]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/bio.c
Merge branches 'pm-qos' and 'pm-devfreq'
[mirror_ubuntu-artful-kernel.git] / block / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31
32 #include <trace/events/block.h>
33 #include "blk.h"
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 /*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 };
50 #undef BV
51
52 /*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
58
59 /*
60 * Our slab pool management
61 */
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67 };
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
71
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73 {
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123 out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126 }
127
128 static void bio_put_slab(struct bio_set *bs)
129 {
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
157 unsigned int bvec_nr_vecs(unsigned short idx)
158 {
159 return bvec_slabs[idx].nr_vecs;
160 }
161
162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 {
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
169
170 if (idx == BVEC_POOL_MAX) {
171 mempool_free(bv, pool);
172 } else {
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177 }
178
179 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
181 {
182 struct bio_vec *bvl;
183
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
214 if (*idx == BVEC_POOL_MAX) {
215 fallback:
216 bvl = mempool_alloc(pool, gfp_mask);
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
220
221 /*
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
225 */
226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
227
228 /*
229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
230 * is set, retry with the 1-entry mempool
231 */
232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
234 *idx = BVEC_POOL_MAX;
235 goto fallback;
236 }
237 }
238
239 (*idx)++;
240 return bvl;
241 }
242
243 void bio_uninit(struct bio *bio)
244 {
245 bio_disassociate_task(bio);
246
247 if (bio_integrity(bio))
248 bio_integrity_free(bio);
249 }
250 EXPORT_SYMBOL(bio_uninit);
251
252 static void bio_free(struct bio *bio)
253 {
254 struct bio_set *bs = bio->bi_pool;
255 void *p;
256
257 bio_uninit(bio);
258
259 if (bs) {
260 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
261
262 /*
263 * If we have front padding, adjust the bio pointer before freeing
264 */
265 p = bio;
266 p -= bs->front_pad;
267
268 mempool_free(p, bs->bio_pool);
269 } else {
270 /* Bio was allocated by bio_kmalloc() */
271 kfree(bio);
272 }
273 }
274
275 /*
276 * Users of this function have their own bio allocation. Subsequently,
277 * they must remember to pair any call to bio_init() with bio_uninit()
278 * when IO has completed, or when the bio is released.
279 */
280 void bio_init(struct bio *bio, struct bio_vec *table,
281 unsigned short max_vecs)
282 {
283 memset(bio, 0, sizeof(*bio));
284 atomic_set(&bio->__bi_remaining, 1);
285 atomic_set(&bio->__bi_cnt, 1);
286
287 bio->bi_io_vec = table;
288 bio->bi_max_vecs = max_vecs;
289 }
290 EXPORT_SYMBOL(bio_init);
291
292 /**
293 * bio_reset - reinitialize a bio
294 * @bio: bio to reset
295 *
296 * Description:
297 * After calling bio_reset(), @bio will be in the same state as a freshly
298 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
299 * preserved are the ones that are initialized by bio_alloc_bioset(). See
300 * comment in struct bio.
301 */
302 void bio_reset(struct bio *bio)
303 {
304 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
305
306 bio_uninit(bio);
307
308 memset(bio, 0, BIO_RESET_BYTES);
309 bio->bi_flags = flags;
310 atomic_set(&bio->__bi_remaining, 1);
311 }
312 EXPORT_SYMBOL(bio_reset);
313
314 static struct bio *__bio_chain_endio(struct bio *bio)
315 {
316 struct bio *parent = bio->bi_private;
317
318 if (!parent->bi_status)
319 parent->bi_status = bio->bi_status;
320 bio_put(bio);
321 return parent;
322 }
323
324 static void bio_chain_endio(struct bio *bio)
325 {
326 bio_endio(__bio_chain_endio(bio));
327 }
328
329 /**
330 * bio_chain - chain bio completions
331 * @bio: the target bio
332 * @parent: the @bio's parent bio
333 *
334 * The caller won't have a bi_end_io called when @bio completes - instead,
335 * @parent's bi_end_io won't be called until both @parent and @bio have
336 * completed; the chained bio will also be freed when it completes.
337 *
338 * The caller must not set bi_private or bi_end_io in @bio.
339 */
340 void bio_chain(struct bio *bio, struct bio *parent)
341 {
342 BUG_ON(bio->bi_private || bio->bi_end_io);
343
344 bio->bi_private = parent;
345 bio->bi_end_io = bio_chain_endio;
346 bio_inc_remaining(parent);
347 }
348 EXPORT_SYMBOL(bio_chain);
349
350 static void bio_alloc_rescue(struct work_struct *work)
351 {
352 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
353 struct bio *bio;
354
355 while (1) {
356 spin_lock(&bs->rescue_lock);
357 bio = bio_list_pop(&bs->rescue_list);
358 spin_unlock(&bs->rescue_lock);
359
360 if (!bio)
361 break;
362
363 generic_make_request(bio);
364 }
365 }
366
367 static void punt_bios_to_rescuer(struct bio_set *bs)
368 {
369 struct bio_list punt, nopunt;
370 struct bio *bio;
371
372 if (WARN_ON_ONCE(!bs->rescue_workqueue))
373 return;
374 /*
375 * In order to guarantee forward progress we must punt only bios that
376 * were allocated from this bio_set; otherwise, if there was a bio on
377 * there for a stacking driver higher up in the stack, processing it
378 * could require allocating bios from this bio_set, and doing that from
379 * our own rescuer would be bad.
380 *
381 * Since bio lists are singly linked, pop them all instead of trying to
382 * remove from the middle of the list:
383 */
384
385 bio_list_init(&punt);
386 bio_list_init(&nopunt);
387
388 while ((bio = bio_list_pop(&current->bio_list[0])))
389 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 current->bio_list[0] = nopunt;
391
392 bio_list_init(&nopunt);
393 while ((bio = bio_list_pop(&current->bio_list[1])))
394 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
395 current->bio_list[1] = nopunt;
396
397 spin_lock(&bs->rescue_lock);
398 bio_list_merge(&bs->rescue_list, &punt);
399 spin_unlock(&bs->rescue_lock);
400
401 queue_work(bs->rescue_workqueue, &bs->rescue_work);
402 }
403
404 /**
405 * bio_alloc_bioset - allocate a bio for I/O
406 * @gfp_mask: the GFP_ mask given to the slab allocator
407 * @nr_iovecs: number of iovecs to pre-allocate
408 * @bs: the bio_set to allocate from.
409 *
410 * Description:
411 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
412 * backed by the @bs's mempool.
413 *
414 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
415 * always be able to allocate a bio. This is due to the mempool guarantees.
416 * To make this work, callers must never allocate more than 1 bio at a time
417 * from this pool. Callers that need to allocate more than 1 bio must always
418 * submit the previously allocated bio for IO before attempting to allocate
419 * a new one. Failure to do so can cause deadlocks under memory pressure.
420 *
421 * Note that when running under generic_make_request() (i.e. any block
422 * driver), bios are not submitted until after you return - see the code in
423 * generic_make_request() that converts recursion into iteration, to prevent
424 * stack overflows.
