]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
block: deal with stale req count of plug list
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42 #include "blk-wbt.h"
43
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49
50 DEFINE_IDA(blk_queue_ida);
51
52 /*
53 * For the allocated request tables
54 */
55 struct kmem_cache *request_cachep;
56
57 /*
58 * For queue allocation
59 */
60 struct kmem_cache *blk_requestq_cachep;
61
62 /*
63 * Controlling structure to kblockd
64 */
65 static struct workqueue_struct *kblockd_workqueue;
66
67 static void blk_clear_congested(struct request_list *rl, int sync)
68 {
69 #ifdef CONFIG_CGROUP_WRITEBACK
70 clear_wb_congested(rl->blkg->wb_congested, sync);
71 #else
72 /*
73 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
74 * flip its congestion state for events on other blkcgs.
75 */
76 if (rl == &rl->q->root_rl)
77 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
78 #endif
79 }
80
81 static void blk_set_congested(struct request_list *rl, int sync)
82 {
83 #ifdef CONFIG_CGROUP_WRITEBACK
84 set_wb_congested(rl->blkg->wb_congested, sync);
85 #else
86 /* see blk_clear_congested() */
87 if (rl == &rl->q->root_rl)
88 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
89 #endif
90 }
91
92 void blk_queue_congestion_threshold(struct request_queue *q)
93 {
94 int nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
98 nr = q->nr_requests;
99 q->nr_congestion_on = nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 if (nr < 1)
103 nr = 1;
104 q->nr_congestion_off = nr;
105 }
106
107 /**
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109 * @bdev: device
110 *
111 * Locates the passed device's request queue and returns the address of its
112 * backing_dev_info. This function can only be called if @bdev is opened
113 * and the return value is never NULL.
114 */
115 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
116 {
117 struct request_queue *q = bdev_get_queue(bdev);
118
119 return &q->backing_dev_info;
120 }
121 EXPORT_SYMBOL(blk_get_backing_dev_info);
122
123 void blk_rq_init(struct request_queue *q, struct request *rq)
124 {
125 memset(rq, 0, sizeof(*rq));
126
127 INIT_LIST_HEAD(&rq->queuelist);
128 INIT_LIST_HEAD(&rq->timeout_list);
129 rq->cpu = -1;
130 rq->q = q;
131 rq->__sector = (sector_t) -1;
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
134 rq->cmd = rq->__cmd;
135 rq->cmd_len = BLK_MAX_CDB;
136 rq->tag = -1;
137 rq->start_time = jiffies;
138 set_start_time_ns(rq);
139 rq->part = NULL;
140 }
141 EXPORT_SYMBOL(blk_rq_init);
142
143 static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
145 {
146 if (error)
147 bio->bi_error = error;
148
149 if (unlikely(rq->rq_flags & RQF_QUIET))
150 bio_set_flag(bio, BIO_QUIET);
151
152 bio_advance(bio, nbytes);
153
154 /* don't actually finish bio if it's part of flush sequence */
155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
156 bio_endio(bio);
157 }
158
159 void blk_dump_rq_flags(struct request *rq, char *msg)
160 {
161 int bit;
162
163 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
164 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
165 (unsigned long long) rq->cmd_flags);
166
167 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
168 (unsigned long long)blk_rq_pos(rq),
169 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
170 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
171 rq->bio, rq->biotail, blk_rq_bytes(rq));
172
173 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
174 printk(KERN_INFO " cdb: ");
175 for (bit = 0; bit < BLK_MAX_CDB; bit++)
176 printk("%02x ", rq->cmd[bit]);
177 printk("\n");
178 }
179 }
180 EXPORT_SYMBOL(blk_dump_rq_flags);
181
182 static void blk_delay_work(struct work_struct *work)
183 {
184 struct request_queue *q;
185
186 q = container_of(work, struct request_queue, delay_work.work);
187 spin_lock_irq(q->queue_lock);
188 __blk_run_queue(q);
189 spin_unlock_irq(q->queue_lock);
190 }
191
192 /**
193 * blk_delay_queue - restart queueing after defined interval
194 * @q: The &struct request_queue in question
195 * @msecs: Delay in msecs
196 *
197 * Description:
198 * Sometimes queueing needs to be postponed for a little while, to allow
199 * resources to come back. This function will make sure that queueing is
200 * restarted around the specified time. Queue lock must be held.
201 */
202 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
203 {
204 if (likely(!blk_queue_dead(q)))
205 queue_delayed_work(kblockd_workqueue, &q->delay_work,
206 msecs_to_jiffies(msecs));
207 }
208 EXPORT_SYMBOL(blk_delay_queue);
209
210 /**
211 * blk_start_queue_async - asynchronously restart a previously stopped queue
212 * @q: The &struct request_queue in question
213 *
214 * Description:
215 * blk_start_queue_async() will clear the stop flag on the queue, and
216 * ensure that the request_fn for the queue is run from an async
217 * context.
218 **/
219 void blk_start_queue_async(struct request_queue *q)
220 {
221 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
222 blk_run_queue_async(q);
223 }
224 EXPORT_SYMBOL(blk_start_queue_async);
225
226 /**
227 * blk_start_queue - restart a previously stopped queue
228 * @q: The &struct request_queue in question
229 *
230 * Description:
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 **/
235 void blk_start_queue(struct request_queue *q)
236 {
237 WARN_ON(!irqs_disabled());
238
239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
240 __blk_run_queue(q);
241 }
242 EXPORT_SYMBOL(blk_start_queue);
243
244 /**
245 * blk_stop_queue - stop a queue
246 * @q: The &struct request_queue in question
247 *
248 * Description:
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 **/
258 void blk_stop_queue(struct request_queue *q)
259 {
260 cancel_delayed_work(&q->delay_work);
261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
262 }
263 EXPORT_SYMBOL(blk_stop_queue);
264
265 /**
266 * blk_sync_queue - cancel any pending callbacks on a queue
267 * @q: the queue
268 *
269 * Description:
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
274 * that the callbacks might use. The caller must already have made sure
275 * that its ->make_request_fn will not re-add plugging prior to calling
276 * this function.
277 *
278 * This function does not cancel any asynchronous activity arising
279 * out of elevator or throttling code. That would require elevator_exit()
280 * and blkcg_exit_queue() to be called with queue lock initialized.
281 *
282 */
283 void blk_sync_queue(struct request_queue *q)
284 {
285 del_timer_sync(&q->timeout);
286
287 if (q->mq_ops) {
288 struct blk_mq_hw_ctx *hctx;
289 int i;
290
291 queue_for_each_hw_ctx(q, hctx, i) {
292 cancel_work_sync(&hctx->run_work);
293 cancel_delayed_work_sync(&hctx->delay_work);
294 }
295 } else {
296 cancel_delayed_work_sync(&q->delay_work);
297 }
298 }
299 EXPORT_SYMBOL(blk_sync_queue);
300
301 /**
302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303 * @q: The queue to run
304 *
305 * Description:
306 * Invoke request handling on a queue if there are any pending requests.
307 * May be used to restart request handling after a request has completed.
308 * This variant runs the queue whether or not the queue has been
309 * stopped. Must be called with the queue lock held and interrupts
310 * disabled. See also @blk_run_queue.
311 */
312 inline void __blk_run_queue_uncond(struct request_queue *q)
313 {
314 if (unlikely(blk_queue_dead(q)))
315 return;
316
317 /*
318 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 * the queue lock internally. As a result multiple threads may be
320 * running such a request function concurrently. Keep track of the
321 * number of active request_fn invocations such that blk_drain_queue()
322 * can wait until all these request_fn calls have finished.
323 */
324 q->request_fn_active++;
325 q->request_fn(q);
326 q->request_fn_active--;
327 }
328 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
329
330 /**
331 * __blk_run_queue - run a single device queue
332 * @q: The queue to run
333 *
334 * Description:
335 * See @blk_run_queue. This variant must be called with the queue lock
336 * held and interrupts disabled.
337 */
338 void __blk_run_queue(struct request_queue *q)
339 {
340 if (unlikely(blk_queue_stopped(q)))
341 return;
342
343 __blk_run_queue_uncond(q);
344 }
345 EXPORT_SYMBOL(__blk_run_queue);
346
347 /**
348 * blk_run_queue_async - run a single device queue in workqueue context
349 * @q: The queue to run
350 *
351 * Description:
352 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
353 * of us. The caller must hold the queue lock.
354 */
355 void blk_run_queue_async(struct request_queue *q)
356 {
357 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
358 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
359 }
360 EXPORT_SYMBOL(blk_run_queue_async);
361
362 /**
363 * blk_run_queue - run a single device queue
364 * @q: The queue to run
365 *
366 * Description:
367 * Invoke request handling on this queue, if it has pending work to do.
368 * May be used to restart queueing when a request has completed.
369 */
370 void blk_run_queue(struct request_queue *q)
371 {
372 unsigned long flags;
373
374 spin_lock_irqsave(q->queue_lock, flags);
375 __blk_run_queue(q);
376 spin_unlock_irqrestore(q->queue_lock, flags);
377 }
378 EXPORT_SYMBOL(blk_run_queue);
379
380 void blk_put_queue(struct request_queue *q)
381 {
382 kobject_put(&q->kobj);
383 }
384 EXPORT_SYMBOL(blk_put_queue);
385
386 /**
387 * __blk_drain_queue - drain requests from request_queue
388 * @q: queue to drain
389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
390 *
391 * Drain requests from @q. If @drain_all is set, all requests are drained.
392 * If not, only ELVPRIV requests are drained. The caller is responsible
393 * for ensuring that no new requests which need to be drained are queued.
394 */
395 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
396 __releases(q->queue_lock)
397 __acquires(q->queue_lock)
398 {
399 int i;
400
401 lockdep_assert_held(q->queue_lock);
402
403 while (true) {
404 bool drain = false;
405
406 /*
407 * The caller might be trying to drain @q before its
408 * elevator is initialized.
409 */
410 if (q->elevator)
411 elv_drain_elevator(q);
412
413 blkcg_drain_queue(q);
414
415 /*
416 * This function might be called on a queue which failed
417 * driver init after queue creation or is not yet fully
418 * active yet. Some drivers (e.g. fd and loop) get unhappy
419 * in such cases. Kick queue iff dispatch queue has
420 * something on it and @q has request_fn set.
421 */
422 if (!list_empty(&q->queue_head) && q->request_fn)
423 __blk_run_queue(q);
424
425 drain |= q->nr_rqs_elvpriv;
426 drain |= q->request_fn_active;
427
428 /*
429 * Unfortunately, requests are queued at and tracked from
430 * multiple places and there's no single counter which can
431 * be drained. Check all the queues and counters.
432 */
433 if (drain_all) {
434 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
435 drain |= !list_empty(&q->queue_head);
436 for (i = 0; i < 2; i++) {
437 drain |= q->nr_rqs[i];
438 drain |= q->in_flight[i];
439 if (fq)
440 drain |= !list_empty(&fq->flush_queue[i]);
441 }
442 }
443
444 if (!drain)
445 break;
446
447 spin_unlock_irq(q->queue_lock);
448
449 msleep(10);
450
451 spin_lock_irq(q->queue_lock);
452 }
453
454 /*
455 * With queue marked dead, any woken up waiter will fail the
456 * allocation path, so the wakeup chaining is lost and we're
457 * left with hung waiters. We need to wake up those waiters.
