]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/bio.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 void bio_uninit(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246 }
247 EXPORT_SYMBOL(bio_uninit);
248
249 static void bio_free(struct bio *bio)
250 {
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
254 bio_uninit(bio);
255
256 if (bs) {
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 /*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
277 void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
279 {
280 memset(bio, 0, sizeof(*bio));
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299 void bio_reset(struct bio *bio)
300 {
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
303 bio_uninit(bio);
304
305 memset(bio, 0, BIO_RESET_BYTES);
306 bio->bi_flags = flags;
307 atomic_set(&bio->__bi_remaining, 1);
308 }
309 EXPORT_SYMBOL(bio_reset);
310
311 static struct bio *__bio_chain_endio(struct bio *bio)
312 {
313 struct bio *parent = bio->bi_private;
314
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
317 bio_put(bio);
318 return parent;
319 }
320
321 static void bio_chain_endio(struct bio *bio)
322 {
323 bio_endio(__bio_chain_endio(bio));
324 }
325
326 /**
327 * bio_chain - chain bio completions
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337 void bio_chain(struct bio *bio, struct bio *parent)
338 {
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
343 bio_inc_remaining(parent);
344 }
345 EXPORT_SYMBOL(bio_chain);
346
347 static void bio_alloc_rescue(struct work_struct *work)
348 {
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362 }
363
364 static void punt_bios_to_rescuer(struct bio_set *bs)
365 {
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
385 while ((bio = bio_list_pop(&current->bio_list[0])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[0] = nopunt;
388
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399 }
400
401 /**
402 * bio_alloc_bioset - allocate a bio for I/O
403 * @gfp_mask: the GFP_ mask given to the slab allocator
404 * @nr_iovecs: number of iovecs to pre-allocate
405 * @bs: the bio_set to allocate from.
406 *
407 * Description:
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
417 *
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
436 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
438 {
439 gfp_t saved_gfp = gfp_mask;
440 unsigned front_pad;
441 unsigned inline_vecs;
442 struct bio_vec *bvl = NULL;
443 struct bio *bio;
444 void *p;
445
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
478 */
479
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526 err_free:
527 mempool_free(p, bs->bio_pool);
528 return NULL;
529 }
530 EXPORT_SYMBOL(bio_alloc_bioset);
531
532 void zero_fill_bio(struct bio *bio)
533 {
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544 }
545 EXPORT_SYMBOL(zero_fill_bio);
546
547 /**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
554 **/
555 void bio_put(struct bio *bio)
556 {
557 if (!bio_flagged(bio, BIO_REFFED))
558 bio_free(bio);
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
568 }
569 EXPORT_SYMBOL(bio_put);
570
571 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
572 {
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577 }
578 EXPORT_SYMBOL(bio_phys_segments);
579
580 /**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592 {
593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
594
595 /*
596 * most users will be overriding ->bi_bdev with a new target,
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
599 bio->bi_bdev = bio_src->bi_bdev;
600 bio_set_flag(bio, BIO_CLONED);
601 bio->bi_opf = bio_src->bi_opf;
602 bio->bi_write_hint = bio_src->bi_write_hint;
603 bio->bi_iter = bio_src->bi_iter;
604 bio->bi_io_vec = bio_src->bi_io_vec;
605
606 bio_clone_blkcg_association(bio, bio_src);
607 }
608 EXPORT_SYMBOL(__bio_clone_fast);
609
610 /**
611 * bio_clone_fast - clone a bio that shares the original bio's biovec
612 * @bio: bio to clone
613 * @gfp_mask: allocation priority
614 * @bs: bio_set to allocate from
615 *
616 * Like __bio_clone_fast, only also allocates the returned bio
617 */
618 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
619 {
620 struct bio *b;
621
622 b = bio_alloc_bioset(gfp_mask, 0, bs);
623 if (!b)
624 return NULL;
625
626 __bio_clone_fast(b, bio);
627
628 if (bio_integrity(bio)) {
629 int ret;
630
631 ret = bio_integrity_clone(b, bio, gfp_mask);
632
633 if (ret < 0) {
634 bio_put(b);
635 return NULL;
636 }
637 }
638
639 return b;
640 }
641 EXPORT_SYMBOL(bio_clone_fast);
642
643 /**
644 * bio_clone_bioset - clone a bio
645 * @bio_src: bio to clone
646 * @gfp_mask: allocation priority
647 * @bs: bio_set to allocate from
648 *
649 * Clone bio. Caller will own the returned bio, but not the actual data it
650 * points to. Reference count of returned bio will be one.
651 */
652 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
653 struct bio_set *bs)
654 {
655 struct bvec_iter iter;
656 struct bio_vec bv;
657 struct bio *bio;
658
659 /*
660 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
661 * bio_src->bi_io_vec to bio->bi_io_vec.
662 *
663 * We can't do that anymore, because:
664 *
665 * - The point of cloning the biovec is to produce a bio with a biovec
666 * the caller can modify: bi_idx and bi_bvec_done should be 0.
667 *
668 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
669 * we tried to clone the whole thing bio_alloc_bioset() would fail.
670 * But the clone should succeed as long as the number of biovecs we
671 * actually need to allocate is fewer than BIO_MAX_PAGES.
672 *
673 * - Lastly, bi_vcnt should not be looked at or relied upon by code
674 * that does not own the bio - reason being drivers don't use it for
675 * iterating over the biovec anymore, so expecting it to be kept up
676 * to date (i.e. for clones that share the parent biovec) is just
677 * asking for trouble and would force extra work on
678 * __bio_clone_fast() anyways.