425 *
426 * This would normally mean allocating multiple bios under
427 * generic_make_request() would be susceptible to deadlocks, but we have
428 * deadlock avoidance code that resubmits any blocked bios from a rescuer
429 * thread.
430 *
431 * However, we do not guarantee forward progress for allocations from other
432 * mempools. Doing multiple allocations from the same mempool under
433 * generic_make_request() should be avoided - instead, use bio_set's front_pad
434 * for per bio allocations.
435 *
436 * RETURNS:
437 * Pointer to new bio on success, NULL on failure.
438 */
439 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
440 struct bio_set *bs)
441 {
442 gfp_t saved_gfp = gfp_mask;
443 unsigned front_pad;
444 unsigned inline_vecs;
445 struct bio_vec *bvl = NULL;
446 struct bio *bio;
447 void *p;
448
449 if (!bs) {
450 if (nr_iovecs > UIO_MAXIOV)
451 return NULL;
452
453 p = kmalloc(sizeof(struct bio) +
454 nr_iovecs * sizeof(struct bio_vec),
455 gfp_mask);
456 front_pad = 0;
457 inline_vecs = nr_iovecs;
458 } else {
459 /* should not use nobvec bioset for nr_iovecs > 0 */
460 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
461 return NULL;
462 /*
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
467 *
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
474 *
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
481 */
482
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
488
489 p = mempool_alloc(bs->bio_pool, gfp_mask);
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
493 p = mempool_alloc(bs->bio_pool, gfp_mask);
494 }
495
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
498 }
499
500 if (unlikely(!p))
501 return NULL;
502
503 bio = p + front_pad;
504 bio_init(bio, NULL, 0);
505
506 if (nr_iovecs > inline_vecs) {
507 unsigned long idx = 0;
508
509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
514 }
515
516 if (unlikely(!bvl))
517 goto err_free;
518
519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
522 }
523
524 bio->bi_pool = bs;
525 bio->bi_max_vecs = nr_iovecs;
526 bio->bi_io_vec = bvl;
527 return bio;
528
529 err_free:
530 mempool_free(p, bs->bio_pool);
531 return NULL;
532 }
533 EXPORT_SYMBOL(bio_alloc_bioset);
534
535 void zero_fill_bio(struct bio *bio)
536 {
537 unsigned long flags;
538 struct bio_vec bv;
539 struct bvec_iter iter;
540
541 bio_for_each_segment(bv, bio, iter) {
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
545 bvec_kunmap_irq(data, &flags);
546 }
547 }
548 EXPORT_SYMBOL(zero_fill_bio);
549
550 /**
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
553 *
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
557 **/
558 void bio_put(struct bio *bio)
559 {
560 if (!bio_flagged(bio, BIO_REFFED))
561 bio_free(bio);
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
564
565 /*
566 * last put frees it
567 */
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
570 }
571 }
572 EXPORT_SYMBOL(bio_put);
573
574 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
575 {
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
578
579 return bio->bi_phys_segments;
580 }
581 EXPORT_SYMBOL(bio_phys_segments);
582
583 /**
584 * __bio_clone_fast - clone a bio that shares the original bio's biovec
585 * @bio: destination bio
586 * @bio_src: bio to clone
587 *
588 * Clone a &bio. Caller will own the returned bio, but not
589 * the actual data it points to. Reference count of returned
590 * bio will be one.
591 *
592 * Caller must ensure that @bio_src is not freed before @bio.
593 */
594 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595 {
596 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
597
598 /*
599 * most users will be overriding ->bi_bdev with a new target,
600 * so we don't set nor calculate new physical/hw segment counts here
601 */
602 bio->bi_bdev = bio_src->bi_bdev;
603 bio_set_flag(bio, BIO_CLONED);
604 bio->bi_opf = bio_src->bi_opf;
605 bio->bi_write_hint = bio_src->bi_write_hint;
606 bio->bi_iter = bio_src->bi_iter;
607 bio->bi_io_vec = bio_src->bi_io_vec;
608
609 bio_clone_blkcg_association(bio, bio_src);
610 }
611 EXPORT_SYMBOL(__bio_clone_fast);
612
613 /**
614 * bio_clone_fast - clone a bio that shares the original bio's biovec
615 * @bio: bio to clone
616 * @gfp_mask: allocation priority
617 * @bs: bio_set to allocate from
618 *
619 * Like __bio_clone_fast, only also allocates the returned bio
620 */
621 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
622 {
623 struct bio *b;
624
625 b = bio_alloc_bioset(gfp_mask, 0, bs);
626 if (!b)
627 return NULL;
628
629 __bio_clone_fast(b, bio);
630
631 if (bio_integrity(bio)) {
632 int ret;
633
634 ret = bio_integrity_clone(b, bio, gfp_mask);
635
636 if (ret < 0) {
637 bio_put(b);
638 return NULL;
639 }
640 }
641
642 return b;
643 }
644 EXPORT_SYMBOL(bio_clone_fast);
645
646 /**
647 * bio_clone_bioset - clone a bio
648 * @bio_src: bio to clone
649 * @gfp_mask: allocation priority
650 * @bs: bio_set to allocate from
651 *
652 * Clone bio. Caller will own the returned bio, but not the actual data it
653 * points to. Reference count of returned bio will be one.
654 */
655 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
656 struct bio_set *bs)
657 {
658 struct bvec_iter iter;
659 struct bio_vec bv;
660 struct bio *bio;
661
662 /*
663 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
664 * bio_src->bi_io_vec to bio->bi_io_vec.
665 *
666 * We can't do that anymore, because:
667 *
668 * - The point of cloning the biovec is to produce a bio with a biovec
669 * the caller can modify: bi_idx and bi_bvec_done should be 0.
670 *
671 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
672 * we tried to clone the whole thing bio_alloc_bioset() would fail.
673 * But the clone should succeed as long as the number of biovecs we
674 * actually need to allocate is fewer than BIO_MAX_PAGES.
675 *
676 * - Lastly, bi_vcnt should not be looked at or relied upon by code
677 * that does not own the bio - reason being drivers don't use it for
678 * iterating over the biovec anymore, so expecting it to be kept up
679 * to date (i.e. for clones that share the parent biovec) is just
680 * asking for trouble and would force extra work on
681 * __bio_clone_fast() anyways.