458 */
459 if (q->request_fn) {
460 struct request_list *rl;
461
462 blk_queue_for_each_rl(rl, q)
463 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
464 wake_up_all(&rl->wait[i]);
465 }
466 }
467
468 /**
469 * blk_queue_bypass_start - enter queue bypass mode
470 * @q: queue of interest
471 *
472 * In bypass mode, only the dispatch FIFO queue of @q is used. This
473 * function makes @q enter bypass mode and drains all requests which were
474 * throttled or issued before. On return, it's guaranteed that no request
475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476 * inside queue or RCU read lock.
477 */
478 void blk_queue_bypass_start(struct request_queue *q)
479 {
480 spin_lock_irq(q->queue_lock);
481 q->bypass_depth++;
482 queue_flag_set(QUEUE_FLAG_BYPASS, q);
483 spin_unlock_irq(q->queue_lock);
484
485 /*
486 * Queues start drained. Skip actual draining till init is
487 * complete. This avoids lenghty delays during queue init which
488 * can happen many times during boot.
489 */
490 if (blk_queue_init_done(q)) {
491 spin_lock_irq(q->queue_lock);
492 __blk_drain_queue(q, false);
493 spin_unlock_irq(q->queue_lock);
494
495 /* ensure blk_queue_bypass() is %true inside RCU read lock */
496 synchronize_rcu();
497 }
498 }
499 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
500
501 /**
502 * blk_queue_bypass_end - leave queue bypass mode
503 * @q: queue of interest
504 *
505 * Leave bypass mode and restore the normal queueing behavior.
506 */
507 void blk_queue_bypass_end(struct request_queue *q)
508 {
509 spin_lock_irq(q->queue_lock);
510 if (!--q->bypass_depth)
511 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
512 WARN_ON_ONCE(q->bypass_depth < 0);
513 spin_unlock_irq(q->queue_lock);
514 }
515 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
516
517 void blk_set_queue_dying(struct request_queue *q)
518 {
519 spin_lock_irq(q->queue_lock);
520 queue_flag_set(QUEUE_FLAG_DYING, q);
521 spin_unlock_irq(q->queue_lock);
522
523 if (q->mq_ops)
524 blk_mq_wake_waiters(q);
525 else {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q) {
529 if (rl->rq_pool) {
530 wake_up(&rl->wait[BLK_RW_SYNC]);
531 wake_up(&rl->wait[BLK_RW_ASYNC]);
532 }
533 }
534 }
535 }
536 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
537
538 /**
539 * blk_cleanup_queue - shutdown a request queue
540 * @q: request queue to shutdown
541 *
542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543 * put it. All future requests will be failed immediately with -ENODEV.
544 */
545 void blk_cleanup_queue(struct request_queue *q)
546 {
547 spinlock_t *lock = q->queue_lock;
548
549 /* mark @q DYING, no new request or merges will be allowed afterwards */
550 mutex_lock(&q->sysfs_lock);
551 blk_set_queue_dying(q);
552 spin_lock_irq(lock);
553
554 /*
555 * A dying queue is permanently in bypass mode till released. Note
556 * that, unlike blk_queue_bypass_start(), we aren't performing
557 * synchronize_rcu() after entering bypass mode to avoid the delay
558 * as some drivers create and destroy a lot of queues while
559 * probing. This is still safe because blk_release_queue() will be
560 * called only after the queue refcnt drops to zero and nothing,
561 * RCU or not, would be traversing the queue by then.
562 */
563 q->bypass_depth++;
564 queue_flag_set(QUEUE_FLAG_BYPASS, q);
565
566 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
567 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
568 queue_flag_set(QUEUE_FLAG_DYING, q);
569 spin_unlock_irq(lock);
570 mutex_unlock(&q->sysfs_lock);
571
572 /*
573 * Drain all requests queued before DYING marking. Set DEAD flag to
574 * prevent that q->request_fn() gets invoked after draining finished.
575 */
576 blk_freeze_queue(q);
577 spin_lock_irq(lock);
578 if (!q->mq_ops)
579 __blk_drain_queue(q, true);
580 queue_flag_set(QUEUE_FLAG_DEAD, q);
581 spin_unlock_irq(lock);
582
583 /* for synchronous bio-based driver finish in-flight integrity i/o */
584 blk_flush_integrity();
585
586 /* @q won't process any more request, flush async actions */
587 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
588 blk_sync_queue(q);
589
590 if (q->mq_ops)
591 blk_mq_free_queue(q);
592 percpu_ref_exit(&q->q_usage_counter);
593
594 spin_lock_irq(lock);
595 if (q->queue_lock != &q->__queue_lock)
596 q->queue_lock = &q->__queue_lock;
597 spin_unlock_irq(lock);
598
599 bdi_unregister(&q->backing_dev_info);
600
601 /* @q is and will stay empty, shutdown and put */
602 blk_put_queue(q);
603 }
604 EXPORT_SYMBOL(blk_cleanup_queue);
605
606 /* Allocate memory local to the request queue */
607 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
608 {
609 int nid = (int)(long)data;
610 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
611 }
612
613 static void free_request_struct(void *element, void *unused)
614 {
615 kmem_cache_free(request_cachep, element);
616 }
617
618 int blk_init_rl(struct request_list *rl, struct request_queue *q,
619 gfp_t gfp_mask)
620 {
621 if (unlikely(rl->rq_pool))
622 return 0;
623
624 rl->q = q;
625 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
626 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
627 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
628 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
629
630 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
631 free_request_struct,
632 (void *)(long)q->node, gfp_mask,
633 q->node);
634 if (!rl->rq_pool)
635 return -ENOMEM;
636
637 return 0;
638 }
639
640 void blk_exit_rl(struct request_list *rl)
641 {
642 if (rl->rq_pool)
643 mempool_destroy(rl->rq_pool);
644 }
645
646 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
647 {
648 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
649 }
650 EXPORT_SYMBOL(blk_alloc_queue);
651
652 int blk_queue_enter(struct request_queue *q, bool nowait)
653 {
654 while (true) {
655 int ret;
656
657 if (percpu_ref_tryget_live(&q->q_usage_counter))
658 return 0;
659
660 if (nowait)
661 return -EBUSY;
662
663 ret = wait_event_interruptible(q->mq_freeze_wq,
664 !atomic_read(&q->mq_freeze_depth) ||
665 blk_queue_dying(q));
666 if (blk_queue_dying(q))
667 return -ENODEV;
668 if (ret)
669 return ret;
670 }
671 }
672
673 void blk_queue_exit(struct request_queue *q)
674 {
675 percpu_ref_put(&q->q_usage_counter);
676 }
677
678 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
679 {
680 struct request_queue *q =
681 container_of(ref, struct request_queue, q_usage_counter);
682
683 wake_up_all(&q->mq_freeze_wq);
684 }
685
686 static void blk_rq_timed_out_timer(unsigned long data)
687 {
688 struct request_queue *q = (struct request_queue *)data;
689
690 kblockd_schedule_work(&q->timeout_work);
691 }
692
693 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
694 {
695 struct request_queue *q;
696 int err;
697
698 q = kmem_cache_alloc_node(blk_requestq_cachep,
699 gfp_mask | __GFP_ZERO, node_id);
700 if (!q)
701 return NULL;
702
703 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
704 if (q->id < 0)
705 goto fail_q;
706
707 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
708 if (!q->bio_split)
709 goto fail_id;
710
711 q->backing_dev_info.ra_pages =
712 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
713 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
714 q->backing_dev_info.name = "block";
715 q->node = node_id;
716
717 err = bdi_init(&q->backing_dev_info);
718 if (err)
719 goto fail_split;
720
721 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
722 laptop_mode_timer_fn, (unsigned long) q);
723 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
724 INIT_LIST_HEAD(&q->queue_head);
725 INIT_LIST_HEAD(&q->timeout_list);
726 INIT_LIST_HEAD(&q->icq_list);
727 #ifdef CONFIG_BLK_CGROUP
728 INIT_LIST_HEAD(&q->blkg_list);
729 #endif
730 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
731
732 kobject_init(&q->kobj, &blk_queue_ktype);
733
734 mutex_init(&q->sysfs_lock);
735 spin_lock_init(&q->__queue_lock);
736
737 /*
738 * By default initialize queue_lock to internal lock and driver can
739 * override it later if need be.
740 */
741 q->queue_lock = &q->__queue_lock;
742
743 /*
744 * A queue starts its life with bypass turned on to avoid
745 * unnecessary bypass on/off overhead and nasty surprises during
746 * init. The initial bypass will be finished when the queue is
747 * registered by blk_register_queue().
748 */
749 q->bypass_depth = 1;
750 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
751
752 init_waitqueue_head(&q->mq_freeze_wq);
753
754 /*
755 * Init percpu_ref in atomic mode so that it's faster to shutdown.
756 * See blk_register_queue() for details.
757 */
758 if (percpu_ref_init(&q->q_usage_counter,
759 blk_queue_usage_counter_release,
760 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
761 goto fail_bdi;
762
763 if (blkcg_init_queue(q))
764 goto fail_ref;
765
766 return q;
767
768 fail_ref:
769 percpu_ref_exit(&q->q_usage_counter);
770 fail_bdi:
771 bdi_destroy(&q->backing_dev_info);
772 fail_split:
773 bioset_free(q->bio_split);
774 fail_id:
775 ida_simple_remove(&blk_queue_ida, q->id);
776 fail_q:
777 kmem_cache_free(blk_requestq_cachep, q);
778 return NULL;
779 }
780 EXPORT_SYMBOL(blk_alloc_queue_node);
781
782 /**
783 * blk_init_queue - prepare a request queue for use with a block device
784 * @rfn: The function to be called to process requests that have been
785 * placed on the queue.
786 * @lock: Request queue spin lock
787 *
788 * Description:
789 * If a block device wishes to use the standard request handling procedures,
790 * which sorts requests and coalesces adjacent requests, then it must
791 * call blk_init_queue(). The function @rfn will be called when there
792 * are requests on the queue that need to be processed. If the device
793 * supports plugging, then @rfn may not be called immediately when requests
794 * are available on the queue, but may be called at some time later instead.
795 * Plugged queues are generally unplugged when a buffer belonging to one
796 * of the requests on the queue is needed, or due to memory pressure.
797 *
798 * @rfn is not required, or even expected, to remove all requests off the
799 * queue, but only as many as it can handle at a time. If it does leave
800 * requests on the queue, it is responsible for arranging that the requests
801 * get dealt with eventually.
802 *
803 * The queue spin lock must be held while manipulating the requests on the
804 * request queue; this lock will be taken also from interrupt context, so irq
805 * disabling is needed for it.
806 *
807 * Function returns a pointer to the initialized request queue, or %NULL if
808 * it didn't succeed.
809 *
810 * Note:
811 * blk_init_queue() must be paired with a blk_cleanup_queue() call
812 * when the block device is deactivated (such as at module unload).