679 */
680
681 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
682 if (!bio)
683 return NULL;
684 bio->bi_bdev = bio_src->bi_bdev;
685 bio->bi_opf = bio_src->bi_opf;
686 bio->bi_write_hint = bio_src->bi_write_hint;
687 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
688 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
689
690 switch (bio_op(bio)) {
691 case REQ_OP_DISCARD:
692 case REQ_OP_SECURE_ERASE:
693 case REQ_OP_WRITE_ZEROES:
694 break;
695 case REQ_OP_WRITE_SAME:
696 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
697 break;
698 default:
699 bio_for_each_segment(bv, bio_src, iter)
700 bio->bi_io_vec[bio->bi_vcnt++] = bv;
701 break;
702 }
703
704 if (bio_integrity(bio_src)) {
705 int ret;
706
707 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
708 if (ret < 0) {
709 bio_put(bio);
710 return NULL;
711 }
712 }
713
714 bio_clone_blkcg_association(bio, bio_src);
715
716 return bio;
717 }
718 EXPORT_SYMBOL(bio_clone_bioset);
719
720 /**
721 * bio_add_pc_page - attempt to add page to bio
722 * @q: the target queue
723 * @bio: destination bio
724 * @page: page to add
725 * @len: vec entry length
726 * @offset: vec entry offset
727 *
728 * Attempt to add a page to the bio_vec maplist. This can fail for a
729 * number of reasons, such as the bio being full or target block device
730 * limitations. The target block device must allow bio's up to PAGE_SIZE,
731 * so it is always possible to add a single page to an empty bio.
732 *
733 * This should only be used by REQ_PC bios.
734 */
735 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
736 *page, unsigned int len, unsigned int offset)
737 {
738 int retried_segments = 0;
739 struct bio_vec *bvec;
740
741 /*
742 * cloned bio must not modify vec list
743 */
744 if (unlikely(bio_flagged(bio, BIO_CLONED)))
745 return 0;
746
747 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
748 return 0;
749
750 /*
751 * For filesystems with a blocksize smaller than the pagesize
752 * we will often be called with the same page as last time and
753 * a consecutive offset. Optimize this special case.
754 */
755 if (bio->bi_vcnt > 0) {
756 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
757
758 if (page == prev->bv_page &&
759 offset == prev->bv_offset + prev->bv_len) {
760 prev->bv_len += len;
761 bio->bi_iter.bi_size += len;
762 goto done;
763 }
764
765 /*
766 * If the queue doesn't support SG gaps and adding this
767 * offset would create a gap, disallow it.
768 */
769 if (bvec_gap_to_prev(q, prev, offset))
770 return 0;
771 }
772
773 if (bio->bi_vcnt >= bio->bi_max_vecs)
774 return 0;
775
776 /*
777 * setup the new entry, we might clear it again later if we
778 * cannot add the page
779 */
780 bvec = &bio->bi_io_vec[bio->bi_vcnt];
781 bvec->bv_page = page;
782 bvec->bv_len = len;
783 bvec->bv_offset = offset;
784 bio->bi_vcnt++;
785 bio->bi_phys_segments++;
786 bio->bi_iter.bi_size += len;
787
788 /*
789 * Perform a recount if the number of segments is greater
790 * than queue_max_segments(q).
791 */
792
793 while (bio->bi_phys_segments > queue_max_segments(q)) {
794
795 if (retried_segments)
796 goto failed;
797
798 retried_segments = 1;
799 blk_recount_segments(q, bio);
800 }
801
802 /* If we may be able to merge these biovecs, force a recount */
803 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
804 bio_clear_flag(bio, BIO_SEG_VALID);
805
806 done:
807 return len;
808
809 failed:
810 bvec->bv_page = NULL;
811 bvec->bv_len = 0;
812 bvec->bv_offset = 0;
813 bio->bi_vcnt--;
814 bio->bi_iter.bi_size -= len;
815 blk_recount_segments(q, bio);
816 return 0;
817 }
818 EXPORT_SYMBOL(bio_add_pc_page);
819
820 /**
821 * bio_add_page - attempt to add page to bio
822 * @bio: destination bio
823 * @page: page to add
824 * @len: vec entry length
825 * @offset: vec entry offset
826 *
827 * Attempt to add a page to the bio_vec maplist. This will only fail
828 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
829 */
830 int bio_add_page(struct bio *bio, struct page *page,
831 unsigned int len, unsigned int offset)
832 {
833 struct bio_vec *bv;
834
835 /*
836 * cloned bio must not modify vec list
837 */
838 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
839 return 0;
840
841 /*
842 * For filesystems with a blocksize smaller than the pagesize
843 * we will often be called with the same page as last time and
844 * a consecutive offset. Optimize this special case.
845 */
846 if (bio->bi_vcnt > 0) {
847 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
848
849 if (page == bv->bv_page &&
850 offset == bv->bv_offset + bv->bv_len) {
851 bv->bv_len += len;
852 goto done;
853 }
854 }
855
856 if (bio->bi_vcnt >= bio->bi_max_vecs)
857 return 0;
858
859 bv = &bio->bi_io_vec[bio->bi_vcnt];
860 bv->bv_page = page;
861 bv->bv_len = len;
862 bv->bv_offset = offset;
863
864 bio->bi_vcnt++;
865 done:
866 bio->bi_iter.bi_size += len;
867 return len;
868 }
869 EXPORT_SYMBOL(bio_add_page);
870
871 /**
872 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873 * @bio: bio to add pages to
874 * @iter: iov iterator describing the region to be mapped
875 *
876 * Pins as many pages from *iter and appends them to @bio's bvec array. The
877 * pages will have to be released using put_page() when done.
878 */
879 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
880 {
881 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
882 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
883 struct page **pages = (struct page **)bv;
884 size_t offset, diff;
885 ssize_t size;
886
887 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
888 if (unlikely(size <= 0))
889 return size ? size : -EFAULT;
890 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
891
892 /*
893 * Deep magic below: We need to walk the pinned pages backwards
894 * because we are abusing the space allocated for the bio_vecs
895 * for the page array. Because the bio_vecs are larger than the
896 * page pointers by definition this will always work. But it also
897 * means we can't use bio_add_page, so any changes to it's semantics
898 * need to be reflected here as well.