682 */
683
684 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
685 if (!bio)
686 return NULL;
687 bio->bi_bdev = bio_src->bi_bdev;
688 bio->bi_opf = bio_src->bi_opf;
689 bio->bi_write_hint = bio_src->bi_write_hint;
690 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
691 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
692
693 switch (bio_op(bio)) {
694 case REQ_OP_DISCARD:
695 case REQ_OP_SECURE_ERASE:
696 case REQ_OP_WRITE_ZEROES:
697 break;
698 case REQ_OP_WRITE_SAME:
699 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
700 break;
701 default:
702 bio_for_each_segment(bv, bio_src, iter)
703 bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 break;
705 }
706
707 if (bio_integrity(bio_src)) {
708 int ret;
709
710 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
711 if (ret < 0) {
712 bio_put(bio);
713 return NULL;
714 }
715 }
716
717 bio_clone_blkcg_association(bio, bio_src);
718
719 return bio;
720 }
721 EXPORT_SYMBOL(bio_clone_bioset);
722
723 /**
724 * bio_add_pc_page - attempt to add page to bio
725 * @q: the target queue
726 * @bio: destination bio
727 * @page: page to add
728 * @len: vec entry length
729 * @offset: vec entry offset
730 *
731 * Attempt to add a page to the bio_vec maplist. This can fail for a
732 * number of reasons, such as the bio being full or target block device
733 * limitations. The target block device must allow bio's up to PAGE_SIZE,
734 * so it is always possible to add a single page to an empty bio.
735 *
736 * This should only be used by REQ_PC bios.
737 */
738 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
739 *page, unsigned int len, unsigned int offset)
740 {
741 int retried_segments = 0;
742 struct bio_vec *bvec;
743
744 /*
745 * cloned bio must not modify vec list
746 */
747 if (unlikely(bio_flagged(bio, BIO_CLONED)))
748 return 0;
749
750 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
751 return 0;
752
753 /*
754 * For filesystems with a blocksize smaller than the pagesize
755 * we will often be called with the same page as last time and
756 * a consecutive offset. Optimize this special case.
757 */
758 if (bio->bi_vcnt > 0) {
759 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
760
761 if (page == prev->bv_page &&
762 offset == prev->bv_offset + prev->bv_len) {
763 prev->bv_len += len;
764 bio->bi_iter.bi_size += len;
765 goto done;
766 }
767
768 /*
769 * If the queue doesn't support SG gaps and adding this
770 * offset would create a gap, disallow it.
771 */
772 if (bvec_gap_to_prev(q, prev, offset))
773 return 0;
774 }
775
776 if (bio->bi_vcnt >= bio->bi_max_vecs)
777 return 0;
778
779 /*
780 * setup the new entry, we might clear it again later if we
781 * cannot add the page
782 */
783 bvec = &bio->bi_io_vec[bio->bi_vcnt];
784 bvec->bv_page = page;
785 bvec->bv_len = len;
786 bvec->bv_offset = offset;
787 bio->bi_vcnt++;
788 bio->bi_phys_segments++;
789 bio->bi_iter.bi_size += len;
790
791 /*
792 * Perform a recount if the number of segments is greater
793 * than queue_max_segments(q).
794 */
795
796 while (bio->bi_phys_segments > queue_max_segments(q)) {
797
798 if (retried_segments)
799 goto failed;
800
801 retried_segments = 1;
802 blk_recount_segments(q, bio);
803 }
804
805 /* If we may be able to merge these biovecs, force a recount */
806 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
807 bio_clear_flag(bio, BIO_SEG_VALID);
808
809 done:
810 return len;
811
812 failed:
813 bvec->bv_page = NULL;
814 bvec->bv_len = 0;
815 bvec->bv_offset = 0;
816 bio->bi_vcnt--;
817 bio->bi_iter.bi_size -= len;
818 blk_recount_segments(q, bio);
819 return 0;
820 }
821 EXPORT_SYMBOL(bio_add_pc_page);
822
823 /**
824 * bio_add_page - attempt to add page to bio
825 * @bio: destination bio
826 * @page: page to add
827 * @len: vec entry length
828 * @offset: vec entry offset
829 *
830 * Attempt to add a page to the bio_vec maplist. This will only fail
831 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
832 */
833 int bio_add_page(struct bio *bio, struct page *page,
834 unsigned int len, unsigned int offset)
835 {
836 struct bio_vec *bv;
837
838 /*
839 * cloned bio must not modify vec list
840 */
841 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
842 return 0;
843
844 /*
845 * For filesystems with a blocksize smaller than the pagesize
846 * we will often be called with the same page as last time and
847 * a consecutive offset. Optimize this special case.
848 */
849 if (bio->bi_vcnt > 0) {
850 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
851
852 if (page == bv->bv_page &&
853 offset == bv->bv_offset + bv->bv_len) {
854 bv->bv_len += len;
855 goto done;
856 }
857 }
858
859 if (bio->bi_vcnt >= bio->bi_max_vecs)
860 return 0;
861
862 bv = &bio->bi_io_vec[bio->bi_vcnt];
863 bv->bv_page = page;
864 bv->bv_len = len;
865 bv->bv_offset = offset;
866
867 bio->bi_vcnt++;
868 done:
869 bio->bi_iter.bi_size += len;
870 return len;
871 }
872 EXPORT_SYMBOL(bio_add_page);
873
874 /**
875 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
876 * @bio: bio to add pages to
877 * @iter: iov iterator describing the region to be mapped
878 *
879 * Pins as many pages from *iter and appends them to @bio's bvec array. The
880 * pages will have to be released using put_page() when done.
881 */
882 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
883 {
884 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
885 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
886 struct page **pages = (struct page **)bv;
887 size_t offset, diff;
888 ssize_t size;
889
890 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
891 if (unlikely(size <= 0))
892 return size ? size : -EFAULT;
893 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
894
895 /*
896 * Deep magic below: We need to walk the pinned pages backwards
897 * because we are abusing the space allocated for the bio_vecs
898 * for the page array. Because the bio_vecs are larger than the
899 * page pointers by definition this will always work. But it also
900 * means we can't use bio_add_page, so any changes to it's semantics
901 * need to be reflected here as well.
902 */
903 bio->bi_iter.bi_size += size;
904 bio->bi_vcnt += nr_pages;
905
906 diff = (nr_pages * PAGE_SIZE - offset) - size;
907 while (nr_pages--) {
908 bv[nr_pages].bv_page = pages[nr_pages];
909 bv[nr_pages].bv_len = PAGE_SIZE;
910 bv[nr_pages].bv_offset = 0;
911 }
912
913 bv[0].bv_offset += offset;
914 bv[0].bv_len -= offset;
915 if (diff)
916 bv[bio->bi_vcnt - 1].bv_len -= diff;
917
918 iov_iter_advance(iter, size);
919 return 0;
920 }
921 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
922
923 struct submit_bio_ret {
924 struct completion event;
925 int error;
926 };
927
928 static void submit_bio_wait_endio(struct bio *bio)
929 {
930 struct submit_bio_ret *ret = bio->bi_private;
931
932 ret->error = blk_status_to_errno(bio->bi_status);
933 complete(&ret->event);
934 }
935
936 /**
937 * submit_bio_wait - submit a bio, and wait until it completes
938 * @bio: The &struct bio which describes the I/O
939 *
940 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
941 * bio_endio() on failure.
