]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
block: don't kick empty queue in blk_drain_queue()
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35
36 #include "blk.h"
37
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41
42 /*
43 * For the allocated request tables
44 */
45 static struct kmem_cache *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 struct kmem_cache *blk_requestq_cachep;
51
52 /*
53 * Controlling structure to kblockd
54 */
55 static struct workqueue_struct *kblockd_workqueue;
56
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
62
63 if (!blk_do_io_stat(rq))
64 return;
65
66 cpu = part_stat_lock();
67
68 if (!new_io) {
69 part = rq->part;
70 part_stat_inc(cpu, part, merges[rw]);
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 if (!hd_struct_try_get(part)) {
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
83 hd_struct_get(part);
84 }
85 part_round_stats(cpu, part);
86 part_inc_in_flight(part, rw);
87 rq->part = part;
88 }
89
90 part_stat_unlock();
91 }
92
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106 }
107
108 /**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118 {
119 struct backing_dev_info *ret = NULL;
120 struct request_queue *q = bdev_get_queue(bdev);
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125 }
126 EXPORT_SYMBOL(blk_get_backing_dev_info);
127
128 void blk_rq_init(struct request_queue *q, struct request *rq)
129 {
130 memset(rq, 0, sizeof(*rq));
131
132 INIT_LIST_HEAD(&rq->queuelist);
133 INIT_LIST_HEAD(&rq->timeout_list);
134 rq->cpu = -1;
135 rq->q = q;
136 rq->__sector = (sector_t) -1;
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
139 rq->cmd = rq->__cmd;
140 rq->cmd_len = BLK_MAX_CDB;
141 rq->tag = -1;
142 rq->ref_count = 1;
143 rq->start_time = jiffies;
144 set_start_time_ns(rq);
145 rq->part = NULL;
146 }
147 EXPORT_SYMBOL(blk_rq_init);
148
149 static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
151 {
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
156
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
161 }
162
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
165
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
168
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
171
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
175 }
176
177 void blk_dump_rq_flags(struct request *rq, char *msg)
178 {
179 int bit;
180
181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
184
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
190
191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
192 printk(KERN_INFO " cdb: ");
193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
196 }
197 }
198 EXPORT_SYMBOL(blk_dump_rq_flags);
199
200 static void blk_delay_work(struct work_struct *work)
201 {
202 struct request_queue *q;
203
204 q = container_of(work, struct request_queue, delay_work.work);
205 spin_lock_irq(q->queue_lock);
206 __blk_run_queue(q);
207 spin_unlock_irq(q->queue_lock);
208 }
209
210 /**
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
214 *
215 * Description:
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
219 */
220 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
221 {
222 queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 msecs_to_jiffies(msecs));
224 }
225 EXPORT_SYMBOL(blk_delay_queue);
226
227 /**
228 * blk_start_queue - restart a previously stopped queue
229 * @q: The &struct request_queue in question
230 *
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 **/
236 void blk_start_queue(struct request_queue *q)
237 {
238 WARN_ON(!irqs_disabled());
239
240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
241 __blk_run_queue(q);
242 }
243 EXPORT_SYMBOL(blk_start_queue);
244
245 /**
246 * blk_stop_queue - stop a queue
247 * @q: The &struct request_queue in question
248 *
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 **/
259 void blk_stop_queue(struct request_queue *q)
260 {
261 __cancel_delayed_work(&q->delay_work);
262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
263 }
264 EXPORT_SYMBOL(blk_stop_queue);
265
266 /**
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
269 *
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
275 * that the callbacks might use. The caller must already have made sure
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
278 *
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
282 *
283 */
284 void blk_sync_queue(struct request_queue *q)
285 {
286 del_timer_sync(&q->timeout);
287 cancel_delayed_work_sync(&q->delay_work);
288 }
289 EXPORT_SYMBOL(blk_sync_queue);
290
291 /**
292 * __blk_run_queue - run a single device queue
293 * @q: The queue to run
294 *
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
297 * held and interrupts disabled.
298 */
299 void __blk_run_queue(struct request_queue *q)
300 {
301 if (unlikely(blk_queue_stopped(q)))
302 return;
303
304 q->request_fn(q);
305 }
306 EXPORT_SYMBOL(__blk_run_queue);
307
308 /**
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
311 *
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us.
315 */
316 void blk_run_queue_async(struct request_queue *q)
317 {
318 if (likely(!blk_queue_stopped(q))) {
319 __cancel_delayed_work(&q->delay_work);
320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
321 }
322 }
323 EXPORT_SYMBOL(blk_run_queue_async);
324
325 /**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
332 */
333 void blk_run_queue(struct request_queue *q)
334 {
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
338 __blk_run_queue(q);
339 spin_unlock_irqrestore(q->queue_lock, flags);
340 }
341 EXPORT_SYMBOL(blk_run_queue);
342
343 void blk_put_queue(struct request_queue *q)
344 {
345 kobject_put(&q->kobj);
346 }
347 EXPORT_SYMBOL(blk_put_queue);
348
349 /**
350 * blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
353 *
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
357 */
358 void blk_drain_queue(struct request_queue *q, bool drain_all)
359 {
360 while (true) {
361 int nr_rqs;
362
363 spin_lock_irq(q->queue_lock);
364
365 elv_drain_elevator(q);
366 if (drain_all)
367 blk_throtl_drain(q);
368
369 /*
370 * This function might be called on a queue which failed
371 * driver init after queue creation. Some drivers
372 * (e.g. fd) get unhappy in such cases. Kick queue iff
373 * dispatch queue has something on it.
374 */
375 if (!list_empty(&q->queue_head))
376 __blk_run_queue(q);
377
378 if (drain_all)
379 nr_rqs = q->rq.count[0] + q->rq.count[1];
380 else
381 nr_rqs = q->rq.elvpriv;
382
383 spin_unlock_irq(q->queue_lock);
384
385 if (!nr_rqs)
386 break;
387 msleep(10);
388 }
389 }
390
391 /**
392 * blk_cleanup_queue - shutdown a request queue
393 * @q: request queue to shutdown
394 *
395 * Mark @q DEAD, drain all pending requests, destroy and put it. All
396 * future requests will be failed immediately with -ENODEV.
397 */
398 void blk_cleanup_queue(struct request_queue *q)
399 {
400 spinlock_t *lock = q->queue_lock;
401
402 /* mark @q DEAD, no new request or merges will be allowed afterwards */
403 mutex_lock(&q->sysfs_lock);
404 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
405
406 spin_lock_irq(lock);
407 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
408 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
409 queue_flag_set(QUEUE_FLAG_DEAD, q);
410
411 if (q->queue_lock != &q->__queue_lock)
412 q->queue_lock = &q->__queue_lock;
413
414 spin_unlock_irq(lock);
415 mutex_unlock(&q->sysfs_lock);
416
417 /*
418 * Drain all requests queued before DEAD marking. The caller might
419 * be trying to tear down @q before its elevator is initialized, in
420 * which case we don't want to call into draining.
421 */
422 if (q->elevator)
423 blk_drain_queue(q, true);
424
425 /* @q won't process any more request, flush async actions */
426 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
427 blk_sync_queue(q);
428
429 /* @q is and will stay empty, shutdown and put */
430 blk_put_queue(q);
431 }
432 EXPORT_SYMBOL(blk_cleanup_queue);
433
434 static int blk_init_free_list(struct request_queue *q)
435 {
436 struct request_list *rl = &q->rq;
437
438 if (unlikely(rl->rq_pool))
439 return 0;
440
441 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
442 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
443 rl->elvpriv = 0;
444 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
445 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
446
447 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
448 mempool_free_slab, request_cachep, q->node);
449
450 if (!rl->rq_pool)
451 return -ENOMEM;
452
453 return 0;
454 }
455
456 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
457 {
458 return blk_alloc_queue_node(gfp_mask, -1);
459 }
460 EXPORT_SYMBOL(blk_alloc_queue);
461
462 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
463 {
464 struct request_queue *q;
465 int err;
466
467 q = kmem_cache_alloc_node(blk_requestq_cachep,
468 gfp_mask | __GFP_ZERO, node_id);
469 if (!q)
470 return NULL;
471
472 q->backing_dev_info.ra_pages =
473 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
474 q->backing_dev_info.state = 0;
475 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
476 q->backing_dev_info.name = "block";
477 q->node = node_id;
478
479 err = bdi_init(&q->backing_dev_info);
480 if (err) {
481 kmem_cache_free(blk_requestq_cachep, q);
482 return NULL;
483 }
484
485 if (blk_throtl_init(q)) {
486 kmem_cache_free(blk_requestq_cachep, q);
487 return NULL;
488 }
489
490 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
491 laptop_mode_timer_fn, (unsigned long) q);
492 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
493 INIT_LIST_HEAD(&q->timeout_list);
494 INIT_LIST_HEAD(&q->flush_queue[0]);
495 INIT_LIST_HEAD(&q->flush_queue[1]);
496 INIT_LIST_HEAD(&q->flush_data_in_flight);
497 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
498
499 kobject_init(&q->kobj, &blk_queue_ktype);
500
501 mutex_init(&q->sysfs_lock);
502 spin_lock_init(&q->__queue_lock);
503
504 /*
505 * By default initialize queue_lock to internal lock and driver can
506 * override it later if need be.
507 */
508 q->queue_lock = &q->__queue_lock;
509
510 return q;
511 }
512 EXPORT_SYMBOL(blk_alloc_queue_node);
513
514 /**
515 * blk_init_queue - prepare a request queue for use with a block device
516 * @rfn: The function to be called to process requests that have been
517 * placed on the queue.
518 * @lock: Request queue spin lock
519 *
520 * Description:
521 * If a block device wishes to use the standard request handling procedures,
522 * which sorts requests and coalesces adjacent requests, then it must
523 * call blk_init_queue(). The function @rfn will be called when there
524 * are requests on the queue that need to be processed. If the device
525 * supports plugging, then @rfn may not be called immediately when requests
526 * are available on the queue, but may be called at some time later instead.
527 * Plugged queues are generally unplugged when a buffer belonging to one
528 * of the requests on the queue is needed, or due to memory pressure.