899 */
900 bio->bi_iter.bi_size += size;
901 bio->bi_vcnt += nr_pages;
902
903 diff = (nr_pages * PAGE_SIZE - offset) - size;
904 while (nr_pages--) {
905 bv[nr_pages].bv_page = pages[nr_pages];
906 bv[nr_pages].bv_len = PAGE_SIZE;
907 bv[nr_pages].bv_offset = 0;
908 }
909
910 bv[0].bv_offset += offset;
911 bv[0].bv_len -= offset;
912 if (diff)
913 bv[bio->bi_vcnt - 1].bv_len -= diff;
914
915 iov_iter_advance(iter, size);
916 return 0;
917 }
918 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
919
920 struct submit_bio_ret {
921 struct completion event;
922 int error;
923 };
924
925 static void submit_bio_wait_endio(struct bio *bio)
926 {
927 struct submit_bio_ret *ret = bio->bi_private;
928
929 ret->error = blk_status_to_errno(bio->bi_status);
930 complete(&ret->event);
931 }
932
933 /**
934 * submit_bio_wait - submit a bio, and wait until it completes
935 * @bio: The &struct bio which describes the I/O
936 *
937 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
938 * bio_endio() on failure.
939 */
940 int submit_bio_wait(struct bio *bio)
941 {
942 struct submit_bio_ret ret;
943
944 init_completion(&ret.event);
945 bio->bi_private = &ret;
946 bio->bi_end_io = submit_bio_wait_endio;
947 bio->bi_opf |= REQ_SYNC;
948 submit_bio(bio);
949 wait_for_completion_io(&ret.event);
950
951 return ret.error;
952 }
953 EXPORT_SYMBOL(submit_bio_wait);
954
955 /**
956 * bio_advance - increment/complete a bio by some number of bytes
957 * @bio: bio to advance
958 * @bytes: number of bytes to complete
959 *
960 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
961 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
962 * be updated on the last bvec as well.
963 *
964 * @bio will then represent the remaining, uncompleted portion of the io.
965 */
966 void bio_advance(struct bio *bio, unsigned bytes)
967 {
968 if (bio_integrity(bio))
969 bio_integrity_advance(bio, bytes);
970
971 bio_advance_iter(bio, &bio->bi_iter, bytes);
972 }
973 EXPORT_SYMBOL(bio_advance);
974
975 /**
976 * bio_alloc_pages - allocates a single page for each bvec in a bio
977 * @bio: bio to allocate pages for
978 * @gfp_mask: flags for allocation
979 *
980 * Allocates pages up to @bio->bi_vcnt.
981 *
982 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
983 * freed.
984 */
985 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
986 {
987 int i;
988 struct bio_vec *bv;
989
990 bio_for_each_segment_all(bv, bio, i) {
991 bv->bv_page = alloc_page(gfp_mask);
992 if (!bv->bv_page) {
993 while (--bv >= bio->bi_io_vec)
994 __free_page(bv->bv_page);
995 return -ENOMEM;
996 }
997 }
998
999 return 0;
1000 }
1001 EXPORT_SYMBOL(bio_alloc_pages);
1002
1003 /**
1004 * bio_copy_data - copy contents of data buffers from one chain of bios to
1005 * another
1006 * @src: source bio list
1007 * @dst: destination bio list
1008 *
1009 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1010 * @src and @dst as linked lists of bios.
1011 *
1012 * Stops when it reaches the end of either @src or @dst - that is, copies
1013 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1014 */
1015 void bio_copy_data(struct bio *dst, struct bio *src)
1016 {
1017 struct bvec_iter src_iter, dst_iter;
1018 struct bio_vec src_bv, dst_bv;
1019 void *src_p, *dst_p;
1020 unsigned bytes;
1021
1022 src_iter = src->bi_iter;
1023 dst_iter = dst->bi_iter;
1024
1025 while (1) {
1026 if (!src_iter.bi_size) {
1027 src = src->bi_next;
1028 if (!src)
1029 break;
1030
1031 src_iter = src->bi_iter;
1032 }
1033
1034 if (!dst_iter.bi_size) {
1035 dst = dst->bi_next;
1036 if (!dst)
1037 break;
1038
1039 dst_iter = dst->bi_iter;
1040 }
1041
1042 src_bv = bio_iter_iovec(src, src_iter);
1043 dst_bv = bio_iter_iovec(dst, dst_iter);
1044
1045 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1046
1047 src_p = kmap_atomic(src_bv.bv_page);
1048 dst_p = kmap_atomic(dst_bv.bv_page);
1049
1050 memcpy(dst_p + dst_bv.bv_offset,
1051 src_p + src_bv.bv_offset,
1052 bytes);
1053
1054 kunmap_atomic(dst_p);
1055 kunmap_atomic(src_p);
1056
1057 bio_advance_iter(src, &src_iter, bytes);
1058 bio_advance_iter(dst, &dst_iter, bytes);
1059 }
1060 }
1061 EXPORT_SYMBOL(bio_copy_data);
1062
1063 struct bio_map_data {
1064 int is_our_pages;
1065 struct iov_iter iter;
1066 struct iovec iov[];
1067 };
1068
1069 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1070 gfp_t gfp_mask)
1071 {
1072 if (iov_count > UIO_MAXIOV)
1073 return NULL;
1074
1075 return kmalloc(sizeof(struct bio_map_data) +
1076 sizeof(struct iovec) * iov_count, gfp_mask);
1077 }
1078
1079 /**
1080 * bio_copy_from_iter - copy all pages from iov_iter to bio
1081 * @bio: The &struct bio which describes the I/O as destination
1082 * @iter: iov_iter as source
1083 *
1084 * Copy all pages from iov_iter to bio.
1085 * Returns 0 on success, or error on failure.
1086 */
1087 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1088 {
1089 int i;
1090 struct bio_vec *bvec;
1091
1092 bio_for_each_segment_all(bvec, bio, i) {
1093 ssize_t ret;
1094
1095 ret = copy_page_from_iter(bvec->bv_page,
1096 bvec->bv_offset,
1097 bvec->bv_len,
1098 &iter);
1099
1100 if (!iov_iter_count(&iter))
1101 break;
1102
1103 if (ret < bvec->bv_len)
1104 return -EFAULT;
1105 }
1106
1107 return 0;
1108 }
1109
1110 /**
1111 * bio_copy_to_iter - copy all pages from bio to iov_iter
1112 * @bio: The &struct bio which describes the I/O as source
1113 * @iter: iov_iter as destination
1114 *
1115 * Copy all pages from bio to iov_iter.