942 */
943 int submit_bio_wait(struct bio *bio)
944 {
945 struct submit_bio_ret ret;
946
947 init_completion(&ret.event);
948 bio->bi_private = &ret;
949 bio->bi_end_io = submit_bio_wait_endio;
950 bio->bi_opf |= REQ_SYNC;
951 submit_bio(bio);
952 wait_for_completion_io(&ret.event);
953
954 return ret.error;
955 }
956 EXPORT_SYMBOL(submit_bio_wait);
957
958 /**
959 * bio_advance - increment/complete a bio by some number of bytes
960 * @bio: bio to advance
961 * @bytes: number of bytes to complete
962 *
963 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
964 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
965 * be updated on the last bvec as well.
966 *
967 * @bio will then represent the remaining, uncompleted portion of the io.
968 */
969 void bio_advance(struct bio *bio, unsigned bytes)
970 {
971 if (bio_integrity(bio))
972 bio_integrity_advance(bio, bytes);
973
974 bio_advance_iter(bio, &bio->bi_iter, bytes);
975 }
976 EXPORT_SYMBOL(bio_advance);
977
978 /**
979 * bio_alloc_pages - allocates a single page for each bvec in a bio
980 * @bio: bio to allocate pages for
981 * @gfp_mask: flags for allocation
982 *
983 * Allocates pages up to @bio->bi_vcnt.
984 *
985 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
986 * freed.
987 */
988 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
989 {
990 int i;
991 struct bio_vec *bv;
992
993 bio_for_each_segment_all(bv, bio, i) {
994 bv->bv_page = alloc_page(gfp_mask);
995 if (!bv->bv_page) {
996 while (--bv >= bio->bi_io_vec)
997 __free_page(bv->bv_page);
998 return -ENOMEM;
999 }
1000 }
1001
1002 return 0;
1003 }
1004 EXPORT_SYMBOL(bio_alloc_pages);
1005
1006 /**
1007 * bio_copy_data - copy contents of data buffers from one chain of bios to
1008 * another
1009 * @src: source bio list
1010 * @dst: destination bio list
1011 *
1012 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1013 * @src and @dst as linked lists of bios.
1014 *
1015 * Stops when it reaches the end of either @src or @dst - that is, copies
1016 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1017 */
1018 void bio_copy_data(struct bio *dst, struct bio *src)
1019 {
1020 struct bvec_iter src_iter, dst_iter;
1021 struct bio_vec src_bv, dst_bv;
1022 void *src_p, *dst_p;
1023 unsigned bytes;
1024
1025 src_iter = src->bi_iter;
1026 dst_iter = dst->bi_iter;
1027
1028 while (1) {
1029 if (!src_iter.bi_size) {
1030 src = src->bi_next;
1031 if (!src)
1032 break;
1033
1034 src_iter = src->bi_iter;
1035 }
1036
1037 if (!dst_iter.bi_size) {
1038 dst = dst->bi_next;
1039 if (!dst)
1040 break;
1041
1042 dst_iter = dst->bi_iter;
1043 }
1044
1045 src_bv = bio_iter_iovec(src, src_iter);
1046 dst_bv = bio_iter_iovec(dst, dst_iter);
1047
1048 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1049
1050 src_p = kmap_atomic(src_bv.bv_page);
1051 dst_p = kmap_atomic(dst_bv.bv_page);
1052
1053 memcpy(dst_p + dst_bv.bv_offset,
1054 src_p + src_bv.bv_offset,
1055 bytes);
1056
1057 kunmap_atomic(dst_p);
1058 kunmap_atomic(src_p);
1059
1060 bio_advance_iter(src, &src_iter, bytes);
1061 bio_advance_iter(dst, &dst_iter, bytes);
1062 }
1063 }
1064 EXPORT_SYMBOL(bio_copy_data);
1065
1066 struct bio_map_data {
1067 int is_our_pages;
1068 struct iov_iter iter;
1069 struct iovec iov[];
1070 };
1071
1072 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1073 gfp_t gfp_mask)
1074 {
1075 if (iov_count > UIO_MAXIOV)
1076 return NULL;
1077
1078 return kmalloc(sizeof(struct bio_map_data) +
1079 sizeof(struct iovec) * iov_count, gfp_mask);
1080 }
1081
1082 /**
1083 * bio_copy_from_iter - copy all pages from iov_iter to bio
1084 * @bio: The &struct bio which describes the I/O as destination
1085 * @iter: iov_iter as source
1086 *
1087 * Copy all pages from iov_iter to bio.
1088 * Returns 0 on success, or error on failure.
1089 */
1090 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1091 {
1092 int i;
1093 struct bio_vec *bvec;
1094
1095 bio_for_each_segment_all(bvec, bio, i) {
1096 ssize_t ret;
1097
1098 ret = copy_page_from_iter(bvec->bv_page,
1099 bvec->bv_offset,
1100 bvec->bv_len,
1101 &iter);
1102
1103 if (!iov_iter_count(&iter))
1104 break;
1105
1106 if (ret < bvec->bv_len)
1107 return -EFAULT;
1108 }
1109
1110 return 0;
1111 }
1112
1113 /**
1114 * bio_copy_to_iter - copy all pages from bio to iov_iter
1115 * @bio: The &struct bio which describes the I/O as source
1116 * @iter: iov_iter as destination
1117 *
1118 * Copy all pages from bio to iov_iter.
1119 * Returns 0 on success, or error on failure.
1120 */
1121 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1122 {
1123 int i;
1124 struct bio_vec *bvec;
1125
1126 bio_for_each_segment_all(bvec, bio, i) {
1127 ssize_t ret;
1128
1129 ret = copy_page_to_iter(bvec->bv_page,
1130 bvec->bv_offset,
1131 bvec->bv_len,
1132 &iter);
1133
1134 if (!iov_iter_count(&iter))
1135 break;
1136
1137 if (ret < bvec->bv_len)
1138 return -EFAULT;
1139 }
1140
1141 return 0;
1142 }
1143
1144 void bio_free_pages(struct bio *bio)
1145 {
1146 struct bio_vec *bvec;
1147 int i;
1148
1149 bio_for_each_segment_all(bvec, bio, i)
1150 __free_page(bvec->bv_page);
1151 }
1152 EXPORT_SYMBOL(bio_free_pages);
1153
1154 /**
1155 * bio_uncopy_user - finish previously mapped bio
1156 * @bio: bio being terminated
1157 *
1158 * Free pages allocated from bio_copy_user_iov() and write back data
1159 * to user space in case of a read.
1160 */
1161 int bio_uncopy_user(struct bio *bio)
1162 {
1163 struct bio_map_data *bmd = bio->bi_private;
1164 int ret = 0;
1165
1166 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1167 /*
1168 * if we're in a workqueue, the request is orphaned, so
1169 * don't copy into a random user address space, just free
1170 * and return -EINTR so user space doesn't expect any data.