813 **/
814
815 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
816 {
817 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
818 }
819 EXPORT_SYMBOL(blk_init_queue);
820
821 struct request_queue *
822 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
823 {
824 struct request_queue *uninit_q, *q;
825
826 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
827 if (!uninit_q)
828 return NULL;
829
830 q = blk_init_allocated_queue(uninit_q, rfn, lock);
831 if (!q)
832 blk_cleanup_queue(uninit_q);
833
834 return q;
835 }
836 EXPORT_SYMBOL(blk_init_queue_node);
837
838 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
839
840 struct request_queue *
841 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
842 spinlock_t *lock)
843 {
844 if (!q)
845 return NULL;
846
847 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
848 if (!q->fq)
849 return NULL;
850
851 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
852 goto fail;
853
854 INIT_WORK(&q->timeout_work, blk_timeout_work);
855 q->request_fn = rfn;
856 q->prep_rq_fn = NULL;
857 q->unprep_rq_fn = NULL;
858 q->queue_flags |= QUEUE_FLAG_DEFAULT;
859
860 /* Override internal queue lock with supplied lock pointer */
861 if (lock)
862 q->queue_lock = lock;
863
864 /*
865 * This also sets hw/phys segments, boundary and size
866 */
867 blk_queue_make_request(q, blk_queue_bio);
868
869 q->sg_reserved_size = INT_MAX;
870
871 /* Protect q->elevator from elevator_change */
872 mutex_lock(&q->sysfs_lock);
873
874 /* init elevator */
875 if (elevator_init(q, NULL)) {
876 mutex_unlock(&q->sysfs_lock);
877 goto fail;
878 }
879
880 mutex_unlock(&q->sysfs_lock);
881
882 return q;
883
884 fail:
885 blk_free_flush_queue(q->fq);
886 wbt_exit(q);
887 return NULL;
888 }
889 EXPORT_SYMBOL(blk_init_allocated_queue);
890
891 bool blk_get_queue(struct request_queue *q)
892 {
893 if (likely(!blk_queue_dying(q))) {
894 __blk_get_queue(q);
895 return true;
896 }
897
898 return false;
899 }
900 EXPORT_SYMBOL(blk_get_queue);
901
902 static inline void blk_free_request(struct request_list *rl, struct request *rq)
903 {
904 if (rq->rq_flags & RQF_ELVPRIV) {
905 elv_put_request(rl->q, rq);
906 if (rq->elv.icq)
907 put_io_context(rq->elv.icq->ioc);
908 }
909
910 mempool_free(rq, rl->rq_pool);
911 }
912
913 /*
914 * ioc_batching returns true if the ioc is a valid batching request and
915 * should be given priority access to a request.
916 */
917 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
918 {
919 if (!ioc)
920 return 0;
921
922 /*
923 * Make sure the process is able to allocate at least 1 request
924 * even if the batch times out, otherwise we could theoretically
925 * lose wakeups.
926 */
927 return ioc->nr_batch_requests == q->nr_batching ||
928 (ioc->nr_batch_requests > 0
929 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
930 }
931
932 /*
933 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
934 * will cause the process to be a "batcher" on all queues in the system. This
935 * is the behaviour we want though - once it gets a wakeup it should be given
936 * a nice run.
937 */
938 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
939 {
940 if (!ioc || ioc_batching(q, ioc))
941 return;
942
943 ioc->nr_batch_requests = q->nr_batching;
944 ioc->last_waited = jiffies;
945 }
946
947 static void __freed_request(struct request_list *rl, int sync)
948 {
949 struct request_queue *q = rl->q;
950
951 if (rl->count[sync] < queue_congestion_off_threshold(q))
952 blk_clear_congested(rl, sync);
953
954 if (rl->count[sync] + 1 <= q->nr_requests) {
955 if (waitqueue_active(&rl->wait[sync]))
956 wake_up(&rl->wait[sync]);
957
958 blk_clear_rl_full(rl, sync);
959 }
960 }
961
962 /*
963 * A request has just been released. Account for it, update the full and
964 * congestion status, wake up any waiters. Called under q->queue_lock.
965 */
966 static void freed_request(struct request_list *rl, bool sync,
967 req_flags_t rq_flags)
968 {
969 struct request_queue *q = rl->q;
970
971 q->nr_rqs[sync]--;
972 rl->count[sync]--;
973 if (rq_flags & RQF_ELVPRIV)
974 q->nr_rqs_elvpriv--;
975
976 __freed_request(rl, sync);
977
978 if (unlikely(rl->starved[sync ^ 1]))
979 __freed_request(rl, sync ^ 1);
980 }
981
982 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
983 {
984 struct request_list *rl;
985 int on_thresh, off_thresh;
986
987 spin_lock_irq(q->queue_lock);
988 q->nr_requests = nr;
989 blk_queue_congestion_threshold(q);
990 on_thresh = queue_congestion_on_threshold(q);
991 off_thresh = queue_congestion_off_threshold(q);
992
993 blk_queue_for_each_rl(rl, q) {
994 if (rl->count[BLK_RW_SYNC] >= on_thresh)
995 blk_set_congested(rl, BLK_RW_SYNC);
996 else if (rl->count[BLK_RW_SYNC] < off_thresh)
997 blk_clear_congested(rl, BLK_RW_SYNC);
998
999 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000 blk_set_congested(rl, BLK_RW_ASYNC);
1001 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002 blk_clear_congested(rl, BLK_RW_ASYNC);
1003
1004 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005 blk_set_rl_full(rl, BLK_RW_SYNC);
1006 } else {
1007 blk_clear_rl_full(rl, BLK_RW_SYNC);
1008 wake_up(&rl->wait[BLK_RW_SYNC]);
1009 }
1010
1011 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012 blk_set_rl_full(rl, BLK_RW_ASYNC);
1013 } else {
1014 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015 wake_up(&rl->wait[BLK_RW_ASYNC]);
1016 }
1017 }
1018
1019 spin_unlock_irq(q->queue_lock);
1020 return 0;
1021 }
1022
1023 /*
1024 * Determine if elevator data should be initialized when allocating the
1025 * request associated with @bio.
1026 */
1027 static bool blk_rq_should_init_elevator(struct bio *bio)
1028 {
1029 if (!bio)
1030 return true;
1031
1032 /*
1033 * Flush requests do not use the elevator so skip initialization.
1034 * This allows a request to share the flush and elevator data.
1035 */
1036 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1037 return false;
1038
1039 return true;
1040 }
1041
1042 /**
1043 * rq_ioc - determine io_context for request allocation
1044 * @bio: request being allocated is for this bio (can be %NULL)
1045 *
1046 * Determine io_context to use for request allocation for @bio. May return
1047 * %NULL if %current->io_context doesn't exist.
1048 */
1049 static struct io_context *rq_ioc(struct bio *bio)
1050 {
1051 #ifdef CONFIG_BLK_CGROUP
1052 if (bio && bio->bi_ioc)
1053 return bio->bi_ioc;
1054 #endif
1055 return current->io_context;
1056 }
1057
1058 /**
1059 * __get_request - get a free request
1060 * @rl: request list to allocate from
1061 * @op: operation and flags
1062 * @bio: bio to allocate request for (can be %NULL)
1063 * @gfp_mask: allocation mask
1064 *
1065 * Get a free request from @q. This function may fail under memory
1066 * pressure or if @q is dead.
1067 *
1068 * Must be called with @q->queue_lock held and,
1069 * Returns ERR_PTR on failure, with @q->queue_lock held.
1070 * Returns request pointer on success, with @q->queue_lock *not held*.
1071 */
1072 static struct request *__get_request(struct request_list *rl, unsigned int op,
1073 struct bio *bio, gfp_t gfp_mask)
1074 {
1075 struct request_queue *q = rl->q;
1076 struct request *rq;
1077 struct elevator_type *et = q->elevator->type;
1078 struct io_context *ioc = rq_ioc(bio);
1079 struct io_cq *icq = NULL;
1080 const bool is_sync = op_is_sync(op);
1081 int may_queue;
1082 req_flags_t rq_flags = RQF_ALLOCED;
1083
1084 if (unlikely(blk_queue_dying(q)))
1085 return ERR_PTR(-ENODEV);
1086
1087 may_queue = elv_may_queue(q, op);
1088 if (may_queue == ELV_MQUEUE_NO)
1089 goto rq_starved;
1090
1091 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1092 if (rl->count[is_sync]+1 >= q->nr_requests) {
1093 /*
1094 * The queue will fill after this allocation, so set
1095 * it as full, and mark this process as "batching".
1096 * This process will be allowed to complete a batch of
1097 * requests, others will be blocked.
1098 */
1099 if (!blk_rl_full(rl, is_sync)) {
1100 ioc_set_batching(q, ioc);
1101 blk_set_rl_full(rl, is_sync);
1102 } else {
1103 if (may_queue != ELV_MQUEUE_MUST
1104 && !ioc_batching(q, ioc)) {
1105 /*
1106 * The queue is full and the allocating
1107 * process is not a "batcher", and not
1108 * exempted by the IO scheduler
1109 */
1110 return ERR_PTR(-ENOMEM);
1111 }
1112 }
1113 }
1114 blk_set_congested(rl, is_sync);
1115 }
1116
1117 /*
1118 * Only allow batching queuers to allocate up to 50% over the defined
1119 * limit of requests, otherwise we could have thousands of requests
1120 * allocated with any setting of ->nr_requests
1121 */
1122 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1123 return ERR_PTR(-ENOMEM);
1124
1125 q->nr_rqs[is_sync]++;
1126 rl->count[is_sync]++;
1127 rl->starved[is_sync] = 0;
1128
1129 /*
1130 * Decide whether the new request will be managed by elevator. If
1131 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1132 * prevent the current elevator from being destroyed until the new
1133 * request is freed. This guarantees icq's won't be destroyed and
1134 * makes creating new ones safe.
1135 *
1136 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1137 * it will be created after releasing queue_lock.
1138 */
1139 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1140 rq_flags |= RQF_ELVPRIV;
1141 q->nr_rqs_elvpriv++;
1142 if (et->icq_cache && ioc)
1143 icq = ioc_lookup_icq(ioc, q);
1144 }
1145
1146 if (blk_queue_io_stat(q))
1147 rq_flags |= RQF_IO_STAT;
1148 spin_unlock_irq(q->queue_lock);
1149
1150 /* allocate and init request */
1151 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1152 if (!rq)
1153 goto fail_alloc;
1154
1155 blk_rq_init(q, rq);
1156 blk_rq_set_rl(rq, rl);
1157 rq->cmd_flags = op;
1158 rq->rq_flags = rq_flags;
1159
1160 /* init elvpriv */
1161 if (rq_flags & RQF_ELVPRIV) {
1162 if (unlikely(et->icq_cache && !icq)) {
1163 if (ioc)
1164 icq = ioc_create_icq(ioc, q, gfp_mask);
1165 if (!icq)
1166 goto fail_elvpriv;
1167 }
1168
1169 rq->elv.icq = icq;
1170 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1171 goto fail_elvpriv;
1172
1173 /* @rq->elv.icq holds io_context until @rq is freed */
1174 if (icq)
1175 get_io_context(icq->ioc);
1176 }
1177 out:
1178 /*
1179 * ioc may be NULL here, and ioc_batching will be false. That's
1180 * OK, if the queue is under the request limit then requests need
1181 * not count toward the nr_batch_requests limit. There will always
1182 * be some limit enforced by BLK_BATCH_TIME.
