_CAP:
2502 case MSR_IA32_MCG_CTL:
2503 case MSR_IA32_MCG_STATUS:
2504 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2505 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2506 case MSR_K7_CLK_CTL:
2507 /*
2508 * Provide expected ramp-up count for K7. All other
2509 * are set to zero, indicating minimum divisors for
2510 * every field.
2511 *
2512 * This prevents guest kernels on AMD host with CPU
2513 * type 6, model 8 and higher from exploding due to
2514 * the rdmsr failing.
2515 */
2516 msr_info->data = 0x20000000;
2517 break;
2518 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2519 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2520 case HV_X64_MSR_CRASH_CTL:
2521 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2522 return kvm_hv_get_msr_common(vcpu,
2523 msr_info->index, &msr_info->data);
2524 break;
2525 case MSR_IA32_BBL_CR_CTL3:
2526 /* This legacy MSR exists but isn't fully documented in current
2527 * silicon. It is however accessed by winxp in very narrow
2528 * scenarios where it sets bit #19, itself documented as
2529 * a "reserved" bit. Best effort attempt to source coherent
2530 * read data here should the balance of the register be
2531 * interpreted by the guest:
2532 *
2533 * L2 cache control register 3: 64GB range, 256KB size,
2534 * enabled, latency 0x1, configured
2535 */
2536 msr_info->data = 0xbe702111;
2537 break;
2538 case MSR_AMD64_OSVW_ID_LENGTH:
2539 if (!guest_cpuid_has_osvw(vcpu))
2540 return 1;
2541 msr_info->data = vcpu->arch.osvw.length;
2542 break;
2543 case MSR_AMD64_OSVW_STATUS:
2544 if (!guest_cpuid_has_osvw(vcpu))
2545 return 1;
2546 msr_info->data = vcpu->arch.osvw.status;
2547 break;
2548 case MSR_PLATFORM_INFO:
2549 msr_info->data = vcpu->arch.msr_platform_info;
2550 break;
2551 case MSR_MISC_FEATURES_ENABLES:
2552 msr_info->data = vcpu->arch.msr_misc_features_enables;
2553 break;
2554 default:
2555 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2556 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2557 if (!ignore_msrs) {
2558 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2559 msr_info->index);
2560 return 1;
2561 } else {
2562 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2563 msr_info->data = 0;
2564 }
2565 break;
2566 }
2567 return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2570
2571 /*
2572 * Read or write a bunch of msrs. All parameters are kernel addresses.
2573 *
2574 * @return number of msrs set successfully.
2575 */
2576 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2577 struct kvm_msr_entry *entries,
2578 int (*do_msr)(struct kvm_vcpu *vcpu,
2579 unsigned index, u64 *data))
2580 {
2581 int i, idx;
2582
2583 idx = srcu_read_lock(&vcpu->kvm->srcu);
2584 for (i = 0; i < msrs->nmsrs; ++i)
2585 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2586 break;
2587 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2588
2589 return i;
2590 }
2591
2592 /*
2593 * Read or write a bunch of msrs. Parameters are user addresses.
2594 *
2595 * @return number of msrs set successfully.
2596 */
2597 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2598 int (*do_msr)(struct kvm_vcpu *vcpu,
2599 unsigned index, u64 *data),
2600 int writeback)
2601 {
2602 struct kvm_msrs msrs;
2603 struct kvm_msr_entry *entries;
2604 int r, n;
2605 unsigned size;
2606
2607 r = -EFAULT;
2608 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2609 goto out;
2610
2611 r = -E2BIG;
2612 if (msrs.nmsrs >= MAX_IO_MSRS)
2613 goto out;
2614
2615 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2616 entries = memdup_user(user_msrs->entries, size);
2617 if (IS_ERR(entries)) {
2618 r = PTR_ERR(entries);
2619 goto out;
2620 }
2621
2622 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2623 if (r < 0)
2624 goto out_free;
2625
2626 r = -EFAULT;
2627 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2628 goto out_free;
2629
2630 r = n;
2631
2632 out_free:
2633 kfree(entries);
2634 out:
2635 return r;
2636 }
2637
2638 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2639 {
2640 int r;
2641
2642 switch (ext) {
2643 case KVM_CAP_IRQCHIP:
2644 case KVM_CAP_HLT:
2645 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2646 case KVM_CAP_SET_TSS_ADDR:
2647 case KVM_CAP_EXT_CPUID:
2648 case KVM_CAP_EXT_EMUL_CPUID:
2649 case KVM_CAP_CLOCKSOURCE:
2650 case KVM_CAP_PIT:
2651 case KVM_CAP_NOP_IO_DELAY:
2652 case KVM_CAP_MP_STATE:
2653 case KVM_CAP_SYNC_MMU:
2654 case KVM_CAP_USER_NMI:
2655 case KVM_CAP_REINJECT_CONTROL:
2656 case KVM_CAP_IRQ_INJECT_STATUS:
2657 case KVM_CAP_IOEVENTFD:
2658 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2659 case KVM_CAP_PIT2:
2660 case KVM_CAP_PIT_STATE2:
2661 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2662 case KVM_CAP_XEN_HVM:
2663 case KVM_CAP_VCPU_EVENTS:
2664 case KVM_CAP_HYPERV:
2665 case KVM_CAP_HYPERV_VAPIC:
2666 case KVM_CAP_HYPERV_SPIN:
2667 case KVM_CAP_HYPERV_SYNIC:
2668 case KVM_CAP_HYPERV_SYNIC2:
2669 case KVM_CAP_HYPERV_VP_INDEX:
2670 case KVM_CAP_PCI_SEGMENT:
2671 case KVM_CAP_DEBUGREGS:
2672 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2673 case KVM_CAP_XSAVE:
2674 case KVM_CAP_ASYNC_PF:
2675 case KVM_CAP_GET_TSC_KHZ:
2676 case KVM_CAP_KVMCLOCK_CTRL:
2677 case KVM_CAP_READONLY_MEM:
2678 case KVM_CAP_HYPERV_TIME:
2679 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2680 case KVM_CAP_TSC_DEADLINE_TIMER:
2681 case KVM_CAP_ENABLE_CAP_VM:
2682 case KVM_CAP_DISABLE_QUIRKS:
2683 case KVM_CAP_SET_BOOT_CPU_ID:
2684 case KVM_CAP_SPLIT_IRQCHIP:
2685 case KVM_CAP_IMMEDIATE_EXIT:
2686 r = 1;
2687 break;
2688 case KVM_CAP_ADJUST_CLOCK:
2689 r = KVM_CLOCK_TSC_STABLE;
2690 break;
2691 case KVM_CAP_X86_GUEST_MWAIT:
2692 r = kvm_mwait_in_guest();
2693 break;
2694 case KVM_CAP_X86_SMM:
2695 /* SMBASE is usually relocated above 1M on modern chipsets,
2696 * and SMM handlers might indeed rely on 4G segment limits,
2697 * so do not report SMM to be available if real mode is
2698 * emulated via vm86 mode. Still, do not go to great lengths
2699 * to avoid userspace's usage of the feature, because it is a
2700 * fringe case that is not enabled except via specific settings
2701 * of the module parameters.
2702 */
2703 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2704 break;
2705 case KVM_CAP_VAPIC:
2706 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2707 break;
2708 case KVM_CAP_NR_VCPUS:
2709 r = KVM_SOFT_MAX_VCPUS;
2710 break;
2711 case KVM_CAP_MAX_VCPUS:
2712 r = KVM_MAX_VCPUS;
2713 break;
2714 case KVM_CAP_NR_MEMSLOTS:
2715 r = KVM_USER_MEM_SLOTS;
2716 break;
2717 case KVM_CAP_PV_MMU: /* obsolete */
2718 r = 0;
2719 break;
2720 case KVM_CAP_MCE:
2721 r = KVM_MAX_MCE_BANKS;
2722 break;
2723 case KVM_CAP_XCRS:
2724 r = boot_cpu_has(X86_FEATURE_XSAVE);
2725 break;
2726 case KVM_CAP_TSC_CONTROL:
2727 r = kvm_has_tsc_control;
2728 break;
2729 case KVM_CAP_X2APIC_API:
2730 r = KVM_X2APIC_API_VALID_FLAGS;
2731 break;
2732 default:
2733 r = 0;
2734 break;
2735 }
2736 return r;
2737
2738 }
2739
2740 long kvm_arch_dev_ioctl(struct file *filp,
2741 unsigned int ioctl, unsigned long arg)
2742 {
2743 void __user *argp = (void __user *)arg;
2744 long r;
2745
2746 switch (ioctl) {
2747 case KVM_GET_MSR_INDEX_LIST: {
2748 struct kvm_msr_list __user *user_msr_list = argp;
2749 struct kvm_msr_list msr_list;
2750 unsigned n;
2751
2752 r = -EFAULT;
2753 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2754 goto out;
2755 n = msr_list.nmsrs;
2756 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2757 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2758 goto out;
2759 r = -E2BIG;
2760 if (n < msr_list.nmsrs)
2761 goto out;
2762 r = -EFAULT;
2763 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2764 num_msrs_to_save * sizeof(u32)))
2765 goto out;
2766 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2767 &emulated_msrs,
2768 num_emulated_msrs * sizeof(u32)))
2769 goto out;
2770 r = 0;
2771 break;
2772 }
2773 case KVM_GET_SUPPORTED_CPUID:
2774 case KVM_GET_EMULATED_CPUID: {
2775 struct kvm_cpuid2 __user *cpuid_arg = argp;
2776 struct kvm_cpuid2 cpuid;
2777
2778 r = -EFAULT;
2779 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2780 goto out;
2781
2782 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2783 ioctl);
2784 if (r)
2785 goto out;
2786
2787 r = -EFAULT;
2788 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2789 goto out;
2790 r = 0;
2791 break;
2792 }
2793 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2794 r = -EFAULT;
2795 if (copy_to_user(argp, &kvm_mce_cap_supported,
2796 sizeof(kvm_mce_cap_supported)))
2797 goto out;
2798 r = 0;
2799 break;
2800 }
2801 default:
2802 r = -EINVAL;
2803 }
2804 out:
2805 return r;
2806 }
2807
2808 static void wbinvd_ipi(void *garbage)
2809 {
2810 wbinvd();
2811 }
2812
2813 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2814 {
2815 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2816 }
2817
2818 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2819 {
2820 /* Address WBINVD may be executed by guest */
2821 if (need_emulate_wbinvd(vcpu)) {
2822 if (kvm_x86_ops->has_wbinvd_exit())
2823 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2824 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2825 smp_call_function_single(vcpu->cpu,
2826 wbinvd_ipi, NULL, 1);
2827 }
2828
2829 kvm_x86_ops->vcpu_load(vcpu, cpu);
2830
2831 /* Apply any externally detected TSC adjustments (due to suspend) */
2832 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2833 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2834 vcpu->arch.tsc_offset_adjustment = 0;
2835 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2836 }
2837
2838 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2839 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2840 rdtsc() - vcpu->arch.last_host_tsc;
2841 if (tsc_delta < 0)
2842 mark_tsc_unstable("KVM discovered backwards TSC");
2843
2844 if (check_tsc_unstable()) {
2845 u64 offset = kvm_compute_tsc_offset(vcpu,
2846 vcpu->arch.last_guest_tsc);
2847 kvm_vcpu_write_tsc_offset(vcpu, offset);
2848 vcpu->arch.tsc_catchup = 1;
2849 }
2850
2851 if (kvm_lapic_hv_timer_in_use(vcpu))
2852 kvm_lapic_restart_hv_timer(vcpu);
2853
2854 /*
2855 * On a host with synchronized TSC, there is no need to update
2856 * kvmclock on vcpu->cpu migration
2857 */
2858 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2859 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2860 if (vcpu->cpu != cpu)
2861 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2862 vcpu->cpu = cpu;
2863 }
2864
2865 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2866 }
2867
2868 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2869 {
2870 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2871 return;
2872
2873 vcpu->arch.st.steal.preempted = 1;
2874
2875 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2876 &vcpu->arch.st.steal.preempted,
2877 offsetof(struct kvm_steal_time, preempted),
2878 sizeof(vcpu->arch.st.steal.preempted));
2879 }
2880
2881 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2882 {
2883 int idx;
2884 /*
2885 * Disable page faults because we're in atomic context here.
2886 * kvm_write_guest_offset_cached() would call might_fault()
2887 * that relies on pagefault_disable() to tell if there's a
2888 * bug. NOTE: the write to guest memory may not go through if
2889 * during postcopy live migration or if there's heavy guest
2890 * paging.
2891 */
2892 pagefault_disable();
2893 /*
2894 * kvm_memslots() will be called by
2895 * kvm_write_guest_offset_cached() so take the srcu lock.
2896 */
2897 idx = srcu_read_lock(&vcpu->kvm->srcu);
2898 kvm_steal_time_set_preempted(vcpu);
2899 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2900 pagefault_enable();
2901 kvm_x86_ops->vcpu_put(vcpu);
2902 kvm_put_guest_fpu(vcpu);
2903 vcpu->arch.last_host_tsc = rdtsc();
2904 }
2905
2906 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2907 struct kvm_lapic_state *s)
2908 {
2909 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2910 kvm_x86_ops->sync_pir_to_irr(vcpu);
2911
2912 return kvm_apic_get_state(vcpu, s);
2913 }
2914
2915 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2916 struct kvm_lapic_state *s)
2917 {
2918 int r;
2919
2920 r = kvm_apic_set_state(vcpu, s);
2921 if (r)
2922 return r;
2923 update_cr8_intercept(vcpu);
2924
2925 return 0;
2926 }
2927
2928 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2929 {
2930 return (!lapic_in_kernel(vcpu) ||
2931 kvm_apic_accept_pic_intr(vcpu));
2932 }
2933
2934 /*
2935 * if userspace requested an interrupt window, check that the
2936 * interrupt window is open.
2937 *
2938 * No need to exit to userspace if we already have an interrupt queued.
2939 */
2940 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2941 {
2942 return kvm_arch_interrupt_allowed(vcpu) &&
2943 !kvm_cpu_has_interrupt(vcpu) &&
2944 !kvm_event_needs_reinjection(vcpu) &&
2945 kvm_cpu_accept_dm_intr(vcpu);
2946 }
2947
2948 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2949 struct kvm_interrupt *irq)
2950 {
2951 if (irq->irq >= KVM_NR_INTERRUPTS)
2952 return -EINVAL;
2953
2954 if (!irqchip_in_kernel(vcpu->kvm)) {
2955 kvm_queue_interrupt(vcpu, irq->irq, false);
2956 kvm_make_request(KVM_REQ_EVENT, vcpu);
2957 return 0;
2958 }
2959
2960 /*
2961 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2962 * fail for in-kernel 8259.
2963 */
2964 if (pic_in_kernel(vcpu->kvm))
2965 return -ENXIO;
2966
2967 if (vcpu->arch.pending_external_vector != -1)
2968 return -EEXIST;
2969
2970 vcpu->arch.pending_external_vector = irq->irq;
2971 kvm_make_request(KVM_REQ_EVENT, vcpu);
2972 return 0;
2973 }
2974
2975 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2976 {
2977 kvm_inject_nmi(vcpu);
2978
2979 return 0;
2980 }
2981
2982 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2983 {
2984 kvm_make_request(KVM_REQ_SMI, vcpu);
2985
2986 return 0;
2987 }
2988
2989 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2990 struct kvm_tpr_access_ctl *tac)
2991 {
2992 if (tac->flags)
2993 return -EINVAL;
2994 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2995 return 0;
2996 }
2997
2998 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2999 u64 mcg_cap)
3000 {
3001 int r;
3002 unsigned bank_num = mcg_cap & 0xff, bank;
3003
3004 r = -EINVAL;
3005 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3006 goto out;
3007 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3008 goto out;
3009 r = 0;
3010 vcpu->arch.mcg_cap = mcg_cap;
3011 /* Init IA32_MCG_CTL to all 1s */
3012 if (mcg_cap & MCG_CTL_P)
3013 vcpu->arch.mcg_ctl = ~(u64)0;
3014 /* Init IA32_MCi_CTL to all 1s */
3015 for (bank = 0; bank < bank_num; bank++)
3016 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3017
3018 if (kvm_x86_ops->setup_mce)
3019 kvm_x86_ops->setup_mce(vcpu);
3020 out:
3021 return r;
3022 }
3023
3024 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3025 struct kvm_x86_mce *mce)
3026 {
3027 u64 mcg_cap = vcpu->arch.mcg_cap;
3028 unsigned bank_num = mcg_cap & 0xff;
3029 u64 *banks = vcpu->arch.mce_banks;
3030
3031 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3032 return -EINVAL;
3033 /*
3034 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3035 * reporting is disabled
3036 */
3037 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3038 vcpu->arch.mcg_ctl != ~(u64)0)
3039 return 0;
3040 banks += 4 * mce->bank;
3041 /*
3042 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3043 * reporting is disabled for the bank
3044 */
3045 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3046 return 0;
3047 if (mce->status & MCI_STATUS_UC) {
3048 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3049 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3050 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3051 return 0;
3052 }
3053 if (banks[1] & MCI_STATUS_VAL)
3054 mce->status |= MCI_STATUS_OVER;
3055 banks[2] = mce->addr;
3056 banks[3] = mce->misc;
3057 vcpu->arch.mcg_status = mce->mcg_status;
3058 banks[1] = mce->status;
3059 kvm_queue_exception(vcpu, MC_VECTOR);
3060 } else if (!(banks[1] & MCI_STATUS_VAL)
3061 || !(banks[1] & MCI_STATUS_UC)) {
3062 if (banks[1] & MCI_STATUS_VAL)
3063 mce->status |= MCI_STATUS_OVER;
3064 banks[2] = mce->addr;
3065 banks[3] = mce->misc;
3066 banks[1] = mce->status;
3067 } else
3068 banks[1] |= MCI_STATUS_OVER;
3069 return 0;
3070 }
3071
3072 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3073 struct kvm_vcpu_events *events)
3074 {
3075 process_nmi(vcpu);
3076 events->exception.injected =
3077 vcpu->arch.exception.pending &&
3078 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3079 events->exception.nr = vcpu->arch.exception.nr;
3080 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3081 events->exception.pad = 0;
3082 events->exception.error_code = vcpu->arch.exception.error_code;
3083
3084 events->interrupt.injected =
3085 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3086 events->interrupt.nr = vcpu->arch.interrupt.nr;
3087 events->interrupt.soft = 0;
3088 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3089
3090 events->nmi.injected = vcpu->arch.nmi_injected;
3091 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3092 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3093 events->nmi.pad = 0;
3094
3095 events->sipi_vector = 0; /* never valid when reporting to user space */
3096
3097 events->smi.smm = is_smm(vcpu);
3098 events->smi.pending = vcpu->arch.smi_pending;
3099 events->smi.smm_inside_nmi =
3100 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3101 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3102
3103 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3104 | KVM_VCPUEVENT_VALID_SHADOW
3105 | KVM_VCPUEVENT_VALID_SMM);
3106 memset(&events->reserved, 0, sizeof(events->reserved));
3107 }
3108
3109 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3110
3111 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3112 struct kvm_vcpu_events *events)
3113 {
3114 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3115 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3116 | KVM_VCPUEVENT_VALID_SHADOW
3117 | KVM_VCPUEVENT_VALID_SMM))
3118 return -EINVAL;
3119
3120 if (events->exception.injected &&
3121 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3122 is_guest_mode(vcpu)))
3123 return -EINVAL;
3124
3125 /* INITs are latched while in SMM */
3126 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3127 (events->smi.smm || events->smi.pending) &&
3128 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3129 return -EINVAL;
3130
3131 process_nmi(vcpu);
3132 vcpu->arch.exception.pending = events->exception.injected;
3133 vcpu->arch.exception.nr = events->exception.nr;
3134 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3135 vcpu->arch.exception.error_code = events->exception.error_code;
3136
3137 vcpu->arch.interrupt.pending = events->interrupt.injected;
3138 vcpu->arch.interrupt.nr = events->interrupt.nr;
3139 vcpu->arch.interrupt.soft = events->interrupt.soft;
3140 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3141 kvm_x86_ops->set_interrupt_shadow(vcpu,
3142 events->interrupt.shadow);
3143
3144 vcpu->arch.nmi_injected = events->nmi.injected;
3145 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3146 vcpu->arch.nmi_pending = events->nmi.pending;
3147 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3148
3149 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3150 lapic_in_kernel(vcpu))
3151 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3152
3153 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3154 u32 hflags = vcpu->arch.hflags;
3155 if (events->smi.smm)
3156 hflags |= HF_SMM_MASK;
3157 else
3158 hflags &= ~HF_SMM_MASK;
3159 kvm_set_hflags(vcpu, hflags);
3160
3161 vcpu->arch.smi_pending = events->smi.pending;
3162
3163 if (events->smi.smm) {
3164 if (events->smi.smm_inside_nmi)
3165 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3166 else
3167 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3168 if (lapic_in_kernel(vcpu)) {
3169 if (events->smi.latched_init)
3170 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3171 else
3172 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3173 }
3174 }
3175 }
3176
3177 kvm_make_request(KVM_REQ_EVENT, vcpu);
3178
3179 return 0;
3180 }
3181
3182 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3183 struct kvm_debugregs *dbgregs)
3184 {
3185 unsigned long val;
3186
3187 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3188 kvm_get_dr(vcpu, 6, &val);
3189 dbgregs->dr6 = val;
3190 dbgregs->dr7 = vcpu->arch.dr7;
3191 dbgregs->flags = 0;
3192 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3193 }
3194
3195 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3196 struct kvm_debugregs *dbgregs)
3197 {
3198 if (dbgregs->flags)
3199 return -EINVAL;
3200
3201 if (dbgregs->dr6 & ~0xffffffffull)
3202 return -EINVAL;
3203 if (dbgregs->dr7 & ~0xffffffffull)
3204 return -EINVAL;
3205
3206 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3207 kvm_update_dr0123(vcpu);
3208 vcpu->arch.dr6 = dbgregs->dr6;
3209 kvm_update_dr6(vcpu);
3210 vcpu->arch.dr7 = dbgregs->dr7;
3211 kvm_update_dr7(vcpu);
3212
3213 return 0;
3214 }
3215
3216 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3217
3218 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3219 {
3220 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3221 u64 xstate_bv = xsave->header.xfeatures;
3222 u64 valid;
3223
3224 /*
3225 * Copy legacy XSAVE area, to avoid complications with CPUID
3226 * leaves 0 and 1 in the loop below.