529 *
530 * @rfn is not required, or even expected, to remove all requests off the
531 * queue, but only as many as it can handle at a time. If it does leave
532 * requests on the queue, it is responsible for arranging that the requests
533 * get dealt with eventually.
534 *
535 * The queue spin lock must be held while manipulating the requests on the
536 * request queue; this lock will be taken also from interrupt context, so irq
537 * disabling is needed for it.
538 *
539 * Function returns a pointer to the initialized request queue, or %NULL if
540 * it didn't succeed.
541 *
542 * Note:
543 * blk_init_queue() must be paired with a blk_cleanup_queue() call
544 * when the block device is deactivated (such as at module unload).
545 **/
546
547 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
548 {
549 return blk_init_queue_node(rfn, lock, -1);
550 }
551 EXPORT_SYMBOL(blk_init_queue);
552
553 struct request_queue *
554 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
555 {
556 struct request_queue *uninit_q, *q;
557
558 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
559 if (!uninit_q)
560 return NULL;
561
562 q = blk_init_allocated_queue(uninit_q, rfn, lock);
563 if (!q)
564 blk_cleanup_queue(uninit_q);
565
566 return q;
567 }
568 EXPORT_SYMBOL(blk_init_queue_node);
569
570 struct request_queue *
571 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
572 spinlock_t *lock)
573 {
574 if (!q)
575 return NULL;
576
577 if (blk_init_free_list(q))
578 return NULL;
579
580 q->request_fn = rfn;
581 q->prep_rq_fn = NULL;
582 q->unprep_rq_fn = NULL;
583 q->queue_flags = QUEUE_FLAG_DEFAULT;
584
585 /* Override internal queue lock with supplied lock pointer */
586 if (lock)
587 q->queue_lock = lock;
588
589 /*
590 * This also sets hw/phys segments, boundary and size
591 */
592 blk_queue_make_request(q, blk_queue_bio);
593
594 q->sg_reserved_size = INT_MAX;
595
596 /*
597 * all done
598 */
599 if (!elevator_init(q, NULL)) {
600 blk_queue_congestion_threshold(q);
601 return q;
602 }
603
604 return NULL;
605 }
606 EXPORT_SYMBOL(blk_init_allocated_queue);
607
608 int blk_get_queue(struct request_queue *q)
609 {
610 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
611 kobject_get(&q->kobj);
612 return 0;
613 }
614
615 return 1;
616 }
617 EXPORT_SYMBOL(blk_get_queue);
618
619 static inline void blk_free_request(struct request_queue *q, struct request *rq)
620 {
621 if (rq->cmd_flags & REQ_ELVPRIV)
622 elv_put_request(q, rq);
623 mempool_free(rq, q->rq.rq_pool);
624 }
625
626 static struct request *
627 blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
628 {
629 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
630
631 if (!rq)
632 return NULL;
633
634 blk_rq_init(q, rq);
635
636 rq->cmd_flags = flags | REQ_ALLOCED;
637
638 if ((flags & REQ_ELVPRIV) &&
639 unlikely(elv_set_request(q, rq, gfp_mask))) {
640 mempool_free(rq, q->rq.rq_pool);
641 return NULL;
642 }
643
644 return rq;
645 }
646
647 /*
648 * ioc_batching returns true if the ioc is a valid batching request and
649 * should be given priority access to a request.
650 */
651 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
652 {
653 if (!ioc)
654 return 0;
655
656 /*
657 * Make sure the process is able to allocate at least 1 request
658 * even if the batch times out, otherwise we could theoretically
659 * lose wakeups.
660 */
661 return ioc->nr_batch_requests == q->nr_batching ||
662 (ioc->nr_batch_requests > 0
663 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
664 }
665
666 /*
667 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
668 * will cause the process to be a "batcher" on all queues in the system. This
669 * is the behaviour we want though - once it gets a wakeup it should be given
670 * a nice run.
671 */
672 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
673 {
674 if (!ioc || ioc_batching(q, ioc))
675 return;
676
677 ioc->nr_batch_requests = q->nr_batching;
678 ioc->last_waited = jiffies;
679 }
680
681 static void __freed_request(struct request_queue *q, int sync)
682 {
683 struct request_list *rl = &q->rq;
684
685 if (rl->count[sync] < queue_congestion_off_threshold(q))
686 blk_clear_queue_congested(q, sync);
687
688 if (rl->count[sync] + 1 <= q->nr_requests) {
689 if (waitqueue_active(&rl->wait[sync]))
690 wake_up(&rl->wait[sync]);
691
692 blk_clear_queue_full(q, sync);
693 }
694 }
695
696 /*
697 * A request has just been released. Account for it, update the full and
698 * congestion status, wake up any waiters. Called under q->queue_lock.
699 */
700 static void freed_request(struct request_queue *q, unsigned int flags)
701 {
702 struct request_list *rl = &q->rq;
703 int sync = rw_is_sync(flags);
704
705 rl->count[sync]--;
706 if (flags & REQ_ELVPRIV)
707 rl->elvpriv--;
708
709 __freed_request(q, sync);
710
711 if (unlikely(rl->starved[sync ^ 1]))
712 __freed_request(q, sync ^ 1);
713 }
714
715 /*
716 * Determine if elevator data should be initialized when allocating the
717 * request associated with @bio.
718 */
719 static bool blk_rq_should_init_elevator(struct bio *bio)
720 {
721 if (!bio)
722 return true;
723
724 /*
725 * Flush requests do not use the elevator so skip initialization.
726 * This allows a request to share the flush and elevator data.
727 */
728 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
729 return false;
730
731 return true;
732 }
733
734 /**
735 * get_request - get a free request
736 * @q: request_queue to allocate request from
737 * @rw_flags: RW and SYNC flags
738 * @bio: bio to allocate request for (can be %NULL)
739 * @gfp_mask: allocation mask
740 *
741 * Get a free request from @q. This function may fail under memory
742 * pressure or if @q is dead.
743 *
744 * Must be callled with @q->queue_lock held and,
745 * Returns %NULL on failure, with @q->queue_lock held.
746 * Returns !%NULL on success, with @q->queue_lock *not held*.
747 */
748 static struct request *get_request(struct request_queue *q, int rw_flags,
749 struct bio *bio, gfp_t gfp_mask)
750 {
751 struct request *rq = NULL;
752 struct request_list *rl = &q->rq;
753 struct io_context *ioc = NULL;
754 const bool is_sync = rw_is_sync(rw_flags) != 0;
755 int may_queue;
756
757 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
758 return NULL;
759
760 may_queue = elv_may_queue(q, rw_flags);
761 if (may_queue == ELV_MQUEUE_NO)
762 goto rq_starved;
763
764 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
765 if (rl->count[is_sync]+1 >= q->nr_requests) {
766 ioc = current_io_context(GFP_ATOMIC, q->node);
767 /*
768 * The queue will fill after this allocation, so set
769 * it as full, and mark this process as "batching".
770 * This process will be allowed to complete a batch of
771 * requests, others will be blocked.
772 */
773 if (!blk_queue_full(q, is_sync)) {
774 ioc_set_batching(q, ioc);
775 blk_set_queue_full(q, is_sync);
776 } else {
777 if (may_queue != ELV_MQUEUE_MUST
778 && !ioc_batching(q, ioc)) {
779 /*
780 * The queue is full and the allocating
781 * process is not a "batcher", and not
782 * exempted by the IO scheduler
783 */
784 goto out;
785 }
786 }
787 }
788 blk_set_queue_congested(q, is_sync);
789 }
790
791 /*
792 * Only allow batching queuers to allocate up to 50% over the defined
793 * limit of requests, otherwise we could have thousands of requests
794 * allocated with any setting of ->nr_requests
795 */
796 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
797 goto out;
798
799 rl->count[is_sync]++;
800 rl->starved[is_sync] = 0;
801
802 if (blk_rq_should_init_elevator(bio) &&
803 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
804 rw_flags |= REQ_ELVPRIV;
805 rl->elvpriv++;
806 }
807
808 if (blk_queue_io_stat(q))
809 rw_flags |= REQ_IO_STAT;
810 spin_unlock_irq(q->queue_lock);
811
812 rq = blk_alloc_request(q, rw_flags, gfp_mask);
813 if (unlikely(!rq)) {
814 /*
815 * Allocation failed presumably due to memory. Undo anything
816 * we might have messed up.
817 *
818 * Allocating task should really be put onto the front of the
819 * wait queue, but this is pretty rare.
820 */
821 spin_lock_irq(q->queue_lock);
822 freed_request(q, rw_flags);
823
824 /*
825 * in the very unlikely event that allocation failed and no
826 * requests for this direction was pending, mark us starved
827 * so that freeing of a request in the other direction will
828 * notice us. another possible fix would be to split the
829 * rq mempool into READ and WRITE
830 */
831 rq_starved:
832 if (unlikely(rl->count[is_sync] == 0))
833 rl->starved[is_sync] = 1;
834
835 goto out;
836 }
837
838 /*
839 * ioc may be NULL here, and ioc_batching will be false. That's
840 * OK, if the queue is under the request limit then requests need
841 * not count toward the nr_batch_requests limit. There will always
842 * be some limit enforced by BLK_BATCH_TIME.
843 */
844 if (ioc_batching(q, ioc))
845 ioc->nr_batch_requests--;
846
847 trace_block_getrq(q, bio, rw_flags & 1);
848 out:
849 return rq;
850 }
851
852 /**
853 * get_request_wait - get a free request with retry
854 * @q: request_queue to allocate request from
855 * @rw_flags: RW and SYNC flags
856 * @bio: bio to allocate request for (can be %NULL)
857 *
858 * Get a free request from @q. This function keeps retrying under memory
859 * pressure and fails iff @q is dead.
860 *
861 * Must be callled with @q->queue_lock held and,
862 * Returns %NULL on failure, with @q->queue_lock held.
863 * Returns !%NULL on success, with @q->queue_lock *not held*.