1116 * Returns 0 on success, or error on failure.
1117 */
1118 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1119 {
1120 int i;
1121 struct bio_vec *bvec;
1122
1123 bio_for_each_segment_all(bvec, bio, i) {
1124 ssize_t ret;
1125
1126 ret = copy_page_to_iter(bvec->bv_page,
1127 bvec->bv_offset,
1128 bvec->bv_len,
1129 &iter);
1130
1131 if (!iov_iter_count(&iter))
1132 break;
1133
1134 if (ret < bvec->bv_len)
1135 return -EFAULT;
1136 }
1137
1138 return 0;
1139 }
1140
1141 void bio_free_pages(struct bio *bio)
1142 {
1143 struct bio_vec *bvec;
1144 int i;
1145
1146 bio_for_each_segment_all(bvec, bio, i)
1147 __free_page(bvec->bv_page);
1148 }
1149 EXPORT_SYMBOL(bio_free_pages);
1150
1151 /**
1152 * bio_uncopy_user - finish previously mapped bio
1153 * @bio: bio being terminated
1154 *
1155 * Free pages allocated from bio_copy_user_iov() and write back data
1156 * to user space in case of a read.
1157 */
1158 int bio_uncopy_user(struct bio *bio)
1159 {
1160 struct bio_map_data *bmd = bio->bi_private;
1161 int ret = 0;
1162
1163 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1164 /*
1165 * if we're in a workqueue, the request is orphaned, so
1166 * don't copy into a random user address space, just free
1167 * and return -EINTR so user space doesn't expect any data.
1168 */
1169 if (!current->mm)
1170 ret = -EINTR;
1171 else if (bio_data_dir(bio) == READ)
1172 ret = bio_copy_to_iter(bio, bmd->iter);
1173 if (bmd->is_our_pages)
1174 bio_free_pages(bio);
1175 }
1176 kfree(bmd);
1177 bio_put(bio);
1178 return ret;
1179 }
1180
1181 /**
1182 * bio_copy_user_iov - copy user data to bio
1183 * @q: destination block queue
1184 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1185 * @iter: iovec iterator
1186 * @gfp_mask: memory allocation flags
1187 *
1188 * Prepares and returns a bio for indirect user io, bouncing data
1189 * to/from kernel pages as necessary. Must be paired with
1190 * call bio_uncopy_user() on io completion.
1191 */
1192 struct bio *bio_copy_user_iov(struct request_queue *q,
1193 struct rq_map_data *map_data,
1194 const struct iov_iter *iter,
1195 gfp_t gfp_mask)
1196 {
1197 struct bio_map_data *bmd;
1198 struct page *page;
1199 struct bio *bio;
1200 int i, ret;
1201 int nr_pages = 0;
1202 unsigned int len = iter->count;
1203 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1204
1205 for (i = 0; i < iter->nr_segs; i++) {
1206 unsigned long uaddr;
1207 unsigned long end;
1208 unsigned long start;
1209
1210 uaddr = (unsigned long) iter->iov[i].iov_base;
1211 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1212 >> PAGE_SHIFT;
1213 start = uaddr >> PAGE_SHIFT;
1214
1215 /*
1216 * Overflow, abort
1217 */
1218 if (end < start)
1219 return ERR_PTR(-EINVAL);
1220
1221 nr_pages += end - start;
1222 }
1223
1224 if (offset)
1225 nr_pages++;
1226
1227 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1228 if (!bmd)
1229 return ERR_PTR(-ENOMEM);
1230
1231 /*
1232 * We need to do a deep copy of the iov_iter including the iovecs.
1233 * The caller provided iov might point to an on-stack or otherwise
1234 * shortlived one.
1235 */
1236 bmd->is_our_pages = map_data ? 0 : 1;
1237 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1238 bmd->iter = *iter;
1239 bmd->iter.iov = bmd->iov;
1240
1241 ret = -ENOMEM;
1242 bio = bio_kmalloc(gfp_mask, nr_pages);
1243 if (!bio)
1244 goto out_bmd;
1245
1246 ret = 0;
1247
1248 if (map_data) {
1249 nr_pages = 1 << map_data->page_order;
1250 i = map_data->offset / PAGE_SIZE;
1251 }
1252 while (len) {
1253 unsigned int bytes = PAGE_SIZE;
1254
1255 bytes -= offset;
1256
1257 if (bytes > len)
1258 bytes = len;
1259
1260 if (map_data) {
1261 if (i == map_data->nr_entries * nr_pages) {
1262 ret = -ENOMEM;
1263 break;
1264 }
1265
1266 page = map_data->pages[i / nr_pages];
1267 page += (i % nr_pages);
1268
1269 i++;
1270 } else {
1271 page = alloc_page(q->bounce_gfp | gfp_mask);
1272 if (!page) {
1273 ret = -ENOMEM;
1274 break;
1275 }
1276 }
1277
1278 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1279 break;
1280
1281 len -= bytes;
1282 offset = 0;
1283 }
1284
1285 if (ret)
1286 goto cleanup;
1287
1288 /*
1289 * success
1290 */
1291 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1292 (map_data && map_data->from_user)) {
1293 ret = bio_copy_from_iter(bio, *iter);
1294 if (ret)
1295 goto cleanup;
1296 }
1297
1298 bio->bi_private = bmd;
1299 return bio;
1300 cleanup:
1301 if (!map_data)
1302 bio_free_pages(bio);
1303 bio_put(bio);
1304 out_bmd:
1305 kfree(bmd);
1306 return ERR_PTR(ret);
1307 }
1308
1309 /**
1310 * bio_map_user_iov - map user iovec into bio
1311 * @q: the struct request_queue for the bio
1312 * @iter: iovec iterator
1313 * @gfp_mask: memory allocation flags
1314 *
1315 * Map the user space address into a bio suitable for io to a block
1316 * device. Returns an error pointer in case of error.