1171 */
1172 if (!current->mm)
1173 ret = -EINTR;
1174 else if (bio_data_dir(bio) == READ)
1175 ret = bio_copy_to_iter(bio, bmd->iter);
1176 if (bmd->is_our_pages)
1177 bio_free_pages(bio);
1178 }
1179 kfree(bmd);
1180 bio_put(bio);
1181 return ret;
1182 }
1183
1184 /**
1185 * bio_copy_user_iov - copy user data to bio
1186 * @q: destination block queue
1187 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1188 * @iter: iovec iterator
1189 * @gfp_mask: memory allocation flags
1190 *
1191 * Prepares and returns a bio for indirect user io, bouncing data
1192 * to/from kernel pages as necessary. Must be paired with
1193 * call bio_uncopy_user() on io completion.
1194 */
1195 struct bio *bio_copy_user_iov(struct request_queue *q,
1196 struct rq_map_data *map_data,
1197 const struct iov_iter *iter,
1198 gfp_t gfp_mask)
1199 {
1200 struct bio_map_data *bmd;
1201 struct page *page;
1202 struct bio *bio;
1203 int i, ret;
1204 int nr_pages = 0;
1205 unsigned int len = iter->count;
1206 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1207
1208 for (i = 0; i < iter->nr_segs; i++) {
1209 unsigned long uaddr;
1210 unsigned long end;
1211 unsigned long start;
1212
1213 uaddr = (unsigned long) iter->iov[i].iov_base;
1214 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1215 >> PAGE_SHIFT;
1216 start = uaddr >> PAGE_SHIFT;
1217
1218 /*
1219 * Overflow, abort
1220 */
1221 if (end < start)
1222 return ERR_PTR(-EINVAL);
1223
1224 nr_pages += end - start;
1225 }
1226
1227 if (offset)
1228 nr_pages++;
1229
1230 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1231 if (!bmd)
1232 return ERR_PTR(-ENOMEM);
1233
1234 /*
1235 * We need to do a deep copy of the iov_iter including the iovecs.
1236 * The caller provided iov might point to an on-stack or otherwise
1237 * shortlived one.
1238 */
1239 bmd->is_our_pages = map_data ? 0 : 1;
1240 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1241 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1242 iter->nr_segs, iter->count);
1243
1244 ret = -ENOMEM;
1245 bio = bio_kmalloc(gfp_mask, nr_pages);
1246 if (!bio)
1247 goto out_bmd;
1248
1249 ret = 0;
1250
1251 if (map_data) {
1252 nr_pages = 1 << map_data->page_order;
1253 i = map_data->offset / PAGE_SIZE;
1254 }
1255 while (len) {
1256 unsigned int bytes = PAGE_SIZE;
1257
1258 bytes -= offset;
1259
1260 if (bytes > len)
1261 bytes = len;
1262
1263 if (map_data) {
1264 if (i == map_data->nr_entries * nr_pages) {
1265 ret = -ENOMEM;
1266 break;
1267 }
1268
1269 page = map_data->pages[i / nr_pages];
1270 page += (i % nr_pages);
1271
1272 i++;
1273 } else {
1274 page = alloc_page(q->bounce_gfp | gfp_mask);
1275 if (!page) {
1276 ret = -ENOMEM;
1277 break;
1278 }
1279 }
1280
1281 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1282 break;
1283
1284 len -= bytes;
1285 offset = 0;
1286 }
1287
1288 if (ret)
1289 goto cleanup;
1290
1291 /*
1292 * success
1293 */
1294 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1295 (map_data && map_data->from_user)) {
1296 ret = bio_copy_from_iter(bio, *iter);
1297 if (ret)
1298 goto cleanup;
1299 }
1300
1301 bio->bi_private = bmd;
1302 return bio;
1303 cleanup:
1304 if (!map_data)
1305 bio_free_pages(bio);
1306 bio_put(bio);
1307 out_bmd:
1308 kfree(bmd);
1309 return ERR_PTR(ret);
1310 }
1311
1312 /**
1313 * bio_map_user_iov - map user iovec into bio
1314 * @q: the struct request_queue for the bio
1315 * @iter: iovec iterator
1316 * @gfp_mask: memory allocation flags
1317 *
1318 * Map the user space address into a bio suitable for io to a block
1319 * device. Returns an error pointer in case of error.
1320 */
1321 struct bio *bio_map_user_iov(struct request_queue *q,
1322 const struct iov_iter *iter,
1323 gfp_t gfp_mask)
1324 {
1325 int j;
1326 int nr_pages = 0;
1327 struct page **pages;
1328 struct bio *bio;
1329 int cur_page = 0;
1330 int ret, offset;
1331 struct iov_iter i;
1332 struct iovec iov;
1333
1334 iov_for_each(iov, i, *iter) {
1335 unsigned long uaddr = (unsigned long) iov.iov_base;
1336 unsigned long len = iov.iov_len;
1337 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1338 unsigned long start = uaddr >> PAGE_SHIFT;
1339
1340 /*
1341 * Overflow, abort
1342 */
1343 if (end < start)
1344 return ERR_PTR(-EINVAL);
1345
1346 nr_pages += end - start;
1347 /*
1348 * buffer must be aligned to at least logical block size for now
1349 */
1350 if (uaddr & queue_dma_alignment(q))
1351 return ERR_PTR(-EINVAL);
1352 }
1353
1354 if (!nr_pages)
1355 return ERR_PTR(-EINVAL);
1356
1357 bio = bio_kmalloc(gfp_mask, nr_pages);
1358 if (!bio)
1359 return ERR_PTR(-ENOMEM);
1360
1361 ret = -ENOMEM;
1362 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1363 if (!pages)
1364 goto out;
1365
1366 iov_for_each(iov, i, *iter) {
1367 unsigned long uaddr = (unsigned long) iov.iov_base;
1368 unsigned long len = iov.iov_len;
1369 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1370 unsigned long start = uaddr >> PAGE_SHIFT;
1371 const int local_nr_pages = end - start;
1372 const int page_limit = cur_page + local_nr_pages;
1373
1374 ret = get_user_pages_fast(uaddr, local_nr_pages,
1375 (iter->type & WRITE) != WRITE,
1376 &pages[cur_page]);
1377 if (ret < local_nr_pages) {
1378 ret = -EFAULT;
1379 goto out_unmap;
1380 }
1381
1382 offset = offset_in_page(uaddr);
1383 for (j = cur_page; j < page_limit; j++) {
1384 unsigned int bytes = PAGE_SIZE - offset;
1385
1386 if (len <= 0)
1387 break;
1388
1389 if (bytes > len)
1390 bytes = len;
1391
1392 /*
1393 * sorry...
1394 */
1395 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1396 bytes)
1397 break;
1398
1399 len -= bytes;
1400 offset = 0;
1401 }
1402
1403 cur_page = j;
1404 /*
1405 * release the pages we didn't map into the bio, if any
1406 */
1407 while (j < page_limit)
1408 put_page(pages[j++]);
1409 }
1410
1411 kfree(pages);
1412
1413 bio_set_flag(bio, BIO_USER_MAPPED);
1414
1415 /*
1416 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1417 * it would normally disappear when its bi_end_io is run.