864 */
865 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
866 struct bio *bio)
867 {
868 const bool is_sync = rw_is_sync(rw_flags) != 0;
869 struct request *rq;
870
871 rq = get_request(q, rw_flags, bio, GFP_NOIO);
872 while (!rq) {
873 DEFINE_WAIT(wait);
874 struct io_context *ioc;
875 struct request_list *rl = &q->rq;
876
877 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
878 return NULL;
879
880 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
881 TASK_UNINTERRUPTIBLE);
882
883 trace_block_sleeprq(q, bio, rw_flags & 1);
884
885 spin_unlock_irq(q->queue_lock);
886 io_schedule();
887
888 /*
889 * After sleeping, we become a "batching" process and
890 * will be able to allocate at least one request, and
891 * up to a big batch of them for a small period time.
892 * See ioc_batching, ioc_set_batching
893 */
894 ioc = current_io_context(GFP_NOIO, q->node);
895 ioc_set_batching(q, ioc);
896
897 spin_lock_irq(q->queue_lock);
898 finish_wait(&rl->wait[is_sync], &wait);
899
900 rq = get_request(q, rw_flags, bio, GFP_NOIO);
901 };
902
903 return rq;
904 }
905
906 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
907 {
908 struct request *rq;
909
910 BUG_ON(rw != READ && rw != WRITE);
911
912 spin_lock_irq(q->queue_lock);
913 if (gfp_mask & __GFP_WAIT)
914 rq = get_request_wait(q, rw, NULL);
915 else
916 rq = get_request(q, rw, NULL, gfp_mask);
917 if (!rq)
918 spin_unlock_irq(q->queue_lock);
919 /* q->queue_lock is unlocked at this point */
920
921 return rq;
922 }
923 EXPORT_SYMBOL(blk_get_request);
924
925 /**
926 * blk_make_request - given a bio, allocate a corresponding struct request.
927 * @q: target request queue
928 * @bio: The bio describing the memory mappings that will be submitted for IO.
929 * It may be a chained-bio properly constructed by block/bio layer.
930 * @gfp_mask: gfp flags to be used for memory allocation
931 *
932 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
933 * type commands. Where the struct request needs to be farther initialized by
934 * the caller. It is passed a &struct bio, which describes the memory info of
935 * the I/O transfer.
936 *
937 * The caller of blk_make_request must make sure that bi_io_vec
938 * are set to describe the memory buffers. That bio_data_dir() will return
939 * the needed direction of the request. (And all bio's in the passed bio-chain
940 * are properly set accordingly)
941 *
942 * If called under none-sleepable conditions, mapped bio buffers must not
943 * need bouncing, by calling the appropriate masked or flagged allocator,
944 * suitable for the target device. Otherwise the call to blk_queue_bounce will
945 * BUG.
946 *
947 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
948 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
949 * anything but the first bio in the chain. Otherwise you risk waiting for IO
950 * completion of a bio that hasn't been submitted yet, thus resulting in a
951 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
952 * of bio_alloc(), as that avoids the mempool deadlock.
953 * If possible a big IO should be split into smaller parts when allocation
954 * fails. Partial allocation should not be an error, or you risk a live-lock.
955 */
956 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
957 gfp_t gfp_mask)
958 {
959 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
960
961 if (unlikely(!rq))
962 return ERR_PTR(-ENOMEM);
963
964 for_each_bio(bio) {
965 struct bio *bounce_bio = bio;
966 int ret;
967
968 blk_queue_bounce(q, &bounce_bio);
969 ret = blk_rq_append_bio(q, rq, bounce_bio);
970 if (unlikely(ret)) {
971 blk_put_request(rq);
972 return ERR_PTR(ret);
973 }
974 }
975
976 return rq;
977 }
978 EXPORT_SYMBOL(blk_make_request);
979
980 /**
981 * blk_requeue_request - put a request back on queue
982 * @q: request queue where request should be inserted
983 * @rq: request to be inserted
984 *
985 * Description:
986 * Drivers often keep queueing requests until the hardware cannot accept
987 * more, when that condition happens we need to put the request back
988 * on the queue. Must be called with queue lock held.
989 */
990 void blk_requeue_request(struct request_queue *q, struct request *rq)
991 {
992 blk_delete_timer(rq);
993 blk_clear_rq_complete(rq);
994 trace_block_rq_requeue(q, rq);
995
996 if (blk_rq_tagged(rq))
997 blk_queue_end_tag(q, rq);
998
999 BUG_ON(blk_queued_rq(rq));
1000
1001 elv_requeue_request(q, rq);
1002 }
1003 EXPORT_SYMBOL(blk_requeue_request);
1004
1005 static void add_acct_request(struct request_queue *q, struct request *rq,
1006 int where)
1007 {
1008 drive_stat_acct(rq, 1);
1009 __elv_add_request(q, rq, where);
1010 }
1011
1012 /**
1013 * blk_insert_request - insert a special request into a request queue
1014 * @q: request queue where request should be inserted
1015 * @rq: request to be inserted
1016 * @at_head: insert request at head or tail of queue
1017 * @data: private data
1018 *
1019 * Description:
1020 * Many block devices need to execute commands asynchronously, so they don't
1021 * block the whole kernel from preemption during request execution. This is
1022 * accomplished normally by inserting aritficial requests tagged as
1023 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1024 * be scheduled for actual execution by the request queue.
1025 *
1026 * We have the option of inserting the head or the tail of the queue.
1027 * Typically we use the tail for new ioctls and so forth. We use the head
1028 * of the queue for things like a QUEUE_FULL message from a device, or a
1029 * host that is unable to accept a particular command.
1030 */
1031 void blk_insert_request(struct request_queue *q, struct request *rq,
1032 int at_head, void *data)
1033 {
1034 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1035 unsigned long flags;
1036
1037 /*
1038 * tell I/O scheduler that this isn't a regular read/write (ie it
1039 * must not attempt merges on this) and that it acts as a soft
1040 * barrier
1041 */
1042 rq->cmd_type = REQ_TYPE_SPECIAL;
1043
1044 rq->special = data;
1045
1046 spin_lock_irqsave(q->queue_lock, flags);
1047
1048 /*
1049 * If command is tagged, release the tag
1050 */
1051 if (blk_rq_tagged(rq))
1052 blk_queue_end_tag(q, rq);
1053
1054 add_acct_request(q, rq, where);
1055 __blk_run_queue(q);
1056 spin_unlock_irqrestore(q->queue_lock, flags);
1057 }
1058 EXPORT_SYMBOL(blk_insert_request);
1059
1060 static void part_round_stats_single(int cpu, struct hd_struct *part,
1061 unsigned long now)
1062 {
1063 if (now == part->stamp)
1064 return;
1065
1066 if (part_in_flight(part)) {
1067 __part_stat_add(cpu, part, time_in_queue,
1068 part_in_flight(part) * (now - part->stamp));
1069 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1070 }
1071 part->stamp = now;
1072 }
1073
1074 /**
1075 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1076 * @cpu: cpu number for stats access
1077 * @part: target partition
1078 *
1079 * The average IO queue length and utilisation statistics are maintained
1080 * by observing the current state of the queue length and the amount of
1081 * time it has been in this state for.
1082 *
1083 * Normally, that accounting is done on IO completion, but that can result
1084 * in more than a second's worth of IO being accounted for within any one
1085 * second, leading to >100% utilisation. To deal with that, we call this
1086 * function to do a round-off before returning the results when reading
1087 * /proc/diskstats. This accounts immediately for all queue usage up to
1088 * the current jiffies and restarts the counters again.
1089 */
1090 void part_round_stats(int cpu, struct hd_struct *part)
1091 {
1092 unsigned long now = jiffies;
1093
1094 if (part->partno)
1095 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1096 part_round_stats_single(cpu, part, now);
1097 }
1098 EXPORT_SYMBOL_GPL(part_round_stats);
1099
1100 /*
1101 * queue lock must be held
1102 */
1103 void __blk_put_request(struct request_queue *q, struct request *req)
1104 {
1105 if (unlikely(!q))
1106 return;
1107 if (unlikely(--req->ref_count))
1108 return;
1109
1110 elv_completed_request(q, req);
1111
1112 /* this is a bio leak */
1113 WARN_ON(req->bio != NULL);
1114
1115 /*
1116 * Request may not have originated from ll_rw_blk. if not,
1117 * it didn't come out of our reserved rq pools
1118 */
1119 if (req->cmd_flags & REQ_ALLOCED) {
1120 unsigned int flags = req->cmd_flags;
1121
1122 BUG_ON(!list_empty(&req->queuelist));
1123 BUG_ON(!hlist_unhashed(&req->hash));
1124
1125 blk_free_request(q, req);
1126 freed_request(q, flags);
1127 }
1128 }
1129 EXPORT_SYMBOL_GPL(__blk_put_request);
1130
1131 void blk_put_request(struct request *req)
1132 {
1133 unsigned long flags;
1134 struct request_queue *q = req->q;
1135
1136 spin_lock_irqsave(q->queue_lock, flags);
1137 __blk_put_request(q, req);
1138 spin_unlock_irqrestore(q->queue_lock, flags);
1139 }
1140 EXPORT_SYMBOL(blk_put_request);
1141
1142 /**
1143 * blk_add_request_payload - add a payload to a request
1144 * @rq: request to update
1145 * @page: page backing the payload
1146 * @len: length of the payload.
1147 *
1148 * This allows to later add a payload to an already submitted request by
1149 * a block driver. The driver needs to take care of freeing the payload
1150 * itself.
1151 *
1152 * Note that this is a quite horrible hack and nothing but handling of
1153 * discard requests should ever use it.
1154 */
1155 void blk_add_request_payload(struct request *rq, struct page *page,
1156 unsigned int len)
1157 {
1158 struct bio *bio = rq->bio;
1159
1160 bio->bi_io_vec->bv_page = page;
1161 bio->bi_io_vec->bv_offset = 0;
1162 bio->bi_io_vec->bv_len = len;
1163
1164 bio->bi_size = len;
1165 bio->bi_vcnt = 1;
1166 bio->bi_phys_segments = 1;
1167
1168 rq->__data_len = rq->resid_len = len;
1169 rq->nr_phys_segments = 1;
1170 rq->buffer = bio_data(bio);
1171 }
1172 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1173
1174 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1175 struct bio *bio)
1176 {
1177 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1178
1179 if (!ll_back_merge_fn(q, req, bio))
1180 return false;
1181
1182 trace_block_bio_backmerge(q, bio);
1183
1184 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1185 blk_rq_set_mixed_merge(req);
1186
1187 req->biotail->bi_next = bio;
1188 req->biotail = bio;
1189 req->__data_len += bio->bi_size;
1190 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1191
1192 drive_stat_acct(req, 0);
1193 elv_bio_merged(q, req, bio);
1194 return true;
1195 }
1196
1197 static bool bio_attempt_front_merge(struct request_queue *q,
1198 struct request *req, struct bio *bio)
1199 {
1200 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1201
1202 if (!ll_front_merge_fn(q, req, bio))
1203 return false;
1204
1205 trace_block_bio_frontmerge(q, bio);
1206
1207 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1208 blk_rq_set_mixed_merge(req);
1209
1210 bio->bi_next = req->bio;
1211 req->bio = bio;
1212
1213 /*
1214 * may not be valid. if the low level driver said
1215 * it didn't need a bounce buffer then it better
1216 * not touch req->buffer either...