1183 */
1184 if (ioc_batching(q, ioc))
1185 ioc->nr_batch_requests--;
1186
1187 trace_block_getrq(q, bio, op);
1188 return rq;
1189
1190 fail_elvpriv:
1191 /*
1192 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1193 * and may fail indefinitely under memory pressure and thus
1194 * shouldn't stall IO. Treat this request as !elvpriv. This will
1195 * disturb iosched and blkcg but weird is bettern than dead.
1196 */
1197 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1198 __func__, dev_name(q->backing_dev_info.dev));
1199
1200 rq->rq_flags &= ~RQF_ELVPRIV;
1201 rq->elv.icq = NULL;
1202
1203 spin_lock_irq(q->queue_lock);
1204 q->nr_rqs_elvpriv--;
1205 spin_unlock_irq(q->queue_lock);
1206 goto out;
1207
1208 fail_alloc:
1209 /*
1210 * Allocation failed presumably due to memory. Undo anything we
1211 * might have messed up.
1212 *
1213 * Allocating task should really be put onto the front of the wait
1214 * queue, but this is pretty rare.
1215 */
1216 spin_lock_irq(q->queue_lock);
1217 freed_request(rl, is_sync, rq_flags);
1218
1219 /*
1220 * in the very unlikely event that allocation failed and no
1221 * requests for this direction was pending, mark us starved so that
1222 * freeing of a request in the other direction will notice
1223 * us. another possible fix would be to split the rq mempool into
1224 * READ and WRITE
1225 */
1226 rq_starved:
1227 if (unlikely(rl->count[is_sync] == 0))
1228 rl->starved[is_sync] = 1;
1229 return ERR_PTR(-ENOMEM);
1230 }
1231
1232 /**
1233 * get_request - get a free request
1234 * @q: request_queue to allocate request from
1235 * @op: operation and flags
1236 * @bio: bio to allocate request for (can be %NULL)
1237 * @gfp_mask: allocation mask
1238 *
1239 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1240 * this function keeps retrying under memory pressure and fails iff @q is dead.
1241 *
1242 * Must be called with @q->queue_lock held and,
1243 * Returns ERR_PTR on failure, with @q->queue_lock held.
1244 * Returns request pointer on success, with @q->queue_lock *not held*.
1245 */
1246 static struct request *get_request(struct request_queue *q, unsigned int op,
1247 struct bio *bio, gfp_t gfp_mask)
1248 {
1249 const bool is_sync = op_is_sync(op);
1250 DEFINE_WAIT(wait);
1251 struct request_list *rl;
1252 struct request *rq;
1253
1254 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1255 retry:
1256 rq = __get_request(rl, op, bio, gfp_mask);
1257 if (!IS_ERR(rq))
1258 return rq;
1259
1260 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1261 blk_put_rl(rl);
1262 return rq;
1263 }
1264
1265 /* wait on @rl and retry */
1266 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1267 TASK_UNINTERRUPTIBLE);
1268
1269 trace_block_sleeprq(q, bio, op);
1270
1271 spin_unlock_irq(q->queue_lock);
1272 io_schedule();
1273
1274 /*
1275 * After sleeping, we become a "batching" process and will be able
1276 * to allocate at least one request, and up to a big batch of them
1277 * for a small period time. See ioc_batching, ioc_set_batching
1278 */
1279 ioc_set_batching(q, current->io_context);
1280
1281 spin_lock_irq(q->queue_lock);
1282 finish_wait(&rl->wait[is_sync], &wait);
1283
1284 goto retry;
1285 }
1286
1287 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1288 gfp_t gfp_mask)
1289 {
1290 struct request *rq;
1291
1292 BUG_ON(rw != READ && rw != WRITE);
1293
1294 /* create ioc upfront */
1295 create_io_context(gfp_mask, q->node);
1296
1297 spin_lock_irq(q->queue_lock);
1298 rq = get_request(q, rw, NULL, gfp_mask);
1299 if (IS_ERR(rq)) {
1300 spin_unlock_irq(q->queue_lock);
1301 return rq;
1302 }
1303
1304 /* q->queue_lock is unlocked at this point */
1305 rq->__data_len = 0;
1306 rq->__sector = (sector_t) -1;
1307 rq->bio = rq->biotail = NULL;
1308 return rq;
1309 }
1310
1311 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1312 {
1313 if (q->mq_ops)
1314 return blk_mq_alloc_request(q, rw,
1315 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1316 0 : BLK_MQ_REQ_NOWAIT);
1317 else
1318 return blk_old_get_request(q, rw, gfp_mask);
1319 }
1320 EXPORT_SYMBOL(blk_get_request);
1321
1322 /**
1323 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1324 * @rq: request to be initialized
1325 *
1326 */
1327 void blk_rq_set_block_pc(struct request *rq)
1328 {
1329 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1330 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1331 }
1332 EXPORT_SYMBOL(blk_rq_set_block_pc);
1333
1334 /**
1335 * blk_requeue_request - put a request back on queue
1336 * @q: request queue where request should be inserted
1337 * @rq: request to be inserted
1338 *
1339 * Description:
1340 * Drivers often keep queueing requests until the hardware cannot accept
1341 * more, when that condition happens we need to put the request back
1342 * on the queue. Must be called with queue lock held.
1343 */
1344 void blk_requeue_request(struct request_queue *q, struct request *rq)
1345 {
1346 blk_delete_timer(rq);
1347 blk_clear_rq_complete(rq);
1348 trace_block_rq_requeue(q, rq);
1349 wbt_requeue(q->rq_wb, &rq->issue_stat);
1350
1351 if (rq->rq_flags & RQF_QUEUED)
1352 blk_queue_end_tag(q, rq);
1353
1354 BUG_ON(blk_queued_rq(rq));
1355
1356 elv_requeue_request(q, rq);
1357 }
1358 EXPORT_SYMBOL(blk_requeue_request);
1359
1360 static void add_acct_request(struct request_queue *q, struct request *rq,
1361 int where)
1362 {
1363 blk_account_io_start(rq, true);
1364 __elv_add_request(q, rq, where);
1365 }
1366
1367 static void part_round_stats_single(int cpu, struct hd_struct *part,
1368 unsigned long now)
1369 {
1370 int inflight;
1371
1372 if (now == part->stamp)
1373 return;
1374
1375 inflight = part_in_flight(part);
1376 if (inflight) {
1377 __part_stat_add(cpu, part, time_in_queue,
1378 inflight * (now - part->stamp));
1379 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1380 }
1381 part->stamp = now;
1382 }
1383
1384 /**
1385 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1386 * @cpu: cpu number for stats access
1387 * @part: target partition
1388 *
1389 * The average IO queue length and utilisation statistics are maintained
1390 * by observing the current state of the queue length and the amount of
1391 * time it has been in this state for.
1392 *
1393 * Normally, that accounting is done on IO completion, but that can result
1394 * in more than a second's worth of IO being accounted for within any one
1395 * second, leading to >100% utilisation. To deal with that, we call this
1396 * function to do a round-off before returning the results when reading
1397 * /proc/diskstats. This accounts immediately for all queue usage up to
1398 * the current jiffies and restarts the counters again.
1399 */
1400 void part_round_stats(int cpu, struct hd_struct *part)
1401 {
1402 unsigned long now = jiffies;
1403
1404 if (part->partno)
1405 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1406 part_round_stats_single(cpu, part, now);
1407 }
1408 EXPORT_SYMBOL_GPL(part_round_stats);
1409
1410 #ifdef CONFIG_PM
1411 static void blk_pm_put_request(struct request *rq)
1412 {
1413 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1414 pm_runtime_mark_last_busy(rq->q->dev);
1415 }
1416 #else
1417 static inline void blk_pm_put_request(struct request *rq) {}
1418 #endif
1419
1420 /*
1421 * queue lock must be held
1422 */
1423 void __blk_put_request(struct request_queue *q, struct request *req)
1424 {
1425 req_flags_t rq_flags = req->rq_flags;
1426
1427 if (unlikely(!q))
1428 return;
1429
1430 if (q->mq_ops) {
1431 blk_mq_free_request(req);
1432 return;
1433 }
1434
1435 blk_pm_put_request(req);
1436
1437 elv_completed_request(q, req);
1438
1439 /* this is a bio leak */
1440 WARN_ON(req->bio != NULL);
1441
1442 wbt_done(q->rq_wb, &req->issue_stat);
1443
1444 /*
1445 * Request may not have originated from ll_rw_blk. if not,
1446 * it didn't come out of our reserved rq pools
1447 */
1448 if (rq_flags & RQF_ALLOCED) {
1449 struct request_list *rl = blk_rq_rl(req);
1450 bool sync = op_is_sync(req->cmd_flags);
1451
1452 BUG_ON(!list_empty(&req->queuelist));
1453 BUG_ON(ELV_ON_HASH(req));
1454
1455 blk_free_request(rl, req);
1456 freed_request(rl, sync, rq_flags);
1457 blk_put_rl(rl);
1458 }
1459 }
1460 EXPORT_SYMBOL_GPL(__blk_put_request);
1461
1462 void blk_put_request(struct request *req)
1463 {
1464 struct request_queue *q = req->q;
1465
1466 if (q->mq_ops)
1467 blk_mq_free_request(req);
1468 else {
1469 unsigned long flags;
1470
1471 spin_lock_irqsave(q->queue_lock, flags);
1472 __blk_put_request(q, req);
1473 spin_unlock_irqrestore(q->queue_lock, flags);
1474 }
1475 }
1476 EXPORT_SYMBOL(blk_put_request);
1477
1478 /**
1479 * blk_add_request_payload - add a payload to a request
1480 * @rq: request to update
1481 * @page: page backing the payload
1482 * @offset: offset in page
1483 * @len: length of the payload.
1484 *
1485 * This allows to later add a payload to an already submitted request by
1486 * a block driver. The driver needs to take care of freeing the payload
1487 * itself.
1488 *
1489 * Note that this is a quite horrible hack and nothing but handling of
1490 * discard requests should ever use it.