1317 */
1318 struct bio *bio_map_user_iov(struct request_queue *q,
1319 const struct iov_iter *iter,
1320 gfp_t gfp_mask)
1321 {
1322 int j;
1323 int nr_pages = 0;
1324 struct page **pages;
1325 struct bio *bio;
1326 int cur_page = 0;
1327 int ret, offset;
1328 struct iov_iter i;
1329 struct iovec iov;
1330 struct bio_vec *bvec;
1331
1332 iov_for_each(iov, i, *iter) {
1333 unsigned long uaddr = (unsigned long) iov.iov_base;
1334 unsigned long len = iov.iov_len;
1335 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1336 unsigned long start = uaddr >> PAGE_SHIFT;
1337
1338 /*
1339 * Overflow, abort
1340 */
1341 if (end < start)
1342 return ERR_PTR(-EINVAL);
1343
1344 nr_pages += end - start;
1345 /*
1346 * buffer must be aligned to at least logical block size for now
1347 */
1348 if (uaddr & queue_dma_alignment(q))
1349 return ERR_PTR(-EINVAL);
1350 }
1351
1352 if (!nr_pages)
1353 return ERR_PTR(-EINVAL);
1354
1355 bio = bio_kmalloc(gfp_mask, nr_pages);
1356 if (!bio)
1357 return ERR_PTR(-ENOMEM);
1358
1359 ret = -ENOMEM;
1360 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1361 if (!pages)
1362 goto out;
1363
1364 iov_for_each(iov, i, *iter) {
1365 unsigned long uaddr = (unsigned long) iov.iov_base;
1366 unsigned long len = iov.iov_len;
1367 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1368 unsigned long start = uaddr >> PAGE_SHIFT;
1369 const int local_nr_pages = end - start;
1370 const int page_limit = cur_page + local_nr_pages;
1371
1372 ret = get_user_pages_fast(uaddr, local_nr_pages,
1373 (iter->type & WRITE) != WRITE,
1374 &pages[cur_page]);
1375 if (unlikely(ret < local_nr_pages)) {
1376 for (j = cur_page; j < page_limit; j++) {
1377 if (!pages[j])
1378 break;
1379 put_page(pages[j]);
1380 }
1381 ret = -EFAULT;
1382 goto out_unmap;
1383 }
1384
1385 offset = offset_in_page(uaddr);
1386 for (j = cur_page; j < page_limit; j++) {
1387 unsigned int bytes = PAGE_SIZE - offset;
1388 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1389
1390 if (len <= 0)
1391 break;
1392
1393 if (bytes > len)
1394 bytes = len;
1395
1396 /*
1397 * sorry...
1398 */
1399 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1400 bytes)
1401 break;
1402
1403 /*
1404 * check if vector was merged with previous
1405 * drop page reference if needed
1406 */
1407 if (bio->bi_vcnt == prev_bi_vcnt)
1408 put_page(pages[j]);
1409
1410 len -= bytes;
1411 offset = 0;
1412 }
1413
1414 cur_page = j;
1415 /*
1416 * release the pages we didn't map into the bio, if any
1417 */
1418 while (j < page_limit)
1419 put_page(pages[j++]);
1420 }
1421
1422 kfree(pages);
1423
1424 bio_set_flag(bio, BIO_USER_MAPPED);
1425
1426 /*
1427 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1428 * it would normally disappear when its bi_end_io is run.
1429 * however, we need it for the unmap, so grab an extra
1430 * reference to it
1431 */
1432 bio_get(bio);
1433 return bio;
1434
1435 out_unmap:
1436 bio_for_each_segment_all(bvec, bio, j) {
1437 put_page(bvec->bv_page);
1438 }
1439 out:
1440 kfree(pages);
1441 bio_put(bio);
1442 return ERR_PTR(ret);
1443 }
1444
1445 static void __bio_unmap_user(struct bio *bio)
1446 {
1447 struct bio_vec *bvec;
1448 int i;
1449
1450 /*
1451 * make sure we dirty pages we wrote to
1452 */
1453 bio_for_each_segment_all(bvec, bio, i) {
1454 if (bio_data_dir(bio) == READ)
1455 set_page_dirty_lock(bvec->bv_page);
1456
1457 put_page(bvec->bv_page);
1458 }
1459
1460 bio_put(bio);
1461 }
1462
1463 /**
1464 * bio_unmap_user - unmap a bio
1465 * @bio: the bio being unmapped
1466 *
1467 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1468 * process context.
1469 *
1470 * bio_unmap_user() may sleep.
1471 */
1472 void bio_unmap_user(struct bio *bio)
1473 {
1474 __bio_unmap_user(bio);
1475 bio_put(bio);
1476 }
1477
1478 static void bio_map_kern_endio(struct bio *bio)
1479 {
1480 bio_put(bio);
1481 }
1482
1483 /**
1484 * bio_map_kern - map kernel address into bio
1485 * @q: the struct request_queue for the bio
1486 * @data: pointer to buffer to map
1487 * @len: length in bytes
1488 * @gfp_mask: allocation flags for bio allocation
1489 *
1490 * Map the kernel address into a bio suitable for io to a block
1491 * device. Returns an error pointer in case of error.
1492 */
1493 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1494 gfp_t gfp_mask)
1495 {
1496 unsigned long kaddr = (unsigned long)data;
1497 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1498 unsigned long start = kaddr >> PAGE_SHIFT;
1499 const int nr_pages = end - start;
1500 int offset, i;
1501 struct bio *bio;
1502
1503 bio = bio_kmalloc(gfp_mask, nr_pages);
1504 if (!bio)
1505 return ERR_PTR(-ENOMEM);
1506
1507 offset = offset_in_page(kaddr);
1508 for (i = 0; i < nr_pages; i++) {
1509 unsigned int bytes = PAGE_SIZE - offset;
1510
1511 if (len <= 0)
1512 break;
1513
1514 if (bytes > len)
1515 bytes = len;
1516
1517 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1518 offset) < bytes) {
1519 /* we don't support partial mappings */
1520 bio_put(bio);
1521 return ERR_PTR(-EINVAL);
1522 }
1523
1524 data += bytes;
1525 len -= bytes;
1526 offset = 0;
1527 }
1528
1529 bio->bi_end_io = bio_map_kern_endio;
1530 return bio;
1531 }
1532 EXPORT_SYMBOL(bio_map_kern);
1533
1534 static void bio_copy_kern_endio(struct bio *bio)
1535 {
1536 bio_free_pages(bio);
1537 bio_put(bio);
1538 }
1539
1540 static void bio_copy_kern_endio_read(struct bio *bio)
1541 {
1542 char *p = bio->bi_private;
1543 struct bio_vec *bvec;
1544 int i;
1545
1546 bio_for_each_segment_all(bvec, bio, i) {
1547 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1548 p += bvec->bv_len;
1549 }
1550
1551 bio_copy_kern_endio(bio);
1552 }
1553
1554 /**
1555 * bio_copy_kern - copy kernel address into bio
1556 * @q: the struct request_queue for the bio
1557 * @data: pointer to buffer to copy
1558 * @len: length in bytes
1559 * @gfp_mask: allocation flags for bio and page allocation
1560 * @reading: data direction is READ
1561 *
1562 * copy the kernel address into a bio suitable for io to a block
1563 * device. Returns an error pointer in case of error.