1418 * however, we need it for the unmap, so grab an extra
1419 * reference to it
1420 */
1421 bio_get(bio);
1422 return bio;
1423
1424 out_unmap:
1425 for (j = 0; j < nr_pages; j++) {
1426 if (!pages[j])
1427 break;
1428 put_page(pages[j]);
1429 }
1430 out:
1431 kfree(pages);
1432 bio_put(bio);
1433 return ERR_PTR(ret);
1434 }
1435
1436 static void __bio_unmap_user(struct bio *bio)
1437 {
1438 struct bio_vec *bvec;
1439 int i;
1440
1441 /*
1442 * make sure we dirty pages we wrote to
1443 */
1444 bio_for_each_segment_all(bvec, bio, i) {
1445 if (bio_data_dir(bio) == READ)
1446 set_page_dirty_lock(bvec->bv_page);
1447
1448 put_page(bvec->bv_page);
1449 }
1450
1451 bio_put(bio);
1452 }
1453
1454 /**
1455 * bio_unmap_user - unmap a bio
1456 * @bio: the bio being unmapped
1457 *
1458 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1459 * process context.
1460 *
1461 * bio_unmap_user() may sleep.
1462 */
1463 void bio_unmap_user(struct bio *bio)
1464 {
1465 __bio_unmap_user(bio);
1466 bio_put(bio);
1467 }
1468
1469 static void bio_map_kern_endio(struct bio *bio)
1470 {
1471 bio_put(bio);
1472 }
1473
1474 /**
1475 * bio_map_kern - map kernel address into bio
1476 * @q: the struct request_queue for the bio
1477 * @data: pointer to buffer to map
1478 * @len: length in bytes
1479 * @gfp_mask: allocation flags for bio allocation
1480 *
1481 * Map the kernel address into a bio suitable for io to a block
1482 * device. Returns an error pointer in case of error.
1483 */
1484 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1485 gfp_t gfp_mask)
1486 {
1487 unsigned long kaddr = (unsigned long)data;
1488 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1489 unsigned long start = kaddr >> PAGE_SHIFT;
1490 const int nr_pages = end - start;
1491 int offset, i;
1492 struct bio *bio;
1493
1494 bio = bio_kmalloc(gfp_mask, nr_pages);
1495 if (!bio)
1496 return ERR_PTR(-ENOMEM);
1497
1498 offset = offset_in_page(kaddr);
1499 for (i = 0; i < nr_pages; i++) {
1500 unsigned int bytes = PAGE_SIZE - offset;
1501
1502 if (len <= 0)
1503 break;
1504
1505 if (bytes > len)
1506 bytes = len;
1507
1508 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1509 offset) < bytes) {
1510 /* we don't support partial mappings */
1511 bio_put(bio);
1512 return ERR_PTR(-EINVAL);
1513 }
1514
1515 data += bytes;
1516 len -= bytes;
1517 offset = 0;
1518 }
1519
1520 bio->bi_end_io = bio_map_kern_endio;
1521 return bio;
1522 }
1523 EXPORT_SYMBOL(bio_map_kern);
1524
1525 static void bio_copy_kern_endio(struct bio *bio)
1526 {
1527 bio_free_pages(bio);
1528 bio_put(bio);
1529 }
1530
1531 static void bio_copy_kern_endio_read(struct bio *bio)
1532 {
1533 char *p = bio->bi_private;
1534 struct bio_vec *bvec;
1535 int i;
1536
1537 bio_for_each_segment_all(bvec, bio, i) {
1538 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1539 p += bvec->bv_len;
1540 }
1541
1542 bio_copy_kern_endio(bio);
1543 }
1544
1545 /**
1546 * bio_copy_kern - copy kernel address into bio
1547 * @q: the struct request_queue for the bio
1548 * @data: pointer to buffer to copy
1549 * @len: length in bytes
1550 * @gfp_mask: allocation flags for bio and page allocation
1551 * @reading: data direction is READ
1552 *
1553 * copy the kernel address into a bio suitable for io to a block
1554 * device. Returns an error pointer in case of error.
1555 */
1556 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1557 gfp_t gfp_mask, int reading)
1558 {
1559 unsigned long kaddr = (unsigned long)data;
1560 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1561 unsigned long start = kaddr >> PAGE_SHIFT;
1562 struct bio *bio;
1563 void *p = data;
1564 int nr_pages = 0;
1565
1566 /*
1567 * Overflow, abort
1568 */
1569 if (end < start)
1570 return ERR_PTR(-EINVAL);
1571
1572 nr_pages = end - start;
1573 bio = bio_kmalloc(gfp_mask, nr_pages);
1574 if (!bio)
1575 return ERR_PTR(-ENOMEM);
1576
1577 while (len) {
1578 struct page *page;
1579 unsigned int bytes = PAGE_SIZE;
1580
1581 if (bytes > len)
1582 bytes = len;
1583
1584 page = alloc_page(q->bounce_gfp | gfp_mask);
1585 if (!page)
1586 goto cleanup;
1587
1588 if (!reading)
1589 memcpy(page_address(page), p, bytes);
1590
1591 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1592 break;
1593
1594 len -= bytes;
1595 p += bytes;
1596 }
1597
1598 if (reading) {
1599 bio->bi_end_io = bio_copy_kern_endio_read;
1600 bio->bi_private = data;
1601 } else {
1602 bio->bi_end_io = bio_copy_kern_endio;
1603 }
1604
1605 return bio;
1606
1607 cleanup:
1608 bio_free_pages(bio);
1609 bio_put(bio);
1610 return ERR_PTR(-ENOMEM);
1611 }
1612
1613 /*
1614 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1615 * for performing direct-IO in BIOs.
1616 *
1617 * The problem is that we cannot run set_page_dirty() from interrupt context
1618 * because the required locks are not interrupt-safe. So what we can do is to
1619 * mark the pages dirty _before_ performing IO. And in interrupt context,
1620 * check that the pages are still dirty. If so, fine. If not, redirty them
1621 * in process context.
1622 *
1623 * We special-case compound pages here: normally this means reads into hugetlb
1624 * pages. The logic in here doesn't really work right for compound pages
1625 * because the VM does not uniformly chase down the head page in all cases.
1626 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1627 * handle them at all. So we skip compound pages here at an early stage.
1628 *
1629 * Note that this code is very hard to test under normal circumstances because
1630 * direct-io pins the pages with get_user_pages(). This makes
1631 * is_page_cache_freeable return false, and the VM will not clean the pages.
1632 * But other code (eg, flusher threads) could clean the pages if they are mapped
1633 * pagecache.
1634 *
1635 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1636 * deferred bio dirtying paths.
1637 */
1638
1639 /*
1640 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1641 */
1642 void bio_set_pages_dirty(struct bio *bio)
1643 {
1644 struct bio_vec *bvec;
1645 int i;
1646
1647 bio_for_each_segment_all(bvec, bio, i) {
1648 struct page *page = bvec->bv_page;
1649
1650 if (page && !PageCompound(page))
1651 set_page_dirty_lock(page);
1652 }
1653 }
1654
1655 static void bio_release_pages(struct bio *bio)
1656 {
1657 struct bio_vec *bvec;
1658 int i;
1659
1660 bio_for_each_segment_all(bvec, bio, i) {
1661 struct page *page = bvec->bv_page;
1662
1663 if (page)
1664 put_page(page);
1665 }
1666 }
1667
1668 /*
1669 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1670 * If they are, then fine. If, however, some pages are clean then they must
1671 * have been written out during the direct-IO read. So we take another ref on
1672 * the BIO and the offending pages and re-dirty the pages in process context.