1491 */
1492 void blk_add_request_payload(struct request *rq, struct page *page,
1493 int offset, unsigned int len)
1494 {
1495 struct bio *bio = rq->bio;
1496
1497 bio->bi_io_vec->bv_page = page;
1498 bio->bi_io_vec->bv_offset = offset;
1499 bio->bi_io_vec->bv_len = len;
1500
1501 bio->bi_iter.bi_size = len;
1502 bio->bi_vcnt = 1;
1503 bio->bi_phys_segments = 1;
1504
1505 rq->__data_len = rq->resid_len = len;
1506 rq->nr_phys_segments = 1;
1507 }
1508 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1509
1510 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1511 struct bio *bio)
1512 {
1513 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1514
1515 if (!ll_back_merge_fn(q, req, bio))
1516 return false;
1517
1518 trace_block_bio_backmerge(q, req, bio);
1519
1520 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1521 blk_rq_set_mixed_merge(req);
1522
1523 req->biotail->bi_next = bio;
1524 req->biotail = bio;
1525 req->__data_len += bio->bi_iter.bi_size;
1526 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1527
1528 blk_account_io_start(req, false);
1529 return true;
1530 }
1531
1532 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1533 struct bio *bio)
1534 {
1535 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1536
1537 if (!ll_front_merge_fn(q, req, bio))
1538 return false;
1539
1540 trace_block_bio_frontmerge(q, req, bio);
1541
1542 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1543 blk_rq_set_mixed_merge(req);
1544
1545 bio->bi_next = req->bio;
1546 req->bio = bio;
1547
1548 req->__sector = bio->bi_iter.bi_sector;
1549 req->__data_len += bio->bi_iter.bi_size;
1550 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1551
1552 blk_account_io_start(req, false);
1553 return true;
1554 }
1555
1556 /**
1557 * blk_attempt_plug_merge - try to merge with %current's plugged list
1558 * @q: request_queue new bio is being queued at
1559 * @bio: new bio being queued
1560 * @request_count: out parameter for number of traversed plugged requests
1561 * @same_queue_rq: pointer to &struct request that gets filled in when
1562 * another request associated with @q is found on the plug list
1563 * (optional, may be %NULL)
1564 *
1565 * Determine whether @bio being queued on @q can be merged with a request
1566 * on %current's plugged list. Returns %true if merge was successful,
1567 * otherwise %false.
1568 *
1569 * Plugging coalesces IOs from the same issuer for the same purpose without
1570 * going through @q->queue_lock. As such it's more of an issuing mechanism
1571 * than scheduling, and the request, while may have elvpriv data, is not
1572 * added on the elevator at this point. In addition, we don't have
1573 * reliable access to the elevator outside queue lock. Only check basic
1574 * merging parameters without querying the elevator.
1575 *
1576 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1577 */
1578 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1579 unsigned int *request_count,
1580 struct request **same_queue_rq)
1581 {
1582 struct blk_plug *plug;
1583 struct request *rq;
1584 bool ret = false;
1585 struct list_head *plug_list;
1586
1587 plug = current->plug;
1588 if (!plug)
1589 goto out;
1590 *request_count = 0;
1591
1592 if (q->mq_ops)
1593 plug_list = &plug->mq_list;
1594 else
1595 plug_list = &plug->list;
1596
1597 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1598 int el_ret;
1599
1600 if (rq->q == q) {
1601 (*request_count)++;
1602 /*
1603 * Only blk-mq multiple hardware queues case checks the
1604 * rq in the same queue, there should be only one such
1605 * rq in a queue
1606 **/
1607 if (same_queue_rq)
1608 *same_queue_rq = rq;
1609 }
1610
1611 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1612 continue;
1613
1614 el_ret = blk_try_merge(rq, bio);
1615 if (el_ret == ELEVATOR_BACK_MERGE) {
1616 ret = bio_attempt_back_merge(q, rq, bio);
1617 if (ret)
1618 break;
1619 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1620 ret = bio_attempt_front_merge(q, rq, bio);
1621 if (ret)
1622 break;
1623 }
1624 }
1625 out:
1626 return ret;
1627 }
1628
1629 unsigned int blk_plug_queued_count(struct request_queue *q)
1630 {
1631 struct blk_plug *plug;
1632 struct request *rq;
1633 struct list_head *plug_list;
1634 unsigned int ret = 0;
1635
1636 plug = current->plug;
1637 if (!plug)
1638 goto out;
1639
1640 if (q->mq_ops)
1641 plug_list = &plug->mq_list;
1642 else
1643 plug_list = &plug->list;
1644
1645 list_for_each_entry(rq, plug_list, queuelist) {
1646 if (rq->q == q)
1647 ret++;
1648 }
1649 out:
1650 return ret;
1651 }
1652
1653 void init_request_from_bio(struct request *req, struct bio *bio)
1654 {
1655 req->cmd_type = REQ_TYPE_FS;
1656 if (bio->bi_opf & REQ_RAHEAD)
1657 req->cmd_flags |= REQ_FAILFAST_MASK;
1658
1659 req->errors = 0;
1660 req->__sector = bio->bi_iter.bi_sector;
1661 req->ioprio = bio_prio(bio);
1662 blk_rq_bio_prep(req->q, req, bio);
1663 }
1664
1665 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1666 {
1667 struct blk_plug *plug;
1668 int el_ret, where = ELEVATOR_INSERT_SORT;
1669 struct request *req;
1670 unsigned int request_count = 0;
1671 unsigned int wb_acct;
1672
1673 /*
1674 * low level driver can indicate that it wants pages above a
1675 * certain limit bounced to low memory (ie for highmem, or even
1676 * ISA dma in theory)
1677 */
1678 blk_queue_bounce(q, &bio);
1679
1680 blk_queue_split(q, &bio, q->bio_split);
1681
1682 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1683 bio->bi_error = -EIO;
1684 bio_endio(bio);
1685 return BLK_QC_T_NONE;
1686 }
1687
1688 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1689 spin_lock_irq(q->queue_lock);
1690 where = ELEVATOR_INSERT_FLUSH;
1691 goto get_rq;
1692 }
1693
1694 /*
1695 * Check if we can merge with the plugged list before grabbing
1696 * any locks.
1697 */
1698 if (!blk_queue_nomerges(q)) {
1699 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1700 return BLK_QC_T_NONE;
1701 } else
1702 request_count = blk_plug_queued_count(q);
1703
1704 spin_lock_irq(q->queue_lock);
1705
1706 el_ret = elv_merge(q, &req, bio);
1707 if (el_ret == ELEVATOR_BACK_MERGE) {
1708 if (bio_attempt_back_merge(q, req, bio)) {
1709 elv_bio_merged(q, req, bio);
1710 if (!attempt_back_merge(q, req))
1711 elv_merged_request(q, req, el_ret);
1712 goto out_unlock;
1713 }
1714 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1715 if (bio_attempt_front_merge(q, req, bio)) {
1716 elv_bio_merged(q, req, bio);
1717 if (!attempt_front_merge(q, req))
1718 elv_merged_request(q, req, el_ret);
1719 goto out_unlock;
1720 }
1721 }
1722
1723 get_rq:
1724 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1725
1726 /*
1727 * Grab a free request. This is might sleep but can not fail.
1728 * Returns with the queue unlocked.
1729 */
1730 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1731 if (IS_ERR(req)) {
1732 __wbt_done(q->rq_wb, wb_acct);
1733 bio->bi_error = PTR_ERR(req);
1734 bio_endio(bio);
1735 goto out_unlock;
1736 }
1737
1738 wbt_track(&req->issue_stat, wb_acct);
1739
1740 /*
1741 * After dropping the lock and possibly sleeping here, our request
1742 * may now be mergeable after it had proven unmergeable (above).
1743 * We don't worry about that case for efficiency. It won't happen
1744 * often, and the elevators are able to handle it.
1745 */
1746 init_request_from_bio(req, bio);
1747
1748 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1749 req->cpu = raw_smp_processor_id();
1750
1751 plug = current->plug;
1752 if (plug) {
1753 /*
1754 * If this is the first request added after a plug, fire
1755 * of a plug trace.
1756 *
1757 * @request_count may become stale because of schedule
1758 * out, so check plug list again.
1759 */
1760 if (!request_count || list_empty(&plug->list))
1761 trace_block_plug(q);
1762 else {
1763 struct request *last = list_entry_rq(plug->list.prev);
1764 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1765 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1766 blk_flush_plug_list(plug, false);
1767 trace_block_plug(q);
1768 }
1769 }
1770 list_add_tail(&req->queuelist, &plug->list);
1771 blk_account_io_start(req, true);
1772 } else {
1773 spin_lock_irq(q->queue_lock);
1774 add_acct_request(q, req, where);
1775 __blk_run_queue(q);
1776 out_unlock:
1777 spin_unlock_irq(q->queue_lock);
1778 }
1779
1780 return BLK_QC_T_NONE;
1781 }
1782
1783 /*
1784 * If bio->bi_dev is a partition, remap the location
1785 */
1786 static inline void blk_partition_remap(struct bio *bio)
1787 {
1788 struct block_device *bdev = bio->bi_bdev;
1789
1790 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1791 struct hd_struct *p = bdev->bd_part;
1792
1793 bio->bi_iter.bi_sector += p->start_sect;
1794 bio->bi_bdev = bdev->bd_contains;
1795
1796 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1797 bdev->bd_dev,
1798 bio->bi_iter.bi_sector - p->start_sect);
1799 }
1800 }
1801
1802 static void handle_bad_sector(struct bio *bio)
1803 {
1804 char b[BDEVNAME_SIZE];
1805
1806 printk(KERN_INFO "attempt to access beyond end of device\n");
1807 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1808 bdevname(bio->bi_bdev, b),
1809 bio->bi_opf,
1810 (unsigned long long)bio_end_sector(bio),
1811 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1812 }
1813
1814 #ifdef CONFIG_FAIL_MAKE_REQUEST
1815
1816 static DECLARE_FAULT_ATTR(fail_make_request);
1817
1818 static int __init setup_fail_make_request(char *str)
1819 {
1820 return setup_fault_attr(&fail_make_request, str);
1821 }
1822 __setup("fail_make_request=", setup_fail_make_request);
1823
1824 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1825 {
1826 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1827 }
1828
1829 static int __init fail_make_request_debugfs(void)
1830 {
1831 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1832 NULL, &fail_make_request);
1833
1834 return PTR_ERR_OR_ZERO(dir);
1835 }
1836
1837 late_initcall(fail_make_request_debugfs);
1838
1839 #else /* CONFIG_FAIL_MAKE_REQUEST */
1840
1841 static inline bool should_fail_request(struct hd_struct *part,
1842 unsigned int bytes)
1843 {
1844 return false;
1845 }
1846
1847 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1848
1849 /*
1850 * Check whether this bio extends beyond the end of the device.
1851 */
1852 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1853 {
1854 sector_t maxsector;
1855
1856 if (!nr_sectors)
1857 return 0;
1858
1859 /* Test device or partition size, when known. */
1860 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1861 if (maxsector) {
1862 sector_t sector = bio->bi_iter.bi_sector;
1863
1864 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1865 /*
1866 * This may well happen - the kernel calls bread()
1867 * without checking the size of the device, e.g., when
1868 * mounting a device.
1869 */
1870 handle_bad_sector(bio);
1871 return 1;
1872 }
1873 }
1874
1875 return 0;
1876 }
1877
1878 static noinline_for_stack bool
1879 generic_make_request_checks(struct bio *bio)
1880 {
1881 struct request_queue *q;
1882 int nr_sectors = bio_sectors(bio);
1883 int err = -EIO;
1884 char b[BDEVNAME_SIZE];
1885 struct hd_struct *part;
1886
1887 might_sleep();
1888
1889 if (bio_check_eod(bio, nr_sectors))
1890 goto end_io;
1891
1892 q = bdev_get_queue(bio->bi_bdev);
1893 if (unlikely(!q)) {
1894 printk(KERN_ERR
1895 "generic_make_request: Trying to access "
1896 "nonexistent block-device %s (%Lu)\n",
1897 bdevname(bio->bi_bdev, b),
1898 (long long) bio->bi_iter.bi_sector);
1899 goto end_io;
1900 }
1901
1902 part = bio->bi_bdev->bd_part;
1903 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1904 should_fail_request(&part_to_disk(part)->part0,
1905 bio->bi_iter.bi_size))
1906 goto end_io;
1907
1908 /*
1909 * If this device has partitions, remap block n
1910 * of partition p to block n+start(p) of the disk.