1217 */
1218 req->buffer = bio_data(bio);
1219 req->__sector = bio->bi_sector;
1220 req->__data_len += bio->bi_size;
1221 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1222
1223 drive_stat_acct(req, 0);
1224 elv_bio_merged(q, req, bio);
1225 return true;
1226 }
1227
1228 /**
1229 * attempt_plug_merge - try to merge with %current's plugged list
1230 * @q: request_queue new bio is being queued at
1231 * @bio: new bio being queued
1232 * @request_count: out parameter for number of traversed plugged requests
1233 *
1234 * Determine whether @bio being queued on @q can be merged with a request
1235 * on %current's plugged list. Returns %true if merge was successful,
1236 * otherwise %false.
1237 *
1238 * This function is called without @q->queue_lock; however, elevator is
1239 * accessed iff there already are requests on the plugged list which in
1240 * turn guarantees validity of the elevator.
1241 *
1242 * Note that, on successful merge, elevator operation
1243 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1244 * must be ready for this.
1245 */
1246 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1247 unsigned int *request_count)
1248 {
1249 struct blk_plug *plug;
1250 struct request *rq;
1251 bool ret = false;
1252
1253 plug = current->plug;
1254 if (!plug)
1255 goto out;
1256 *request_count = 0;
1257
1258 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1259 int el_ret;
1260
1261 (*request_count)++;
1262
1263 if (rq->q != q)
1264 continue;
1265
1266 el_ret = elv_try_merge(rq, bio);
1267 if (el_ret == ELEVATOR_BACK_MERGE) {
1268 ret = bio_attempt_back_merge(q, rq, bio);
1269 if (ret)
1270 break;
1271 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1272 ret = bio_attempt_front_merge(q, rq, bio);
1273 if (ret)
1274 break;
1275 }
1276 }
1277 out:
1278 return ret;
1279 }
1280
1281 void init_request_from_bio(struct request *req, struct bio *bio)
1282 {
1283 req->cmd_type = REQ_TYPE_FS;
1284
1285 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1286 if (bio->bi_rw & REQ_RAHEAD)
1287 req->cmd_flags |= REQ_FAILFAST_MASK;
1288
1289 req->errors = 0;
1290 req->__sector = bio->bi_sector;
1291 req->ioprio = bio_prio(bio);
1292 blk_rq_bio_prep(req->q, req, bio);
1293 }
1294
1295 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1296 {
1297 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1298 struct blk_plug *plug;
1299 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1300 struct request *req;
1301 unsigned int request_count = 0;
1302
1303 /*
1304 * low level driver can indicate that it wants pages above a
1305 * certain limit bounced to low memory (ie for highmem, or even
1306 * ISA dma in theory)
1307 */
1308 blk_queue_bounce(q, &bio);
1309
1310 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1311 spin_lock_irq(q->queue_lock);
1312 where = ELEVATOR_INSERT_FLUSH;
1313 goto get_rq;
1314 }
1315
1316 /*
1317 * Check if we can merge with the plugged list before grabbing
1318 * any locks.
1319 */
1320 if (attempt_plug_merge(q, bio, &request_count))
1321 return;
1322
1323 spin_lock_irq(q->queue_lock);
1324
1325 el_ret = elv_merge(q, &req, bio);
1326 if (el_ret == ELEVATOR_BACK_MERGE) {
1327 if (bio_attempt_back_merge(q, req, bio)) {
1328 if (!attempt_back_merge(q, req))
1329 elv_merged_request(q, req, el_ret);
1330 goto out_unlock;
1331 }
1332 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1333 if (bio_attempt_front_merge(q, req, bio)) {
1334 if (!attempt_front_merge(q, req))
1335 elv_merged_request(q, req, el_ret);
1336 goto out_unlock;
1337 }
1338 }
1339
1340 get_rq:
1341 /*
1342 * This sync check and mask will be re-done in init_request_from_bio(),
1343 * but we need to set it earlier to expose the sync flag to the
1344 * rq allocator and io schedulers.
1345 */
1346 rw_flags = bio_data_dir(bio);
1347 if (sync)
1348 rw_flags |= REQ_SYNC;
1349
1350 /*
1351 * Grab a free request. This is might sleep but can not fail.
1352 * Returns with the queue unlocked.
1353 */
1354 req = get_request_wait(q, rw_flags, bio);
1355 if (unlikely(!req)) {
1356 bio_endio(bio, -ENODEV); /* @q is dead */
1357 goto out_unlock;
1358 }
1359
1360 /*
1361 * After dropping the lock and possibly sleeping here, our request
1362 * may now be mergeable after it had proven unmergeable (above).
1363 * We don't worry about that case for efficiency. It won't happen
1364 * often, and the elevators are able to handle it.
1365 */
1366 init_request_from_bio(req, bio);
1367
1368 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1369 req->cpu = raw_smp_processor_id();
1370
1371 plug = current->plug;
1372 if (plug) {
1373 /*
1374 * If this is the first request added after a plug, fire
1375 * of a plug trace. If others have been added before, check
1376 * if we have multiple devices in this plug. If so, make a
1377 * note to sort the list before dispatch.
1378 */
1379 if (list_empty(&plug->list))
1380 trace_block_plug(q);
1381 else {
1382 if (!plug->should_sort) {
1383 struct request *__rq;
1384
1385 __rq = list_entry_rq(plug->list.prev);
1386 if (__rq->q != q)
1387 plug->should_sort = 1;
1388 }
1389 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1390 blk_flush_plug_list(plug, false);
1391 trace_block_plug(q);
1392 }
1393 }
1394 list_add_tail(&req->queuelist, &plug->list);
1395 drive_stat_acct(req, 1);
1396 } else {
1397 spin_lock_irq(q->queue_lock);
1398 add_acct_request(q, req, where);
1399 __blk_run_queue(q);
1400 out_unlock:
1401 spin_unlock_irq(q->queue_lock);
1402 }
1403 }
1404 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1405
1406 /*
1407 * If bio->bi_dev is a partition, remap the location
1408 */
1409 static inline void blk_partition_remap(struct bio *bio)
1410 {
1411 struct block_device *bdev = bio->bi_bdev;
1412
1413 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1414 struct hd_struct *p = bdev->bd_part;
1415
1416 bio->bi_sector += p->start_sect;
1417 bio->bi_bdev = bdev->bd_contains;
1418
1419 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1420 bdev->bd_dev,
1421 bio->bi_sector - p->start_sect);
1422 }
1423 }
1424
1425 static void handle_bad_sector(struct bio *bio)
1426 {
1427 char b[BDEVNAME_SIZE];
1428
1429 printk(KERN_INFO "attempt to access beyond end of device\n");
1430 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1431 bdevname(bio->bi_bdev, b),
1432 bio->bi_rw,
1433 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1434 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1435
1436 set_bit(BIO_EOF, &bio->bi_flags);
1437 }
1438
1439 #ifdef CONFIG_FAIL_MAKE_REQUEST
1440
1441 static DECLARE_FAULT_ATTR(fail_make_request);
1442
1443 static int __init setup_fail_make_request(char *str)
1444 {
1445 return setup_fault_attr(&fail_make_request, str);
1446 }
1447 __setup("fail_make_request=", setup_fail_make_request);
1448
1449 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1450 {
1451 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1452 }
1453
1454 static int __init fail_make_request_debugfs(void)
1455 {
1456 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1457 NULL, &fail_make_request);
1458
1459 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1460 }
1461
1462 late_initcall(fail_make_request_debugfs);
1463
1464 #else /* CONFIG_FAIL_MAKE_REQUEST */
1465
1466 static inline bool should_fail_request(struct hd_struct *part,
1467 unsigned int bytes)
1468 {
1469 return false;
1470 }
1471
1472 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1473
1474 /*
1475 * Check whether this bio extends beyond the end of the device.
1476 */
1477 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1478 {
1479 sector_t maxsector;
1480
1481 if (!nr_sectors)
1482 return 0;
1483
1484 /* Test device or partition size, when known. */
1485 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1486 if (maxsector) {
1487 sector_t sector = bio->bi_sector;
1488
1489 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1490 /*
1491 * This may well happen - the kernel calls bread()
1492 * without checking the size of the device, e.g., when
1493 * mounting a device.
1494 */
1495 handle_bad_sector(bio);
1496 return 1;
1497 }
1498 }
1499
1500 return 0;
1501 }
1502
1503 static noinline_for_stack bool
1504 generic_make_request_checks(struct bio *bio)
1505 {
1506 struct request_queue *q;
1507 int nr_sectors = bio_sectors(bio);
1508 int err = -EIO;
1509 char b[BDEVNAME_SIZE];
1510 struct hd_struct *part;
1511
1512 might_sleep();
1513
1514 if (bio_check_eod(bio, nr_sectors))
1515 goto end_io;
1516
1517 q = bdev_get_queue(bio->bi_bdev);
1518 if (unlikely(!q)) {
1519 printk(KERN_ERR
1520 "generic_make_request: Trying to access "
1521 "nonexistent block-device %s (%Lu)\n",
1522 bdevname(bio->bi_bdev, b),
1523 (long long) bio->bi_sector);
1524 goto end_io;
1525 }
1526
1527 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1528 nr_sectors > queue_max_hw_sectors(q))) {
1529 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1530 bdevname(bio->bi_bdev, b),
1531 bio_sectors(bio),
1532 queue_max_hw_sectors(q));
1533 goto end_io;
1534 }
1535
1536 part = bio->bi_bdev->bd_part;
1537 if (should_fail_request(part, bio->bi_size) ||
1538 should_fail_request(&part_to_disk(part)->part0,
1539 bio->bi_size))
1540 goto end_io;
1541
1542 /*
1543 * If this device has partitions, remap block n
1544 * of partition p to block n+start(p) of the disk.