3227 */
3228 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3229
3230 /* Set XSTATE_BV */
3231 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3232 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3233
3234 /*
3235 * Copy each region from the possibly compacted offset to the
3236 * non-compacted offset.
3237 */
3238 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3239 while (valid) {
3240 u64 feature = valid & -valid;
3241 int index = fls64(feature) - 1;
3242 void *src = get_xsave_addr(xsave, feature);
3243
3244 if (src) {
3245 u32 size, offset, ecx, edx;
3246 cpuid_count(XSTATE_CPUID, index,
3247 &size, &offset, &ecx, &edx);
3248 memcpy(dest + offset, src, size);
3249 }
3250
3251 valid -= feature;
3252 }
3253 }
3254
3255 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3256 {
3257 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3258 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3259 u64 valid;
3260
3261 /*
3262 * Copy legacy XSAVE area, to avoid complications with CPUID
3263 * leaves 0 and 1 in the loop below.
3264 */
3265 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3266
3267 /* Set XSTATE_BV and possibly XCOMP_BV. */
3268 xsave->header.xfeatures = xstate_bv;
3269 if (boot_cpu_has(X86_FEATURE_XSAVES))
3270 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3271
3272 /*
3273 * Copy each region from the non-compacted offset to the
3274 * possibly compacted offset.
3275 */
3276 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3277 while (valid) {
3278 u64 feature = valid & -valid;
3279 int index = fls64(feature) - 1;
3280 void *dest = get_xsave_addr(xsave, feature);
3281
3282 if (dest) {
3283 u32 size, offset, ecx, edx;
3284 cpuid_count(XSTATE_CPUID, index,
3285 &size, &offset, &ecx, &edx);
3286 memcpy(dest, src + offset, size);
3287 }
3288
3289 valid -= feature;
3290 }
3291 }
3292
3293 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3294 struct kvm_xsave *guest_xsave)
3295 {
3296 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3297 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3298 fill_xsave((u8 *) guest_xsave->region, vcpu);
3299 } else {
3300 memcpy(guest_xsave->region,
3301 &vcpu->arch.guest_fpu.state.fxsave,
3302 sizeof(struct fxregs_state));
3303 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3304 XFEATURE_MASK_FPSSE;
3305 }
3306 }
3307
3308 #define XSAVE_MXCSR_OFFSET 24
3309
3310 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3311 struct kvm_xsave *guest_xsave)
3312 {
3313 u64 xstate_bv =
3314 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3315 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3316
3317 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3318 /*
3319 * Here we allow setting states that are not present in
3320 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3321 * with old userspace.
3322 */
3323 if (xstate_bv & ~kvm_supported_xcr0() ||
3324 mxcsr & ~mxcsr_feature_mask)
3325 return -EINVAL;
3326 load_xsave(vcpu, (u8 *)guest_xsave->region);
3327 } else {
3328 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3329 mxcsr & ~mxcsr_feature_mask)
3330 return -EINVAL;
3331 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3332 guest_xsave->region, sizeof(struct fxregs_state));
3333 }
3334 return 0;
3335 }
3336
3337 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3338 struct kvm_xcrs *guest_xcrs)
3339 {
3340 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3341 guest_xcrs->nr_xcrs = 0;
3342 return;
3343 }
3344
3345 guest_xcrs->nr_xcrs = 1;
3346 guest_xcrs->flags = 0;
3347 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3348 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3349 }
3350
3351 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3352 struct kvm_xcrs *guest_xcrs)
3353 {
3354 int i, r = 0;
3355
3356 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3357 return -EINVAL;
3358
3359 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3360 return -EINVAL;
3361
3362 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3363 /* Only support XCR0 currently */
3364 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3365 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3366 guest_xcrs->xcrs[i].value);
3367 break;
3368 }
3369 if (r)
3370 r = -EINVAL;
3371 return r;
3372 }
3373
3374 /*
3375 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3376 * stopped by the hypervisor. This function will be called from the host only.
3377 * EINVAL is returned when the host attempts to set the flag for a guest that
3378 * does not support pv clocks.
3379 */
3380 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3381 {
3382 if (!vcpu->arch.pv_time_enabled)
3383 return -EINVAL;
3384 vcpu->arch.pvclock_set_guest_stopped_request = true;
3385 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3386 return 0;
3387 }
3388
3389 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3390 struct kvm_enable_cap *cap)
3391 {
3392 if (cap->flags)
3393 return -EINVAL;
3394
3395 switch (cap->cap) {
3396 case KVM_CAP_HYPERV_SYNIC2:
3397 if (cap->args[0])
3398 return -EINVAL;
3399 case KVM_CAP_HYPERV_SYNIC:
3400 if (!irqchip_in_kernel(vcpu->kvm))
3401 return -EINVAL;
3402 return kvm_hv_activate_synic(vcpu, cap->cap ==
3403 KVM_CAP_HYPERV_SYNIC2);
3404 default:
3405 return -EINVAL;
3406 }
3407 }
3408
3409 long kvm_arch_vcpu_ioctl(struct file *filp,
3410 unsigned int ioctl, unsigned long arg)
3411 {
3412 struct kvm_vcpu *vcpu = filp->private_data;
3413 void __user *argp = (void __user *)arg;
3414 int r;
3415 union {
3416 struct kvm_lapic_state *lapic;
3417 struct kvm_xsave *xsave;
3418 struct kvm_xcrs *xcrs;
3419 void *buffer;
3420 } u;
3421
3422 u.buffer = NULL;
3423 switch (ioctl) {
3424 case KVM_GET_LAPIC: {
3425 r = -EINVAL;
3426 if (!lapic_in_kernel(vcpu))
3427 goto out;
3428 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3429
3430 r = -ENOMEM;
3431 if (!u.lapic)
3432 goto out;
3433 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3434 if (r)
3435 goto out;
3436 r = -EFAULT;
3437 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3438 goto out;
3439 r = 0;
3440 break;
3441 }
3442 case KVM_SET_LAPIC: {
3443 r = -EINVAL;
3444 if (!lapic_in_kernel(vcpu))
3445 goto out;
3446 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3447 if (IS_ERR(u.lapic))
3448 return PTR_ERR(u.lapic);
3449
3450 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3451 break;
3452 }
3453 case KVM_INTERRUPT: {
3454 struct kvm_interrupt irq;
3455
3456 r = -EFAULT;
3457 if (copy_from_user(&irq, argp, sizeof irq))
3458 goto out;
3459 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3460 break;
3461 }
3462 case KVM_NMI: {
3463 r = kvm_vcpu_ioctl_nmi(vcpu);
3464 break;
3465 }
3466 case KVM_SMI: {
3467 r = kvm_vcpu_ioctl_smi(vcpu);
3468 break;
3469 }
3470 case KVM_SET_CPUID: {
3471 struct kvm_cpuid __user *cpuid_arg = argp;
3472 struct kvm_cpuid cpuid;
3473
3474 r = -EFAULT;
3475 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3476 goto out;
3477 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3478 break;
3479 }
3480 case KVM_SET_CPUID2: {
3481 struct kvm_cpuid2 __user *cpuid_arg = argp;
3482 struct kvm_cpuid2 cpuid;
3483
3484 r = -EFAULT;
3485 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3486 goto out;
3487 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3488 cpuid_arg->entries);
3489 break;
3490 }
3491 case KVM_GET_CPUID2: {
3492 struct kvm_cpuid2 __user *cpuid_arg = argp;
3493 struct kvm_cpuid2 cpuid;
3494
3495 r = -EFAULT;
3496 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3497 goto out;
3498 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3499 cpuid_arg->entries);
3500 if (r)
3501 goto out;
3502 r = -EFAULT;
3503 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3504 goto out;
3505 r = 0;
3506 break;
3507 }
3508 case KVM_GET_MSRS:
3509 r = msr_io(vcpu, argp, do_get_msr, 1);
3510 break;
3511 case KVM_SET_MSRS:
3512 r = msr_io(vcpu, argp, do_set_msr, 0);
3513 break;
3514 case KVM_TPR_ACCESS_REPORTING: {
3515 struct kvm_tpr_access_ctl tac;
3516
3517 r = -EFAULT;
3518 if (copy_from_user(&tac, argp, sizeof tac))
3519 goto out;
3520 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3521 if (r)
3522 goto out;
3523 r = -EFAULT;
3524 if (copy_to_user(argp, &tac, sizeof tac))
3525 goto out;
3526 r = 0;
3527 break;
3528 };
3529 case KVM_SET_VAPIC_ADDR: {
3530 struct kvm_vapic_addr va;
3531 int idx;
3532
3533 r = -EINVAL;
3534 if (!lapic_in_kernel(vcpu))
3535 goto out;
3536 r = -EFAULT;
3537 if (copy_from_user(&va, argp, sizeof va))
3538 goto out;
3539 idx = srcu_read_lock(&vcpu->kvm->srcu);
3540 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3541 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3542 break;
3543 }
3544 case KVM_X86_SETUP_MCE: {
3545 u64 mcg_cap;
3546
3547 r = -EFAULT;
3548 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3549 goto out;
3550 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3551 break;
3552 }
3553 case KVM_X86_SET_MCE: {
3554 struct kvm_x86_mce mce;
3555
3556 r = -EFAULT;
3557 if (copy_from_user(&mce, argp, sizeof mce))
3558 goto out;
3559 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3560 break;
3561 }
3562 case KVM_GET_VCPU_EVENTS: {
3563 struct kvm_vcpu_events events;
3564
3565 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3566
3567 r = -EFAULT;
3568 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3569 break;
3570 r = 0;
3571 break;
3572 }
3573 case KVM_SET_VCPU_EVENTS: {
3574 struct kvm_vcpu_events events;
3575
3576 r = -EFAULT;
3577 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3578 break;
3579
3580 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3581 break;
3582 }
3583 case KVM_GET_DEBUGREGS: {
3584 struct kvm_debugregs dbgregs;
3585
3586 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3587
3588 r = -EFAULT;
3589 if (copy_to_user(argp, &dbgregs,
3590 sizeof(struct kvm_debugregs)))
3591 break;
3592 r = 0;
3593 break;
3594 }
3595 case KVM_SET_DEBUGREGS: {
3596 struct kvm_debugregs dbgregs;
3597
3598 r = -EFAULT;
3599 if (copy_from_user(&dbgregs, argp,
3600 sizeof(struct kvm_debugregs)))
3601 break;
3602
3603 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3604 break;
3605 }
3606 case KVM_GET_XSAVE: {
3607 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3608 r = -ENOMEM;
3609 if (!u.xsave)
3610 break;
3611
3612 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3613
3614 r = -EFAULT;
3615 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3616 break;
3617 r = 0;
3618 break;
3619 }
3620 case KVM_SET_XSAVE: {
3621 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3622 if (IS_ERR(u.xsave))
3623 return PTR_ERR(u.xsave);
3624
3625 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3626 break;
3627 }
3628 case KVM_GET_XCRS: {
3629 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3630 r = -ENOMEM;
3631 if (!u.xcrs)
3632 break;
3633
3634 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3635
3636 r = -EFAULT;
3637 if (copy_to_user(argp, u.xcrs,
3638 sizeof(struct kvm_xcrs)))
3639 break;
3640 r = 0;
3641 break;
3642 }
3643 case KVM_SET_XCRS: {
3644 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3645 if (IS_ERR(u.xcrs))
3646 return PTR_ERR(u.xcrs);
3647
3648 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3649 break;
3650 }
3651 case KVM_SET_TSC_KHZ: {
3652 u32 user_tsc_khz;
3653
3654 r = -EINVAL;
3655 user_tsc_khz = (u32)arg;
3656
3657 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3658 goto out;
3659
3660 if (user_tsc_khz == 0)
3661 user_tsc_khz = tsc_khz;
3662
3663 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3664 r = 0;
3665
3666 goto out;
3667 }
3668 case KVM_GET_TSC_KHZ: {
3669 r = vcpu->arch.virtual_tsc_khz;
3670 goto out;
3671 }
3672 case KVM_KVMCLOCK_CTRL: {
3673 r = kvm_set_guest_paused(vcpu);
3674 goto out;
3675 }
3676 case KVM_ENABLE_CAP: {
3677 struct kvm_enable_cap cap;
3678
3679 r = -EFAULT;
3680 if (copy_from_user(&cap, argp, sizeof(cap)))
3681 goto out;
3682 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3683 break;
3684 }
3685 default:
3686 r = -EINVAL;
3687 }
3688 out:
3689 kfree(u.buffer);
3690 return r;
3691 }
3692
3693 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3694 {
3695 return VM_FAULT_SIGBUS;
3696 }
3697
3698 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3699 {
3700 int ret;
3701
3702 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3703 return -EINVAL;
3704 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3705 return ret;
3706 }
3707
3708 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3709 u64 ident_addr)
3710 {
3711 kvm->arch.ept_identity_map_addr = ident_addr;
3712 return 0;
3713 }
3714
3715 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3716 u32 kvm_nr_mmu_pages)
3717 {
3718 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3719 return -EINVAL;
3720
3721 mutex_lock(&kvm->slots_lock);
3722
3723 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3724 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3725
3726 mutex_unlock(&kvm->slots_lock);
3727 return 0;
3728 }
3729
3730 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3731 {
3732 return kvm->arch.n_max_mmu_pages;
3733 }
3734
3735 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3736 {
3737 struct kvm_pic *pic = kvm->arch.vpic;
3738 int r;
3739
3740 r = 0;
3741 switch (chip->chip_id) {
3742 case KVM_IRQCHIP_PIC_MASTER:
3743 memcpy(&chip->chip.pic, &pic->pics[0],
3744 sizeof(struct kvm_pic_state));
3745 break;
3746 case KVM_IRQCHIP_PIC_SLAVE:
3747 memcpy(&chip->chip.pic, &pic->pics[1],
3748 sizeof(struct kvm_pic_state));
3749 break;
3750 case KVM_IRQCHIP_IOAPIC:
3751 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3752 break;
3753 default:
3754 r = -EINVAL;
3755 break;
3756 }
3757 return r;
3758 }
3759
3760 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3761 {
3762 struct kvm_pic *pic = kvm->arch.vpic;
3763 int r;
3764
3765 r = 0;
3766 switch (chip->chip_id) {
3767 case KVM_IRQCHIP_PIC_MASTER:
3768 spin_lock(&pic->lock);
3769 memcpy(&pic->pics[0], &chip->chip.pic,
3770 sizeof(struct kvm_pic_state));
3771 spin_unlock(&pic->lock);
3772 break;
3773 case KVM_IRQCHIP_PIC_SLAVE:
3774 spin_lock(&pic->lock);
3775 memcpy(&pic->pics[1], &chip->chip.pic,
3776 sizeof(struct kvm_pic_state));
3777 spin_unlock(&pic->lock);
3778 break;
3779 case KVM_IRQCHIP_IOAPIC:
3780 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3781 break;
3782 default:
3783 r = -EINVAL;
3784 break;
3785 }
3786 kvm_pic_update_irq(pic);
3787 return r;
3788 }
3789
3790 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3791 {
3792 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3793
3794 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3795
3796 mutex_lock(&kps->lock);
3797 memcpy(ps, &kps->channels, sizeof(*ps));
3798 mutex_unlock(&kps->lock);
3799 return 0;
3800 }
3801
3802 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3803 {
3804 int i;
3805 struct kvm_pit *pit = kvm->arch.vpit;
3806
3807 mutex_lock(&pit->pit_state.lock);
3808 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3809 for (i = 0; i < 3; i++)
3810 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3811 mutex_unlock(&pit->pit_state.lock);
3812 return 0;
3813 }
3814
3815 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3816 {
3817 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3818 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3819 sizeof(ps->channels));
3820 ps->flags = kvm->arch.vpit->pit_state.flags;
3821 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3822 memset(&ps->reserved, 0, sizeof(ps->reserved));
3823 return 0;
3824 }
3825
3826 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3827 {
3828 int start = 0;
3829 int i;
3830 u32 prev_legacy, cur_legacy;
3831 struct kvm_pit *pit = kvm->arch.vpit;
3832
3833 mutex_lock(&pit->pit_state.lock);
3834 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3835 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3836 if (!prev_legacy && cur_legacy)
3837 start = 1;
3838 memcpy(&pit->pit_state.channels, &ps->channels,
3839 sizeof(pit->pit_state.channels));
3840 pit->pit_state.flags = ps->flags;
3841 for (i = 0; i < 3; i++)
3842 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3843 start && i == 0);
3844 mutex_unlock(&pit->pit_state.lock);
3845 return 0;
3846 }
3847
3848 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3849 struct kvm_reinject_control *control)
3850 {
3851 struct kvm_pit *pit = kvm->arch.vpit;
3852
3853 if (!pit)
3854 return -ENXIO;
3855
3856 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3857 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3858 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3859 */
3860 mutex_lock(&pit->pit_state.lock);
3861 kvm_pit_set_reinject(pit, control->pit_reinject);
3862 mutex_unlock(&pit->pit_state.lock);
3863
3864 return 0;
3865 }
3866
3867 /**
3868 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3869 * @kvm: kvm instance
3870 * @log: slot id and address to which we copy the log
3871 *
3872 * Steps 1-4 below provide general overview of dirty page logging. See
3873 * kvm_get_dirty_log_protect() function description for additional details.
3874 *
3875 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3876 * always flush the TLB (step 4) even if previous step failed and the dirty
3877 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3878 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3879 * writes will be marked dirty for next log read.
3880 *
3881 * 1. Take a snapshot of the bit and clear it if needed.
3882 * 2. Write protect the corresponding page.
3883 * 3. Copy the snapshot to the userspace.
3884 * 4. Flush TLB's if needed.
3885 */
3886 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3887 {
3888 bool is_dirty = false;
3889 int r;
3890
3891 mutex_lock(&kvm->slots_lock);
3892
3893 /*
3894 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3895 */
3896 if (kvm_x86_ops->flush_log_dirty)
3897 kvm_x86_ops->flush_log_dirty(kvm);
3898
3899 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3900
3901 /*
3902 * All the TLBs can be flushed out of mmu lock, see the comments in
3903 * kvm_mmu_slot_remove_write_access().
3904 */
3905 lockdep_assert_held(&kvm->slots_lock);
3906 if (is_dirty)
3907 kvm_flush_remote_tlbs(kvm);
3908
3909 mutex_unlock(&kvm->slots_lock);
3910 return r;
3911 }
3912
3913 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3914 bool line_status)
3915 {
3916 if (!irqchip_in_kernel(kvm))
3917 return -ENXIO;
3918
3919 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3920 irq_event->irq, irq_event->level,
3921 line_status);
3922 return 0;
3923 }
3924
3925 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3926 struct kvm_enable_cap *cap)
3927 {
3928 int r;
3929
3930 if (cap->flags)
3931 return -EINVAL;
3932
3933 switch (cap->cap) {
3934 case KVM_CAP_DISABLE_QUIRKS:
3935 kvm->arch.disabled_quirks = cap->args[0];
3936 r = 0;
3937 break;
3938 case KVM_CAP_SPLIT_IRQCHIP: {
3939 mutex_lock(&kvm->lock);
3940 r = -EINVAL;
3941 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3942 goto split_irqchip_unlock;
3943 r = -EEXIST;
3944 if (irqchip_in_kernel(kvm))
3945 goto split_irqchip_unlock;
3946 if (kvm->created_vcpus)
3947 goto split_irqchip_unlock;
3948 r = kvm_setup_empty_irq_routing(kvm);
3949 if (r)
3950 goto split_irqchip_unlock;
3951 /* Pairs with irqchip_in_kernel. */
3952 smp_wmb();
3953 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3954 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3955 r = 0;
3956 split_irqchip_unlock:
3957 mutex_unlock(&kvm->lock);
3958 break;
3959 }
3960 case KVM_CAP_X2APIC_API:
3961 r = -EINVAL;
3962 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3963 break;
3964
3965 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3966 kvm->arch.x2apic_format = true;
3967 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3968 kvm->arch.x2apic_broadcast_quirk_disabled = true;
3969
3970 r = 0;
3971 break;
3972 default:
3973 r = -EINVAL;
3974 break;
3975 }
3976 return r;
3977 }
3978
3979 long kvm_arch_vm_ioctl(struct file *filp,
3980 unsigned int ioctl, unsigned long arg)
3981 {
3982 struct kvm *kvm = filp->private_data;
3983 void __user *argp = (void __user *)arg;
3984 int r = -ENOTTY;
3985 /*
3986 * This union makes it completely explicit to gcc-3.x
3987 * that these two variables' stack usage should be
3988 * combined, not added together.