1911 */
1912 blk_partition_remap(bio);
1913
1914 if (bio_check_eod(bio, nr_sectors))
1915 goto end_io;
1916
1917 /*
1918 * Filter flush bio's early so that make_request based
1919 * drivers without flush support don't have to worry
1920 * about them.
1921 */
1922 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1923 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1924 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1925 if (!nr_sectors) {
1926 err = 0;
1927 goto end_io;
1928 }
1929 }
1930
1931 switch (bio_op(bio)) {
1932 case REQ_OP_DISCARD:
1933 if (!blk_queue_discard(q))
1934 goto not_supported;
1935 break;
1936 case REQ_OP_SECURE_ERASE:
1937 if (!blk_queue_secure_erase(q))
1938 goto not_supported;
1939 break;
1940 case REQ_OP_WRITE_SAME:
1941 if (!bdev_write_same(bio->bi_bdev))
1942 goto not_supported;
1943 case REQ_OP_ZONE_REPORT:
1944 case REQ_OP_ZONE_RESET:
1945 if (!bdev_is_zoned(bio->bi_bdev))
1946 goto not_supported;
1947 break;
1948 default:
1949 break;
1950 }
1951
1952 /*
1953 * Various block parts want %current->io_context and lazy ioc
1954 * allocation ends up trading a lot of pain for a small amount of
1955 * memory. Just allocate it upfront. This may fail and block
1956 * layer knows how to live with it.
1957 */
1958 create_io_context(GFP_ATOMIC, q->node);
1959
1960 if (!blkcg_bio_issue_check(q, bio))
1961 return false;
1962
1963 trace_block_bio_queue(q, bio);
1964 return true;
1965
1966 not_supported:
1967 err = -EOPNOTSUPP;
1968 end_io:
1969 bio->bi_error = err;
1970 bio_endio(bio);
1971 return false;
1972 }
1973
1974 /**
1975 * generic_make_request - hand a buffer to its device driver for I/O
1976 * @bio: The bio describing the location in memory and on the device.
1977 *
1978 * generic_make_request() is used to make I/O requests of block
1979 * devices. It is passed a &struct bio, which describes the I/O that needs
1980 * to be done.
1981 *
1982 * generic_make_request() does not return any status. The
1983 * success/failure status of the request, along with notification of
1984 * completion, is delivered asynchronously through the bio->bi_end_io
1985 * function described (one day) else where.
1986 *
1987 * The caller of generic_make_request must make sure that bi_io_vec
1988 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1989 * set to describe the device address, and the
1990 * bi_end_io and optionally bi_private are set to describe how
1991 * completion notification should be signaled.
1992 *
1993 * generic_make_request and the drivers it calls may use bi_next if this
1994 * bio happens to be merged with someone else, and may resubmit the bio to
1995 * a lower device by calling into generic_make_request recursively, which
1996 * means the bio should NOT be touched after the call to ->make_request_fn.
1997 */
1998 blk_qc_t generic_make_request(struct bio *bio)
1999 {
2000 struct bio_list bio_list_on_stack;
2001 blk_qc_t ret = BLK_QC_T_NONE;
2002
2003 if (!generic_make_request_checks(bio))
2004 goto out;
2005
2006 /*
2007 * We only want one ->make_request_fn to be active at a time, else
2008 * stack usage with stacked devices could be a problem. So use
2009 * current->bio_list to keep a list of requests submited by a
2010 * make_request_fn function. current->bio_list is also used as a
2011 * flag to say if generic_make_request is currently active in this
2012 * task or not. If it is NULL, then no make_request is active. If
2013 * it is non-NULL, then a make_request is active, and new requests
2014 * should be added at the tail
2015 */
2016 if (current->bio_list) {
2017 bio_list_add(current->bio_list, bio);
2018 goto out;
2019 }
2020
2021 /* following loop may be a bit non-obvious, and so deserves some
2022 * explanation.
2023 * Before entering the loop, bio->bi_next is NULL (as all callers
2024 * ensure that) so we have a list with a single bio.
2025 * We pretend that we have just taken it off a longer list, so
2026 * we assign bio_list to a pointer to the bio_list_on_stack,
2027 * thus initialising the bio_list of new bios to be
2028 * added. ->make_request() may indeed add some more bios
2029 * through a recursive call to generic_make_request. If it
2030 * did, we find a non-NULL value in bio_list and re-enter the loop
2031 * from the top. In this case we really did just take the bio
2032 * of the top of the list (no pretending) and so remove it from
2033 * bio_list, and call into ->make_request() again.
2034 */
2035 BUG_ON(bio->bi_next);
2036 bio_list_init(&bio_list_on_stack);
2037 current->bio_list = &bio_list_on_stack;
2038 do {
2039 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2040
2041 if (likely(blk_queue_enter(q, false) == 0)) {
2042 ret = q->make_request_fn(q, bio);
2043
2044 blk_queue_exit(q);
2045
2046 bio = bio_list_pop(current->bio_list);
2047 } else {
2048 struct bio *bio_next = bio_list_pop(current->bio_list);
2049
2050 bio_io_error(bio);
2051 bio = bio_next;
2052 }
2053 } while (bio);
2054 current->bio_list = NULL; /* deactivate */
2055
2056 out:
2057 return ret;
2058 }
2059 EXPORT_SYMBOL(generic_make_request);
2060
2061 /**
2062 * submit_bio - submit a bio to the block device layer for I/O
2063 * @bio: The &struct bio which describes the I/O
2064 *
2065 * submit_bio() is very similar in purpose to generic_make_request(), and
2066 * uses that function to do most of the work. Both are fairly rough
2067 * interfaces; @bio must be presetup and ready for I/O.
2068 *
2069 */
2070 blk_qc_t submit_bio(struct bio *bio)
2071 {
2072 /*
2073 * If it's a regular read/write or a barrier with data attached,
2074 * go through the normal accounting stuff before submission.
2075 */
2076 if (bio_has_data(bio)) {
2077 unsigned int count;
2078
2079 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2080 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2081 else
2082 count = bio_sectors(bio);
2083
2084 if (op_is_write(bio_op(bio))) {
2085 count_vm_events(PGPGOUT, count);
2086 } else {
2087 task_io_account_read(bio->bi_iter.bi_size);
2088 count_vm_events(PGPGIN, count);
2089 }
2090
2091 if (unlikely(block_dump)) {
2092 char b[BDEVNAME_SIZE];
2093 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2094 current->comm, task_pid_nr(current),
2095 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2096 (unsigned long long)bio->bi_iter.bi_sector,
2097 bdevname(bio->bi_bdev, b),
2098 count);
2099 }
2100 }
2101
2102 return generic_make_request(bio);
2103 }
2104 EXPORT_SYMBOL(submit_bio);
2105
2106 /**
2107 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2108 * for new the queue limits
2109 * @q: the queue
2110 * @rq: the request being checked
2111 *
2112 * Description:
2113 * @rq may have been made based on weaker limitations of upper-level queues
2114 * in request stacking drivers, and it may violate the limitation of @q.
2115 * Since the block layer and the underlying device driver trust @rq
2116 * after it is inserted to @q, it should be checked against @q before
2117 * the insertion using this generic function.
2118 *
2119 * Request stacking drivers like request-based dm may change the queue
2120 * limits when retrying requests on other queues. Those requests need
2121 * to be checked against the new queue limits again during dispatch.
2122 */
2123 static int blk_cloned_rq_check_limits(struct request_queue *q,
2124 struct request *rq)
2125 {
2126 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2127 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2128 return -EIO;
2129 }
2130
2131 /*
2132 * queue's settings related to segment counting like q->bounce_pfn
2133 * may differ from that of other stacking queues.
2134 * Recalculate it to check the request correctly on this queue's
2135 * limitation.
2136 */
2137 blk_recalc_rq_segments(rq);
2138 if (rq->nr_phys_segments > queue_max_segments(q)) {
2139 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2140 return -EIO;
2141 }
2142
2143 return 0;
2144 }
2145
2146 /**
2147 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2148 * @q: the queue to submit the request
2149 * @rq: the request being queued
2150 */
2151 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2152 {
2153 unsigned long flags;
2154 int where = ELEVATOR_INSERT_BACK;
2155
2156 if (blk_cloned_rq_check_limits(q, rq))
2157 return -EIO;
2158
2159 if (rq->rq_disk &&
2160 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2161 return -EIO;
2162
2163 if (q->mq_ops) {
2164 if (blk_queue_io_stat(q))
2165 blk_account_io_start(rq, true);
2166 blk_mq_insert_request(rq, false, true, false);
2167 return 0;
2168 }
2169
2170 spin_lock_irqsave(q->queue_lock, flags);
2171 if (unlikely(blk_queue_dying(q))) {
2172 spin_unlock_irqrestore(q->queue_lock, flags);
2173 return -ENODEV;
2174 }
2175
2176 /*
2177 * Submitting request must be dequeued before calling this function
2178 * because it will be linked to another request_queue
2179 */
2180 BUG_ON(blk_queued_rq(rq));
2181
2182 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2183 where = ELEVATOR_INSERT_FLUSH;
2184
2185 add_acct_request(q, rq, where);
2186 if (where == ELEVATOR_INSERT_FLUSH)
2187 __blk_run_queue(q);
2188 spin_unlock_irqrestore(q->queue_lock, flags);
2189
2190 return 0;
2191 }
2192 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2193
2194 /**
2195 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2196 * @rq: request to examine
2197 *
2198 * Description:
2199 * A request could be merge of IOs which require different failure
2200 * handling. This function determines the number of bytes which
2201 * can be failed from the beginning of the request without
2202 * crossing into area which need to be retried further.
2203 *
2204 * Return:
2205 * The number of bytes to fail.
2206 *
2207 * Context:
2208 * queue_lock must be held.
2209 */
2210 unsigned int blk_rq_err_bytes(const struct request *rq)
2211 {
2212 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2213 unsigned int bytes = 0;
2214 struct bio *bio;
2215
2216 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2217 return blk_rq_bytes(rq);
2218
2219 /*
2220 * Currently the only 'mixing' which can happen is between
2221 * different fastfail types. We can safely fail portions
2222 * which have all the failfast bits that the first one has -
2223 * the ones which are at least as eager to fail as the first
2224 * one.
2225 */
2226 for (bio = rq->bio; bio; bio = bio->bi_next) {
2227 if ((bio->bi_opf & ff) != ff)
2228 break;
2229 bytes += bio->bi_iter.bi_size;
2230 }
2231
2232 /* this could lead to infinite loop */
2233 BUG_ON(blk_rq_bytes(rq) && !bytes);
2234 return bytes;
2235 }
2236 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2237
2238 void blk_account_io_completion(struct request *req, unsigned int bytes)
2239 {
2240 if (blk_do_io_stat(req)) {
2241 const int rw = rq_data_dir(req);
2242 struct hd_struct *part;
2243 int cpu;
2244
2245 cpu = part_stat_lock();
2246 part = req->part;
2247 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2248 part_stat_unlock();
2249 }
2250 }
2251
2252 void blk_account_io_done(struct request *req)
2253 {
2254 /*
2255 * Account IO completion. flush_rq isn't accounted as a
2256 * normal IO on queueing nor completion. Accounting the
2257 * containing request is enough.