1545 */
1546 blk_partition_remap(bio);
1547
1548 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1549 goto end_io;
1550
1551 if (bio_check_eod(bio, nr_sectors))
1552 goto end_io;
1553
1554 /*
1555 * Filter flush bio's early so that make_request based
1556 * drivers without flush support don't have to worry
1557 * about them.
1558 */
1559 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1560 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1561 if (!nr_sectors) {
1562 err = 0;
1563 goto end_io;
1564 }
1565 }
1566
1567 if ((bio->bi_rw & REQ_DISCARD) &&
1568 (!blk_queue_discard(q) ||
1569 ((bio->bi_rw & REQ_SECURE) &&
1570 !blk_queue_secdiscard(q)))) {
1571 err = -EOPNOTSUPP;
1572 goto end_io;
1573 }
1574
1575 if (blk_throtl_bio(q, bio))
1576 return false; /* throttled, will be resubmitted later */
1577
1578 trace_block_bio_queue(q, bio);
1579 return true;
1580
1581 end_io:
1582 bio_endio(bio, err);
1583 return false;
1584 }
1585
1586 /**
1587 * generic_make_request - hand a buffer to its device driver for I/O
1588 * @bio: The bio describing the location in memory and on the device.
1589 *
1590 * generic_make_request() is used to make I/O requests of block
1591 * devices. It is passed a &struct bio, which describes the I/O that needs
1592 * to be done.
1593 *
1594 * generic_make_request() does not return any status. The
1595 * success/failure status of the request, along with notification of
1596 * completion, is delivered asynchronously through the bio->bi_end_io
1597 * function described (one day) else where.
1598 *
1599 * The caller of generic_make_request must make sure that bi_io_vec
1600 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1601 * set to describe the device address, and the
1602 * bi_end_io and optionally bi_private are set to describe how
1603 * completion notification should be signaled.
1604 *
1605 * generic_make_request and the drivers it calls may use bi_next if this
1606 * bio happens to be merged with someone else, and may resubmit the bio to
1607 * a lower device by calling into generic_make_request recursively, which
1608 * means the bio should NOT be touched after the call to ->make_request_fn.
1609 */
1610 void generic_make_request(struct bio *bio)
1611 {
1612 struct bio_list bio_list_on_stack;
1613
1614 if (!generic_make_request_checks(bio))
1615 return;
1616
1617 /*
1618 * We only want one ->make_request_fn to be active at a time, else
1619 * stack usage with stacked devices could be a problem. So use
1620 * current->bio_list to keep a list of requests submited by a
1621 * make_request_fn function. current->bio_list is also used as a
1622 * flag to say if generic_make_request is currently active in this
1623 * task or not. If it is NULL, then no make_request is active. If
1624 * it is non-NULL, then a make_request is active, and new requests
1625 * should be added at the tail
1626 */
1627 if (current->bio_list) {
1628 bio_list_add(current->bio_list, bio);
1629 return;
1630 }
1631
1632 /* following loop may be a bit non-obvious, and so deserves some
1633 * explanation.
1634 * Before entering the loop, bio->bi_next is NULL (as all callers
1635 * ensure that) so we have a list with a single bio.
1636 * We pretend that we have just taken it off a longer list, so
1637 * we assign bio_list to a pointer to the bio_list_on_stack,
1638 * thus initialising the bio_list of new bios to be
1639 * added. ->make_request() may indeed add some more bios
1640 * through a recursive call to generic_make_request. If it
1641 * did, we find a non-NULL value in bio_list and re-enter the loop
1642 * from the top. In this case we really did just take the bio
1643 * of the top of the list (no pretending) and so remove it from
1644 * bio_list, and call into ->make_request() again.
1645 */
1646 BUG_ON(bio->bi_next);
1647 bio_list_init(&bio_list_on_stack);
1648 current->bio_list = &bio_list_on_stack;
1649 do {
1650 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1651
1652 q->make_request_fn(q, bio);
1653
1654 bio = bio_list_pop(current->bio_list);
1655 } while (bio);
1656 current->bio_list = NULL; /* deactivate */
1657 }
1658 EXPORT_SYMBOL(generic_make_request);
1659
1660 /**
1661 * submit_bio - submit a bio to the block device layer for I/O
1662 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1663 * @bio: The &struct bio which describes the I/O
1664 *
1665 * submit_bio() is very similar in purpose to generic_make_request(), and
1666 * uses that function to do most of the work. Both are fairly rough
1667 * interfaces; @bio must be presetup and ready for I/O.
1668 *
1669 */
1670 void submit_bio(int rw, struct bio *bio)
1671 {
1672 int count = bio_sectors(bio);
1673
1674 bio->bi_rw |= rw;
1675
1676 /*
1677 * If it's a regular read/write or a barrier with data attached,
1678 * go through the normal accounting stuff before submission.
1679 */
1680 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1681 if (rw & WRITE) {
1682 count_vm_events(PGPGOUT, count);
1683 } else {
1684 task_io_account_read(bio->bi_size);
1685 count_vm_events(PGPGIN, count);
1686 }
1687
1688 if (unlikely(block_dump)) {
1689 char b[BDEVNAME_SIZE];
1690 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1691 current->comm, task_pid_nr(current),
1692 (rw & WRITE) ? "WRITE" : "READ",
1693 (unsigned long long)bio->bi_sector,
1694 bdevname(bio->bi_bdev, b),
1695 count);
1696 }
1697 }
1698
1699 generic_make_request(bio);
1700 }
1701 EXPORT_SYMBOL(submit_bio);
1702
1703 /**
1704 * blk_rq_check_limits - Helper function to check a request for the queue limit
1705 * @q: the queue
1706 * @rq: the request being checked
1707 *
1708 * Description:
1709 * @rq may have been made based on weaker limitations of upper-level queues
1710 * in request stacking drivers, and it may violate the limitation of @q.
1711 * Since the block layer and the underlying device driver trust @rq
1712 * after it is inserted to @q, it should be checked against @q before
1713 * the insertion using this generic function.
1714 *
1715 * This function should also be useful for request stacking drivers
1716 * in some cases below, so export this function.
1717 * Request stacking drivers like request-based dm may change the queue
1718 * limits while requests are in the queue (e.g. dm's table swapping).
1719 * Such request stacking drivers should check those requests agaist
1720 * the new queue limits again when they dispatch those requests,
1721 * although such checkings are also done against the old queue limits
1722 * when submitting requests.
1723 */
1724 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1725 {
1726 if (rq->cmd_flags & REQ_DISCARD)
1727 return 0;
1728
1729 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1730 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1731 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1732 return -EIO;
1733 }
1734
1735 /*
1736 * queue's settings related to segment counting like q->bounce_pfn
1737 * may differ from that of other stacking queues.
1738 * Recalculate it to check the request correctly on this queue's
1739 * limitation.
1740 */
1741 blk_recalc_rq_segments(rq);
1742 if (rq->nr_phys_segments > queue_max_segments(q)) {
1743 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1744 return -EIO;
1745 }
1746
1747 return 0;
1748 }
1749 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1750
1751 /**
1752 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1753 * @q: the queue to submit the request
1754 * @rq: the request being queued
1755 */
1756 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1757 {
1758 unsigned long flags;
1759 int where = ELEVATOR_INSERT_BACK;
1760
1761 if (blk_rq_check_limits(q, rq))
1762 return -EIO;
1763
1764 if (rq->rq_disk &&
1765 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1766 return -EIO;
1767
1768 spin_lock_irqsave(q->queue_lock, flags);
1769
1770 /*
1771 * Submitting request must be dequeued before calling this function
1772 * because it will be linked to another request_queue
1773 */
1774 BUG_ON(blk_queued_rq(rq));
1775
1776 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1777 where = ELEVATOR_INSERT_FLUSH;
1778
1779 add_acct_request(q, rq, where);
1780 if (where == ELEVATOR_INSERT_FLUSH)
1781 __blk_run_queue(q);
1782 spin_unlock_irqrestore(q->queue_lock, flags);
1783
1784 return 0;
1785 }
1786 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1787
1788 /**
1789 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1790 * @rq: request to examine
1791 *
1792 * Description:
1793 * A request could be merge of IOs which require different failure
1794 * handling. This function determines the number of bytes which
1795 * can be failed from the beginning of the request without
1796 * crossing into area which need to be retried further.
1797 *
1798 * Return:
1799 * The number of bytes to fail.
1800 *
1801 * Context:
1802 * queue_lock must be held.
1803 */
1804 unsigned int blk_rq_err_bytes(const struct request *rq)
1805 {
1806 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1807 unsigned int bytes = 0;
1808 struct bio *bio;
1809
1810 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1811 return blk_rq_bytes(rq);
1812
1813 /*
1814 * Currently the only 'mixing' which can happen is between
1815 * different fastfail types. We can safely fail portions
1816 * which have all the failfast bits that the first one has -
1817 * the ones which are at least as eager to fail as the first
1818 * one.
1819 */
1820 for (bio = rq->bio; bio; bio = bio->bi_next) {
1821 if ((bio->bi_rw & ff) != ff)
1822 break;
1823 bytes += bio->bi_size;
1824 }
1825
1826 /* this could lead to infinite loop */
1827 BUG_ON(blk_rq_bytes(rq) && !bytes);
1828 return bytes;
1829 }
1830 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1831
1832 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1833 {
1834 if (blk_do_io_stat(req)) {
1835 const int rw = rq_data_dir(req);
1836 struct hd_struct *part;
1837 int cpu;
1838
1839 cpu = part_stat_lock();
1840 part = req->part;
1841 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1842 part_stat_unlock();
1843 }
1844 }
1845
1846 static void blk_account_io_done(struct request *req)
1847 {
1848 /*
1849 * Account IO completion. flush_rq isn't accounted as a
1850 * normal IO on queueing nor completion. Accounting the
1851 * containing request is enough.