3989 */
3990 union {
3991 struct kvm_pit_state ps;
3992 struct kvm_pit_state2 ps2;
3993 struct kvm_pit_config pit_config;
3994 } u;
3995
3996 switch (ioctl) {
3997 case KVM_SET_TSS_ADDR:
3998 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3999 break;
4000 case KVM_SET_IDENTITY_MAP_ADDR: {
4001 u64 ident_addr;
4002
4003 r = -EFAULT;
4004 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4005 goto out;
4006 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4007 break;
4008 }
4009 case KVM_SET_NR_MMU_PAGES:
4010 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4011 break;
4012 case KVM_GET_NR_MMU_PAGES:
4013 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4014 break;
4015 case KVM_CREATE_IRQCHIP: {
4016 mutex_lock(&kvm->lock);
4017
4018 r = -EEXIST;
4019 if (irqchip_in_kernel(kvm))
4020 goto create_irqchip_unlock;
4021
4022 r = -EINVAL;
4023 if (kvm->created_vcpus)
4024 goto create_irqchip_unlock;
4025
4026 r = kvm_pic_init(kvm);
4027 if (r)
4028 goto create_irqchip_unlock;
4029
4030 r = kvm_ioapic_init(kvm);
4031 if (r) {
4032 kvm_pic_destroy(kvm);
4033 goto create_irqchip_unlock;
4034 }
4035
4036 r = kvm_setup_default_irq_routing(kvm);
4037 if (r) {
4038 kvm_ioapic_destroy(kvm);
4039 kvm_pic_destroy(kvm);
4040 goto create_irqchip_unlock;
4041 }
4042 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4043 smp_wmb();
4044 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4045 create_irqchip_unlock:
4046 mutex_unlock(&kvm->lock);
4047 break;
4048 }
4049 case KVM_CREATE_PIT:
4050 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4051 goto create_pit;
4052 case KVM_CREATE_PIT2:
4053 r = -EFAULT;
4054 if (copy_from_user(&u.pit_config, argp,
4055 sizeof(struct kvm_pit_config)))
4056 goto out;
4057 create_pit:
4058 mutex_lock(&kvm->lock);
4059 r = -EEXIST;
4060 if (kvm->arch.vpit)
4061 goto create_pit_unlock;
4062 r = -ENOMEM;
4063 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4064 if (kvm->arch.vpit)
4065 r = 0;
4066 create_pit_unlock:
4067 mutex_unlock(&kvm->lock);
4068 break;
4069 case KVM_GET_IRQCHIP: {
4070 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4071 struct kvm_irqchip *chip;
4072
4073 chip = memdup_user(argp, sizeof(*chip));
4074 if (IS_ERR(chip)) {
4075 r = PTR_ERR(chip);
4076 goto out;
4077 }
4078
4079 r = -ENXIO;
4080 if (!irqchip_kernel(kvm))
4081 goto get_irqchip_out;
4082 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4083 if (r)
4084 goto get_irqchip_out;
4085 r = -EFAULT;
4086 if (copy_to_user(argp, chip, sizeof *chip))
4087 goto get_irqchip_out;
4088 r = 0;
4089 get_irqchip_out:
4090 kfree(chip);
4091 break;
4092 }
4093 case KVM_SET_IRQCHIP: {
4094 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4095 struct kvm_irqchip *chip;
4096
4097 chip = memdup_user(argp, sizeof(*chip));
4098 if (IS_ERR(chip)) {
4099 r = PTR_ERR(chip);
4100 goto out;
4101 }
4102
4103 r = -ENXIO;
4104 if (!irqchip_kernel(kvm))
4105 goto set_irqchip_out;
4106 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4107 if (r)
4108 goto set_irqchip_out;
4109 r = 0;
4110 set_irqchip_out:
4111 kfree(chip);
4112 break;
4113 }
4114 case KVM_GET_PIT: {
4115 r = -EFAULT;
4116 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4117 goto out;
4118 r = -ENXIO;
4119 if (!kvm->arch.vpit)
4120 goto out;
4121 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4122 if (r)
4123 goto out;
4124 r = -EFAULT;
4125 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4126 goto out;
4127 r = 0;
4128 break;
4129 }
4130 case KVM_SET_PIT: {
4131 r = -EFAULT;
4132 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4133 goto out;
4134 r = -ENXIO;
4135 if (!kvm->arch.vpit)
4136 goto out;
4137 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4138 break;
4139 }
4140 case KVM_GET_PIT2: {
4141 r = -ENXIO;
4142 if (!kvm->arch.vpit)
4143 goto out;
4144 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4145 if (r)
4146 goto out;
4147 r = -EFAULT;
4148 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4149 goto out;
4150 r = 0;
4151 break;
4152 }
4153 case KVM_SET_PIT2: {
4154 r = -EFAULT;
4155 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4156 goto out;
4157 r = -ENXIO;
4158 if (!kvm->arch.vpit)
4159 goto out;
4160 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4161 break;
4162 }
4163 case KVM_REINJECT_CONTROL: {
4164 struct kvm_reinject_control control;
4165 r = -EFAULT;
4166 if (copy_from_user(&control, argp, sizeof(control)))
4167 goto out;
4168 r = kvm_vm_ioctl_reinject(kvm, &control);
4169 break;
4170 }
4171 case KVM_SET_BOOT_CPU_ID:
4172 r = 0;
4173 mutex_lock(&kvm->lock);
4174 if (kvm->created_vcpus)
4175 r = -EBUSY;
4176 else
4177 kvm->arch.bsp_vcpu_id = arg;
4178 mutex_unlock(&kvm->lock);
4179 break;
4180 case KVM_XEN_HVM_CONFIG: {
4181 r = -EFAULT;
4182 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4183 sizeof(struct kvm_xen_hvm_config)))
4184 goto out;
4185 r = -EINVAL;
4186 if (kvm->arch.xen_hvm_config.flags)
4187 goto out;
4188 r = 0;
4189 break;
4190 }
4191 case KVM_SET_CLOCK: {
4192 struct kvm_clock_data user_ns;
4193 u64 now_ns;
4194
4195 r = -EFAULT;
4196 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4197 goto out;
4198
4199 r = -EINVAL;
4200 if (user_ns.flags)
4201 goto out;
4202
4203 r = 0;
4204 /*
4205 * TODO: userspace has to take care of races with VCPU_RUN, so
4206 * kvm_gen_update_masterclock() can be cut down to locked
4207 * pvclock_update_vm_gtod_copy().
4208 */
4209 kvm_gen_update_masterclock(kvm);
4210 now_ns = get_kvmclock_ns(kvm);
4211 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4212 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4213 break;
4214 }
4215 case KVM_GET_CLOCK: {
4216 struct kvm_clock_data user_ns;
4217 u64 now_ns;
4218
4219 now_ns = get_kvmclock_ns(kvm);
4220 user_ns.clock = now_ns;
4221 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4222 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4223
4224 r = -EFAULT;
4225 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4226 goto out;
4227 r = 0;
4228 break;
4229 }
4230 case KVM_ENABLE_CAP: {
4231 struct kvm_enable_cap cap;
4232
4233 r = -EFAULT;
4234 if (copy_from_user(&cap, argp, sizeof(cap)))
4235 goto out;
4236 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4237 break;
4238 }
4239 default:
4240 r = -ENOTTY;
4241 }
4242 out:
4243 return r;
4244 }
4245
4246 static void kvm_init_msr_list(void)
4247 {
4248 u32 dummy[2];
4249 unsigned i, j;
4250
4251 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4252 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4253 continue;
4254
4255 /*
4256 * Even MSRs that are valid in the host may not be exposed
4257 * to the guests in some cases.
4258 */
4259 switch (msrs_to_save[i]) {
4260 case MSR_IA32_BNDCFGS:
4261 if (!kvm_x86_ops->mpx_supported())
4262 continue;
4263 break;
4264 case MSR_TSC_AUX:
4265 if (!kvm_x86_ops->rdtscp_supported())
4266 continue;
4267 break;
4268 default:
4269 break;
4270 }
4271
4272 if (j < i)
4273 msrs_to_save[j] = msrs_to_save[i];
4274 j++;
4275 }
4276 num_msrs_to_save = j;
4277
4278 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4279 switch (emulated_msrs[i]) {
4280 case MSR_IA32_SMBASE:
4281 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4282 continue;
4283 break;
4284 default:
4285 break;
4286 }
4287
4288 if (j < i)
4289 emulated_msrs[j] = emulated_msrs[i];
4290 j++;
4291 }
4292 num_emulated_msrs = j;
4293 }
4294
4295 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4296 const void *v)
4297 {
4298 int handled = 0;
4299 int n;
4300
4301 do {
4302 n = min(len, 8);
4303 if (!(lapic_in_kernel(vcpu) &&
4304 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4305 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4306 break;
4307 handled += n;
4308 addr += n;
4309 len -= n;
4310 v += n;
4311 } while (len);
4312
4313 return handled;
4314 }
4315
4316 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4317 {
4318 int handled = 0;
4319 int n;
4320
4321 do {
4322 n = min(len, 8);
4323 if (!(lapic_in_kernel(vcpu) &&
4324 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4325 addr, n, v))
4326 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4327 break;
4328 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4329 handled += n;
4330 addr += n;
4331 len -= n;
4332 v += n;
4333 } while (len);
4334
4335 return handled;
4336 }
4337
4338 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4339 struct kvm_segment *var, int seg)
4340 {
4341 kvm_x86_ops->set_segment(vcpu, var, seg);
4342 }
4343
4344 void kvm_get_segment(struct kvm_vcpu *vcpu,
4345 struct kvm_segment *var, int seg)
4346 {
4347 kvm_x86_ops->get_segment(vcpu, var, seg);
4348 }
4349
4350 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4351 struct x86_exception *exception)
4352 {
4353 gpa_t t_gpa;
4354
4355 BUG_ON(!mmu_is_nested(vcpu));
4356
4357 /* NPT walks are always user-walks */
4358 access |= PFERR_USER_MASK;
4359 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4360
4361 return t_gpa;
4362 }
4363
4364 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4365 struct x86_exception *exception)
4366 {
4367 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4368 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4369 }
4370
4371 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4372 struct x86_exception *exception)
4373 {
4374 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4375 access |= PFERR_FETCH_MASK;
4376 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4377 }
4378
4379 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4380 struct x86_exception *exception)
4381 {
4382 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4383 access |= PFERR_WRITE_MASK;
4384 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4385 }
4386
4387 /* uses this to access any guest's mapped memory without checking CPL */
4388 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4389 struct x86_exception *exception)
4390 {
4391 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4392 }
4393
4394 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4395 struct kvm_vcpu *vcpu, u32 access,
4396 struct x86_exception *exception)
4397 {
4398 void *data = val;
4399 int r = X86EMUL_CONTINUE;
4400
4401 while (bytes) {
4402 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4403 exception);
4404 unsigned offset = addr & (PAGE_SIZE-1);
4405 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4406 int ret;
4407
4408 if (gpa == UNMAPPED_GVA)
4409 return X86EMUL_PROPAGATE_FAULT;
4410 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4411 offset, toread);
4412 if (ret < 0) {
4413 r = X86EMUL_IO_NEEDED;
4414 goto out;
4415 }
4416
4417 bytes -= toread;
4418 data += toread;
4419 addr += toread;
4420 }
4421 out:
4422 return r;
4423 }
4424
4425 /* used for instruction fetching */
4426 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4427 gva_t addr, void *val, unsigned int bytes,
4428 struct x86_exception *exception)
4429 {
4430 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4431 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4432 unsigned offset;
4433 int ret;
4434
4435 /* Inline kvm_read_guest_virt_helper for speed. */
4436 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4437 exception);
4438 if (unlikely(gpa == UNMAPPED_GVA))
4439 return X86EMUL_PROPAGATE_FAULT;
4440
4441 offset = addr & (PAGE_SIZE-1);
4442 if (WARN_ON(offset + bytes > PAGE_SIZE))
4443 bytes = (unsigned)PAGE_SIZE - offset;
4444 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4445 offset, bytes);
4446 if (unlikely(ret < 0))
4447 return X86EMUL_IO_NEEDED;
4448
4449 return X86EMUL_CONTINUE;
4450 }
4451
4452 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4453 gva_t addr, void *val, unsigned int bytes,
4454 struct x86_exception *exception)
4455 {
4456 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4457 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4458
4459 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4460 exception);
4461 }
4462 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4463
4464 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4465 gva_t addr, void *val, unsigned int bytes,
4466 struct x86_exception *exception)
4467 {
4468 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4469 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4470 }
4471
4472 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4473 unsigned long addr, void *val, unsigned int bytes)
4474 {
4475 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4476 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4477
4478 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4479 }
4480
4481 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4482 gva_t addr, void *val,
4483 unsigned int bytes,
4484 struct x86_exception *exception)
4485 {
4486 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4487 void *data = val;
4488 int r = X86EMUL_CONTINUE;
4489
4490 while (bytes) {
4491 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4492 PFERR_WRITE_MASK,
4493 exception);
4494 unsigned offset = addr & (PAGE_SIZE-1);
4495 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4496 int ret;
4497
4498 if (gpa == UNMAPPED_GVA)
4499 return X86EMUL_PROPAGATE_FAULT;
4500 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4501 if (ret < 0) {
4502 r = X86EMUL_IO_NEEDED;
4503 goto out;
4504 }
4505
4506 bytes -= towrite;
4507 data += towrite;
4508 addr += towrite;
4509 }
4510 out:
4511 return r;
4512 }
4513 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4514
4515 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4516 gpa_t gpa, bool write)
4517 {
4518 /* For APIC access vmexit */
4519 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4520 return 1;
4521
4522 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4523 trace_vcpu_match_mmio(gva, gpa, write, true);
4524 return 1;
4525 }
4526
4527 return 0;
4528 }
4529
4530 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4531 gpa_t *gpa, struct x86_exception *exception,
4532 bool write)
4533 {
4534 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4535 | (write ? PFERR_WRITE_MASK : 0);
4536
4537 /*
4538 * currently PKRU is only applied to ept enabled guest so
4539 * there is no pkey in EPT page table for L1 guest or EPT
4540 * shadow page table for L2 guest.
4541 */
4542 if (vcpu_match_mmio_gva(vcpu, gva)
4543 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4544 vcpu->arch.access, 0, access)) {
4545 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4546 (gva & (PAGE_SIZE - 1));
4547 trace_vcpu_match_mmio(gva, *gpa, write, false);
4548 return 1;
4549 }
4550
4551 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4552
4553 if (*gpa == UNMAPPED_GVA)
4554 return -1;
4555
4556 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4557 }
4558
4559 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4560 const void *val, int bytes)
4561 {
4562 int ret;
4563
4564 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4565 if (ret < 0)
4566 return 0;
4567 kvm_page_track_write(vcpu, gpa, val, bytes);
4568 return 1;
4569 }
4570
4571 struct read_write_emulator_ops {
4572 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4573 int bytes);
4574 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4575 void *val, int bytes);
4576 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4577 int bytes, void *val);
4578 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4579 void *val, int bytes);
4580 bool write;
4581 };
4582
4583 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4584 {
4585 if (vcpu->mmio_read_completed) {
4586 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4587 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4588 vcpu->mmio_read_completed = 0;
4589 return 1;
4590 }
4591
4592 return 0;
4593 }
4594
4595 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4596 void *val, int bytes)
4597 {
4598 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4599 }
4600
4601 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4602 void *val, int bytes)
4603 {
4604 return emulator_write_phys(vcpu, gpa, val, bytes);
4605 }
4606
4607 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4608 {
4609 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4610 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4611 }
4612
4613 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4614 void *val, int bytes)
4615 {
4616 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4617 return X86EMUL_IO_NEEDED;
4618 }
4619
4620 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4621 void *val, int bytes)
4622 {
4623 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4624
4625 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4626 return X86EMUL_CONTINUE;
4627 }
4628
4629 static const struct read_write_emulator_ops read_emultor = {
4630 .read_write_prepare = read_prepare,
4631 .read_write_emulate = read_emulate,
4632 .read_write_mmio = vcpu_mmio_read,
4633 .read_write_exit_mmio = read_exit_mmio,
4634 };
4635
4636 static const struct read_write_emulator_ops write_emultor = {
4637 .read_write_emulate = write_emulate,
4638 .read_write_mmio = write_mmio,
4639 .read_write_exit_mmio = write_exit_mmio,
4640 .write = true,
4641 };
4642
4643 static int emulator_read_write_onepage(unsigned long addr, void *val,
4644 unsigned int bytes,
4645 struct x86_exception *exception,
4646 struct kvm_vcpu *vcpu,
4647 const struct read_write_emulator_ops *ops)
4648 {
4649 gpa_t gpa;
4650 int handled, ret;
4651 bool write = ops->write;
4652 struct kvm_mmio_fragment *frag;
4653 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4654
4655 /*
4656 * If the exit was due to a NPF we may already have a GPA.
4657 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4658 * Note, this cannot be used on string operations since string
4659 * operation using rep will only have the initial GPA from the NPF
4660 * occurred.
4661 */
4662 if (vcpu->arch.gpa_available &&
4663 emulator_can_use_gpa(ctxt) &&
4664 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4665 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4666 gpa = exception->address;
4667 goto mmio;
4668 }
4669
4670 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4671
4672 if (ret < 0)
4673 return X86EMUL_PROPAGATE_FAULT;
4674
4675 /* For APIC access vmexit */
4676 if (ret)
4677 goto mmio;
4678
4679 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4680 return X86EMUL_CONTINUE;
4681
4682 mmio:
4683 /*
4684 * Is this MMIO handled locally?