1564 */
1565 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1566 gfp_t gfp_mask, int reading)
1567 {
1568 unsigned long kaddr = (unsigned long)data;
1569 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1570 unsigned long start = kaddr >> PAGE_SHIFT;
1571 struct bio *bio;
1572 void *p = data;
1573 int nr_pages = 0;
1574
1575 /*
1576 * Overflow, abort
1577 */
1578 if (end < start)
1579 return ERR_PTR(-EINVAL);
1580
1581 nr_pages = end - start;
1582 bio = bio_kmalloc(gfp_mask, nr_pages);
1583 if (!bio)
1584 return ERR_PTR(-ENOMEM);
1585
1586 while (len) {
1587 struct page *page;
1588 unsigned int bytes = PAGE_SIZE;
1589
1590 if (bytes > len)
1591 bytes = len;
1592
1593 page = alloc_page(q->bounce_gfp | gfp_mask);
1594 if (!page)
1595 goto cleanup;
1596
1597 if (!reading)
1598 memcpy(page_address(page), p, bytes);
1599
1600 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1601 break;
1602
1603 len -= bytes;
1604 p += bytes;
1605 }
1606
1607 if (reading) {
1608 bio->bi_end_io = bio_copy_kern_endio_read;
1609 bio->bi_private = data;
1610 } else {
1611 bio->bi_end_io = bio_copy_kern_endio;
1612 }
1613
1614 return bio;
1615
1616 cleanup:
1617 bio_free_pages(bio);
1618 bio_put(bio);
1619 return ERR_PTR(-ENOMEM);
1620 }
1621
1622 /*
1623 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1624 * for performing direct-IO in BIOs.
1625 *
1626 * The problem is that we cannot run set_page_dirty() from interrupt context
1627 * because the required locks are not interrupt-safe. So what we can do is to
1628 * mark the pages dirty _before_ performing IO. And in interrupt context,
1629 * check that the pages are still dirty. If so, fine. If not, redirty them
1630 * in process context.
1631 *
1632 * We special-case compound pages here: normally this means reads into hugetlb
1633 * pages. The logic in here doesn't really work right for compound pages
1634 * because the VM does not uniformly chase down the head page in all cases.
1635 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1636 * handle them at all. So we skip compound pages here at an early stage.
1637 *
1638 * Note that this code is very hard to test under normal circumstances because
1639 * direct-io pins the pages with get_user_pages(). This makes
1640 * is_page_cache_freeable return false, and the VM will not clean the pages.
1641 * But other code (eg, flusher threads) could clean the pages if they are mapped
1642 * pagecache.
1643 *
1644 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1645 * deferred bio dirtying paths.
1646 */
1647
1648 /*
1649 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1650 */
1651 void bio_set_pages_dirty(struct bio *bio)
1652 {
1653 struct bio_vec *bvec;
1654 int i;
1655
1656 bio_for_each_segment_all(bvec, bio, i) {
1657 struct page *page = bvec->bv_page;
1658
1659 if (page && !PageCompound(page))
1660 set_page_dirty_lock(page);
1661 }
1662 }
1663
1664 static void bio_release_pages(struct bio *bio)
1665 {
1666 struct bio_vec *bvec;
1667 int i;
1668
1669 bio_for_each_segment_all(bvec, bio, i) {
1670 struct page *page = bvec->bv_page;
1671
1672 if (page)
1673 put_page(page);
1674 }
1675 }
1676
1677 /*
1678 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1679 * If they are, then fine. If, however, some pages are clean then they must
1680 * have been written out during the direct-IO read. So we take another ref on
1681 * the BIO and the offending pages and re-dirty the pages in process context.
1682 *
1683 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1684 * here on. It will run one put_page() against each page and will run one
1685 * bio_put() against the BIO.