1673 *
1674 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1675 * here on. It will run one put_page() against each page and will run one
1676 * bio_put() against the BIO.
1677 */
1678
1679 static void bio_dirty_fn(struct work_struct *work);
1680
1681 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1682 static DEFINE_SPINLOCK(bio_dirty_lock);
1683 static struct bio *bio_dirty_list;
1684
1685 /*
1686 * This runs in process context
1687 */
1688 static void bio_dirty_fn(struct work_struct *work)
1689 {
1690 unsigned long flags;
1691 struct bio *bio;
1692
1693 spin_lock_irqsave(&bio_dirty_lock, flags);
1694 bio = bio_dirty_list;
1695 bio_dirty_list = NULL;
1696 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1697
1698 while (bio) {
1699 struct bio *next = bio->bi_private;
1700
1701 bio_set_pages_dirty(bio);
1702 bio_release_pages(bio);
1703 bio_put(bio);
1704 bio = next;
1705 }
1706 }
1707
1708 void bio_check_pages_dirty(struct bio *bio)
1709 {
1710 struct bio_vec *bvec;
1711 int nr_clean_pages = 0;
1712 int i;
1713
1714 bio_for_each_segment_all(bvec, bio, i) {
1715 struct page *page = bvec->bv_page;
1716
1717 if (PageDirty(page) || PageCompound(page)) {
1718 put_page(page);
1719 bvec->bv_page = NULL;
1720 } else {
1721 nr_clean_pages++;
1722 }
1723 }
1724
1725 if (nr_clean_pages) {
1726 unsigned long flags;
1727
1728 spin_lock_irqsave(&bio_dirty_lock, flags);
1729 bio->bi_private = bio_dirty_list;
1730 bio_dirty_list = bio;
1731 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1732 schedule_work(&bio_dirty_work);
1733 } else {
1734 bio_put(bio);
1735 }
1736 }
1737
1738 void generic_start_io_acct(int rw, unsigned long sectors,
1739 struct hd_struct *part)
1740 {
1741 int cpu = part_stat_lock();
1742
1743 part_round_stats(cpu, part);
1744 part_stat_inc(cpu, part, ios[rw]);
1745 part_stat_add(cpu, part, sectors[rw], sectors);
1746 part_inc_in_flight(part, rw);
1747
1748 part_stat_unlock();
1749 }
1750 EXPORT_SYMBOL(generic_start_io_acct);
1751
1752 void generic_end_io_acct(int rw, struct hd_struct *part,
1753 unsigned long start_time)
1754 {
1755 unsigned long duration = jiffies - start_time;
1756 int cpu = part_stat_lock();
1757
1758 part_stat_add(cpu, part, ticks[rw], duration);
1759 part_round_stats(cpu, part);
1760 part_dec_in_flight(part, rw);
1761
1762 part_stat_unlock();
1763 }
1764 EXPORT_SYMBOL(generic_end_io_acct);
1765
1766 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1767 void bio_flush_dcache_pages(struct bio *bi)
1768 {
1769 struct bio_vec bvec;
1770 struct bvec_iter iter;
1771
1772 bio_for_each_segment(bvec, bi, iter)
1773 flush_dcache_page(bvec.bv_page);
1774 }
1775 EXPORT_SYMBOL(bio_flush_dcache_pages);
1776 #endif
1777
1778 static inline bool bio_remaining_done(struct bio *bio)
1779 {
1780 /*
1781 * If we're not chaining, then ->__bi_remaining is always 1 and
1782 * we always end io on the first invocation.
1783 */
1784 if (!bio_flagged(bio, BIO_CHAIN))
1785 return true;
1786
1787 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1788
1789 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1790 bio_clear_flag(bio, BIO_CHAIN);
1791 return true;
1792 }
1793
1794 return false;
1795 }
1796
1797 /**
1798 * bio_endio - end I/O on a bio
1799 * @bio: bio
1800 *
1801 * Description:
1802 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1803 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1804 * bio unless they own it and thus know that it has an end_io function.
1805 *
1806 * bio_endio() can be called several times on a bio that has been chained
1807 * using bio_chain(). The ->bi_end_io() function will only be called the
1808 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1809 * generated if BIO_TRACE_COMPLETION is set.
1810 **/
1811 void bio_endio(struct bio *bio)
1812 {
1813 again:
1814 if (!bio_remaining_done(bio))
1815 return;
1816
1817 /*
1818 * Need to have a real endio function for chained bios, otherwise
1819 * various corner cases will break (like stacking block devices that
1820 * save/restore bi_end_io) - however, we want to avoid unbounded
1821 * recursion and blowing the stack. Tail call optimization would
1822 * handle this, but compiling with frame pointers also disables
1823 * gcc's sibling call optimization.
1824 */
1825 if (bio->bi_end_io == bio_chain_endio) {
1826 bio = __bio_chain_endio(bio);
1827 goto again;
1828 }
1829
1830 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1831 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio,
1832 blk_status_to_errno(bio->bi_status));
1833 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1834 }
1835
1836 blk_throtl_bio_endio(bio);
1837 if (bio->bi_end_io)
1838 bio->bi_end_io(bio);
1839 }
1840 EXPORT_SYMBOL(bio_endio);
1841
1842 /**
1843 * bio_split - split a bio
1844 * @bio: bio to split
1845 * @sectors: number of sectors to split from the front of @bio
1846 * @gfp: gfp mask
1847 * @bs: bio set to allocate from
1848 *
1849 * Allocates and returns a new bio which represents @sectors from the start of
1850 * @bio, and updates @bio to represent the remaining sectors.
1851 *
1852 * Unless this is a discard request the newly allocated bio will point
1853 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1854 * @bio is not freed before the split.
1855 */
1856 struct bio *bio_split(struct bio *bio, int sectors,
1857 gfp_t gfp, struct bio_set *bs)
1858 {
1859 struct bio *split = NULL;
1860
1861 BUG_ON(sectors <= 0);
1862 BUG_ON(sectors >= bio_sectors(bio));
1863
1864 split = bio_clone_fast(bio, gfp, bs);
1865 if (!split)
1866 return NULL;
1867
1868 split->bi_iter.bi_size = sectors << 9;
1869
1870 if (bio_integrity(split))
1871 bio_integrity_trim(split, 0, sectors);
1872
1873 bio_advance(bio, split->bi_iter.bi_size);
1874
1875 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1876 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1877
1878 return split;
1879 }
1880 EXPORT_SYMBOL(bio_split);
1881
1882 /**
1883 * bio_trim - trim a bio
1884 * @bio: bio to trim
1885 * @offset: number of sectors to trim from the front of @bio
1886 * @size: size we want to trim @bio to, in sectors
1887 */
1888 void bio_trim(struct bio *bio, int offset, int size)
1889 {
1890 /* 'bio' is a cloned bio which we need to trim to match
1891 * the given offset and size.