4685 */
4686 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4687 if (handled == bytes)
4688 return X86EMUL_CONTINUE;
4689
4690 gpa += handled;
4691 bytes -= handled;
4692 val += handled;
4693
4694 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4695 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4696 frag->gpa = gpa;
4697 frag->data = val;
4698 frag->len = bytes;
4699 return X86EMUL_CONTINUE;
4700 }
4701
4702 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4703 unsigned long addr,
4704 void *val, unsigned int bytes,
4705 struct x86_exception *exception,
4706 const struct read_write_emulator_ops *ops)
4707 {
4708 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4709 gpa_t gpa;
4710 int rc;
4711
4712 if (ops->read_write_prepare &&
4713 ops->read_write_prepare(vcpu, val, bytes))
4714 return X86EMUL_CONTINUE;
4715
4716 vcpu->mmio_nr_fragments = 0;
4717
4718 /* Crossing a page boundary? */
4719 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4720 int now;
4721
4722 now = -addr & ~PAGE_MASK;
4723 rc = emulator_read_write_onepage(addr, val, now, exception,
4724 vcpu, ops);
4725
4726 if (rc != X86EMUL_CONTINUE)
4727 return rc;
4728 addr += now;
4729 if (ctxt->mode != X86EMUL_MODE_PROT64)
4730 addr = (u32)addr;
4731 val += now;
4732 bytes -= now;
4733 }
4734
4735 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4736 vcpu, ops);
4737 if (rc != X86EMUL_CONTINUE)
4738 return rc;
4739
4740 if (!vcpu->mmio_nr_fragments)
4741 return rc;
4742
4743 gpa = vcpu->mmio_fragments[0].gpa;
4744
4745 vcpu->mmio_needed = 1;
4746 vcpu->mmio_cur_fragment = 0;
4747
4748 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4749 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4750 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4751 vcpu->run->mmio.phys_addr = gpa;
4752
4753 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4754 }
4755
4756 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4757 unsigned long addr,
4758 void *val,
4759 unsigned int bytes,
4760 struct x86_exception *exception)
4761 {
4762 return emulator_read_write(ctxt, addr, val, bytes,
4763 exception, &read_emultor);
4764 }
4765
4766 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4767 unsigned long addr,
4768 const void *val,
4769 unsigned int bytes,
4770 struct x86_exception *exception)
4771 {
4772 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4773 exception, &write_emultor);
4774 }
4775
4776 #define CMPXCHG_TYPE(t, ptr, old, new) \
4777 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4778
4779 #ifdef CONFIG_X86_64
4780 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4781 #else
4782 # define CMPXCHG64(ptr, old, new) \
4783 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4784 #endif
4785
4786 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4787 unsigned long addr,
4788 const void *old,
4789 const void *new,
4790 unsigned int bytes,
4791 struct x86_exception *exception)
4792 {
4793 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4794 gpa_t gpa;
4795 struct page *page;
4796 char *kaddr;
4797 bool exchanged;
4798
4799 /* guests cmpxchg8b have to be emulated atomically */
4800 if (bytes > 8 || (bytes & (bytes - 1)))
4801 goto emul_write;
4802
4803 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4804
4805 if (gpa == UNMAPPED_GVA ||
4806 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4807 goto emul_write;
4808
4809 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4810 goto emul_write;
4811
4812 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4813 if (is_error_page(page))
4814 goto emul_write;
4815
4816 kaddr = kmap_atomic(page);
4817 kaddr += offset_in_page(gpa);
4818 switch (bytes) {
4819 case 1:
4820 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4821 break;
4822 case 2:
4823 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4824 break;
4825 case 4:
4826 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4827 break;
4828 case 8:
4829 exchanged = CMPXCHG64(kaddr, old, new);
4830 break;
4831 default:
4832 BUG();
4833 }
4834 kunmap_atomic(kaddr);
4835 kvm_release_page_dirty(page);
4836
4837 if (!exchanged)
4838 return X86EMUL_CMPXCHG_FAILED;
4839
4840 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4841 kvm_page_track_write(vcpu, gpa, new, bytes);
4842
4843 return X86EMUL_CONTINUE;
4844
4845 emul_write:
4846 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4847
4848 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4849 }
4850
4851 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4852 {
4853 int r = 0, i;
4854
4855 for (i = 0; i < vcpu->arch.pio.count; i++) {
4856 if (vcpu->arch.pio.in)
4857 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4858 vcpu->arch.pio.size, pd);
4859 else
4860 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4861 vcpu->arch.pio.port, vcpu->arch.pio.size,
4862 pd);
4863 if (r)
4864 break;
4865 pd += vcpu->arch.pio.size;
4866 }
4867 return r;
4868 }
4869
4870 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4871 unsigned short port, void *val,
4872 unsigned int count, bool in)
4873 {
4874 vcpu->arch.pio.port = port;
4875 vcpu->arch.pio.in = in;
4876 vcpu->arch.pio.count = count;
4877 vcpu->arch.pio.size = size;
4878
4879 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4880 vcpu->arch.pio.count = 0;
4881 return 1;
4882 }
4883
4884 vcpu->run->exit_reason = KVM_EXIT_IO;
4885 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4886 vcpu->run->io.size = size;
4887 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4888 vcpu->run->io.count = count;
4889 vcpu->run->io.port = port;
4890
4891 return 0;
4892 }
4893
4894 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4895 int size, unsigned short port, void *val,
4896 unsigned int count)
4897 {
4898 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4899 int ret;
4900
4901 if (vcpu->arch.pio.count)
4902 goto data_avail;
4903
4904 memset(vcpu->arch.pio_data, 0, size * count);
4905
4906 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4907 if (ret) {
4908 data_avail:
4909 memcpy(val, vcpu->arch.pio_data, size * count);
4910 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4911 vcpu->arch.pio.count = 0;
4912 return 1;
4913 }
4914
4915 return 0;
4916 }
4917
4918 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4919 int size, unsigned short port,
4920 const void *val, unsigned int count)
4921 {
4922 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4923
4924 memcpy(vcpu->arch.pio_data, val, size * count);
4925 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4926 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4927 }
4928
4929 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4930 {
4931 return kvm_x86_ops->get_segment_base(vcpu, seg);
4932 }
4933
4934 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4935 {
4936 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4937 }
4938
4939 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4940 {
4941 if (!need_emulate_wbinvd(vcpu))
4942 return X86EMUL_CONTINUE;
4943
4944 if (kvm_x86_ops->has_wbinvd_exit()) {
4945 int cpu = get_cpu();
4946
4947 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4948 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4949 wbinvd_ipi, NULL, 1);
4950 put_cpu();
4951 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4952 } else
4953 wbinvd();
4954 return X86EMUL_CONTINUE;
4955 }
4956
4957 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4958 {
4959 kvm_emulate_wbinvd_noskip(vcpu);
4960 return kvm_skip_emulated_instruction(vcpu);
4961 }
4962 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4963
4964
4965
4966 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4967 {
4968 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4969 }
4970
4971 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4972 unsigned long *dest)
4973 {
4974 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4975 }
4976
4977 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4978 unsigned long value)
4979 {
4980
4981 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4982 }
4983
4984 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4985 {
4986 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4987 }
4988
4989 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4990 {
4991 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4992 unsigned long value;
4993
4994 switch (cr) {
4995 case 0:
4996 value = kvm_read_cr0(vcpu);
4997 break;
4998 case 2:
4999 value = vcpu->arch.cr2;
5000 break;
5001 case 3:
5002 value = kvm_read_cr3(vcpu);
5003 break;
5004 case 4:
5005 value = kvm_read_cr4(vcpu);
5006 break;
5007 case 8:
5008 value = kvm_get_cr8(vcpu);
5009 break;
5010 default:
5011 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5012 return 0;
5013 }
5014
5015 return value;
5016 }
5017
5018 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5019 {
5020 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5021 int res = 0;
5022
5023 switch (cr) {
5024 case 0:
5025 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5026 break;
5027 case 2:
5028 vcpu->arch.cr2 = val;
5029 break;
5030 case 3:
5031 res = kvm_set_cr3(vcpu, val);
5032 break;
5033 case 4:
5034 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5035 break;
5036 case 8:
5037 res = kvm_set_cr8(vcpu, val);
5038 break;
5039 default:
5040 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5041 res = -1;
5042 }
5043
5044 return res;
5045 }
5046
5047 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5048 {
5049 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5050 }
5051
5052 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5053 {
5054 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5055 }
5056
5057 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5058 {
5059 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5060 }
5061
5062 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5063 {
5064 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5065 }
5066
5067 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5068 {
5069 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5070 }
5071
5072 static unsigned long emulator_get_cached_segment_base(
5073 struct x86_emulate_ctxt *ctxt, int seg)
5074 {
5075 return get_segment_base(emul_to_vcpu(ctxt), seg);
5076 }
5077
5078 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5079 struct desc_struct *desc, u32 *base3,
5080 int seg)
5081 {
5082 struct kvm_segment var;
5083
5084 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5085 *selector = var.selector;
5086
5087 if (var.unusable) {
5088 memset(desc, 0, sizeof(*desc));
5089 if (base3)
5090 *base3 = 0;
5091 return false;
5092 }
5093
5094 if (var.g)
5095 var.limit >>= 12;
5096 set_desc_limit(desc, var.limit);
5097 set_desc_base(desc, (unsigned long)var.base);
5098 #ifdef CONFIG_X86_64
5099 if (base3)
5100 *base3 = var.base >> 32;
5101 #endif
5102 desc->type = var.type;
5103 desc->s = var.s;
5104 desc->dpl = var.dpl;
5105 desc->p = var.present;
5106 desc->avl = var.avl;
5107 desc->l = var.l;
5108 desc->d = var.db;
5109 desc->g = var.g;
5110
5111 return true;
5112 }
5113
5114 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5115 struct desc_struct *desc, u32 base3,
5116 int seg)
5117 {
5118 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5119 struct kvm_segment var;
5120
5121 var.selector = selector;
5122 var.base = get_desc_base(desc);
5123 #ifdef CONFIG_X86_64
5124 var.base |= ((u64)base3) << 32;
5125 #endif
5126 var.limit = get_desc_limit(desc);
5127 if (desc->g)
5128 var.limit = (var.limit << 12) | 0xfff;
5129 var.type = desc->type;
5130 var.dpl = desc->dpl;
5131 var.db = desc->d;
5132 var.s = desc->s;
5133 var.l = desc->l;
5134 var.g = desc->g;
5135 var.avl = desc->avl;
5136 var.present = desc->p;
5137 var.unusable = !var.present;
5138 var.padding = 0;
5139
5140 kvm_set_segment(vcpu, &var, seg);
5141 return;
5142 }
5143
5144 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5145 u32 msr_index, u64 *pdata)
5146 {
5147 struct msr_data msr;
5148 int r;
5149
5150 msr.index = msr_index;
5151 msr.host_initiated = false;
5152 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5153 if (r)
5154 return r;
5155
5156 *pdata = msr.data;
5157 return 0;
5158 }
5159
5160 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5161 u32 msr_index, u64 data)
5162 {
5163 struct msr_data msr;
5164
5165 msr.data = data;
5166 msr.index = msr_index;
5167 msr.host_initiated = false;
5168 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5169 }
5170
5171 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5172 {
5173 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5174
5175 return vcpu->arch.smbase;
5176 }
5177
5178 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5179 {
5180 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5181
5182 vcpu->arch.smbase = smbase;
5183 }
5184
5185 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5186 u32 pmc)
5187 {
5188 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5189 }
5190
5191 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5192 u32 pmc, u64 *pdata)
5193 {
5194 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5195 }
5196
5197 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5198 {
5199 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5200 }
5201
5202 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5203 {
5204 preempt_disable();
5205 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5206 }
5207
5208 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5209 {
5210 preempt_enable();
5211 }
5212
5213 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5214 struct x86_instruction_info *info,
5215 enum x86_intercept_stage stage)
5216 {
5217 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5218 }
5219
5220 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5221 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5222 {
5223 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5224 }
5225
5226 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5227 {
5228 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5229 }
5230
5231 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5232 {
5233 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5234 }
5235
5236 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5237 {
5238 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5239 }
5240
5241 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5242 {
5243 return emul_to_vcpu(ctxt)->arch.hflags;
5244 }
5245
5246 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5247 {
5248 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5249 }
5250
5251 static const struct x86_emulate_ops emulate_ops = {
5252 .read_gpr = emulator_read_gpr,
5253 .write_gpr = emulator_write_gpr,
5254 .read_std = kvm_read_guest_virt_system,
5255 .write_std = kvm_write_guest_virt_system,
5256 .read_phys = kvm_read_guest_phys_system,
5257 .fetch = kvm_fetch_guest_virt,
5258 .read_emulated = emulator_read_emulated,
5259 .write_emulated = emulator_write_emulated,
5260 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5261 .invlpg = emulator_invlpg,
5262 .pio_in_emulated = emulator_pio_in_emulated,
5263 .pio_out_emulated = emulator_pio_out_emulated,
5264 .get_segment = emulator_get_segment,
5265 .set_segment = emulator_set_segment,
5266 .get_cached_segment_base = emulator_get_cached_segment_base,
5267 .get_gdt = emulator_get_gdt,
5268 .get_idt = emulator_get_idt,
5269 .set_gdt = emulator_set_gdt,
5270 .set_idt = emulator_set_idt,
5271 .get_cr = emulator_get_cr,
5272 .set_cr = emulator_set_cr,
5273 .cpl = emulator_get_cpl,
5274 .get_dr = emulator_get_dr,
5275 .set_dr = emulator_set_dr,
5276 .get_smbase = emulator_get_smbase,
5277 .set_smbase = emulator_set_smbase,
5278 .set_msr = emulator_set_msr,
5279 .get_msr = emulator_get_msr,
5280 .check_pmc = emulator_check_pmc,
5281 .read_pmc = emulator_read_pmc,
5282 .halt = emulator_halt,
5283 .wbinvd = emulator_wbinvd,
5284 .fix_hypercall = emulator_fix_hypercall,
5285 .get_fpu = emulator_get_fpu,
5286 .put_fpu = emulator_put_fpu,
5287 .intercept = emulator_intercept,
5288 .get_cpuid = emulator_get_cpuid,
5289 .set_nmi_mask = emulator_set_nmi_mask,
5290 .get_hflags = emulator_get_hflags,
5291 .set_hflags = emulator_set_hflags,
5292 };
5293
5294 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5295 {
5296 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5297 /*
5298 * an sti; sti; sequence only disable interrupts for the first
5299 * instruction. So, if the last instruction, be it emulated or
5300 * not, left the system with the INT_STI flag enabled, it
5301 * means that the last instruction is an sti. We should not
5302 * leave the flag on in this case. The same goes for mov ss
5303 */
5304 if (int_shadow & mask)
5305 mask = 0;
5306 if (unlikely(int_shadow || mask)) {
5307 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5308 if (!mask)
5309 kvm_make_request(KVM_REQ_EVENT, vcpu);
5310 }
5311 }
5312
5313 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5314 {
5315 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5316 if (ctxt->exception.vector == PF_VECTOR)
5317 return kvm_propagate_fault(vcpu, &ctxt->exception);
5318
5319 if (ctxt->exception.error_code_valid)
5320 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5321 ctxt->exception.error_code);
5322 else
5323 kvm_queue_exception(vcpu, ctxt->exception.vector);
5324 return false;
5325 }
5326
5327 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5328 {
5329 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5330 int cs_db, cs_l;
5331
5332 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5333
5334 ctxt->eflags = kvm_get_rflags(vcpu);
5335 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5336
5337 ctxt->eip = kvm_rip_read(vcpu);
5338 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5339 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5340 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5341 cs_db ? X86EMUL_MODE_PROT32 :
5342 X86EMUL_MODE_PROT16;
5343 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5344 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5345 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5346
5347 init_decode_cache(ctxt);
5348 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5349 }
5350
5351 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5352 {
5353 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5354 int ret;
5355
5356 init_emulate_ctxt(vcpu);
5357
5358 ctxt->op_bytes = 2;
5359 ctxt->ad_bytes = 2;
5360 ctxt->_eip = ctxt->eip + inc_eip;
5361 ret = emulate_int_real(ctxt, irq);
5362
5363 if (ret != X86EMUL_CONTINUE)
5364 return EMULATE_FAIL;
5365
5366 ctxt->eip = ctxt->_eip;
5367 kvm_rip_write(vcpu, ctxt->eip);
5368 kvm_set_rflags(vcpu, ctxt->eflags);
5369
5370 if (irq == NMI_VECTOR)
5371 vcpu->arch.nmi_pending = 0;
5372 else
5373 vcpu->arch.interrupt.pending = false;
5374
5375 return EMULATE_DONE;
5376 }
5377 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5378
5379 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5380 {
5381 int r = EMULATE_DONE;
5382
5383 ++vcpu->stat.insn_emulation_fail;
5384 trace_kvm_emulate_insn_failed(vcpu);
5385 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5386 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5387 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5388 vcpu->run->internal.ndata = 0;
5389 r = EMULATE_FAIL;
5390 }
5391 kvm_queue_exception(vcpu, UD_VECTOR);
5392
5393 return r;
5394 }
5395
5396 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5397 bool write_fault_to_shadow_pgtable,
5398 int emulation_type)
5399 {
5400 gpa_t gpa = cr2;
5401 kvm_pfn_t pfn;
5402
5403 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5404 return false;
5405
5406 if (!vcpu->arch.mmu.direct_map) {
5407 /*
5408 * Write permission should be allowed since only
5409 * write access need to be emulated.
5410 */
5411 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5412
5413 /*
5414 * If the mapping is invalid in guest, let cpu retry
5415 * it to generate fault.
5416 */
5417 if (gpa == UNMAPPED_GVA)
5418 return true;
5419 }
5420
5421 /*
5422 * Do not retry the unhandleable instruction if it faults on the
5423 * readonly host memory, otherwise it will goto a infinite loop:
5424 * retry instruction -> write #PF -> emulation fail -> retry
5425 * instruction -> ...
5426 */
5427 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5428
5429 /*
5430 * If the instruction failed on the error pfn, it can not be fixed,
5431 * report the error to userspace.
5432 */
5433 if (is_error_noslot_pfn(pfn))
5434 return false;
5435
5436 kvm_release_pfn_clean(pfn);
5437
5438 /* The instructions are well-emulated on direct mmu. */
5439 if (vcpu->arch.mmu.direct_map) {
5440 unsigned int indirect_shadow_pages;
5441
5442 spin_lock(&vcpu->kvm->mmu_lock);
5443 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5444 spin_unlock(&vcpu->kvm->mmu_lock);
5445
5446 if (indirect_shadow_pages)
5447 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5448
5449 return true;
5450 }
5451
5452 /*
5453 * if emulation was due to access to shadowed page table
5454 * and it failed try to unshadow page and re-enter the
5455 * guest to let CPU execute the instruction.
5456 */
5457 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5458
5459 /*
5460 * If the access faults on its page table, it can not
5461 * be fixed by unprotecting shadow page and it should
5462 * be reported to userspace.
5463 */
5464 return !write_fault_to_shadow_pgtable;
5465 }
5466
5467 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5468 unsigned long cr2, int emulation_type)
5469 {
5470 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5471 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5472
5473 last_retry_eip = vcpu->arch.last_retry_eip;
5474 last_retry_addr = vcpu->arch.last_retry_addr;
5475
5476 /*
5477 * If the emulation is caused by #PF and it is non-page_table
5478 * writing instruction, it means the VM-EXIT is caused by shadow
5479 * page protected, we can zap the shadow page and retry this
5480 * instruction directly.
5481 *
5482 * Note: if the guest uses a non-page-table modifying instruction
5483 * on the PDE that points to the instruction, then we will unmap
5484 * the instruction and go to an infinite loop. So, we cache the
5485 * last retried eip and the last fault address, if we meet the eip
5486 * and the address again, we can break out of the potential infinite
5487 * loop.
5488 */
5489 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5490
5491 if (!(emulation_type & EMULTYPE_RETRY))
5492 return false;
5493
5494 if (x86_page_table_writing_insn(ctxt))
5495 return false;
5496
5497 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5498 return false;
5499
5500 vcpu->arch.last_retry_eip = ctxt->eip;
5501 vcpu->arch.last_retry_addr = cr2;
5502
5503 if (!vcpu->arch.mmu.direct_map)
5504 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5505
5506 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5507
5508 return true;
5509 }
5510
5511 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5512 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5513
5514 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5515 {
5516 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5517 /* This is a good place to trace that we are exiting SMM. */
5518 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5519
5520 /* Process a latched INIT or SMI, if any. */
5521 kvm_make_request(KVM_REQ_EVENT, vcpu);
5522 }
5523
5524 kvm_mmu_reset_context(vcpu);
5525 }
5526
5527 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5528 {
5529 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5530
5531 vcpu->arch.hflags = emul_flags;
5532
5533 if (changed & HF_SMM_MASK)
5534 kvm_smm_changed(vcpu);
5535 }
5536
5537 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5538 unsigned long *db)
5539 {
5540 u32 dr6 = 0;
5541 int i;
5542 u32 enable, rwlen;
5543
5544 enable = dr7;
5545 rwlen = dr7 >> 16;
5546 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5547 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5548 dr6 |= (1 << i);
5549 return dr6;
5550 }
5551
5552 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5553 {
5554 struct kvm_run *kvm_run = vcpu->run;
5555
5556 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5557 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5558 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5559 kvm_run->debug.arch.exception = DB_VECTOR;
5560 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5561 *r = EMULATE_USER_EXIT;
5562 } else {
5563 /*
5564 * "Certain debug exceptions may clear bit 0-3. The
5565 * remaining contents of the DR6 register are never
5566 * cleared by the processor".
5567 */
5568 vcpu->arch.dr6 &= ~15;
5569 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5570 kvm_queue_exception(vcpu, DB_VECTOR);
5571 }
5572 }
5573
5574 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5575 {
5576 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5577 int r = EMULATE_DONE;
5578
5579 kvm_x86_ops->skip_emulated_instruction(vcpu);
5580
5581 /*
5582 * rflags is the old, "raw" value of the flags. The new value has
5583 * not been saved yet.
5584 *
5585 * This is correct even for TF set by the guest, because "the
5586 * processor will not generate this exception after the instruction
5587 * that sets the TF flag".
5588 */
5589 if (unlikely(rflags & X86_EFLAGS_TF))
5590 kvm_vcpu_do_singlestep(vcpu, &r);
5591 return r == EMULATE_DONE;
5592 }
5593 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5594
5595 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5596 {
5597 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5598 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5599 struct kvm_run *kvm_run = vcpu->run;
5600 unsigned long eip = kvm_get_linear_rip(vcpu);
5601 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5602 vcpu->arch.guest_debug_dr7,
5603 vcpu->arch.eff_db);
5604
5605 if (dr6 != 0) {
5606 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5607 kvm_run->debug.arch.pc = eip;
5608 kvm_run->debug.arch.exception = DB_VECTOR;
5609 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5610 *r = EMULATE_USER_EXIT;
5611 return true;
5612 }
5613 }
5614
5615 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5616 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5617 unsigned long eip = kvm_get_linear_rip(vcpu);
5618 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5619 vcpu->arch.dr7,
5620 vcpu->arch.db);
5621
5622 if (dr6 != 0) {
5623 vcpu->arch.dr6 &= ~15;
5624 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5625 kvm_queue_exception(vcpu, DB_VECTOR);
5626 *r = EMULATE_DONE;
5627 return true;
5628 }
5629 }
5630
5631 return false;
5632 }
5633
5634 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5635 unsigned long cr2,
5636 int emulation_type,
5637 void *insn,
5638 int insn_len)
5639 {
5640 int r;
5641 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5642 bool writeback = true;
5643 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5644
5645 /*
5646 * Clear write_fault_to_shadow_pgtable here to ensure it is
5647 * never reused.
5648 */
5649 vcpu->arch.write_fault_to_shadow_pgtable = false;
5650 kvm_clear_exception_queue(vcpu);
5651
5652 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5653 init_emulate_ctxt(vcpu);
5654
5655 /*
5656 * We will reenter on the same instruction since
5657 * we do not set complete_userspace_io. This does not
5658 * handle watchpoints yet, those would be handled in
5659 * the emulate_ops.