1686 */
1687
1688 static void bio_dirty_fn(struct work_struct *work);
1689
1690 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1691 static DEFINE_SPINLOCK(bio_dirty_lock);
1692 static struct bio *bio_dirty_list;
1693
1694 /*
1695 * This runs in process context
1696 */
1697 static void bio_dirty_fn(struct work_struct *work)
1698 {
1699 unsigned long flags;
1700 struct bio *bio;
1701
1702 spin_lock_irqsave(&bio_dirty_lock, flags);
1703 bio = bio_dirty_list;
1704 bio_dirty_list = NULL;
1705 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1706
1707 while (bio) {
1708 struct bio *next = bio->bi_private;
1709
1710 bio_set_pages_dirty(bio);
1711 bio_release_pages(bio);
1712 bio_put(bio);
1713 bio = next;
1714 }
1715 }
1716
1717 void bio_check_pages_dirty(struct bio *bio)
1718 {
1719 struct bio_vec *bvec;
1720 int nr_clean_pages = 0;
1721 int i;
1722
1723 bio_for_each_segment_all(bvec, bio, i) {
1724 struct page *page = bvec->bv_page;
1725
1726 if (PageDirty(page) || PageCompound(page)) {
1727 put_page(page);
1728 bvec->bv_page = NULL;
1729 } else {
1730 nr_clean_pages++;
1731 }
1732 }
1733
1734 if (nr_clean_pages) {
1735 unsigned long flags;
1736
1737 spin_lock_irqsave(&bio_dirty_lock, flags);
1738 bio->bi_private = bio_dirty_list;
1739 bio_dirty_list = bio;
1740 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1741 schedule_work(&bio_dirty_work);
1742 } else {
1743 bio_put(bio);
1744 }
1745 }
1746
1747 void generic_start_io_acct(int rw, unsigned long sectors,
1748 struct hd_struct *part)
1749 {
1750 int cpu = part_stat_lock();
1751
1752 part_round_stats(cpu, part);
1753 part_stat_inc(cpu, part, ios[rw]);
1754 part_stat_add(cpu, part, sectors[rw], sectors);
1755 part_inc_in_flight(part, rw);
1756
1757 part_stat_unlock();
1758 }
1759 EXPORT_SYMBOL(generic_start_io_acct);
1760
1761 void generic_end_io_acct(int rw, struct hd_struct *part,
1762 unsigned long start_time)
1763 {
1764 unsigned long duration = jiffies - start_time;
1765 int cpu = part_stat_lock();
1766
1767 part_stat_add(cpu, part, ticks[rw], duration);
1768 part_round_stats(cpu, part);
1769 part_dec_in_flight(part, rw);
1770
1771 part_stat_unlock();
1772 }
1773 EXPORT_SYMBOL(generic_end_io_acct);
1774
1775 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1776 void bio_flush_dcache_pages(struct bio *bi)
1777 {
1778 struct bio_vec bvec;
1779 struct bvec_iter iter;
1780
1781 bio_for_each_segment(bvec, bi, iter)
1782 flush_dcache_page(bvec.bv_page);
1783 }
1784 EXPORT_SYMBOL(bio_flush_dcache_pages);
1785 #endif
1786
1787 static inline bool bio_remaining_done(struct bio *bio)
1788 {
1789 /*
1790 * If we're not chaining, then ->__bi_remaining is always 1 and
1791 * we always end io on the first invocation.
1792 */
1793 if (!bio_flagged(bio, BIO_CHAIN))
1794 return true;
1795
1796 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1797
1798 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1799 bio_clear_flag(bio, BIO_CHAIN);
1800 return true;
1801 }
1802
1803 return false;
1804 }
1805
1806 /**
1807 * bio_endio - end I/O on a bio
1808 * @bio: bio
1809 *
1810 * Description:
1811 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1812 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1813 * bio unless they own it and thus know that it has an end_io function.
1814 *
1815 * bio_endio() can be called several times on a bio that has been chained
1816 * using bio_chain(). The ->bi_end_io() function will only be called the
1817 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1818 * generated if BIO_TRACE_COMPLETION is set.
1819 **/
1820 void bio_endio(struct bio *bio)
1821 {
1822 again:
1823 if (!bio_remaining_done(bio))
1824 return;
1825 if (!bio_integrity_endio(bio))
1826 return;
1827
1828 /*
1829 * Need to have a real endio function for chained bios, otherwise
1830 * various corner cases will break (like stacking block devices that
1831 * save/restore bi_end_io) - however, we want to avoid unbounded
1832 * recursion and blowing the stack. Tail call optimization would
1833 * handle this, but compiling with frame pointers also disables
1834 * gcc's sibling call optimization.
1835 */
1836 if (bio->bi_end_io == bio_chain_endio) {
1837 bio = __bio_chain_endio(bio);
1838 goto again;
1839 }
1840
1841 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1842 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio,
1843 blk_status_to_errno(bio->bi_status));
1844 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1845 }
1846
1847 blk_throtl_bio_endio(bio);
1848 /* release cgroup info */
1849 bio_uninit(bio);
1850 if (bio->bi_end_io)
1851 bio->bi_end_io(bio);
1852 }
1853 EXPORT_SYMBOL(bio_endio);
1854
1855 /**
1856 * bio_split - split a bio
1857 * @bio: bio to split
1858 * @sectors: number of sectors to split from the front of @bio
1859 * @gfp: gfp mask
1860 * @bs: bio set to allocate from
1861 *
1862 * Allocates and returns a new bio which represents @sectors from the start of
1863 * @bio, and updates @bio to represent the remaining sectors.
1864 *
1865 * Unless this is a discard request the newly allocated bio will point
1866 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1867 * @bio is not freed before the split.
1868 */
1869 struct bio *bio_split(struct bio *bio, int sectors,
1870 gfp_t gfp, struct bio_set *bs)
1871 {
1872 struct bio *split = NULL;
1873
1874 BUG_ON(sectors <= 0);
1875 BUG_ON(sectors >= bio_sectors(bio));
1876
1877 split = bio_clone_fast(bio, gfp, bs);
1878 if (!split)
1879 return NULL;
1880
1881 split->bi_iter.bi_size = sectors << 9;
1882
1883 if (bio_integrity(split))
1884 bio_integrity_trim(split);
1885
1886 bio_advance(bio, split->bi_iter.bi_size);
1887
1888 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1889 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1890
1891 return split;
1892 }
1893 EXPORT_SYMBOL(bio_split);
1894
1895 /**
1896 * bio_trim - trim a bio
1897 * @bio: bio to trim
1898 * @offset: number of sectors to trim from the front of @bio
1899 * @size: size we want to trim @bio to, in sectors
1900 */
1901 void bio_trim(struct bio *bio, int offset, int size)
1902 {
1903 /* 'bio' is a cloned bio which we need to trim to match
1904 * the given offset and size.
1905 */
1906
1907 size <<= 9;
1908 if (offset == 0 && size == bio->bi_iter.bi_size)
1909 return;
1910
1911 bio_clear_flag(bio, BIO_SEG_VALID);
1912
1913 bio_advance(bio, offset << 9);
1914
1915 bio->bi_iter.bi_size = size;
1916
1917 if (bio_integrity(bio))
1918 bio_integrity_trim(bio);
1919
1920 }
1921 EXPORT_SYMBOL_GPL(bio_trim);
1922
1923 /*
1924 * create memory pools for biovec's in a bio_set.
1925 * use the global biovec slabs created for general use.