2258 */
2259 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2260 unsigned long duration = jiffies - req->start_time;
2261 const int rw = rq_data_dir(req);
2262 struct hd_struct *part;
2263 int cpu;
2264
2265 cpu = part_stat_lock();
2266 part = req->part;
2267
2268 part_stat_inc(cpu, part, ios[rw]);
2269 part_stat_add(cpu, part, ticks[rw], duration);
2270 part_round_stats(cpu, part);
2271 part_dec_in_flight(part, rw);
2272
2273 hd_struct_put(part);
2274 part_stat_unlock();
2275 }
2276 }
2277
2278 #ifdef CONFIG_PM
2279 /*
2280 * Don't process normal requests when queue is suspended
2281 * or in the process of suspending/resuming
2282 */
2283 static struct request *blk_pm_peek_request(struct request_queue *q,
2284 struct request *rq)
2285 {
2286 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2287 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2288 return NULL;
2289 else
2290 return rq;
2291 }
2292 #else
2293 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2294 struct request *rq)
2295 {
2296 return rq;
2297 }
2298 #endif
2299
2300 void blk_account_io_start(struct request *rq, bool new_io)
2301 {
2302 struct hd_struct *part;
2303 int rw = rq_data_dir(rq);
2304 int cpu;
2305
2306 if (!blk_do_io_stat(rq))
2307 return;
2308
2309 cpu = part_stat_lock();
2310
2311 if (!new_io) {
2312 part = rq->part;
2313 part_stat_inc(cpu, part, merges[rw]);
2314 } else {
2315 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2316 if (!hd_struct_try_get(part)) {
2317 /*
2318 * The partition is already being removed,
2319 * the request will be accounted on the disk only
2320 *
2321 * We take a reference on disk->part0 although that
2322 * partition will never be deleted, so we can treat
2323 * it as any other partition.
2324 */
2325 part = &rq->rq_disk->part0;
2326 hd_struct_get(part);
2327 }
2328 part_round_stats(cpu, part);
2329 part_inc_in_flight(part, rw);
2330 rq->part = part;
2331 }
2332
2333 part_stat_unlock();
2334 }
2335
2336 /**
2337 * blk_peek_request - peek at the top of a request queue
2338 * @q: request queue to peek at
2339 *
2340 * Description:
2341 * Return the request at the top of @q. The returned request
2342 * should be started using blk_start_request() before LLD starts
2343 * processing it.
2344 *
2345 * Return:
2346 * Pointer to the request at the top of @q if available. Null
2347 * otherwise.
2348 *
2349 * Context:
2350 * queue_lock must be held.
2351 */
2352 struct request *blk_peek_request(struct request_queue *q)
2353 {
2354 struct request *rq;
2355 int ret;
2356
2357 while ((rq = __elv_next_request(q)) != NULL) {
2358
2359 rq = blk_pm_peek_request(q, rq);
2360 if (!rq)
2361 break;
2362
2363 if (!(rq->rq_flags & RQF_STARTED)) {
2364 /*
2365 * This is the first time the device driver
2366 * sees this request (possibly after
2367 * requeueing). Notify IO scheduler.
2368 */
2369 if (rq->rq_flags & RQF_SORTED)
2370 elv_activate_rq(q, rq);
2371
2372 /*
2373 * just mark as started even if we don't start
2374 * it, a request that has been delayed should
2375 * not be passed by new incoming requests
2376 */
2377 rq->rq_flags |= RQF_STARTED;
2378 trace_block_rq_issue(q, rq);
2379 }
2380
2381 if (!q->boundary_rq || q->boundary_rq == rq) {
2382 q->end_sector = rq_end_sector(rq);
2383 q->boundary_rq = NULL;
2384 }
2385
2386 if (rq->rq_flags & RQF_DONTPREP)
2387 break;
2388
2389 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2390 /*
2391 * make sure space for the drain appears we
2392 * know we can do this because max_hw_segments
2393 * has been adjusted to be one fewer than the
2394 * device can handle
2395 */
2396 rq->nr_phys_segments++;
2397 }
2398
2399 if (!q->prep_rq_fn)
2400 break;
2401
2402 ret = q->prep_rq_fn(q, rq);
2403 if (ret == BLKPREP_OK) {
2404 break;
2405 } else if (ret == BLKPREP_DEFER) {
2406 /*
2407 * the request may have been (partially) prepped.
2408 * we need to keep this request in the front to
2409 * avoid resource deadlock. RQF_STARTED will
2410 * prevent other fs requests from passing this one.
2411 */
2412 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2413 !(rq->rq_flags & RQF_DONTPREP)) {
2414 /*
2415 * remove the space for the drain we added
2416 * so that we don't add it again
2417 */
2418 --rq->nr_phys_segments;
2419 }
2420
2421 rq = NULL;
2422 break;
2423 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2424 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2425
2426 rq->rq_flags |= RQF_QUIET;
2427 /*
2428 * Mark this request as started so we don't trigger
2429 * any debug logic in the end I/O path.
2430 */
2431 blk_start_request(rq);
2432 __blk_end_request_all(rq, err);
2433 } else {
2434 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2435 break;
2436 }
2437 }
2438
2439 return rq;
2440 }
2441 EXPORT_SYMBOL(blk_peek_request);
2442
2443 void blk_dequeue_request(struct request *rq)
2444 {
2445 struct request_queue *q = rq->q;
2446
2447 BUG_ON(list_empty(&rq->queuelist));
2448 BUG_ON(ELV_ON_HASH(rq));
2449
2450 list_del_init(&rq->queuelist);
2451
2452 /*
2453 * the time frame between a request being removed from the lists
2454 * and to it is freed is accounted as io that is in progress at
2455 * the driver side.
2456 */
2457 if (blk_account_rq(rq)) {
2458 q->in_flight[rq_is_sync(rq)]++;
2459 set_io_start_time_ns(rq);
2460 }
2461 }
2462
2463 /**
2464 * blk_start_request - start request processing on the driver
2465 * @req: request to dequeue
2466 *
2467 * Description:
2468 * Dequeue @req and start timeout timer on it. This hands off the
2469 * request to the driver.
2470 *
2471 * Block internal functions which don't want to start timer should
2472 * call blk_dequeue_request().
2473 *
2474 * Context:
2475 * queue_lock must be held.
2476 */
2477 void blk_start_request(struct request *req)
2478 {
2479 blk_dequeue_request(req);
2480
2481 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2482 blk_stat_set_issue_time(&req->issue_stat);
2483 req->rq_flags |= RQF_STATS;
2484 wbt_issue(req->q->rq_wb, &req->issue_stat);
2485 }
2486
2487 /*
2488 * We are now handing the request to the hardware, initialize
2489 * resid_len to full count and add the timeout handler.
2490 */
2491 req->resid_len = blk_rq_bytes(req);
2492 if (unlikely(blk_bidi_rq(req)))
2493 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2494
2495 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2496 blk_add_timer(req);
2497 }
2498 EXPORT_SYMBOL(blk_start_request);
2499
2500 /**
2501 * blk_fetch_request - fetch a request from a request queue
2502 * @q: request queue to fetch a request from
2503 *
2504 * Description:
2505 * Return the request at the top of @q. The request is started on
2506 * return and LLD can start processing it immediately.
2507 *
2508 * Return:
2509 * Pointer to the request at the top of @q if available. Null
2510 * otherwise.
2511 *
2512 * Context:
2513 * queue_lock must be held.
2514 */
2515 struct request *blk_fetch_request(struct request_queue *q)
2516 {
2517 struct request *rq;
2518
2519 rq = blk_peek_request(q);
2520 if (rq)
2521 blk_start_request(rq);
2522 return rq;
2523 }
2524 EXPORT_SYMBOL(blk_fetch_request);
2525
2526 /**
2527 * blk_update_request - Special helper function for request stacking drivers
2528 * @req: the request being processed
2529 * @error: %0 for success, < %0 for error
2530 * @nr_bytes: number of bytes to complete @req
2531 *
2532 * Description:
2533 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2534 * the request structure even if @req doesn't have leftover.
2535 * If @req has leftover, sets it up for the next range of segments.
2536 *
2537 * This special helper function is only for request stacking drivers
2538 * (e.g. request-based dm) so that they can handle partial completion.
2539 * Actual device drivers should use blk_end_request instead.
2540 *
2541 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2542 * %false return from this function.
2543 *
2544 * Return:
2545 * %false - this request doesn't have any more data
2546 * %true - this request has more data
2547 **/
2548 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2549 {
2550 int total_bytes;
2551
2552 trace_block_rq_complete(req->q, req, nr_bytes);
2553
2554 if (!req->bio)
2555 return false;
2556
2557 /*
2558 * For fs requests, rq is just carrier of independent bio's
2559 * and each partial completion should be handled separately.
2560 * Reset per-request error on each partial completion.
2561 *
2562 * TODO: tj: This is too subtle. It would be better to let
2563 * low level drivers do what they see fit.
2564 */
2565 if (req->cmd_type == REQ_TYPE_FS)
2566 req->errors = 0;
2567
2568 if (error && req->cmd_type == REQ_TYPE_FS &&
2569 !(req->rq_flags & RQF_QUIET)) {
2570 char *error_type;
2571
2572 switch (error) {
2573 case -ENOLINK:
2574 error_type = "recoverable transport";
2575 break;
2576 case -EREMOTEIO:
2577 error_type = "critical target";
2578 break;
2579 case -EBADE:
2580 error_type = "critical nexus";
2581 break;
2582 case -ETIMEDOUT:
2583 error_type = "timeout";
2584 break;
2585 case -ENOSPC:
2586 error_type = "critical space allocation";
2587 break;
2588 case -ENODATA:
2589 error_type = "critical medium";
2590 break;
2591 case -EIO:
2592 default:
2593 error_type = "I/O";
2594 break;
2595 }
2596 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2597 __func__, error_type, req->rq_disk ?
2598 req->rq_disk->disk_name : "?",
2599 (unsigned long long)blk_rq_pos(req));
2600
2601 }
2602
2603 blk_account_io_completion(req, nr_bytes);
2604
2605 total_bytes = 0;
2606 while (req->bio) {
2607 struct bio *bio = req->bio;
2608 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2609
2610 if (bio_bytes == bio->bi_iter.bi_size)
2611 req->bio = bio->bi_next;
2612
2613 req_bio_endio(req, bio, bio_bytes, error);
2614
2615 total_bytes += bio_bytes;
2616 nr_bytes -= bio_bytes;
2617
2618 if (!nr_bytes)
2619 break;
2620 }
2621
2622 /*
2623 * completely done
2624 */
2625 if (!req->bio) {
2626 /*
2627 * Reset counters so that the request stacking driver
2628 * can find how many bytes remain in the request
2629 * later.