5660 */
5661 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5662 return r;
5663
5664 ctxt->interruptibility = 0;
5665 ctxt->have_exception = false;
5666 ctxt->exception.vector = -1;
5667 ctxt->perm_ok = false;
5668
5669 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5670
5671 r = x86_decode_insn(ctxt, insn, insn_len);
5672
5673 trace_kvm_emulate_insn_start(vcpu);
5674 ++vcpu->stat.insn_emulation;
5675 if (r != EMULATION_OK) {
5676 if (emulation_type & EMULTYPE_TRAP_UD)
5677 return EMULATE_FAIL;
5678 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5679 emulation_type))
5680 return EMULATE_DONE;
5681 if (emulation_type & EMULTYPE_SKIP)
5682 return EMULATE_FAIL;
5683 return handle_emulation_failure(vcpu);
5684 }
5685 }
5686
5687 if (emulation_type & EMULTYPE_SKIP) {
5688 kvm_rip_write(vcpu, ctxt->_eip);
5689 if (ctxt->eflags & X86_EFLAGS_RF)
5690 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5691 return EMULATE_DONE;
5692 }
5693
5694 if (retry_instruction(ctxt, cr2, emulation_type))
5695 return EMULATE_DONE;
5696
5697 /* this is needed for vmware backdoor interface to work since it
5698 changes registers values during IO operation */
5699 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5700 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5701 emulator_invalidate_register_cache(ctxt);
5702 }
5703
5704 restart:
5705 /* Save the faulting GPA (cr2) in the address field */
5706 ctxt->exception.address = cr2;
5707
5708 r = x86_emulate_insn(ctxt);
5709
5710 if (r == EMULATION_INTERCEPTED)
5711 return EMULATE_DONE;
5712
5713 if (r == EMULATION_FAILED) {
5714 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5715 emulation_type))
5716 return EMULATE_DONE;
5717
5718 return handle_emulation_failure(vcpu);
5719 }
5720
5721 if (ctxt->have_exception) {
5722 r = EMULATE_DONE;
5723 if (inject_emulated_exception(vcpu))
5724 return r;
5725 } else if (vcpu->arch.pio.count) {
5726 if (!vcpu->arch.pio.in) {
5727 /* FIXME: return into emulator if single-stepping. */
5728 vcpu->arch.pio.count = 0;
5729 } else {
5730 writeback = false;
5731 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5732 }
5733 r = EMULATE_USER_EXIT;
5734 } else if (vcpu->mmio_needed) {
5735 if (!vcpu->mmio_is_write)
5736 writeback = false;
5737 r = EMULATE_USER_EXIT;
5738 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5739 } else if (r == EMULATION_RESTART)
5740 goto restart;
5741 else
5742 r = EMULATE_DONE;
5743
5744 if (writeback) {
5745 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5746 toggle_interruptibility(vcpu, ctxt->interruptibility);
5747 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5748 kvm_rip_write(vcpu, ctxt->eip);
5749 if (r == EMULATE_DONE &&
5750 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5751 kvm_vcpu_do_singlestep(vcpu, &r);
5752 if (!ctxt->have_exception ||
5753 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5754 __kvm_set_rflags(vcpu, ctxt->eflags);
5755
5756 /*
5757 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5758 * do nothing, and it will be requested again as soon as
5759 * the shadow expires. But we still need to check here,
5760 * because POPF has no interrupt shadow.
5761 */
5762 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5763 kvm_make_request(KVM_REQ_EVENT, vcpu);
5764 } else
5765 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5766
5767 return r;
5768 }
5769 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5770
5771 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5772 {
5773 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5774 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5775 size, port, &val, 1);
5776 /* do not return to emulator after return from userspace */
5777 vcpu->arch.pio.count = 0;
5778 return ret;
5779 }
5780 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5781
5782 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5783 {
5784 unsigned long val;
5785
5786 /* We should only ever be called with arch.pio.count equal to 1 */
5787 BUG_ON(vcpu->arch.pio.count != 1);
5788
5789 /* For size less than 4 we merge, else we zero extend */
5790 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5791 : 0;
5792
5793 /*
5794 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5795 * the copy and tracing
5796 */
5797 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5798 vcpu->arch.pio.port, &val, 1);
5799 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5800
5801 return 1;
5802 }
5803
5804 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5805 {
5806 unsigned long val;
5807 int ret;
5808
5809 /* For size less than 4 we merge, else we zero extend */
5810 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5811
5812 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5813 &val, 1);
5814 if (ret) {
5815 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5816 return ret;
5817 }
5818
5819 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5820
5821 return 0;
5822 }
5823 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5824
5825 static int kvmclock_cpu_down_prep(unsigned int cpu)
5826 {
5827 __this_cpu_write(cpu_tsc_khz, 0);
5828 return 0;
5829 }
5830
5831 static void tsc_khz_changed(void *data)
5832 {
5833 struct cpufreq_freqs *freq = data;
5834 unsigned long khz = 0;
5835
5836 if (data)
5837 khz = freq->new;
5838 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5839 khz = cpufreq_quick_get(raw_smp_processor_id());
5840 if (!khz)
5841 khz = tsc_khz;
5842 __this_cpu_write(cpu_tsc_khz, khz);
5843 }
5844
5845 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5846 void *data)
5847 {
5848 struct cpufreq_freqs *freq = data;
5849 struct kvm *kvm;
5850 struct kvm_vcpu *vcpu;
5851 int i, send_ipi = 0;
5852
5853 /*
5854 * We allow guests to temporarily run on slowing clocks,
5855 * provided we notify them after, or to run on accelerating
5856 * clocks, provided we notify them before. Thus time never
5857 * goes backwards.
5858 *
5859 * However, we have a problem. We can't atomically update
5860 * the frequency of a given CPU from this function; it is
5861 * merely a notifier, which can be called from any CPU.
5862 * Changing the TSC frequency at arbitrary points in time
5863 * requires a recomputation of local variables related to
5864 * the TSC for each VCPU. We must flag these local variables
5865 * to be updated and be sure the update takes place with the
5866 * new frequency before any guests proceed.
5867 *
5868 * Unfortunately, the combination of hotplug CPU and frequency
5869 * change creates an intractable locking scenario; the order
5870 * of when these callouts happen is undefined with respect to
5871 * CPU hotplug, and they can race with each other. As such,
5872 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5873 * undefined; you can actually have a CPU frequency change take
5874 * place in between the computation of X and the setting of the
5875 * variable. To protect against this problem, all updates of
5876 * the per_cpu tsc_khz variable are done in an interrupt
5877 * protected IPI, and all callers wishing to update the value
5878 * must wait for a synchronous IPI to complete (which is trivial
5879 * if the caller is on the CPU already). This establishes the
5880 * necessary total order on variable updates.
5881 *
5882 * Note that because a guest time update may take place
5883 * anytime after the setting of the VCPU's request bit, the
5884 * correct TSC value must be set before the request. However,
5885 * to ensure the update actually makes it to any guest which
5886 * starts running in hardware virtualization between the set
5887 * and the acquisition of the spinlock, we must also ping the
5888 * CPU after setting the request bit.
5889 *
5890 */
5891
5892 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5893 return 0;
5894 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5895 return 0;
5896
5897 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5898
5899 spin_lock(&kvm_lock);
5900 list_for_each_entry(kvm, &vm_list, vm_list) {
5901 kvm_for_each_vcpu(i, vcpu, kvm) {
5902 if (vcpu->cpu != freq->cpu)
5903 continue;
5904 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5905 if (vcpu->cpu != smp_processor_id())
5906 send_ipi = 1;
5907 }
5908 }
5909 spin_unlock(&kvm_lock);
5910
5911 if (freq->old < freq->new && send_ipi) {
5912 /*
5913 * We upscale the frequency. Must make the guest
5914 * doesn't see old kvmclock values while running with
5915 * the new frequency, otherwise we risk the guest sees
5916 * time go backwards.
5917 *
5918 * In case we update the frequency for another cpu
5919 * (which might be in guest context) send an interrupt
5920 * to kick the cpu out of guest context. Next time
5921 * guest context is entered kvmclock will be updated,
5922 * so the guest will not see stale values.
5923 */
5924 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5925 }
5926 return 0;
5927 }
5928
5929 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5930 .notifier_call = kvmclock_cpufreq_notifier
5931 };
5932
5933 static int kvmclock_cpu_online(unsigned int cpu)
5934 {
5935 tsc_khz_changed(NULL);
5936 return 0;
5937 }
5938
5939 static void kvm_timer_init(void)
5940 {
5941 max_tsc_khz = tsc_khz;
5942
5943 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5944 #ifdef CONFIG_CPU_FREQ
5945 struct cpufreq_policy policy;
5946 int cpu;
5947
5948 memset(&policy, 0, sizeof(policy));
5949 cpu = get_cpu();
5950 cpufreq_get_policy(&policy, cpu);
5951 if (policy.cpuinfo.max_freq)
5952 max_tsc_khz = policy.cpuinfo.max_freq;
5953 put_cpu();
5954 #endif
5955 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5956 CPUFREQ_TRANSITION_NOTIFIER);
5957 }
5958 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5959
5960 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5961 kvmclock_cpu_online, kvmclock_cpu_down_prep);
5962 }
5963
5964 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5965
5966 int kvm_is_in_guest(void)
5967 {
5968 return __this_cpu_read(current_vcpu) != NULL;
5969 }
5970
5971 static int kvm_is_user_mode(void)
5972 {
5973 int user_mode = 3;
5974
5975 if (__this_cpu_read(current_vcpu))
5976 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5977
5978 return user_mode != 0;
5979 }
5980
5981 static unsigned long kvm_get_guest_ip(void)
5982 {
5983 unsigned long ip = 0;
5984
5985 if (__this_cpu_read(current_vcpu))
5986 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5987
5988 return ip;
5989 }
5990
5991 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5992 .is_in_guest = kvm_is_in_guest,
5993 .is_user_mode = kvm_is_user_mode,
5994 .get_guest_ip = kvm_get_guest_ip,
5995 };
5996
5997 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5998 {
5999 __this_cpu_write(current_vcpu, vcpu);
6000 }
6001 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6002
6003 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6004 {
6005 __this_cpu_write(current_vcpu, NULL);
6006 }
6007 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6008
6009 static void kvm_set_mmio_spte_mask(void)
6010 {
6011 u64 mask;
6012 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6013
6014 /*
6015 * Set the reserved bits and the present bit of an paging-structure
6016 * entry to generate page fault with PFER.RSV = 1.
6017 */
6018 /* Mask the reserved physical address bits. */
6019 mask = rsvd_bits(maxphyaddr, 51);
6020
6021 /* Set the present bit. */
6022 mask |= 1ull;
6023
6024 #ifdef CONFIG_X86_64
6025 /*
6026 * If reserved bit is not supported, clear the present bit to disable
6027 * mmio page fault.
6028 */
6029 if (maxphyaddr == 52)
6030 mask &= ~1ull;
6031 #endif
6032
6033 kvm_mmu_set_mmio_spte_mask(mask, mask);
6034 }
6035
6036 #ifdef CONFIG_X86_64
6037 static void pvclock_gtod_update_fn(struct work_struct *work)
6038 {
6039 struct kvm *kvm;
6040
6041 struct kvm_vcpu *vcpu;
6042 int i;
6043
6044 spin_lock(&kvm_lock);
6045 list_for_each_entry(kvm, &vm_list, vm_list)
6046 kvm_for_each_vcpu(i, vcpu, kvm)
6047 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6048 atomic_set(&kvm_guest_has_master_clock, 0);
6049 spin_unlock(&kvm_lock);
6050 }
6051
6052 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6053
6054 /*
6055 * Notification about pvclock gtod data update.
6056 */
6057 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6058 void *priv)
6059 {
6060 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6061 struct timekeeper *tk = priv;
6062
6063 update_pvclock_gtod(tk);
6064
6065 /* disable master clock if host does not trust, or does not
6066 * use, TSC clocksource
6067 */
6068 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6069 atomic_read(&kvm_guest_has_master_clock) != 0)
6070 queue_work(system_long_wq, &pvclock_gtod_work);
6071
6072 return 0;
6073 }
6074
6075 static struct notifier_block pvclock_gtod_notifier = {
6076 .notifier_call = pvclock_gtod_notify,
6077 };
6078 #endif
6079
6080 int kvm_arch_init(void *opaque)
6081 {
6082 int r;
6083 struct kvm_x86_ops *ops = opaque;
6084
6085 if (kvm_x86_ops) {
6086 printk(KERN_ERR "kvm: already loaded the other module\n");
6087 r = -EEXIST;
6088 goto out;
6089 }
6090
6091 if (!ops->cpu_has_kvm_support()) {
6092 printk(KERN_ERR "kvm: no hardware support\n");
6093 r = -EOPNOTSUPP;
6094 goto out;
6095 }
6096 if (ops->disabled_by_bios()) {
6097 printk(KERN_ERR "kvm: disabled by bios\n");
6098 r = -EOPNOTSUPP;
6099 goto out;
6100 }
6101
6102 r = -ENOMEM;
6103 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6104 if (!shared_msrs) {
6105 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6106 goto out;
6107 }
6108
6109 r = kvm_mmu_module_init();
6110 if (r)
6111 goto out_free_percpu;
6112
6113 kvm_set_mmio_spte_mask();
6114
6115 kvm_x86_ops = ops;
6116
6117 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6118 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6119 PT_PRESENT_MASK, 0);
6120 kvm_timer_init();
6121
6122 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6123
6124 if (boot_cpu_has(X86_FEATURE_XSAVE))
6125 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6126
6127 kvm_lapic_init();
6128 #ifdef CONFIG_X86_64
6129 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6130 #endif
6131
6132 return 0;
6133
6134 out_free_percpu:
6135 free_percpu(shared_msrs);
6136 out:
6137 return r;
6138 }
6139
6140 void kvm_arch_exit(void)
6141 {
6142 kvm_lapic_exit();
6143 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6144
6145 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6146 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6147 CPUFREQ_TRANSITION_NOTIFIER);
6148 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6149 #ifdef CONFIG_X86_64
6150 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6151 #endif
6152 kvm_x86_ops = NULL;
6153 kvm_mmu_module_exit();
6154 free_percpu(shared_msrs);
6155 }
6156
6157 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6158 {
6159 ++vcpu->stat.halt_exits;
6160 if (lapic_in_kernel(vcpu)) {
6161 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6162 return 1;
6163 } else {
6164 vcpu->run->exit_reason = KVM_EXIT_HLT;
6165 return 0;
6166 }
6167 }
6168 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6169
6170 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6171 {
6172 int ret = kvm_skip_emulated_instruction(vcpu);
6173 /*
6174 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6175 * KVM_EXIT_DEBUG here.
6176 */
6177 return kvm_vcpu_halt(vcpu) && ret;
6178 }
6179 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6180
6181 #ifdef CONFIG_X86_64
6182 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6183 unsigned long clock_type)
6184 {
6185 struct kvm_clock_pairing clock_pairing;
6186 struct timespec ts;
6187 u64 cycle;
6188 int ret;
6189
6190 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6191 return -KVM_EOPNOTSUPP;
6192
6193 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6194 return -KVM_EOPNOTSUPP;
6195
6196 clock_pairing.sec = ts.tv_sec;
6197 clock_pairing.nsec = ts.tv_nsec;
6198 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6199 clock_pairing.flags = 0;
6200
6201 ret = 0;
6202 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6203 sizeof(struct kvm_clock_pairing)))
6204 ret = -KVM_EFAULT;
6205
6206 return ret;
6207 }
6208 #endif
6209
6210 /*
6211 * kvm_pv_kick_cpu_op: Kick a vcpu.
6212 *
6213 * @apicid - apicid of vcpu to be kicked.
6214 */
6215 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6216 {
6217 struct kvm_lapic_irq lapic_irq;
6218
6219 lapic_irq.shorthand = 0;
6220 lapic_irq.dest_mode = 0;
6221 lapic_irq.level = 0;
6222 lapic_irq.dest_id = apicid;
6223 lapic_irq.msi_redir_hint = false;
6224
6225 lapic_irq.delivery_mode = APIC_DM_REMRD;
6226 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6227 }
6228
6229 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6230 {
6231 vcpu->arch.apicv_active = false;
6232 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6233 }
6234
6235 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6236 {
6237 unsigned long nr, a0, a1, a2, a3, ret;
6238 int op_64_bit, r;
6239
6240 r = kvm_skip_emulated_instruction(vcpu);
6241
6242 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6243 return kvm_hv_hypercall(vcpu);
6244
6245 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6246 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6247 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6248 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6249 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6250
6251 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6252
6253 op_64_bit = is_64_bit_mode(vcpu);
6254 if (!op_64_bit) {
6255 nr &= 0xFFFFFFFF;
6256 a0 &= 0xFFFFFFFF;
6257 a1 &= 0xFFFFFFFF;
6258 a2 &= 0xFFFFFFFF;
6259 a3 &= 0xFFFFFFFF;
6260 }
6261
6262 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6263 ret = -KVM_EPERM;
6264 goto out;
6265 }
6266
6267 switch (nr) {
6268 case KVM_HC_VAPIC_POLL_IRQ:
6269 ret = 0;
6270 break;
6271 case KVM_HC_KICK_CPU:
6272 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6273 ret = 0;
6274 break;
6275 #ifdef CONFIG_X86_64
6276 case KVM_HC_CLOCK_PAIRING:
6277 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6278 break;
6279 #endif
6280 default:
6281 ret = -KVM_ENOSYS;
6282 break;
6283 }
6284 out:
6285 if (!op_64_bit)
6286 ret = (u32)ret;
6287 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6288 ++vcpu->stat.hypercalls;
6289 return r;
6290 }
6291 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6292
6293 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6294 {
6295 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6296 char instruction[3];
6297 unsigned long rip = kvm_rip_read(vcpu);
6298
6299 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6300
6301 return emulator_write_emulated(ctxt, rip, instruction, 3,
6302 &ctxt->exception);
6303 }
6304
6305 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6306 {
6307 return vcpu->run->request_interrupt_window &&
6308 likely(!pic_in_kernel(vcpu->kvm));
6309 }
6310
6311 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6312 {
6313 struct kvm_run *kvm_run = vcpu->run;
6314
6315 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6316 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6317 kvm_run->cr8 = kvm_get_cr8(vcpu);
6318 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6319 kvm_run->ready_for_interrupt_injection =
6320 pic_in_kernel(vcpu->kvm) ||
6321 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6322 }
6323
6324 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6325 {
6326 int max_irr, tpr;
6327
6328 if (!kvm_x86_ops->update_cr8_intercept)
6329 return;
6330
6331 if (!lapic_in_kernel(vcpu))
6332 return;
6333
6334 if (vcpu->arch.apicv_active)
6335 return;
6336
6337 if (!vcpu->arch.apic->vapic_addr)
6338 max_irr = kvm_lapic_find_highest_irr(vcpu);
6339 else
6340 max_irr = -1;
6341
6342 if (max_irr != -1)
6343 max_irr >>= 4;
6344
6345 tpr = kvm_lapic_get_cr8(vcpu);
6346
6347 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6348 }
6349
6350 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6351 {
6352 int r;
6353
6354 /* try to reinject previous events if any */
6355 if (vcpu->arch.exception.pending) {
6356 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6357 vcpu->arch.exception.has_error_code,
6358 vcpu->arch.exception.error_code);
6359
6360 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6361 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6362 X86_EFLAGS_RF);
6363
6364 if (vcpu->arch.exception.nr == DB_VECTOR &&
6365 (vcpu->arch.dr7 & DR7_GD)) {
6366 vcpu->arch.dr7 &= ~DR7_GD;
6367 kvm_update_dr7(vcpu);
6368 }
6369
6370 kvm_x86_ops->queue_exception(vcpu);
6371 return 0;
6372 }
6373
6374 if (vcpu->arch.nmi_injected) {
6375 kvm_x86_ops->set_nmi(vcpu);
6376 return 0;
6377 }
6378
6379 if (vcpu->arch.interrupt.pending) {
6380 kvm_x86_ops->set_irq(vcpu);
6381 return 0;
6382 }
6383
6384 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6385 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6386 if (r != 0)
6387 return r;
6388 }
6389
6390 /* try to inject new event if pending */
6391 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6392 vcpu->arch.smi_pending = false;
6393 enter_smm(vcpu);
6394 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6395 --vcpu->arch.nmi_pending;
6396 vcpu->arch.nmi_injected = true;
6397 kvm_x86_ops->set_nmi(vcpu);
6398 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6399 /*
6400 * Because interrupts can be injected asynchronously, we are
6401 * calling check_nested_events again here to avoid a race condition.
6402 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6403 * proposal and current concerns. Perhaps we should be setting
6404 * KVM_REQ_EVENT only on certain events and not unconditionally?
6405 */
6406 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6407 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6408 if (r != 0)
6409 return r;
6410 }
6411 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6412 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6413 false);
6414 kvm_x86_ops->set_irq(vcpu);
6415 }
6416 }
6417
6418 return 0;
6419 }
6420
6421 static void process_nmi(struct kvm_vcpu *vcpu)
6422 {
6423 unsigned limit = 2;
6424
6425 /*
6426 * x86 is limited to one NMI running, and one NMI pending after it.
6427 * If an NMI is already in progress, limit further NMIs to just one.