1926 */
1927 mempool_t *biovec_create_pool(int pool_entries)
1928 {
1929 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1930
1931 return mempool_create_slab_pool(pool_entries, bp->slab);
1932 }
1933
1934 void bioset_free(struct bio_set *bs)
1935 {
1936 if (bs->rescue_workqueue)
1937 destroy_workqueue(bs->rescue_workqueue);
1938
1939 if (bs->bio_pool)
1940 mempool_destroy(bs->bio_pool);
1941
1942 if (bs->bvec_pool)
1943 mempool_destroy(bs->bvec_pool);
1944
1945 bioset_integrity_free(bs);
1946 bio_put_slab(bs);
1947
1948 kfree(bs);
1949 }
1950 EXPORT_SYMBOL(bioset_free);
1951
1952 /**
1953 * bioset_create - Create a bio_set
1954 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1955 * @front_pad: Number of bytes to allocate in front of the returned bio
1956 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1957 * and %BIOSET_NEED_RESCUER
1958 *
1959 * Description:
1960 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1961 * to ask for a number of bytes to be allocated in front of the bio.
1962 * Front pad allocation is useful for embedding the bio inside
1963 * another structure, to avoid allocating extra data to go with the bio.
1964 * Note that the bio must be embedded at the END of that structure always,
1965 * or things will break badly.
1966 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1967 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1968 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1969 * dispatch queued requests when the mempool runs out of space.
1970 *
1971 */
1972 struct bio_set *bioset_create(unsigned int pool_size,
1973 unsigned int front_pad,
1974 int flags)
1975 {
1976 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1977 struct bio_set *bs;
1978
1979 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1980 if (!bs)
1981 return NULL;
1982
1983 bs->front_pad = front_pad;
1984
1985 spin_lock_init(&bs->rescue_lock);
1986 bio_list_init(&bs->rescue_list);
1987 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1988
1989 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1990 if (!bs->bio_slab) {
1991 kfree(bs);
1992 return NULL;
1993 }
1994
1995 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1996 if (!bs->bio_pool)
1997 goto bad;
1998
1999 if (flags & BIOSET_NEED_BVECS) {
2000 bs->bvec_pool = biovec_create_pool(pool_size);
2001 if (!bs->bvec_pool)
2002 goto bad;
2003 }
2004
2005 if (!(flags & BIOSET_NEED_RESCUER))
2006 return bs;
2007
2008 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2009 if (!bs->rescue_workqueue)
2010 goto bad;
2011
2012 return bs;
2013 bad:
2014 bioset_free(bs);
2015 return NULL;
2016 }
2017 EXPORT_SYMBOL(bioset_create);
2018
2019 #ifdef CONFIG_BLK_CGROUP
2020
2021 /**
2022 * bio_associate_blkcg - associate a bio with the specified blkcg
2023 * @bio: target bio
2024 * @blkcg_css: css of the blkcg to associate
2025 *
2026 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2027 * treat @bio as if it were issued by a task which belongs to the blkcg.
2028 *
2029 * This function takes an extra reference of @blkcg_css which will be put
2030 * when @bio is released. The caller must own @bio and is responsible for
2031 * synchronizing calls to this function.
2032 */
2033 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2034 {
2035 if (unlikely(bio->bi_css))
2036 return -EBUSY;
2037 css_get(blkcg_css);
2038 bio->bi_css = blkcg_css;
2039 return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2042
2043 /**
2044 * bio_associate_current - associate a bio with %current
2045 * @bio: target bio
2046 *
2047 * Associate @bio with %current if it hasn't been associated yet. Block
2048 * layer will treat @bio as if it were issued by %current no matter which
2049 * task actually issues it.
2050 *
2051 * This function takes an extra reference of @task's io_context and blkcg
2052 * which will be put when @bio is released. The caller must own @bio,
2053 * ensure %current->io_context exists, and is responsible for synchronizing
2054 * calls to this function.
2055 */
2056 int bio_associate_current(struct bio *bio)
2057 {
2058 struct io_context *ioc;
2059
2060 if (bio->bi_css)
2061 return -EBUSY;
2062
2063 ioc = current->io_context;
2064 if (!ioc)
2065 return -ENOENT;
2066
2067 get_io_context_active(ioc);
2068 bio->bi_ioc = ioc;
2069 bio->bi_css = task_get_css(current, io_cgrp_id);
2070 return 0;
2071 }
2072 EXPORT_SYMBOL_GPL(bio_associate_current);
2073
2074 /**
2075 * bio_disassociate_task - undo bio_associate_current()
2076 * @bio: target bio
2077 */
2078 void bio_disassociate_task(struct bio *bio)
2079 {
2080 if (bio->bi_ioc) {
2081 put_io_context(bio->bi_ioc);
2082 bio->bi_ioc = NULL;
2083 }
2084 if (bio->bi_css) {
2085 css_put(bio->bi_css);
2086 bio->bi_css = NULL;
2087 }
2088 }
2089
2090 /**
2091 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2092 * @dst: destination bio
2093 * @src: source bio
2094 */
2095 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2096 {
2097 if (src->bi_css)
2098 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2099 }
2100
2101 #endif /* CONFIG_BLK_CGROUP */
2102
2103 static void __init biovec_init_slabs(void)
2104 {
2105 int i;
2106
2107 for (i = 0; i < BVEC_POOL_NR; i++) {
2108 int size;
2109 struct biovec_slab *bvs = bvec_slabs + i;
2110
2111 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2112 bvs->slab = NULL;
2113 continue;
2114 }
2115
2116 size = bvs->nr_vecs * sizeof(struct bio_vec);
2117 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2118 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2119 }
2120 }
2121
2122 static int __init init_bio(void)
2123 {
2124 bio_slab_max = 2;
2125 bio_slab_nr = 0;
2126 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2127 if (!bio_slabs)
2128 panic("bio: can't allocate bios\n");
2129
2130 bio_integrity_init();
2131 biovec_init_slabs();
2132
2133 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2134 if (!fs_bio_set)
2135 panic("bio: can't allocate bios\n");
2136
2137 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2138 panic("bio: can't create integrity pool\n");
2139
2140 return 0;
2141 }
2142 subsys_initcall(init_bio);