1892 */
1893
1894 size <<= 9;
1895 if (offset == 0 && size == bio->bi_iter.bi_size)
1896 return;
1897
1898 bio_clear_flag(bio, BIO_SEG_VALID);
1899
1900 bio_advance(bio, offset << 9);
1901
1902 bio->bi_iter.bi_size = size;
1903 }
1904 EXPORT_SYMBOL_GPL(bio_trim);
1905
1906 /*
1907 * create memory pools for biovec's in a bio_set.
1908 * use the global biovec slabs created for general use.
1909 */
1910 mempool_t *biovec_create_pool(int pool_entries)
1911 {
1912 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1913
1914 return mempool_create_slab_pool(pool_entries, bp->slab);
1915 }
1916
1917 void bioset_free(struct bio_set *bs)
1918 {
1919 if (bs->rescue_workqueue)
1920 destroy_workqueue(bs->rescue_workqueue);
1921
1922 if (bs->bio_pool)
1923 mempool_destroy(bs->bio_pool);
1924
1925 if (bs->bvec_pool)
1926 mempool_destroy(bs->bvec_pool);
1927
1928 bioset_integrity_free(bs);
1929 bio_put_slab(bs);
1930
1931 kfree(bs);
1932 }
1933 EXPORT_SYMBOL(bioset_free);
1934
1935 /**
1936 * bioset_create - Create a bio_set
1937 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1938 * @front_pad: Number of bytes to allocate in front of the returned bio
1939 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1940 * and %BIOSET_NEED_RESCUER
1941 *
1942 * Description:
1943 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1944 * to ask for a number of bytes to be allocated in front of the bio.
1945 * Front pad allocation is useful for embedding the bio inside
1946 * another structure, to avoid allocating extra data to go with the bio.
1947 * Note that the bio must be embedded at the END of that structure always,
1948 * or things will break badly.
1949 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1950 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1951 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1952 * dispatch queued requests when the mempool runs out of space.
1953 *
1954 */
1955 struct bio_set *bioset_create(unsigned int pool_size,
1956 unsigned int front_pad,
1957 int flags)
1958 {
1959 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1960 struct bio_set *bs;
1961
1962 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1963 if (!bs)
1964 return NULL;
1965
1966 bs->front_pad = front_pad;
1967
1968 spin_lock_init(&bs->rescue_lock);
1969 bio_list_init(&bs->rescue_list);
1970 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1971
1972 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1973 if (!bs->bio_slab) {
1974 kfree(bs);
1975 return NULL;
1976 }
1977
1978 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1979 if (!bs->bio_pool)
1980 goto bad;
1981
1982 if (flags & BIOSET_NEED_BVECS) {
1983 bs->bvec_pool = biovec_create_pool(pool_size);
1984 if (!bs->bvec_pool)
1985 goto bad;
1986 }
1987
1988 if (!(flags & BIOSET_NEED_RESCUER))
1989 return bs;
1990
1991 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1992 if (!bs->rescue_workqueue)
1993 goto bad;
1994
1995 return bs;
1996 bad:
1997 bioset_free(bs);
1998 return NULL;
1999 }
2000 EXPORT_SYMBOL(bioset_create);
2001
2002 #ifdef CONFIG_BLK_CGROUP
2003
2004 /**
2005 * bio_associate_blkcg - associate a bio with the specified blkcg
2006 * @bio: target bio
2007 * @blkcg_css: css of the blkcg to associate
2008 *
2009 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2010 * treat @bio as if it were issued by a task which belongs to the blkcg.
2011 *
2012 * This function takes an extra reference of @blkcg_css which will be put
2013 * when @bio is released. The caller must own @bio and is responsible for
2014 * synchronizing calls to this function.
2015 */
2016 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2017 {
2018 if (unlikely(bio->bi_css))
2019 return -EBUSY;
2020 css_get(blkcg_css);
2021 bio->bi_css = blkcg_css;
2022 return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
2025
2026 /**
2027 * bio_associate_current - associate a bio with %current
2028 * @bio: target bio
2029 *
2030 * Associate @bio with %current if it hasn't been associated yet. Block
2031 * layer will treat @bio as if it were issued by %current no matter which
2032 * task actually issues it.
2033 *
2034 * This function takes an extra reference of @task's io_context and blkcg
2035 * which will be put when @bio is released. The caller must own @bio,
2036 * ensure %current->io_context exists, and is responsible for synchronizing
2037 * calls to this function.
2038 */
2039 int bio_associate_current(struct bio *bio)
2040 {
2041 struct io_context *ioc;
2042
2043 if (bio->bi_css)
2044 return -EBUSY;
2045
2046 ioc = current->io_context;
2047 if (!ioc)
2048 return -ENOENT;
2049
2050 get_io_context_active(ioc);
2051 bio->bi_ioc = ioc;
2052 bio->bi_css = task_get_css(current, io_cgrp_id);
2053 return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(bio_associate_current);
2056
2057 /**
2058 * bio_disassociate_task - undo bio_associate_current()
2059 * @bio: target bio
2060 */
2061 void bio_disassociate_task(struct bio *bio)
2062 {
2063 if (bio->bi_ioc) {
2064 put_io_context(bio->bi_ioc);
2065 bio->bi_ioc = NULL;
2066 }
2067 if (bio->bi_css) {
2068 css_put(bio->bi_css);
2069 bio->bi_css = NULL;
2070 }
2071 }
2072
2073 /**
2074 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2075 * @dst: destination bio
2076 * @src: source bio
2077 */
2078 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2079 {
2080 if (src->bi_css)
2081 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2082 }
2083
2084 #endif /* CONFIG_BLK_CGROUP */
2085
2086 static void __init biovec_init_slabs(void)
2087 {
2088 int i;
2089
2090 for (i = 0; i < BVEC_POOL_NR; i++) {
2091 int size;
2092 struct biovec_slab *bvs = bvec_slabs + i;
2093
2094 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2095 bvs->slab = NULL;
2096 continue;
2097 }
2098
2099 size = bvs->nr_vecs * sizeof(struct bio_vec);
2100 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2101 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2102 }
2103 }
2104
2105 static int __init init_bio(void)
2106 {
2107 bio_slab_max = 2;
2108 bio_slab_nr = 0;
2109 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2110 if (!bio_slabs)
2111 panic("bio: can't allocate bios\n");
2112
2113 bio_integrity_init();
2114 biovec_init_slabs();
2115
2116 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
2117 if (!fs_bio_set)
2118 panic("bio: can't allocate bios\n");
2119
2120 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2121 panic("bio: can't create integrity pool\n");
2122
2123 return 0;
2124 }
2125 subsys_initcall(init_bio);