6428 * Otherwise, allow two (and we'll inject the first one immediately).
6429 */
6430 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6431 limit = 1;
6432
6433 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6434 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6435 kvm_make_request(KVM_REQ_EVENT, vcpu);
6436 }
6437
6438 #define put_smstate(type, buf, offset, val) \
6439 *(type *)((buf) + (offset) - 0x7e00) = val
6440
6441 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6442 {
6443 u32 flags = 0;
6444 flags |= seg->g << 23;
6445 flags |= seg->db << 22;
6446 flags |= seg->l << 21;
6447 flags |= seg->avl << 20;
6448 flags |= seg->present << 15;
6449 flags |= seg->dpl << 13;
6450 flags |= seg->s << 12;
6451 flags |= seg->type << 8;
6452 return flags;
6453 }
6454
6455 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6456 {
6457 struct kvm_segment seg;
6458 int offset;
6459
6460 kvm_get_segment(vcpu, &seg, n);
6461 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6462
6463 if (n < 3)
6464 offset = 0x7f84 + n * 12;
6465 else
6466 offset = 0x7f2c + (n - 3) * 12;
6467
6468 put_smstate(u32, buf, offset + 8, seg.base);
6469 put_smstate(u32, buf, offset + 4, seg.limit);
6470 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6471 }
6472
6473 #ifdef CONFIG_X86_64
6474 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6475 {
6476 struct kvm_segment seg;
6477 int offset;
6478 u16 flags;
6479
6480 kvm_get_segment(vcpu, &seg, n);
6481 offset = 0x7e00 + n * 16;
6482
6483 flags = enter_smm_get_segment_flags(&seg) >> 8;
6484 put_smstate(u16, buf, offset, seg.selector);
6485 put_smstate(u16, buf, offset + 2, flags);
6486 put_smstate(u32, buf, offset + 4, seg.limit);
6487 put_smstate(u64, buf, offset + 8, seg.base);
6488 }
6489 #endif
6490
6491 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6492 {
6493 struct desc_ptr dt;
6494 struct kvm_segment seg;
6495 unsigned long val;
6496 int i;
6497
6498 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6499 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6500 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6501 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6502
6503 for (i = 0; i < 8; i++)
6504 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6505
6506 kvm_get_dr(vcpu, 6, &val);
6507 put_smstate(u32, buf, 0x7fcc, (u32)val);
6508 kvm_get_dr(vcpu, 7, &val);
6509 put_smstate(u32, buf, 0x7fc8, (u32)val);
6510
6511 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6512 put_smstate(u32, buf, 0x7fc4, seg.selector);
6513 put_smstate(u32, buf, 0x7f64, seg.base);
6514 put_smstate(u32, buf, 0x7f60, seg.limit);
6515 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6516
6517 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6518 put_smstate(u32, buf, 0x7fc0, seg.selector);
6519 put_smstate(u32, buf, 0x7f80, seg.base);
6520 put_smstate(u32, buf, 0x7f7c, seg.limit);
6521 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6522
6523 kvm_x86_ops->get_gdt(vcpu, &dt);
6524 put_smstate(u32, buf, 0x7f74, dt.address);
6525 put_smstate(u32, buf, 0x7f70, dt.size);
6526
6527 kvm_x86_ops->get_idt(vcpu, &dt);
6528 put_smstate(u32, buf, 0x7f58, dt.address);
6529 put_smstate(u32, buf, 0x7f54, dt.size);
6530
6531 for (i = 0; i < 6; i++)
6532 enter_smm_save_seg_32(vcpu, buf, i);
6533
6534 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6535
6536 /* revision id */
6537 put_smstate(u32, buf, 0x7efc, 0x00020000);
6538 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6539 }
6540
6541 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6542 {
6543 #ifdef CONFIG_X86_64
6544 struct desc_ptr dt;
6545 struct kvm_segment seg;
6546 unsigned long val;
6547 int i;
6548
6549 for (i = 0; i < 16; i++)
6550 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6551
6552 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6553 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6554
6555 kvm_get_dr(vcpu, 6, &val);
6556 put_smstate(u64, buf, 0x7f68, val);
6557 kvm_get_dr(vcpu, 7, &val);
6558 put_smstate(u64, buf, 0x7f60, val);
6559
6560 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6561 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6562 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6563
6564 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6565
6566 /* revision id */
6567 put_smstate(u32, buf, 0x7efc, 0x00020064);
6568
6569 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6570
6571 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6572 put_smstate(u16, buf, 0x7e90, seg.selector);
6573 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6574 put_smstate(u32, buf, 0x7e94, seg.limit);
6575 put_smstate(u64, buf, 0x7e98, seg.base);
6576
6577 kvm_x86_ops->get_idt(vcpu, &dt);
6578 put_smstate(u32, buf, 0x7e84, dt.size);
6579 put_smstate(u64, buf, 0x7e88, dt.address);
6580
6581 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6582 put_smstate(u16, buf, 0x7e70, seg.selector);
6583 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6584 put_smstate(u32, buf, 0x7e74, seg.limit);
6585 put_smstate(u64, buf, 0x7e78, seg.base);
6586
6587 kvm_x86_ops->get_gdt(vcpu, &dt);
6588 put_smstate(u32, buf, 0x7e64, dt.size);
6589 put_smstate(u64, buf, 0x7e68, dt.address);
6590
6591 for (i = 0; i < 6; i++)
6592 enter_smm_save_seg_64(vcpu, buf, i);
6593 #else
6594 WARN_ON_ONCE(1);
6595 #endif
6596 }
6597
6598 static void enter_smm(struct kvm_vcpu *vcpu)
6599 {
6600 struct kvm_segment cs, ds;
6601 struct desc_ptr dt;
6602 char buf[512];
6603 u32 cr0;
6604
6605 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6606 vcpu->arch.hflags |= HF_SMM_MASK;
6607 memset(buf, 0, 512);
6608 if (guest_cpuid_has_longmode(vcpu))
6609 enter_smm_save_state_64(vcpu, buf);
6610 else
6611 enter_smm_save_state_32(vcpu, buf);
6612
6613 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6614
6615 if (kvm_x86_ops->get_nmi_mask(vcpu))
6616 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6617 else
6618 kvm_x86_ops->set_nmi_mask(vcpu, true);
6619
6620 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6621 kvm_rip_write(vcpu, 0x8000);
6622
6623 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6624 kvm_x86_ops->set_cr0(vcpu, cr0);
6625 vcpu->arch.cr0 = cr0;
6626
6627 kvm_x86_ops->set_cr4(vcpu, 0);
6628
6629 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6630 dt.address = dt.size = 0;
6631 kvm_x86_ops->set_idt(vcpu, &dt);
6632
6633 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6634
6635 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6636 cs.base = vcpu->arch.smbase;
6637
6638 ds.selector = 0;
6639 ds.base = 0;
6640
6641 cs.limit = ds.limit = 0xffffffff;
6642 cs.type = ds.type = 0x3;
6643 cs.dpl = ds.dpl = 0;
6644 cs.db = ds.db = 0;
6645 cs.s = ds.s = 1;
6646 cs.l = ds.l = 0;
6647 cs.g = ds.g = 1;
6648 cs.avl = ds.avl = 0;
6649 cs.present = ds.present = 1;
6650 cs.unusable = ds.unusable = 0;
6651 cs.padding = ds.padding = 0;
6652
6653 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6654 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6655 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6656 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6657 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6658 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6659
6660 if (guest_cpuid_has_longmode(vcpu))
6661 kvm_x86_ops->set_efer(vcpu, 0);
6662
6663 kvm_update_cpuid(vcpu);
6664 kvm_mmu_reset_context(vcpu);
6665 }
6666
6667 static void process_smi(struct kvm_vcpu *vcpu)
6668 {
6669 vcpu->arch.smi_pending = true;
6670 kvm_make_request(KVM_REQ_EVENT, vcpu);
6671 }
6672
6673 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6674 {
6675 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6676 }
6677
6678 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6679 {
6680 u64 eoi_exit_bitmap[4];
6681
6682 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6683 return;
6684
6685 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6686
6687 if (irqchip_split(vcpu->kvm))
6688 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6689 else {
6690 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6691 kvm_x86_ops->sync_pir_to_irr(vcpu);
6692 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6693 }
6694 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6695 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6696 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6697 }
6698
6699 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6700 {
6701 ++vcpu->stat.tlb_flush;
6702 kvm_x86_ops->tlb_flush(vcpu);
6703 }
6704
6705 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6706 {
6707 struct page *page = NULL;
6708
6709 if (!lapic_in_kernel(vcpu))
6710 return;
6711
6712 if (!kvm_x86_ops->set_apic_access_page_addr)
6713 return;
6714
6715 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6716 if (is_error_page(page))
6717 return;
6718 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6719
6720 /*
6721 * Do not pin apic access page in memory, the MMU notifier
6722 * will call us again if it is migrated or swapped out.
6723 */
6724 put_page(page);
6725 }
6726 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6727
6728 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6729 unsigned long address)
6730 {
6731 /*
6732 * The physical address of apic access page is stored in the VMCS.
6733 * Update it when it becomes invalid.
6734 */
6735 if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6736 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6737 }
6738
6739 /*
6740 * Returns 1 to let vcpu_run() continue the guest execution loop without
6741 * exiting to the userspace. Otherwise, the value will be returned to the
6742 * userspace.
6743 */
6744 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6745 {
6746 int r;
6747 bool req_int_win =
6748 dm_request_for_irq_injection(vcpu) &&
6749 kvm_cpu_accept_dm_intr(vcpu);
6750
6751 bool req_immediate_exit = false;
6752
6753 if (kvm_request_pending(vcpu)) {
6754 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6755 kvm_mmu_unload(vcpu);
6756 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6757 __kvm_migrate_timers(vcpu);
6758 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6759 kvm_gen_update_masterclock(vcpu->kvm);
6760 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6761 kvm_gen_kvmclock_update(vcpu);
6762 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6763 r = kvm_guest_time_update(vcpu);
6764 if (unlikely(r))
6765 goto out;
6766 }
6767 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6768 kvm_mmu_sync_roots(vcpu);
6769 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6770 kvm_vcpu_flush_tlb(vcpu);
6771 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6772 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6773 r = 0;
6774 goto out;
6775 }
6776 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6777 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6778 r = 0;
6779 goto out;
6780 }
6781 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6782 /* Page is swapped out. Do synthetic halt */
6783 vcpu->arch.apf.halted = true;
6784 r = 1;
6785 goto out;
6786 }
6787 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6788 record_steal_time(vcpu);
6789 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6790 process_smi(vcpu);
6791 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6792 process_nmi(vcpu);
6793 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6794 kvm_pmu_handle_event(vcpu);
6795 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6796 kvm_pmu_deliver_pmi(vcpu);
6797 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6798 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6799 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6800 vcpu->arch.ioapic_handled_vectors)) {
6801 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6802 vcpu->run->eoi.vector =
6803 vcpu->arch.pending_ioapic_eoi;
6804 r = 0;
6805 goto out;
6806 }
6807 }
6808 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6809 vcpu_scan_ioapic(vcpu);
6810 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6811 kvm_vcpu_reload_apic_access_page(vcpu);
6812 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6813 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6814 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6815 r = 0;
6816 goto out;
6817 }
6818 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6819 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6820 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6821 r = 0;
6822 goto out;
6823 }
6824 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6825 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6826 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6827 r = 0;
6828 goto out;
6829 }
6830
6831 /*
6832 * KVM_REQ_HV_STIMER has to be processed after
6833 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6834 * depend on the guest clock being up-to-date
6835 */
6836 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6837 kvm_hv_process_stimers(vcpu);
6838 }
6839
6840 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6841 ++vcpu->stat.req_event;
6842 kvm_apic_accept_events(vcpu);
6843 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6844 r = 1;
6845 goto out;
6846 }
6847
6848 if (inject_pending_event(vcpu, req_int_win) != 0)
6849 req_immediate_exit = true;
6850 else {
6851 /* Enable NMI/IRQ window open exits if needed.
6852 *
6853 * SMIs have two cases: 1) they can be nested, and
6854 * then there is nothing to do here because RSM will
6855 * cause a vmexit anyway; 2) or the SMI can be pending
6856 * because inject_pending_event has completed the
6857 * injection of an IRQ or NMI from the previous vmexit,
6858 * and then we request an immediate exit to inject the SMI.
6859 */
6860 if (vcpu->arch.smi_pending && !is_smm(vcpu))
6861 req_immediate_exit = true;
6862 if (vcpu->arch.nmi_pending)
6863 kvm_x86_ops->enable_nmi_window(vcpu);
6864 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6865 kvm_x86_ops->enable_irq_window(vcpu);
6866 }
6867
6868 if (kvm_lapic_enabled(vcpu)) {
6869 update_cr8_intercept(vcpu);
6870 kvm_lapic_sync_to_vapic(vcpu);
6871 }
6872 }
6873
6874 r = kvm_mmu_reload(vcpu);
6875 if (unlikely(r)) {
6876 goto cancel_injection;
6877 }
6878
6879 preempt_disable();
6880
6881 kvm_x86_ops->prepare_guest_switch(vcpu);
6882 kvm_load_guest_fpu(vcpu);
6883
6884 /*
6885 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
6886 * IPI are then delayed after guest entry, which ensures that they
6887 * result in virtual interrupt delivery.
6888 */
6889 local_irq_disable();
6890 vcpu->mode = IN_GUEST_MODE;
6891
6892 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6893
6894 /*
6895 * 1) We should set ->mode before checking ->requests. Please see
6896 * the comment in kvm_vcpu_exiting_guest_mode().
6897 *
6898 * 2) For APICv, we should set ->mode before checking PIR.ON. This
6899 * pairs with the memory barrier implicit in pi_test_and_set_on
6900 * (see vmx_deliver_posted_interrupt).
6901 *
6902 * 3) This also orders the write to mode from any reads to the page
6903 * tables done while the VCPU is running. Please see the comment
6904 * in kvm_flush_remote_tlbs.
6905 */
6906 smp_mb__after_srcu_read_unlock();
6907
6908 /*
6909 * This handles the case where a posted interrupt was
6910 * notified with kvm_vcpu_kick.
6911 */
6912 if (kvm_lapic_enabled(vcpu)) {
6913 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6914 kvm_x86_ops->sync_pir_to_irr(vcpu);
6915 }
6916
6917 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6918 || need_resched() || signal_pending(current)) {
6919 vcpu->mode = OUTSIDE_GUEST_MODE;
6920 smp_wmb();
6921 local_irq_enable();
6922 preempt_enable();
6923 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6924 r = 1;
6925 goto cancel_injection;
6926 }
6927
6928 kvm_load_guest_xcr0(vcpu);
6929
6930 if (req_immediate_exit) {
6931 kvm_make_request(KVM_REQ_EVENT, vcpu);
6932 smp_send_reschedule(vcpu->cpu);
6933 }
6934
6935 trace_kvm_entry(vcpu->vcpu_id);
6936 wait_lapic_expire(vcpu);
6937 guest_enter_irqoff();
6938
6939 if (unlikely(vcpu->arch.switch_db_regs)) {
6940 set_debugreg(0, 7);
6941 set_debugreg(vcpu->arch.eff_db[0], 0);
6942 set_debugreg(vcpu->arch.eff_db[1], 1);
6943 set_debugreg(vcpu->arch.eff_db[2], 2);
6944 set_debugreg(vcpu->arch.eff_db[3], 3);
6945 set_debugreg(vcpu->arch.dr6, 6);
6946 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6947 }
6948
6949 kvm_x86_ops->run(vcpu);
6950
6951 /*
6952 * Do this here before restoring debug registers on the host. And
6953 * since we do this before handling the vmexit, a DR access vmexit
6954 * can (a) read the correct value of the debug registers, (b) set
6955 * KVM_DEBUGREG_WONT_EXIT again.
6956 */
6957 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6958 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6959 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6960 kvm_update_dr0123(vcpu);
6961 kvm_update_dr6(vcpu);
6962 kvm_update_dr7(vcpu);
6963 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6964 }
6965
6966 /*
6967 * If the guest has used debug registers, at least dr7
6968 * will be disabled while returning to the host.
6969 * If we don't have active breakpoints in the host, we don't
6970 * care about the messed up debug address registers. But if
6971 * we have some of them active, restore the old state.