1852 */
1853 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1854 unsigned long duration = jiffies - req->start_time;
1855 const int rw = rq_data_dir(req);
1856 struct hd_struct *part;
1857 int cpu;
1858
1859 cpu = part_stat_lock();
1860 part = req->part;
1861
1862 part_stat_inc(cpu, part, ios[rw]);
1863 part_stat_add(cpu, part, ticks[rw], duration);
1864 part_round_stats(cpu, part);
1865 part_dec_in_flight(part, rw);
1866
1867 hd_struct_put(part);
1868 part_stat_unlock();
1869 }
1870 }
1871
1872 /**
1873 * blk_peek_request - peek at the top of a request queue
1874 * @q: request queue to peek at
1875 *
1876 * Description:
1877 * Return the request at the top of @q. The returned request
1878 * should be started using blk_start_request() before LLD starts
1879 * processing it.
1880 *
1881 * Return:
1882 * Pointer to the request at the top of @q if available. Null
1883 * otherwise.
1884 *
1885 * Context:
1886 * queue_lock must be held.
1887 */
1888 struct request *blk_peek_request(struct request_queue *q)
1889 {
1890 struct request *rq;
1891 int ret;
1892
1893 while ((rq = __elv_next_request(q)) != NULL) {
1894 if (!(rq->cmd_flags & REQ_STARTED)) {
1895 /*
1896 * This is the first time the device driver
1897 * sees this request (possibly after
1898 * requeueing). Notify IO scheduler.
1899 */
1900 if (rq->cmd_flags & REQ_SORTED)
1901 elv_activate_rq(q, rq);
1902
1903 /*
1904 * just mark as started even if we don't start
1905 * it, a request that has been delayed should
1906 * not be passed by new incoming requests
1907 */
1908 rq->cmd_flags |= REQ_STARTED;
1909 trace_block_rq_issue(q, rq);
1910 }
1911
1912 if (!q->boundary_rq || q->boundary_rq == rq) {
1913 q->end_sector = rq_end_sector(rq);
1914 q->boundary_rq = NULL;
1915 }
1916
1917 if (rq->cmd_flags & REQ_DONTPREP)
1918 break;
1919
1920 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1921 /*
1922 * make sure space for the drain appears we
1923 * know we can do this because max_hw_segments
1924 * has been adjusted to be one fewer than the
1925 * device can handle
1926 */
1927 rq->nr_phys_segments++;
1928 }
1929
1930 if (!q->prep_rq_fn)
1931 break;
1932
1933 ret = q->prep_rq_fn(q, rq);
1934 if (ret == BLKPREP_OK) {
1935 break;
1936 } else if (ret == BLKPREP_DEFER) {
1937 /*
1938 * the request may have been (partially) prepped.
1939 * we need to keep this request in the front to
1940 * avoid resource deadlock. REQ_STARTED will
1941 * prevent other fs requests from passing this one.
1942 */
1943 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1944 !(rq->cmd_flags & REQ_DONTPREP)) {
1945 /*
1946 * remove the space for the drain we added
1947 * so that we don't add it again
1948 */
1949 --rq->nr_phys_segments;
1950 }
1951
1952 rq = NULL;
1953 break;
1954 } else if (ret == BLKPREP_KILL) {
1955 rq->cmd_flags |= REQ_QUIET;
1956 /*
1957 * Mark this request as started so we don't trigger
1958 * any debug logic in the end I/O path.
1959 */
1960 blk_start_request(rq);
1961 __blk_end_request_all(rq, -EIO);
1962 } else {
1963 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1964 break;
1965 }
1966 }
1967
1968 return rq;
1969 }
1970 EXPORT_SYMBOL(blk_peek_request);
1971
1972 void blk_dequeue_request(struct request *rq)
1973 {
1974 struct request_queue *q = rq->q;
1975
1976 BUG_ON(list_empty(&rq->queuelist));
1977 BUG_ON(ELV_ON_HASH(rq));
1978
1979 list_del_init(&rq->queuelist);
1980
1981 /*
1982 * the time frame between a request being removed from the lists
1983 * and to it is freed is accounted as io that is in progress at
1984 * the driver side.
1985 */
1986 if (blk_account_rq(rq)) {
1987 q->in_flight[rq_is_sync(rq)]++;
1988 set_io_start_time_ns(rq);
1989 }
1990 }
1991
1992 /**
1993 * blk_start_request - start request processing on the driver
1994 * @req: request to dequeue
1995 *
1996 * Description:
1997 * Dequeue @req and start timeout timer on it. This hands off the
1998 * request to the driver.
1999 *
2000 * Block internal functions which don't want to start timer should
2001 * call blk_dequeue_request().
2002 *
2003 * Context:
2004 * queue_lock must be held.
2005 */
2006 void blk_start_request(struct request *req)
2007 {
2008 blk_dequeue_request(req);
2009
2010 /*
2011 * We are now handing the request to the hardware, initialize
2012 * resid_len to full count and add the timeout handler.
2013 */
2014 req->resid_len = blk_rq_bytes(req);
2015 if (unlikely(blk_bidi_rq(req)))
2016 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2017
2018 blk_add_timer(req);
2019 }
2020 EXPORT_SYMBOL(blk_start_request);
2021
2022 /**
2023 * blk_fetch_request - fetch a request from a request queue
2024 * @q: request queue to fetch a request from
2025 *
2026 * Description:
2027 * Return the request at the top of @q. The request is started on
2028 * return and LLD can start processing it immediately.
2029 *
2030 * Return:
2031 * Pointer to the request at the top of @q if available. Null
2032 * otherwise.
2033 *
2034 * Context:
2035 * queue_lock must be held.
2036 */
2037 struct request *blk_fetch_request(struct request_queue *q)
2038 {
2039 struct request *rq;
2040
2041 rq = blk_peek_request(q);
2042 if (rq)
2043 blk_start_request(rq);
2044 return rq;
2045 }
2046 EXPORT_SYMBOL(blk_fetch_request);
2047
2048 /**
2049 * blk_update_request - Special helper function for request stacking drivers
2050 * @req: the request being processed
2051 * @error: %0 for success, < %0 for error
2052 * @nr_bytes: number of bytes to complete @req
2053 *
2054 * Description:
2055 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2056 * the request structure even if @req doesn't have leftover.
2057 * If @req has leftover, sets it up for the next range of segments.
2058 *
2059 * This special helper function is only for request stacking drivers
2060 * (e.g. request-based dm) so that they can handle partial completion.
2061 * Actual device drivers should use blk_end_request instead.
2062 *
2063 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2064 * %false return from this function.
2065 *
2066 * Return:
2067 * %false - this request doesn't have any more data
2068 * %true - this request has more data
2069 **/
2070 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2071 {
2072 int total_bytes, bio_nbytes, next_idx = 0;
2073 struct bio *bio;
2074
2075 if (!req->bio)
2076 return false;
2077
2078 trace_block_rq_complete(req->q, req);
2079
2080 /*
2081 * For fs requests, rq is just carrier of independent bio's
2082 * and each partial completion should be handled separately.
2083 * Reset per-request error on each partial completion.
2084 *
2085 * TODO: tj: This is too subtle. It would be better to let
2086 * low level drivers do what they see fit.
2087 */
2088 if (req->cmd_type == REQ_TYPE_FS)
2089 req->errors = 0;
2090
2091 if (error && req->cmd_type == REQ_TYPE_FS &&
2092 !(req->cmd_flags & REQ_QUIET)) {
2093 char *error_type;
2094
2095 switch (error) {
2096 case -ENOLINK:
2097 error_type = "recoverable transport";
2098 break;
2099 case -EREMOTEIO:
2100 error_type = "critical target";
2101 break;
2102 case -EBADE:
2103 error_type = "critical nexus";
2104 break;
2105 case -EIO:
2106 default:
2107 error_type = "I/O";
2108 break;
2109 }
2110 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2111 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2112 (unsigned long long)blk_rq_pos(req));
2113 }
2114
2115 blk_account_io_completion(req, nr_bytes);
2116
2117 total_bytes = bio_nbytes = 0;
2118 while ((bio = req->bio) != NULL) {
2119 int nbytes;
2120
2121 if (nr_bytes >= bio->bi_size) {
2122 req->bio = bio->bi_next;
2123 nbytes = bio->bi_size;
2124 req_bio_endio(req, bio, nbytes, error);
2125 next_idx = 0;
2126 bio_nbytes = 0;
2127 } else {
2128 int idx = bio->bi_idx + next_idx;
2129
2130 if (unlikely(idx >= bio->bi_vcnt)) {
2131 blk_dump_rq_flags(req, "__end_that");
2132 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2133 __func__, idx, bio->bi_vcnt);
2134 break;
2135 }
2136
2137 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2138 BIO_BUG_ON(nbytes > bio->bi_size);
2139
2140 /*
2141 * not a complete bvec done
2142 */
2143 if (unlikely(nbytes > nr_bytes)) {
2144 bio_nbytes += nr_bytes;
2145 total_bytes += nr_bytes;
2146 break;
2147 }
2148
2149 /*
2150 * advance to the next vector
2151 */
2152 next_idx++;
2153 bio_nbytes += nbytes;
2154 }
2155
2156 total_bytes += nbytes;
2157 nr_bytes -= nbytes;
2158
2159 bio = req->bio;
2160 if (bio) {
2161 /*
2162 * end more in this run, or just return 'not-done'
2163 */
2164 if (unlikely(nr_bytes <= 0))
2165 break;
2166 }
2167 }
2168
2169 /*
2170 * completely done
2171 */
2172 if (!req->bio) {
2173 /*
2174 * Reset counters so that the request stacking driver
2175 * can find how many bytes remain in the request
2176 * later.
2177 */
2178 req->__data_len = 0;
2179 return false;
2180 }
2181
2182 /*
2183 * if the request wasn't completed, update state
2184 */
2185 if (bio_nbytes) {
2186 req_bio_endio(req, bio, bio_nbytes, error);
2187 bio->bi_idx += next_idx;
2188 bio_iovec(bio)->bv_offset += nr_bytes;
2189 bio_iovec(bio)->bv_len -= nr_bytes;
2190 }
2191
2192 req->__data_len -= total_bytes;
2193 req->buffer = bio_data(req->bio);
2194
2195 /* update sector only for requests with clear definition of sector */
2196 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2197 req->__sector += total_bytes >> 9;
2198
2199 /* mixed attributes always follow the first bio */
2200 if (req->cmd_flags & REQ_MIXED_MERGE) {
2201 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2202 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2203 }
2204
2205 /*
2206 * If total number of sectors is less than the first segment
2207 * size, something has gone terribly wrong.