6972 */
6973 if (hw_breakpoint_active())
6974 hw_breakpoint_restore();
6975
6976 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6977
6978 vcpu->mode = OUTSIDE_GUEST_MODE;
6979 smp_wmb();
6980
6981 kvm_put_guest_xcr0(vcpu);
6982
6983 kvm_x86_ops->handle_external_intr(vcpu);
6984
6985 ++vcpu->stat.exits;
6986
6987 guest_exit_irqoff();
6988
6989 local_irq_enable();
6990 preempt_enable();
6991
6992 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6993
6994 /*
6995 * Profile KVM exit RIPs:
6996 */
6997 if (unlikely(prof_on == KVM_PROFILING)) {
6998 unsigned long rip = kvm_rip_read(vcpu);
6999 profile_hit(KVM_PROFILING, (void *)rip);
7000 }
7001
7002 if (unlikely(vcpu->arch.tsc_always_catchup))
7003 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7004
7005 if (vcpu->arch.apic_attention)
7006 kvm_lapic_sync_from_vapic(vcpu);
7007
7008 r = kvm_x86_ops->handle_exit(vcpu);
7009 return r;
7010
7011 cancel_injection:
7012 kvm_x86_ops->cancel_injection(vcpu);
7013 if (unlikely(vcpu->arch.apic_attention))
7014 kvm_lapic_sync_from_vapic(vcpu);
7015 out:
7016 return r;
7017 }
7018
7019 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7020 {
7021 if (!kvm_arch_vcpu_runnable(vcpu) &&
7022 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7023 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7024 kvm_vcpu_block(vcpu);
7025 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7026
7027 if (kvm_x86_ops->post_block)
7028 kvm_x86_ops->post_block(vcpu);
7029
7030 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7031 return 1;
7032 }
7033
7034 kvm_apic_accept_events(vcpu);
7035 switch(vcpu->arch.mp_state) {
7036 case KVM_MP_STATE_HALTED:
7037 vcpu->arch.pv.pv_unhalted = false;
7038 vcpu->arch.mp_state =
7039 KVM_MP_STATE_RUNNABLE;
7040 case KVM_MP_STATE_RUNNABLE:
7041 vcpu->arch.apf.halted = false;
7042 break;
7043 case KVM_MP_STATE_INIT_RECEIVED:
7044 break;
7045 default:
7046 return -EINTR;
7047 break;
7048 }
7049 return 1;
7050 }
7051
7052 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7053 {
7054 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7055 kvm_x86_ops->check_nested_events(vcpu, false);
7056
7057 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7058 !vcpu->arch.apf.halted);
7059 }
7060
7061 static int vcpu_run(struct kvm_vcpu *vcpu)
7062 {
7063 int r;
7064 struct kvm *kvm = vcpu->kvm;
7065
7066 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7067
7068 for (;;) {
7069 if (kvm_vcpu_running(vcpu)) {
7070 r = vcpu_enter_guest(vcpu);
7071 } else {
7072 r = vcpu_block(kvm, vcpu);
7073 }
7074
7075 if (r <= 0)
7076 break;
7077
7078 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7079 if (kvm_cpu_has_pending_timer(vcpu))
7080 kvm_inject_pending_timer_irqs(vcpu);
7081
7082 if (dm_request_for_irq_injection(vcpu) &&
7083 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7084 r = 0;
7085 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7086 ++vcpu->stat.request_irq_exits;
7087 break;
7088 }
7089
7090 kvm_check_async_pf_completion(vcpu);
7091
7092 if (signal_pending(current)) {
7093 r = -EINTR;
7094 vcpu->run->exit_reason = KVM_EXIT_INTR;
7095 ++vcpu->stat.signal_exits;
7096 break;
7097 }
7098 if (need_resched()) {
7099 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7100 cond_resched();
7101 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7102 }
7103 }
7104
7105 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7106
7107 return r;
7108 }
7109
7110 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7111 {
7112 int r;
7113 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7114 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7115 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7116 if (r != EMULATE_DONE)
7117 return 0;
7118 return 1;
7119 }
7120
7121 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7122 {
7123 BUG_ON(!vcpu->arch.pio.count);
7124
7125 return complete_emulated_io(vcpu);
7126 }
7127
7128 /*
7129 * Implements the following, as a state machine:
7130 *
7131 * read:
7132 * for each fragment
7133 * for each mmio piece in the fragment
7134 * write gpa, len
7135 * exit
7136 * copy data
7137 * execute insn
7138 *
7139 * write:
7140 * for each fragment
7141 * for each mmio piece in the fragment
7142 * write gpa, len
7143 * copy data
7144 * exit
7145 */
7146 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7147 {
7148 struct kvm_run *run = vcpu->run;
7149 struct kvm_mmio_fragment *frag;
7150 unsigned len;
7151
7152 BUG_ON(!vcpu->mmio_needed);
7153
7154 /* Complete previous fragment */
7155 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7156 len = min(8u, frag->len);
7157 if (!vcpu->mmio_is_write)
7158 memcpy(frag->data, run->mmio.data, len);
7159
7160 if (frag->len <= 8) {
7161 /* Switch to the next fragment. */
7162 frag++;
7163 vcpu->mmio_cur_fragment++;
7164 } else {
7165 /* Go forward to the next mmio piece. */
7166 frag->data += len;
7167 frag->gpa += len;
7168 frag->len -= len;
7169 }
7170
7171 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7172 vcpu->mmio_needed = 0;
7173
7174 /* FIXME: return into emulator if single-stepping. */
7175 if (vcpu->mmio_is_write)
7176 return 1;
7177 vcpu->mmio_read_completed = 1;
7178 return complete_emulated_io(vcpu);
7179 }
7180
7181 run->exit_reason = KVM_EXIT_MMIO;
7182 run->mmio.phys_addr = frag->gpa;
7183 if (vcpu->mmio_is_write)
7184 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7185 run->mmio.len = min(8u, frag->len);
7186 run->mmio.is_write = vcpu->mmio_is_write;
7187 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7188 return 0;
7189 }
7190
7191
7192 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7193 {
7194 struct fpu *fpu = &current->thread.fpu;
7195 int r;
7196 sigset_t sigsaved;
7197
7198 fpu__activate_curr(fpu);
7199
7200 if (vcpu->sigset_active)
7201 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7202
7203 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7204 kvm_vcpu_block(vcpu);
7205 kvm_apic_accept_events(vcpu);
7206 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7207 r = -EAGAIN;
7208 goto out;
7209 }
7210
7211 /* re-sync apic's tpr */
7212 if (!lapic_in_kernel(vcpu)) {
7213 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7214 r = -EINVAL;
7215 goto out;
7216 }
7217 }
7218
7219 if (unlikely(vcpu->arch.complete_userspace_io)) {
7220 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7221 vcpu->arch.complete_userspace_io = NULL;
7222 r = cui(vcpu);
7223 if (r <= 0)
7224 goto out;
7225 } else
7226 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7227
7228 if (kvm_run->immediate_exit)
7229 r = -EINTR;
7230 else
7231 r = vcpu_run(vcpu);
7232
7233 out:
7234 post_kvm_run_save(vcpu);
7235 if (vcpu->sigset_active)
7236 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7237
7238 return r;
7239 }
7240
7241 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7242 {
7243 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7244 /*
7245 * We are here if userspace calls get_regs() in the middle of
7246 * instruction emulation. Registers state needs to be copied
7247 * back from emulation context to vcpu. Userspace shouldn't do
7248 * that usually, but some bad designed PV devices (vmware
7249 * backdoor interface) need this to work
7250 */
7251 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7252 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7253 }
7254 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7255 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7256 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7257 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7258 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7259 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7260 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7261 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7262 #ifdef CONFIG_X86_64
7263 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7264 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7265 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7266 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7267 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7268 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7269 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7270 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7271 #endif
7272
7273 regs->rip = kvm_rip_read(vcpu);
7274 regs->rflags = kvm_get_rflags(vcpu);
7275
7276 return 0;
7277 }
7278
7279 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7280 {
7281 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7282 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7283
7284 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7285 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7286 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7287 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7288 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7289 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7290 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7291 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7292 #ifdef CONFIG_X86_64
7293 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7294 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7295 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7296 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7297 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7298 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7299 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7300 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7301 #endif
7302
7303 kvm_rip_write(vcpu, regs->rip);
7304 kvm_set_rflags(vcpu, regs->rflags);
7305
7306 vcpu->arch.exception.pending = false;
7307
7308 kvm_make_request(KVM_REQ_EVENT, vcpu);
7309
7310 return 0;
7311 }
7312
7313 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7314 {
7315 struct kvm_segment cs;
7316
7317 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7318 *db = cs.db;
7319 *l = cs.l;
7320 }
7321 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7322
7323 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7324 struct kvm_sregs *sregs)
7325 {
7326 struct desc_ptr dt;
7327
7328 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7329 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7330 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7331 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7332 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7333 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7334
7335 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7336 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7337
7338 kvm_x86_ops->get_idt(vcpu, &dt);
7339 sregs->idt.limit = dt.size;
7340 sregs->idt.base = dt.address;
7341 kvm_x86_ops->get_gdt(vcpu, &dt);
7342 sregs->gdt.limit = dt.size;
7343 sregs->gdt.base = dt.address;
7344
7345 sregs->cr0 = kvm_read_cr0(vcpu);
7346 sregs->cr2 = vcpu->arch.cr2;
7347 sregs->cr3 = kvm_read_cr3(vcpu);
7348 sregs->cr4 = kvm_read_cr4(vcpu);
7349 sregs->cr8 = kvm_get_cr8(vcpu);
7350 sregs->efer = vcpu->arch.efer;
7351 sregs->apic_base = kvm_get_apic_base(vcpu);
7352
7353 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7354
7355 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7356 set_bit(vcpu->arch.interrupt.nr,
7357 (unsigned long *)sregs->interrupt_bitmap);
7358
7359 return 0;
7360 }
7361
7362 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7363 struct kvm_mp_state *mp_state)
7364 {
7365 kvm_apic_accept_events(vcpu);
7366 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7367 vcpu->arch.pv.pv_unhalted)
7368 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7369 else
7370 mp_state->mp_state = vcpu->arch.mp_state;
7371
7372 return 0;
7373 }
7374
7375 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7376 struct kvm_mp_state *mp_state)
7377 {
7378 if (!lapic_in_kernel(vcpu) &&
7379 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7380 return -EINVAL;
7381
7382 /* INITs are latched while in SMM */
7383 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7384 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7385 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7386 return -EINVAL;
7387
7388 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7389 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7390 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7391 } else
7392 vcpu->arch.mp_state = mp_state->mp_state;
7393 kvm_make_request(KVM_REQ_EVENT, vcpu);
7394 return 0;
7395 }
7396
7397 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7398 int reason, bool has_error_code, u32 error_code)
7399 {
7400 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7401 int ret;
7402
7403 init_emulate_ctxt(vcpu);
7404
7405 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7406 has_error_code, error_code);
7407
7408 if (ret)
7409 return EMULATE_FAIL;
7410
7411 kvm_rip_write(vcpu, ctxt->eip);
7412 kvm_set_rflags(vcpu, ctxt->eflags);
7413 kvm_make_request(KVM_REQ_EVENT, vcpu);
7414 return EMULATE_DONE;
7415 }
7416 EXPORT_SYMBOL_GPL(kvm_task_switch);
7417
7418 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7419 struct kvm_sregs *sregs)
7420 {
7421 struct msr_data apic_base_msr;
7422 int mmu_reset_needed = 0;
7423 int pending_vec, max_bits, idx;
7424 struct desc_ptr dt;
7425
7426 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7427 return -EINVAL;
7428
7429 dt.size = sregs->idt.limit;
7430 dt.address = sregs->idt.base;
7431 kvm_x86_ops->set_idt(vcpu, &dt);
7432 dt.size = sregs->gdt.limit;
7433 dt.address = sregs->gdt.base;
7434 kvm_x86_ops->set_gdt(vcpu, &dt);
7435
7436 vcpu->arch.cr2 = sregs->cr2;
7437 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7438 vcpu->arch.cr3 = sregs->cr3;
7439 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7440
7441 kvm_set_cr8(vcpu, sregs->cr8);
7442
7443 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7444 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7445 apic_base_msr.data = sregs->apic_base;
7446 apic_base_msr.host_initiated = true;
7447 kvm_set_apic_base(vcpu, &apic_base_msr);
7448
7449 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7450 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7451 vcpu->arch.cr0 = sregs->cr0;
7452
7453 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7454 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7455 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7456 kvm_update_cpuid(vcpu);
7457
7458 idx = srcu_read_lock(&vcpu->kvm->srcu);
7459 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7460 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7461 mmu_reset_needed = 1;
7462 }
7463 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7464
7465 if (mmu_reset_needed)
7466 kvm_mmu_reset_context(vcpu);
7467
7468 max_bits = KVM_NR_INTERRUPTS;
7469 pending_vec = find_first_bit(
7470 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7471 if (pending_vec < max_bits) {
7472 kvm_queue_interrupt(vcpu, pending_vec, false);
7473 pr_debug("Set back pending irq %d\n", pending_vec);
7474 }
7475
7476 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7477 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7478 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7479 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7480 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7481 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7482
7483 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7484 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7485
7486 update_cr8_intercept(vcpu);
7487
7488 /* Older userspace won't unhalt the vcpu on reset. */
7489 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7490 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7491 !is_protmode(vcpu))
7492 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7493
7494 kvm_make_request(KVM_REQ_EVENT, vcpu);
7495
7496 return 0;
7497 }
7498
7499 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7500 struct kvm_guest_debug *dbg)
7501 {
7502 unsigned long rflags;
7503 int i, r;
7504
7505 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7506 r = -EBUSY;
7507 if (vcpu->arch.exception.pending)
7508 goto out;
7509 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7510 kvm_queue_exception(vcpu, DB_VECTOR);
7511 else
7512 kvm_queue_exception(vcpu, BP_VECTOR);
7513 }
7514
7515 /*
7516 * Read rflags as long as potentially injected trace flags are still
7517 * filtered out.
7518 */
7519 rflags = kvm_get_rflags(vcpu);
7520
7521 vcpu->guest_debug = dbg->control;
7522 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7523 vcpu->guest_debug = 0;
7524
7525 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7526 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7527 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7528 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7529 } else {
7530 for (i = 0; i < KVM_NR_DB_REGS; i++)
7531 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7532 }
7533 kvm_update_dr7(vcpu);
7534
7535 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7536 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7537 get_segment_base(vcpu, VCPU_SREG_CS);
7538
7539 /*
7540 * Trigger an rflags update that will inject or remove the trace
7541 * flags.
7542 */
7543 kvm_set_rflags(vcpu, rflags);
7544
7545 kvm_x86_ops->update_bp_intercept(vcpu);
7546
7547 r = 0;
7548
7549 out:
7550
7551 return r;
7552 }
7553
7554 /*
7555 * Translate a guest virtual address to a guest physical address.
7556 */
7557 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7558 struct kvm_translation *tr)
7559 {
7560 unsigned long vaddr = tr->linear_address;
7561 gpa_t gpa;
7562 int idx;
7563
7564 idx = srcu_read_lock(&vcpu->kvm->srcu);
7565 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7566 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7567 tr->physical_address = gpa;
7568 tr->valid = gpa != UNMAPPED_GVA;
7569 tr->writeable = 1;
7570 tr->usermode = 0;
7571
7572 return 0;
7573 }
7574
7575 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7576 {
7577 struct fxregs_state *fxsave =
7578 &vcpu->arch.guest_fpu.state.fxsave;
7579
7580 memcpy(fpu->fpr, fxsave->st_space, 128);
7581 fpu->fcw = fxsave->cwd;
7582 fpu->fsw = fxsave->swd;
7583 fpu->ftwx = fxsave->twd;
7584 fpu->last_opcode = fxsave->fop;
7585 fpu->last_ip = fxsave->rip;
7586 fpu->last_dp = fxsave->rdp;
7587 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7588
7589 return 0;
7590 }
7591
7592 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7593 {
7594 struct fxregs_state *fxsave =
7595 &vcpu->arch.guest_fpu.state.fxsave;
7596
7597 memcpy(fxsave->st_space, fpu->fpr, 128);
7598 fxsave->cwd = fpu->fcw;
7599 fxsave->swd = fpu->fsw;
7600 fxsave->twd = fpu->ftwx;
7601 fxsave->fop = fpu->last_opcode;
7602 fxsave->rip = fpu->last_ip;
7603 fxsave->rdp = fpu->last_dp;
7604 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7605
7606 return 0;
7607 }
7608
7609 static void fx_init(struct kvm_vcpu *vcpu)
7610 {
7611 fpstate_init(&vcpu->arch.guest_fpu.state);
7612 if (boot_cpu_has(X86_FEATURE_XSAVES))
7613 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7614 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7615
7616 /*
7617 * Ensure guest xcr0 is valid for loading
7618 */
7619 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7620
7621 vcpu->arch.cr0 |= X86_CR0_ET;
7622 }
7623
7624 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7625 {
7626 if (vcpu->guest_fpu_loaded)
7627 return;
7628
7629 /*
7630 * Restore all possible states in the guest,
7631 * and assume host would use all available bits.
7632 * Guest xcr0 would be loaded later.
7633 */
7634 vcpu->guest_fpu_loaded = 1;
7635 __kernel_fpu_begin();
7636 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7637 trace_kvm_fpu(1);
7638 }
7639
7640 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7641 {
7642 if (!vcpu->guest_fpu_loaded)
7643 return;
7644
7645 vcpu->guest_fpu_loaded = 0;
7646 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7647 __kernel_fpu_end();
7648 ++vcpu->stat.fpu_reload;
7649 trace_kvm_fpu(0);
7650 }
7651
7652 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7653 {
7654 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7655
7656 kvmclock_reset(vcpu);
7657
7658 kvm_x86_ops->vcpu_free(vcpu);
7659 free_cpumask_var(wbinvd_dirty_mask);
7660 }
7661
7662 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7663 unsigned int id)
7664 {
7665 struct kvm_vcpu *vcpu;
7666
7667 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7668 printk_once(KERN_WARNING
7669 "kvm: SMP vm created on host with unstable TSC; "
7670 "guest TSC will not be reliable\n");
7671
7672 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7673
7674 return vcpu;
7675 }
7676
7677 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7678 {
7679 int r;
7680
7681 kvm_vcpu_mtrr_init(vcpu);
7682 r = vcpu_load(vcpu);
7683 if (r)
7684 return r;
7685 kvm_vcpu_reset(vcpu, false);
7686 kvm_mmu_setup(vcpu);
7687 vcpu_put(vcpu);
7688 return r;
7689 }
7690
7691 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7692 {
7693 struct msr_data msr;
7694 struct kvm *kvm = vcpu->kvm;
7695
7696 kvm_hv_vcpu_postcreate(vcpu);
7697
7698 if (vcpu_load(vcpu))
7699 return;
7700 msr.data = 0x0;
7701 msr.index = MSR_IA32_TSC;
7702 msr.host_initiated = true;
7703 kvm_write_tsc(vcpu, &msr);
7704 vcpu_put(vcpu);
7705
7706 if (!kvmclock_periodic_sync)
7707 return;
7708
7709 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7710 KVMCLOCK_SYNC_PERIOD);
7711 }
7712
7713 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7714 {
7715 int r;
7716 vcpu->arch.apf.msr_val = 0;
7717
7718 r = vcpu_load(vcpu);
7719 BUG_ON(r);
7720 kvm_mmu_unload(vcpu);
7721 vcpu_put(vcpu);
7722
7723 kvm_x86_ops->vcpu_free(vcpu);
7724 }
7725
7726 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7727 {
7728 vcpu->arch.hflags = 0;
7729
7730 vcpu->arch.smi_pending = 0;
7731 atomic_set(&vcpu->arch.nmi_queued, 0);
7732 vcpu->arch.nmi_pending = 0;
7733 vcpu->arch.nmi_injected = false;
7734 kvm_clear_interrupt_queue(vcpu);
7735 kvm_clear_exception_queue(vcpu);
7736
7737 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7738 kvm_update_dr0123(vcpu);
7739 vcpu->arch.dr6 = DR6_INIT;
7740 kvm_update_dr6(vcpu);
7741 vcpu->arch.dr7 = DR7_FIXED_1;
7742 kvm_update_dr7(vcpu);
7743
7744 vcpu->arch.cr2 = 0;
7745
7746 kvm_make_request(KVM_REQ_EVENT, vcpu);
7747 vcpu->arch.apf.msr_val = 0;
7748 vcpu->arch.st.msr_val = 0;
7749
7750 kvmclock_reset(vcpu);
7751
7752 kvm_clear_async_pf_completion_queue(vcpu);
7753 kvm_async_pf_hash_reset(vcpu);
7754 vcpu->arch.apf.halted = false;
7755
7756 if (!init_event) {
7757 kvm_pmu_reset(vcpu);
7758 vcpu->arch.smbase = 0x30000;
7759
7760 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7761 vcpu->arch.msr_misc_features_enables = 0;
7762 }
7763
7764 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7765 vcpu->arch.regs_avail = ~0;
7766 vcpu->arch.regs_dirty = ~0;
7767
7768 kvm_x86_ops->vcpu_reset(vcpu, init_event);
7769 }
7770
7771 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7772 {
7773 struct kvm_segment cs;
7774
7775 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7776 cs.selector = vector << 8;
7777 cs.base = vector << 12;
7778 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7779 kvm_rip_write(vcpu, 0);
7780 }
7781
7782 int kvm_arch_hardware_enable(void)
7783 {
7784 struct kvm *kvm;
7785 struct kvm_vcpu *vcpu;
7786 int i;
7787 int ret;
7788 u64 local_tsc;
7789 u64 max_tsc = 0;
7790 bool stable, backwards_tsc = false;
7791
7792 kvm_shared_msr_cpu_online();
7793 ret = kvm_x86_ops->hardware_enable();
7794 if (ret != 0)
7795 return ret;
7796
7797 local_tsc = rdtsc();
7798 stable = !check_tsc_unstable();
7799 list_for_each_entry(kvm, &vm_list, vm_list) {
7800 kvm_for_each_vcpu(i, vcpu, kvm) {
7801 if (!stable && vcpu->cpu == smp_processor_id())
7802 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7803 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7804 backwards_tsc = true;
7805 if (vcpu->arch.last_host_tsc > max_tsc)
7806 max_tsc = vcpu->arch.last_host_tsc;
7807 }
7808 }
7809 }
7810
7811 /*
7812 * Sometimes, even reliable TSCs go backwards. This happens on
7813 * platforms that reset TSC during suspend or hibernate actions, but
7814 * maintain synchronization. We must compensate. Fortunately, we can
7815 * detect that condition here, which happens early in CPU bringup,
7816 * before any KVM threads can be running. Unfortunately, we can't
7817 * bring the TSCs fully up to date with real time, as we aren't yet far
7818 * enough into CPU bringup that we know how much real time has actually
7819 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7820 * variables that haven't been updated yet.
7821 *
7822 * So we simply find the maximum observed TSC above, then record the
7823 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7824 * the adjustment will be applied. Note that we accumulate
7825 * adjustments, in case multiple suspend cycles happen before some VCPU
7826 * gets a chance to run again. In the event that no KVM threads get a
7827 * chance to run, we will miss the entire elapsed period, as we'll have
7828 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7829 * loose cycle time. This isn't too big a deal, since the loss will be
7830 * uniform across all VCPUs (not to mention the scenario is extremely
7831 * unlikely). It is possible that a second hibernate recovery happens
7832 * much faster than a first, causing the observed TSC here to be
7833 * smaller; this would require additional padding adjustment, which is
7834 * why we set last_host_tsc to the local tsc observed here.
7835 *
7836 * N.B. - this code below runs only on platforms with reliable TSC,
7837 * as that is the only way backwards_tsc is set above. Also note
7838 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7839 * have the same delta_cyc adjustment applied if backwards_tsc
7840 * is detected. Note further, this adjustment is only done once,
7841 * as we reset last_host_tsc on all VCPUs to stop this from being
7842 * called multiple times (one for each physical CPU bringup).
7843 *
7844 * Platforms with unreliable TSCs don't have to deal with this, they
7845 * will be compensated by the logic in vcpu_load, which sets the TSC to
7846 * catchup mode. This will catchup all VCPUs to real time, but cannot
7847 * guarantee that they stay in perfect synchronization.
7848 */
7849 if (backwards_tsc) {
7850 u64 delta_cyc = max_tsc - local_tsc;
7851 list_for_each_entry(kvm, &vm_list, vm_list) {
7852 kvm->arch.backwards_tsc_observed = true;
7853 kvm_for_each_vcpu(i, vcpu, kvm) {
7854 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7855 vcpu->arch.last_host_tsc = local_tsc;
7856 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7857 }
7858
7859 /*
7860 * We have to disable TSC offset matching.. if you were
7861 * booting a VM while issuing an S4 host suspend....
7862 * you may have some problem. Solving this issue is
7863 * left as an exercise to the reader.
7864 */
7865 kvm->arch.last_tsc_nsec = 0;
7866 kvm->arch.last_tsc_write = 0;
7867 }
7868
7869 }
7870 return 0;
7871 }
7872
7873 void kvm_arch_hardware_disable(void)
7874 {
7875 kvm_x86_ops->hardware_disable();
7876 drop_user_return_notifiers();
7877 }
7878
7879 int kvm_arch_hardware_setup(void)
7880 {
7881 int r;
7882
7883 r = kvm_x86_ops->hardware_setup();
7884 if (r != 0)
7885 return r;
7886
7887 if (kvm_has_tsc_control) {
7888 /*
7889 * Make sure the user can only configure tsc_khz values that
7890 * fit into a signed integer.
7891 * A min value is not calculated needed because it will always
7892 * be 1 on all machines.