2208 */
2209 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2210 blk_dump_rq_flags(req, "request botched");
2211 req->__data_len = blk_rq_cur_bytes(req);
2212 }
2213
2214 /* recalculate the number of segments */
2215 blk_recalc_rq_segments(req);
2216
2217 return true;
2218 }
2219 EXPORT_SYMBOL_GPL(blk_update_request);
2220
2221 static bool blk_update_bidi_request(struct request *rq, int error,
2222 unsigned int nr_bytes,
2223 unsigned int bidi_bytes)
2224 {
2225 if (blk_update_request(rq, error, nr_bytes))
2226 return true;
2227
2228 /* Bidi request must be completed as a whole */
2229 if (unlikely(blk_bidi_rq(rq)) &&
2230 blk_update_request(rq->next_rq, error, bidi_bytes))
2231 return true;
2232
2233 if (blk_queue_add_random(rq->q))
2234 add_disk_randomness(rq->rq_disk);
2235
2236 return false;
2237 }
2238
2239 /**
2240 * blk_unprep_request - unprepare a request
2241 * @req: the request
2242 *
2243 * This function makes a request ready for complete resubmission (or
2244 * completion). It happens only after all error handling is complete,
2245 * so represents the appropriate moment to deallocate any resources
2246 * that were allocated to the request in the prep_rq_fn. The queue
2247 * lock is held when calling this.
2248 */
2249 void blk_unprep_request(struct request *req)
2250 {
2251 struct request_queue *q = req->q;
2252
2253 req->cmd_flags &= ~REQ_DONTPREP;
2254 if (q->unprep_rq_fn)
2255 q->unprep_rq_fn(q, req);
2256 }
2257 EXPORT_SYMBOL_GPL(blk_unprep_request);
2258
2259 /*
2260 * queue lock must be held
2261 */
2262 static void blk_finish_request(struct request *req, int error)
2263 {
2264 if (blk_rq_tagged(req))
2265 blk_queue_end_tag(req->q, req);
2266
2267 BUG_ON(blk_queued_rq(req));
2268
2269 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2270 laptop_io_completion(&req->q->backing_dev_info);
2271
2272 blk_delete_timer(req);
2273
2274 if (req->cmd_flags & REQ_DONTPREP)
2275 blk_unprep_request(req);
2276
2277
2278 blk_account_io_done(req);
2279
2280 if (req->end_io)
2281 req->end_io(req, error);
2282 else {
2283 if (blk_bidi_rq(req))
2284 __blk_put_request(req->next_rq->q, req->next_rq);
2285
2286 __blk_put_request(req->q, req);
2287 }
2288 }
2289
2290 /**
2291 * blk_end_bidi_request - Complete a bidi request
2292 * @rq: the request to complete
2293 * @error: %0 for success, < %0 for error
2294 * @nr_bytes: number of bytes to complete @rq
2295 * @bidi_bytes: number of bytes to complete @rq->next_rq
2296 *
2297 * Description:
2298 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2299 * Drivers that supports bidi can safely call this member for any
2300 * type of request, bidi or uni. In the later case @bidi_bytes is
2301 * just ignored.
2302 *
2303 * Return:
2304 * %false - we are done with this request
2305 * %true - still buffers pending for this request
2306 **/
2307 static bool blk_end_bidi_request(struct request *rq, int error,
2308 unsigned int nr_bytes, unsigned int bidi_bytes)
2309 {
2310 struct request_queue *q = rq->q;
2311 unsigned long flags;
2312
2313 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2314 return true;
2315
2316 spin_lock_irqsave(q->queue_lock, flags);
2317 blk_finish_request(rq, error);
2318 spin_unlock_irqrestore(q->queue_lock, flags);
2319
2320 return false;
2321 }
2322
2323 /**
2324 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2325 * @rq: the request to complete
2326 * @error: %0 for success, < %0 for error
2327 * @nr_bytes: number of bytes to complete @rq
2328 * @bidi_bytes: number of bytes to complete @rq->next_rq
2329 *
2330 * Description:
2331 * Identical to blk_end_bidi_request() except that queue lock is
2332 * assumed to be locked on entry and remains so on return.
2333 *
2334 * Return:
2335 * %false - we are done with this request
2336 * %true - still buffers pending for this request
2337 **/
2338 bool __blk_end_bidi_request(struct request *rq, int error,
2339 unsigned int nr_bytes, unsigned int bidi_bytes)
2340 {
2341 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2342 return true;
2343
2344 blk_finish_request(rq, error);
2345
2346 return false;
2347 }
2348
2349 /**
2350 * blk_end_request - Helper function for drivers to complete the request.
2351 * @rq: the request being processed
2352 * @error: %0 for success, < %0 for error
2353 * @nr_bytes: number of bytes to complete
2354 *
2355 * Description:
2356 * Ends I/O on a number of bytes attached to @rq.
2357 * If @rq has leftover, sets it up for the next range of segments.
2358 *
2359 * Return:
2360 * %false - we are done with this request
2361 * %true - still buffers pending for this request
2362 **/
2363 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2364 {
2365 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2366 }
2367 EXPORT_SYMBOL(blk_end_request);
2368
2369 /**
2370 * blk_end_request_all - Helper function for drives to finish the request.
2371 * @rq: the request to finish
2372 * @error: %0 for success, < %0 for error
2373 *
2374 * Description:
2375 * Completely finish @rq.
2376 */
2377 void blk_end_request_all(struct request *rq, int error)
2378 {
2379 bool pending;
2380 unsigned int bidi_bytes = 0;
2381
2382 if (unlikely(blk_bidi_rq(rq)))
2383 bidi_bytes = blk_rq_bytes(rq->next_rq);
2384
2385 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2386 BUG_ON(pending);
2387 }
2388 EXPORT_SYMBOL(blk_end_request_all);
2389
2390 /**
2391 * blk_end_request_cur - Helper function to finish the current request chunk.
2392 * @rq: the request to finish the current chunk for
2393 * @error: %0 for success, < %0 for error
2394 *
2395 * Description:
2396 * Complete the current consecutively mapped chunk from @rq.
2397 *
2398 * Return:
2399 * %false - we are done with this request
2400 * %true - still buffers pending for this request
2401 */
2402 bool blk_end_request_cur(struct request *rq, int error)
2403 {
2404 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2405 }
2406 EXPORT_SYMBOL(blk_end_request_cur);
2407
2408 /**
2409 * blk_end_request_err - Finish a request till the next failure boundary.
2410 * @rq: the request to finish till the next failure boundary for
2411 * @error: must be negative errno
2412 *
2413 * Description:
2414 * Complete @rq till the next failure boundary.
2415 *
2416 * Return:
2417 * %false - we are done with this request
2418 * %true - still buffers pending for this request
2419 */
2420 bool blk_end_request_err(struct request *rq, int error)
2421 {
2422 WARN_ON(error >= 0);
2423 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2424 }
2425 EXPORT_SYMBOL_GPL(blk_end_request_err);
2426
2427 /**
2428 * __blk_end_request - Helper function for drivers to complete the request.
2429 * @rq: the request being processed
2430 * @error: %0 for success, < %0 for error
2431 * @nr_bytes: number of bytes to complete
2432 *
2433 * Description:
2434 * Must be called with queue lock held unlike blk_end_request().
2435 *
2436 * Return:
2437 * %false - we are done with this request
2438 * %true - still buffers pending for this request
2439 **/
2440 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2441 {
2442 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2443 }
2444 EXPORT_SYMBOL(__blk_end_request);
2445
2446 /**
2447 * __blk_end_request_all - Helper function for drives to finish the request.
2448 * @rq: the request to finish
2449 * @error: %0 for success, < %0 for error
2450 *
2451 * Description:
2452 * Completely finish @rq. Must be called with queue lock held.
2453 */
2454 void __blk_end_request_all(struct request *rq, int error)
2455 {
2456 bool pending;
2457 unsigned int bidi_bytes = 0;
2458
2459 if (unlikely(blk_bidi_rq(rq)))
2460 bidi_bytes = blk_rq_bytes(rq->next_rq);
2461
2462 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2463 BUG_ON(pending);
2464 }
2465 EXPORT_SYMBOL(__blk_end_request_all);
2466
2467 /**
2468 * __blk_end_request_cur - Helper function to finish the current request chunk.
2469 * @rq: the request to finish the current chunk for
2470 * @error: %0 for success, < %0 for error
2471 *
2472 * Description:
2473 * Complete the current consecutively mapped chunk from @rq. Must
2474 * be called with queue lock held.
2475 *
2476 * Return:
2477 * %false - we are done with this request
2478 * %true - still buffers pending for this request
2479 */
2480 bool __blk_end_request_cur(struct request *rq, int error)
2481 {
2482 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2483 }
2484 EXPORT_SYMBOL(__blk_end_request_cur);
2485
2486 /**
2487 * __blk_end_request_err - Finish a request till the next failure boundary.
2488 * @rq: the request to finish till the next failure boundary for
2489 * @error: must be negative errno
2490 *
2491 * Description:
2492 * Complete @rq till the next failure boundary. Must be called
2493 * with queue lock held.
2494 *
2495 * Return:
2496 * %false - we are done with this request
2497 * %true - still buffers pending for this request
2498 */
2499 bool __blk_end_request_err(struct request *rq, int error)
2500 {
2501 WARN_ON(error >= 0);
2502 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2503 }
2504 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2505
2506 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2507 struct bio *bio)
2508 {
2509 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2510 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2511
2512 if (bio_has_data(bio)) {
2513 rq->nr_phys_segments = bio_phys_segments(q, bio);
2514 rq->buffer = bio_data(bio);
2515 }
2516 rq->__data_len = bio->bi_size;
2517 rq->bio = rq->biotail = bio;
2518
2519 if (bio->bi_bdev)
2520 rq->rq_disk = bio->bi_bdev->bd_disk;
2521 }
2522
2523 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2524 /**
2525 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2526 * @rq: the request to be flushed
2527 *
2528 * Description:
2529 * Flush all pages in @rq.
2530 */
2531 void rq_flush_dcache_pages(struct request *rq)
2532 {
2533 struct req_iterator iter;
2534 struct bio_vec *bvec;
2535
2536 rq_for_each_segment(bvec, rq, iter)
2537 flush_dcache_page(bvec->bv_page);
2538 }
2539 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2540 #endif
2541
2542 /**
2543 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2544 * @q : the queue of the device being checked
2545 *
2546 * Description:
2547 * Check if underlying low-level drivers of a device are busy.
2548 * If the drivers want to export their busy state, they must set own
2549 * exporting function using blk_queue_lld_busy() first.
2550 *
2551 * Basically, this function is used only by request stacking drivers
2552 * to stop dispatching requests to underlying devices when underlying
2553 * devices are busy. This behavior helps more I/O merging on the queue
2554 * of the request stacking driver and prevents I/O throughput regression
2555 * on burst I/O load.
2556 *
2557 * Return:
2558 * 0 - Not busy (The request stacking driver should dispatch request)
2559 * 1 - Busy (The request stacking driver should stop dispatching request)
2560 */
2561 int blk_lld_busy(struct request_queue *q)
2562 {
2563 if (q->lld_busy_fn)
2564 return q->lld_busy_fn(q);
2565
2566 return 0;
2567 }
2568 EXPORT_SYMBOL_GPL(blk_lld_busy);
2569
2570 /**
2571 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2572 * @rq: the clone request to be cleaned up
2573 *
2574 * Description:
2575 * Free all bios in @rq for a cloned request.
2576 */
2577 void blk_rq_unprep_clone(struct request *rq)
2578 {
2579 struct bio *bio;
2580
2581 while ((bio = rq->bio) != NULL) {
2582 rq->bio = bio->bi_next;
2583
2584 bio_put(bio);
2585 }
2586 }
2587 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2588
2589 /*
2590 * Copy attributes of the original request to the clone request.
2591 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2592 */
2593 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2594 {
2595 dst->cpu = src->cpu;
2596 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2597 dst->cmd_type = src->cmd_type;
2598 dst->__sector = blk_rq_pos(src);
2599 dst->__data_len = blk_rq_bytes(src);
2600 dst->nr_phys_segments = src->nr_phys_segments;
2601 dst->ioprio = src->ioprio;
2602 dst->extra_len = src->extra_len;
2603 }
2604
2605 /**
2606 * blk_rq_prep_clone - Helper function to setup clone request
2607 * @rq: the request to be setup
2608 * @rq_src: original request to be cloned
2609 * @bs: bio_set that bios for clone are allocated from
2610 * @gfp_mask: memory allocation mask for bio
2611 * @bio_ctr: setup function to be called for each clone bio.
2612 * Returns %0 for success, non %0 for failure.
2613 * @data: private data to be passed to @bio_ctr
2614 *
2615 * Description:
2616 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2617 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2618 * are not copied, and copying such parts is the caller's responsibility.
2619 * Also, pages which the original bios are pointing to are not copied
2620 * and the cloned bios just point same pages.
2621 * So cloned bios must be completed before original bios, which means
2622 * the caller must complete @rq before @rq_src.
2623 */
2624 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2625 struct bio_set *bs, gfp_t gfp_mask,
2626 int (*bio_ctr)(struct bio *, struct bio *, void *),
2627 void *data)
2628 {
2629 struct bio *bio, *bio_src;
2630
2631 if (!bs)
2632 bs = fs_bio_set;
2633
2634 blk_rq_init(NULL, rq);
2635
2636 __rq_for_each_bio(bio_src, rq_src) {
2637 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2638 if (!bio)
2639 goto free_and_out;
2640
2641 __bio_clone(bio, bio_src);
2642
2643 if (bio_integrity(bio_src) &&
2644 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2645 goto free_and_out;
2646
2647 if (bio_ctr && bio_ctr(bio, bio_src, data))
2648 goto free_and_out;
2649
2650 if (rq->bio) {
2651 rq->biotail->bi_next = bio;
2652 rq->biotail = bio;
2653 } else
2654 rq->bio = rq->biotail = bio;
2655 }
2656
2657 __blk_rq_prep_clone(rq, rq_src);
2658
2659 return 0;
2660
2661 free_and_out:
2662 if (bio)
2663 bio_free(bio, bs);
2664 blk_rq_unprep_clone(rq);
2665
2666 return -ENOMEM;
2667 }
2668 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2669
2670 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2671 {
2672 return queue_work(kblockd_workqueue, work);
2673 }
2674 EXPORT_SYMBOL(kblockd_schedule_work);
2675
2676 int kblockd_schedule_delayed_work(struct request_queue *q,
2677 struct delayed_work *dwork, unsigned long delay)
2678 {
2679 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2680 }
2681 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2682
2683 #define PLUG_MAGIC 0x91827364
2684
2685 /**
2686 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2687 * @plug: The &struct blk_plug that needs to be initialized
2688 *
2689 * Description:
2690 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2691 * pending I/O should the task end up blocking between blk_start_plug() and
2692 * blk_finish_plug(). This is important from a performance perspective, but
2693 * also ensures that we don't deadlock. For instance, if the task is blocking
2694 * for a memory allocation, memory reclaim could end up wanting to free a
2695 * page belonging to that request that is currently residing in our private
2696 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2697 * this kind of deadlock.
2698 */
2699 void blk_start_plug(struct blk_plug *plug)
2700 {
2701 struct task_struct *tsk = current;
2702
2703 plug->magic = PLUG_MAGIC;
2704 INIT_LIST_HEAD(&plug->list);
2705 INIT_LIST_HEAD(&plug->cb_list);
2706 plug->should_sort = 0;
2707
2708 /*
2709 * If this is a nested plug, don't actually assign it. It will be
2710 * flushed on its own.
2711 */
2712 if (!tsk->plug) {
2713 /*
2714 * Store ordering should not be needed here, since a potential
2715 * preempt will imply a full memory barrier
2716 */
2717 tsk->plug = plug;
2718 }
2719 }
2720 EXPORT_SYMBOL(blk_start_plug);
2721
2722 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2723 {
2724 struct request *rqa = container_of(a, struct request, queuelist);
2725 struct request *rqb = container_of(b, struct request, queuelist);
2726
2727 return !(rqa->q <= rqb->q);
2728 }
2729
2730 /*
2731 * If 'from_schedule' is true, then postpone the dispatch of requests
2732 * until a safe kblockd context. We due this to avoid accidental big
2733 * additional stack usage in driver dispatch, in places where the originally
2734 * plugger did not intend it.
2735 */
2736 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2737 bool from_schedule)
2738 __releases(q->queue_lock)
2739 {
2740 trace_block_unplug(q, depth, !from_schedule);
2741
2742 /*
2743 * If we are punting this to kblockd, then we can safely drop
2744 * the queue_lock before waking kblockd (which needs to take
2745 * this lock).
2746 */
2747 if (from_schedule) {
2748 spin_unlock(q->queue_lock);
2749 blk_run_queue_async(q);
2750 } else {
2751 __blk_run_queue(q);
2752 spin_unlock(q->queue_lock);
2753 }
2754
2755 }
2756
2757 static void flush_plug_callbacks(struct blk_plug *plug)
2758 {
2759 LIST_HEAD(callbacks);
2760
2761 if (list_empty(&plug->cb_list))
2762 return;
2763
2764 list_splice_init(&plug->cb_list, &callbacks);
2765
2766 while (!list_empty(&callbacks)) {
2767 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2768 struct blk_plug_cb,
2769 list);
2770 list_del(&cb->list);
2771 cb->callback(cb);
2772 }
2773 }
2774
2775 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2776 {
2777 struct request_queue *q;
2778 unsigned long flags;
2779 struct request *rq;
2780 LIST_HEAD(list);
2781 unsigned int depth;
2782
2783 BUG_ON(plug->magic != PLUG_MAGIC);
2784
2785 flush_plug_callbacks(plug);
2786 if (list_empty(&plug->list))
2787 return;
2788
2789 list_splice_init(&plug->list, &list);
2790
2791 if (plug->should_sort) {
2792 list_sort(NULL, &list, plug_rq_cmp);
2793 plug->should_sort = 0;
2794 }
2795
2796 q = NULL;
2797 depth = 0;
2798
2799 /*
2800 * Save and disable interrupts here, to avoid doing it for every
2801 * queue lock we have to take.
2802 */
2803 local_irq_save(flags);
2804 while (!list_empty(&list)) {
2805 rq = list_entry_rq(list.next);
2806 list_del_init(&rq->queuelist);
2807 BUG_ON(!rq->q);
2808 if (rq->q != q) {
2809 /*
2810 * This drops the queue lock
2811 */
2812 if (q)
2813 queue_unplugged(q, depth, from_schedule);
2814 q = rq->q;
2815 depth = 0;
2816 spin_lock(q->queue_lock);
2817 }
2818 /*
2819 * rq is already accounted, so use raw insert
2820 */
2821 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2822 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2823 else
2824 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2825
2826 depth++;
2827 }
2828
2829 /*
2830 * This drops the queue lock
2831 */
2832 if (q)
2833 queue_unplugged(q, depth, from_schedule);
2834
2835 local_irq_restore(flags);
2836 }
2837
2838 void blk_finish_plug(struct blk_plug *plug)
2839 {
2840 blk_flush_plug_list(plug, false);
2841
2842 if (plug == current->plug)
2843 current->plug = NULL;
2844 }
2845 EXPORT_SYMBOL(blk_finish_plug);
2846
2847 int __init blk_dev_init(void)
2848 {
2849 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2850 sizeof(((struct request *)0)->cmd_flags));
2851
2852 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2853 kblockd_workqueue = alloc_workqueue("kblockd",
2854 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2855 if (!kblockd_workqueue)
2856 panic("Failed to create kblockd\n");
2857
2858 request_cachep = kmem_cache_create("blkdev_requests",
2859 sizeof(struct request), 0, SLAB_PANIC, NULL);
2860
2861 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2862 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2863
2864 return 0;
2865 }