7893 */
7894 u64 max = min(0x7fffffffULL,
7895 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7896 kvm_max_guest_tsc_khz = max;
7897
7898 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7899 }
7900
7901 kvm_init_msr_list();
7902 return 0;
7903 }
7904
7905 void kvm_arch_hardware_unsetup(void)
7906 {
7907 kvm_x86_ops->hardware_unsetup();
7908 }
7909
7910 void kvm_arch_check_processor_compat(void *rtn)
7911 {
7912 kvm_x86_ops->check_processor_compatibility(rtn);
7913 }
7914
7915 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7916 {
7917 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7918 }
7919 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7920
7921 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7922 {
7923 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7924 }
7925
7926 struct static_key kvm_no_apic_vcpu __read_mostly;
7927 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7928
7929 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7930 {
7931 struct page *page;
7932 struct kvm *kvm;
7933 int r;
7934
7935 BUG_ON(vcpu->kvm == NULL);
7936 kvm = vcpu->kvm;
7937
7938 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7939 vcpu->arch.pv.pv_unhalted = false;
7940 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7941 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7942 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7943 else
7944 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7945
7946 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7947 if (!page) {
7948 r = -ENOMEM;
7949 goto fail;
7950 }
7951 vcpu->arch.pio_data = page_address(page);
7952
7953 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7954
7955 r = kvm_mmu_create(vcpu);
7956 if (r < 0)
7957 goto fail_free_pio_data;
7958
7959 if (irqchip_in_kernel(kvm)) {
7960 r = kvm_create_lapic(vcpu);
7961 if (r < 0)
7962 goto fail_mmu_destroy;
7963 } else
7964 static_key_slow_inc(&kvm_no_apic_vcpu);
7965
7966 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7967 GFP_KERNEL);
7968 if (!vcpu->arch.mce_banks) {
7969 r = -ENOMEM;
7970 goto fail_free_lapic;
7971 }
7972 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7973
7974 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7975 r = -ENOMEM;
7976 goto fail_free_mce_banks;
7977 }
7978
7979 fx_init(vcpu);
7980
7981 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7982 vcpu->arch.pv_time_enabled = false;
7983
7984 vcpu->arch.guest_supported_xcr0 = 0;
7985 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7986
7987 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7988
7989 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7990
7991 kvm_async_pf_hash_reset(vcpu);
7992 kvm_pmu_init(vcpu);
7993
7994 vcpu->arch.pending_external_vector = -1;
7995
7996 kvm_hv_vcpu_init(vcpu);
7997
7998 return 0;
7999
8000 fail_free_mce_banks:
8001 kfree(vcpu->arch.mce_banks);
8002 fail_free_lapic:
8003 kvm_free_lapic(vcpu);
8004 fail_mmu_destroy:
8005 kvm_mmu_destroy(vcpu);
8006 fail_free_pio_data:
8007 free_page((unsigned long)vcpu->arch.pio_data);
8008 fail:
8009 return r;
8010 }
8011
8012 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8013 {
8014 int idx;
8015
8016 kvm_hv_vcpu_uninit(vcpu);
8017 kvm_pmu_destroy(vcpu);
8018 kfree(vcpu->arch.mce_banks);
8019 kvm_free_lapic(vcpu);
8020 idx = srcu_read_lock(&vcpu->kvm->srcu);
8021 kvm_mmu_destroy(vcpu);
8022 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8023 free_page((unsigned long)vcpu->arch.pio_data);
8024 if (!lapic_in_kernel(vcpu))
8025 static_key_slow_dec(&kvm_no_apic_vcpu);
8026 }
8027
8028 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8029 {
8030 kvm_x86_ops->sched_in(vcpu, cpu);
8031 }
8032
8033 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8034 {
8035 if (type)
8036 return -EINVAL;
8037
8038 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8039 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8040 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8041 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8042 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8043
8044 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8045 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8046 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8047 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8048 &kvm->arch.irq_sources_bitmap);
8049
8050 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8051 mutex_init(&kvm->arch.apic_map_lock);
8052 mutex_init(&kvm->arch.hyperv.hv_lock);
8053 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8054
8055 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8056 pvclock_update_vm_gtod_copy(kvm);
8057
8058 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8059 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8060
8061 kvm_page_track_init(kvm);
8062 kvm_mmu_init_vm(kvm);
8063
8064 if (kvm_x86_ops->vm_init)
8065 return kvm_x86_ops->vm_init(kvm);
8066
8067 return 0;
8068 }
8069
8070 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8071 {
8072 int r;
8073 r = vcpu_load(vcpu);
8074 BUG_ON(r);
8075 kvm_mmu_unload(vcpu);
8076 vcpu_put(vcpu);
8077 }
8078
8079 static void kvm_free_vcpus(struct kvm *kvm)
8080 {
8081 unsigned int i;
8082 struct kvm_vcpu *vcpu;
8083
8084 /*
8085 * Unpin any mmu pages first.
8086 */
8087 kvm_for_each_vcpu(i, vcpu, kvm) {
8088 kvm_clear_async_pf_completion_queue(vcpu);
8089 kvm_unload_vcpu_mmu(vcpu);
8090 }
8091 kvm_for_each_vcpu(i, vcpu, kvm)
8092 kvm_arch_vcpu_free(vcpu);
8093
8094 mutex_lock(&kvm->lock);
8095 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8096 kvm->vcpus[i] = NULL;
8097
8098 atomic_set(&kvm->online_vcpus, 0);
8099 mutex_unlock(&kvm->lock);
8100 }
8101
8102 void kvm_arch_sync_events(struct kvm *kvm)
8103 {
8104 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8105 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8106 kvm_free_pit(kvm);
8107 }
8108
8109 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8110 {
8111 int i, r;
8112 unsigned long hva;
8113 struct kvm_memslots *slots = kvm_memslots(kvm);
8114 struct kvm_memory_slot *slot, old;
8115
8116 /* Called with kvm->slots_lock held. */
8117 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8118 return -EINVAL;
8119
8120 slot = id_to_memslot(slots, id);
8121 if (size) {
8122 if (slot->npages)
8123 return -EEXIST;
8124
8125 /*
8126 * MAP_SHARED to prevent internal slot pages from being moved
8127 * by fork()/COW.
8128 */
8129 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8130 MAP_SHARED | MAP_ANONYMOUS, 0);
8131 if (IS_ERR((void *)hva))
8132 return PTR_ERR((void *)hva);
8133 } else {
8134 if (!slot->npages)
8135 return 0;
8136
8137 hva = 0;
8138 }
8139
8140 old = *slot;
8141 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8142 struct kvm_userspace_memory_region m;
8143
8144 m.slot = id | (i << 16);
8145 m.flags = 0;
8146 m.guest_phys_addr = gpa;
8147 m.userspace_addr = hva;
8148 m.memory_size = size;
8149 r = __kvm_set_memory_region(kvm, &m);
8150 if (r < 0)
8151 return r;
8152 }
8153
8154 if (!size) {
8155 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8156 WARN_ON(r < 0);
8157 }
8158
8159 return 0;
8160 }
8161 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8162
8163 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8164 {
8165 int r;
8166
8167 mutex_lock(&kvm->slots_lock);
8168 r = __x86_set_memory_region(kvm, id, gpa, size);
8169 mutex_unlock(&kvm->slots_lock);
8170
8171 return r;
8172 }
8173 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8174
8175 void kvm_arch_destroy_vm(struct kvm *kvm)
8176 {
8177 if (current->mm == kvm->mm) {
8178 /*
8179 * Free memory regions allocated on behalf of userspace,
8180 * unless the the memory map has changed due to process exit
8181 * or fd copying.
8182 */
8183 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8184 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8185 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8186 }
8187 if (kvm_x86_ops->vm_destroy)
8188 kvm_x86_ops->vm_destroy(kvm);
8189 kvm_pic_destroy(kvm);
8190 kvm_ioapic_destroy(kvm);
8191 kvm_free_vcpus(kvm);
8192 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8193 kvm_mmu_uninit_vm(kvm);
8194 kvm_page_track_cleanup(kvm);
8195 }
8196
8197 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8198 struct kvm_memory_slot *dont)
8199 {
8200 int i;
8201
8202 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8203 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8204 kvfree(free->arch.rmap[i]);
8205 free->arch.rmap[i] = NULL;
8206 }
8207 if (i == 0)
8208 continue;
8209
8210 if (!dont || free->arch.lpage_info[i - 1] !=
8211 dont->arch.lpage_info[i - 1]) {
8212 kvfree(free->arch.lpage_info[i - 1]);
8213 free->arch.lpage_info[i - 1] = NULL;
8214 }
8215 }
8216
8217 kvm_page_track_free_memslot(free, dont);
8218 }
8219
8220 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8221 unsigned long npages)
8222 {
8223 int i;
8224
8225 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8226 struct kvm_lpage_info *linfo;
8227 unsigned long ugfn;
8228 int lpages;
8229 int level = i + 1;
8230
8231 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8232 slot->base_gfn, level) + 1;
8233
8234 slot->arch.rmap[i] =
8235 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8236 if (!slot->arch.rmap[i])
8237 goto out_free;
8238 if (i == 0)
8239 continue;
8240
8241 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8242 if (!linfo)
8243 goto out_free;
8244
8245 slot->arch.lpage_info[i - 1] = linfo;
8246
8247 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8248 linfo[0].disallow_lpage = 1;
8249 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8250 linfo[lpages - 1].disallow_lpage = 1;
8251 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8252 /*
8253 * If the gfn and userspace address are not aligned wrt each
8254 * other, or if explicitly asked to, disable large page
8255 * support for this slot
8256 */
8257 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8258 !kvm_largepages_enabled()) {
8259 unsigned long j;
8260
8261 for (j = 0; j < lpages; ++j)
8262 linfo[j].disallow_lpage = 1;
8263 }
8264 }
8265
8266 if (kvm_page_track_create_memslot(slot, npages))
8267 goto out_free;
8268
8269 return 0;
8270
8271 out_free:
8272 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8273 kvfree(slot->arch.rmap[i]);
8274 slot->arch.rmap[i] = NULL;
8275 if (i == 0)
8276 continue;
8277
8278 kvfree(slot->arch.lpage_info[i - 1]);
8279 slot->arch.lpage_info[i - 1] = NULL;
8280 }
8281 return -ENOMEM;
8282 }
8283
8284 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8285 {
8286 /*
8287 * memslots->generation has been incremented.
8288 * mmio generation may have reached its maximum value.
8289 */
8290 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8291 }
8292
8293 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8294 struct kvm_memory_slot *memslot,
8295 const struct kvm_userspace_memory_region *mem,
8296 enum kvm_mr_change change)
8297 {
8298 return 0;
8299 }
8300
8301 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8302 struct kvm_memory_slot *new)
8303 {
8304 /* Still write protect RO slot */
8305 if (new->flags & KVM_MEM_READONLY) {
8306 kvm_mmu_slot_remove_write_access(kvm, new);
8307 return;
8308 }
8309
8310 /*
8311 * Call kvm_x86_ops dirty logging hooks when they are valid.
8312 *
8313 * kvm_x86_ops->slot_disable_log_dirty is called when:
8314 *
8315 * - KVM_MR_CREATE with dirty logging is disabled
8316 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8317 *
8318 * The reason is, in case of PML, we need to set D-bit for any slots
8319 * with dirty logging disabled in order to eliminate unnecessary GPA
8320 * logging in PML buffer (and potential PML buffer full VMEXT). This
8321 * guarantees leaving PML enabled during guest's lifetime won't have
8322 * any additonal overhead from PML when guest is running with dirty
8323 * logging disabled for memory slots.
8324 *
8325 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8326 * to dirty logging mode.
8327 *
8328 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8329 *
8330 * In case of write protect:
8331 *
8332 * Write protect all pages for dirty logging.
8333 *
8334 * All the sptes including the large sptes which point to this
8335 * slot are set to readonly. We can not create any new large
8336 * spte on this slot until the end of the logging.
8337 *
8338 * See the comments in fast_page_fault().
8339 */
8340 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8341 if (kvm_x86_ops->slot_enable_log_dirty)
8342 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8343 else
8344 kvm_mmu_slot_remove_write_access(kvm, new);
8345 } else {
8346 if (kvm_x86_ops->slot_disable_log_dirty)
8347 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8348 }
8349 }
8350
8351 void kvm_arch_commit_memory_region(struct kvm *kvm,
8352 const struct kvm_userspace_memory_region *mem,
8353 const struct kvm_memory_slot *old,
8354 const struct kvm_memory_slot *new,
8355 enum kvm_mr_change change)
8356 {
8357 int nr_mmu_pages = 0;
8358
8359 if (!kvm->arch.n_requested_mmu_pages)
8360 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8361
8362 if (nr_mmu_pages)
8363 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8364
8365 /*
8366 * Dirty logging tracks sptes in 4k granularity, meaning that large
8367 * sptes have to be split. If live migration is successful, the guest
8368 * in the source machine will be destroyed and large sptes will be
8369 * created in the destination. However, if the guest continues to run
8370 * in the source machine (for example if live migration fails), small
8371 * sptes will remain around and cause bad performance.
8372 *
8373 * Scan sptes if dirty logging has been stopped, dropping those
8374 * which can be collapsed into a single large-page spte. Later
8375 * page faults will create the large-page sptes.
8376 */
8377 if ((change != KVM_MR_DELETE) &&
8378 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8379 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8380 kvm_mmu_zap_collapsible_sptes(kvm, new);
8381
8382 /*
8383 * Set up write protection and/or dirty logging for the new slot.
8384 *
8385 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8386 * been zapped so no dirty logging staff is needed for old slot. For
8387 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8388 * new and it's also covered when dealing with the new slot.
8389 *
8390 * FIXME: const-ify all uses of struct kvm_memory_slot.
8391 */
8392 if (change != KVM_MR_DELETE)
8393 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8394 }
8395
8396 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8397 {
8398 kvm_mmu_invalidate_zap_all_pages(kvm);
8399 }
8400
8401 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8402 struct kvm_memory_slot *slot)
8403 {
8404 kvm_page_track_flush_slot(kvm, slot);
8405 }
8406
8407 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8408 {
8409 if (!list_empty_careful(&vcpu->async_pf.done))
8410 return true;
8411
8412 if (kvm_apic_has_events(vcpu))
8413 return true;
8414
8415 if (vcpu->arch.pv.pv_unhalted)
8416 return true;
8417
8418 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8419 (vcpu->arch.nmi_pending &&
8420 kvm_x86_ops->nmi_allowed(vcpu)))
8421 return true;
8422
8423 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8424 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8425 return true;
8426
8427 if (kvm_arch_interrupt_allowed(vcpu) &&
8428 kvm_cpu_has_interrupt(vcpu))
8429 return true;
8430
8431 if (kvm_hv_has_stimer_pending(vcpu))
8432 return true;
8433
8434 return false;
8435 }
8436
8437 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8438 {
8439 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8440 }
8441
8442 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8443 {
8444 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8445 }
8446
8447 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8448 {
8449 return kvm_x86_ops->interrupt_allowed(vcpu);
8450 }
8451
8452 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8453 {
8454 if (is_64_bit_mode(vcpu))
8455 return kvm_rip_read(vcpu);
8456 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8457 kvm_rip_read(vcpu));
8458 }
8459 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8460
8461 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8462 {
8463 return kvm_get_linear_rip(vcpu) == linear_rip;
8464 }
8465 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8466
8467 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8468 {
8469 unsigned long rflags;
8470
8471 rflags = kvm_x86_ops->get_rflags(vcpu);
8472 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8473 rflags &= ~X86_EFLAGS_TF;
8474 return rflags;
8475 }
8476 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8477
8478 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8479 {
8480 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8481 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8482 rflags |= X86_EFLAGS_TF;
8483 kvm_x86_ops->set_rflags(vcpu, rflags);
8484 }
8485
8486 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8487 {
8488 __kvm_set_rflags(vcpu, rflags);
8489 kvm_make_request(KVM_REQ_EVENT, vcpu);
8490 }
8491 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8492
8493 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8494 {
8495 int r;
8496
8497 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8498 work->wakeup_all)
8499 return;
8500
8501 r = kvm_mmu_reload(vcpu);
8502 if (unlikely(r))
8503 return;
8504
8505 if (!vcpu->arch.mmu.direct_map &&
8506 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8507 return;
8508
8509 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8510 }
8511
8512 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8513 {
8514 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8515 }
8516
8517 static inline u32 kvm_async_pf_next_probe(u32 key)
8518 {
8519 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8520 }
8521
8522 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8523 {
8524 u32 key = kvm_async_pf_hash_fn(gfn);
8525
8526 while (vcpu->arch.apf.gfns[key] != ~0)
8527 key = kvm_async_pf_next_probe(key);
8528
8529 vcpu->arch.apf.gfns[key] = gfn;
8530 }
8531
8532 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8533 {
8534 int i;
8535 u32 key = kvm_async_pf_hash_fn(gfn);
8536
8537 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8538 (vcpu->arch.apf.gfns[key] != gfn &&
8539 vcpu->arch.apf.gfns[key] != ~0); i++)
8540 key = kvm_async_pf_next_probe(key);
8541
8542 return key;
8543 }
8544
8545 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8546 {
8547 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8548 }
8549
8550 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8551 {
8552 u32 i, j, k;
8553
8554 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8555 while (true) {
8556 vcpu->arch.apf.gfns[i] = ~0;
8557 do {
8558 j = kvm_async_pf_next_probe(j);
8559 if (vcpu->arch.apf.gfns[j] == ~0)
8560 return;
8561 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8562 /*
8563 * k lies cyclically in ]i,j]
8564 * | i.k.j |
8565 * |....j i.k.| or |.k..j i...|
8566 */
8567 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8568 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8569 i = j;
8570 }
8571 }
8572
8573 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8574 {
8575
8576 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8577 sizeof(val));
8578 }
8579
8580 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8581 struct kvm_async_pf *work)
8582 {
8583 struct x86_exception fault;
8584
8585 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8586 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8587
8588 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8589 (vcpu->arch.apf.send_user_only &&
8590 kvm_x86_ops->get_cpl(vcpu) == 0))
8591 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8592 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8593 fault.vector = PF_VECTOR;
8594 fault.error_code_valid = true;
8595 fault.error_code = 0;
8596 fault.nested_page_fault = false;
8597 fault.address = work->arch.token;
8598 fault.async_page_fault = true;
8599 kvm_inject_page_fault(vcpu, &fault);
8600 }
8601 }
8602
8603 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8604 struct kvm_async_pf *work)
8605 {
8606 struct x86_exception fault;
8607
8608 if (work->wakeup_all)
8609 work->arch.token = ~0; /* broadcast wakeup */
8610 else
8611 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8612 trace_kvm_async_pf_ready(work->arch.token, work->gva);
8613
8614 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8615 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8616 fault.vector = PF_VECTOR;
8617 fault.error_code_valid = true;
8618 fault.error_code = 0;
8619 fault.nested_page_fault = false;
8620 fault.address = work->arch.token;
8621 fault.async_page_fault = true;
8622 kvm_inject_page_fault(vcpu, &fault);
8623 }
8624 vcpu->arch.apf.halted = false;
8625 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8626 }
8627
8628 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8629 {
8630 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8631 return true;
8632 else
8633 return kvm_can_do_async_pf(vcpu);
8634 }
8635
8636 void kvm_arch_start_assignment(struct kvm *kvm)
8637 {
8638 atomic_inc(&kvm->arch.assigned_device_count);
8639 }
8640 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8641
8642 void kvm_arch_end_assignment(struct kvm *kvm)
8643 {
8644 atomic_dec(&kvm->arch.assigned_device_count);
8645 }
8646 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8647
8648 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8649 {
8650 return atomic_read(&kvm->arch.assigned_device_count);
8651 }
8652 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8653
8654 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8655 {
8656 atomic_inc(&kvm->arch.noncoherent_dma_count);
8657 }
8658 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8659
8660 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8661 {
8662 atomic_dec(&kvm->arch.noncoherent_dma_count);
8663 }
8664 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8665
8666 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8667 {
8668 return atomic_read(&kvm->arch.noncoherent_dma_count);
8669 }
8670 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8671
8672 bool kvm_arch_has_irq_bypass(void)
8673 {
8674 return kvm_x86_ops->update_pi_irte != NULL;
8675 }
8676
8677 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8678 struct irq_bypass_producer *prod)
8679 {
8680 struct kvm_kernel_irqfd *irqfd =
8681 container_of(cons, struct kvm_kernel_irqfd, consumer);
8682
8683 irqfd->producer = prod;
8684
8685 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8686 prod->irq, irqfd->gsi, 1);
8687 }
8688
8689 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8690 struct irq_bypass_producer *prod)
8691 {
8692 int ret;
8693 struct kvm_kernel_irqfd *irqfd =
8694 container_of(cons, struct kvm_kernel_irqfd, consumer);
8695
8696 WARN_ON(irqfd->producer != prod);
8697 irqfd->producer = NULL;
8698
8699 /*
8700 * When producer of consumer is unregistered, we change back to
8701 * remapped mode, so we can re-use the current implementation
8702 * when the irq is masked/disabled or the consumer side (KVM
8703 * int this case doesn't want to receive the interrupts.
8704 */
8705 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8706 if (ret)
8707 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8708 " fails: %d\n", irqfd->consumer.token, ret);
8709 }
8710
8711 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8712 uint32_t guest_irq, bool set)
8713 {
8714 if (!kvm_x86_ops->update_pi_irte)
8715 return -EINVAL;
8716
8717 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8718 }
8719
8720 bool kvm_vector_hashing_enabled(void)
8721 {
8722 return vector_hashing;
8723 }
8724 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8725
8726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);