2630 */
2631 req->__data_len = 0;
2632 return false;
2633 }
2634
2635 req->__data_len -= total_bytes;
2636
2637 /* update sector only for requests with clear definition of sector */
2638 if (req->cmd_type == REQ_TYPE_FS)
2639 req->__sector += total_bytes >> 9;
2640
2641 /* mixed attributes always follow the first bio */
2642 if (req->rq_flags & RQF_MIXED_MERGE) {
2643 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2644 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2645 }
2646
2647 /*
2648 * If total number of sectors is less than the first segment
2649 * size, something has gone terribly wrong.
2650 */
2651 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2652 blk_dump_rq_flags(req, "request botched");
2653 req->__data_len = blk_rq_cur_bytes(req);
2654 }
2655
2656 /* recalculate the number of segments */
2657 blk_recalc_rq_segments(req);
2658
2659 return true;
2660 }
2661 EXPORT_SYMBOL_GPL(blk_update_request);
2662
2663 static bool blk_update_bidi_request(struct request *rq, int error,
2664 unsigned int nr_bytes,
2665 unsigned int bidi_bytes)
2666 {
2667 if (blk_update_request(rq, error, nr_bytes))
2668 return true;
2669
2670 /* Bidi request must be completed as a whole */
2671 if (unlikely(blk_bidi_rq(rq)) &&
2672 blk_update_request(rq->next_rq, error, bidi_bytes))
2673 return true;
2674
2675 if (blk_queue_add_random(rq->q))
2676 add_disk_randomness(rq->rq_disk);
2677
2678 return false;
2679 }
2680
2681 /**
2682 * blk_unprep_request - unprepare a request
2683 * @req: the request
2684 *
2685 * This function makes a request ready for complete resubmission (or
2686 * completion). It happens only after all error handling is complete,
2687 * so represents the appropriate moment to deallocate any resources
2688 * that were allocated to the request in the prep_rq_fn. The queue
2689 * lock is held when calling this.
2690 */
2691 void blk_unprep_request(struct request *req)
2692 {
2693 struct request_queue *q = req->q;
2694
2695 req->rq_flags &= ~RQF_DONTPREP;
2696 if (q->unprep_rq_fn)
2697 q->unprep_rq_fn(q, req);
2698 }
2699 EXPORT_SYMBOL_GPL(blk_unprep_request);
2700
2701 /*
2702 * queue lock must be held
2703 */
2704 void blk_finish_request(struct request *req, int error)
2705 {
2706 struct request_queue *q = req->q;
2707
2708 if (req->rq_flags & RQF_STATS)
2709 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2710
2711 if (req->rq_flags & RQF_QUEUED)
2712 blk_queue_end_tag(q, req);
2713
2714 BUG_ON(blk_queued_rq(req));
2715
2716 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2717 laptop_io_completion(&req->q->backing_dev_info);
2718
2719 blk_delete_timer(req);
2720
2721 if (req->rq_flags & RQF_DONTPREP)
2722 blk_unprep_request(req);
2723
2724 blk_account_io_done(req);
2725
2726 if (req->end_io) {
2727 wbt_done(req->q->rq_wb, &req->issue_stat);
2728 req->end_io(req, error);
2729 } else {
2730 if (blk_bidi_rq(req))
2731 __blk_put_request(req->next_rq->q, req->next_rq);
2732
2733 __blk_put_request(q, req);
2734 }
2735 }
2736 EXPORT_SYMBOL(blk_finish_request);
2737
2738 /**
2739 * blk_end_bidi_request - Complete a bidi request
2740 * @rq: the request to complete
2741 * @error: %0 for success, < %0 for error
2742 * @nr_bytes: number of bytes to complete @rq
2743 * @bidi_bytes: number of bytes to complete @rq->next_rq
2744 *
2745 * Description:
2746 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2747 * Drivers that supports bidi can safely call this member for any
2748 * type of request, bidi or uni. In the later case @bidi_bytes is
2749 * just ignored.
2750 *
2751 * Return:
2752 * %false - we are done with this request
2753 * %true - still buffers pending for this request
2754 **/
2755 static bool blk_end_bidi_request(struct request *rq, int error,
2756 unsigned int nr_bytes, unsigned int bidi_bytes)
2757 {
2758 struct request_queue *q = rq->q;
2759 unsigned long flags;
2760
2761 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2762 return true;
2763
2764 spin_lock_irqsave(q->queue_lock, flags);
2765 blk_finish_request(rq, error);
2766 spin_unlock_irqrestore(q->queue_lock, flags);
2767
2768 return false;
2769 }
2770
2771 /**
2772 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2773 * @rq: the request to complete
2774 * @error: %0 for success, < %0 for error
2775 * @nr_bytes: number of bytes to complete @rq
2776 * @bidi_bytes: number of bytes to complete @rq->next_rq
2777 *
2778 * Description:
2779 * Identical to blk_end_bidi_request() except that queue lock is
2780 * assumed to be locked on entry and remains so on return.
2781 *
2782 * Return:
2783 * %false - we are done with this request
2784 * %true - still buffers pending for this request
2785 **/
2786 bool __blk_end_bidi_request(struct request *rq, int error,
2787 unsigned int nr_bytes, unsigned int bidi_bytes)
2788 {
2789 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2790 return true;
2791
2792 blk_finish_request(rq, error);
2793
2794 return false;
2795 }
2796
2797 /**
2798 * blk_end_request - Helper function for drivers to complete the request.
2799 * @rq: the request being processed
2800 * @error: %0 for success, < %0 for error
2801 * @nr_bytes: number of bytes to complete
2802 *
2803 * Description:
2804 * Ends I/O on a number of bytes attached to @rq.
2805 * If @rq has leftover, sets it up for the next range of segments.
2806 *
2807 * Return:
2808 * %false - we are done with this request
2809 * %true - still buffers pending for this request
2810 **/
2811 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2812 {
2813 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2814 }
2815 EXPORT_SYMBOL(blk_end_request);
2816
2817 /**
2818 * blk_end_request_all - Helper function for drives to finish the request.
2819 * @rq: the request to finish
2820 * @error: %0 for success, < %0 for error
2821 *
2822 * Description:
2823 * Completely finish @rq.
2824 */
2825 void blk_end_request_all(struct request *rq, int error)
2826 {
2827 bool pending;
2828 unsigned int bidi_bytes = 0;
2829
2830 if (unlikely(blk_bidi_rq(rq)))
2831 bidi_bytes = blk_rq_bytes(rq->next_rq);
2832
2833 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2834 BUG_ON(pending);
2835 }
2836 EXPORT_SYMBOL(blk_end_request_all);
2837
2838 /**
2839 * blk_end_request_cur - Helper function to finish the current request chunk.
2840 * @rq: the request to finish the current chunk for
2841 * @error: %0 for success, < %0 for error
2842 *
2843 * Description:
2844 * Complete the current consecutively mapped chunk from @rq.
2845 *
2846 * Return:
2847 * %false - we are done with this request
2848 * %true - still buffers pending for this request
2849 */
2850 bool blk_end_request_cur(struct request *rq, int error)
2851 {
2852 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2853 }
2854 EXPORT_SYMBOL(blk_end_request_cur);
2855
2856 /**
2857 * blk_end_request_err - Finish a request till the next failure boundary.
2858 * @rq: the request to finish till the next failure boundary for
2859 * @error: must be negative errno
2860 *
2861 * Description:
2862 * Complete @rq till the next failure boundary.
2863 *
2864 * Return:
2865 * %false - we are done with this request
2866 * %true - still buffers pending for this request
2867 */
2868 bool blk_end_request_err(struct request *rq, int error)
2869 {
2870 WARN_ON(error >= 0);
2871 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2872 }
2873 EXPORT_SYMBOL_GPL(blk_end_request_err);
2874
2875 /**
2876 * __blk_end_request - Helper function for drivers to complete the request.
2877 * @rq: the request being processed
2878 * @error: %0 for success, < %0 for error
2879 * @nr_bytes: number of bytes to complete
2880 *
2881 * Description:
2882 * Must be called with queue lock held unlike blk_end_request().
2883 *
2884 * Return:
2885 * %false - we are done with this request
2886 * %true - still buffers pending for this request
2887 **/
2888 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2889 {
2890 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2891 }
2892 EXPORT_SYMBOL(__blk_end_request);
2893
2894 /**
2895 * __blk_end_request_all - Helper function for drives to finish the request.
2896 * @rq: the request to finish
2897 * @error: %0 for success, < %0 for error
2898 *
2899 * Description:
2900 * Completely finish @rq. Must be called with queue lock held.
2901 */
2902 void __blk_end_request_all(struct request *rq, int error)
2903 {
2904 bool pending;
2905 unsigned int bidi_bytes = 0;
2906
2907 if (unlikely(blk_bidi_rq(rq)))
2908 bidi_bytes = blk_rq_bytes(rq->next_rq);
2909
2910 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2911 BUG_ON(pending);
2912 }
2913 EXPORT_SYMBOL(__blk_end_request_all);
2914
2915 /**
2916 * __blk_end_request_cur - Helper function to finish the current request chunk.
2917 * @rq: the request to finish the current chunk for
2918 * @error: %0 for success, < %0 for error
2919 *
2920 * Description:
2921 * Complete the current consecutively mapped chunk from @rq. Must
2922 * be called with queue lock held.
2923 *
2924 * Return:
2925 * %false - we are done with this request
2926 * %true - still buffers pending for this request
2927 */
2928 bool __blk_end_request_cur(struct request *rq, int error)
2929 {
2930 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2931 }
2932 EXPORT_SYMBOL(__blk_end_request_cur);
2933
2934 /**
2935 * __blk_end_request_err - Finish a request till the next failure boundary.
2936 * @rq: the request to finish till the next failure boundary for
2937 * @error: must be negative errno
2938 *
2939 * Description:
2940 * Complete @rq till the next failure boundary. Must be called
2941 * with queue lock held.
2942 *
2943 * Return:
2944 * %false - we are done with this request
2945 * %true - still buffers pending for this request
2946 */
2947 bool __blk_end_request_err(struct request *rq, int error)
2948 {
2949 WARN_ON(error >= 0);
2950 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2951 }
2952 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2953
2954 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2955 struct bio *bio)
2956 {
2957 if (bio_has_data(bio))
2958 rq->nr_phys_segments = bio_phys_segments(q, bio);
2959
2960 rq->__data_len = bio->bi_iter.bi_size;
2961 rq->bio = rq->biotail = bio;
2962
2963 if (bio->bi_bdev)
2964 rq->rq_disk = bio->bi_bdev->bd_disk;
2965 }
2966
2967 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2968 /**
2969 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2970 * @rq: the request to be flushed
2971 *
2972 * Description:
2973 * Flush all pages in @rq.
2974 */
2975 void rq_flush_dcache_pages(struct request *rq)
2976 {
2977 struct req_iterator iter;
2978 struct bio_vec bvec;
2979
2980 rq_for_each_segment(bvec, rq, iter)
2981 flush_dcache_page(bvec.bv_page);
2982 }
2983 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2984 #endif
2985
2986 /**
2987 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2988 * @q : the queue of the device being checked
2989 *
2990 * Description:
2991 * Check if underlying low-level drivers of a device are busy.
2992 * If the drivers want to export their busy state, they must set own
2993 * exporting function using blk_queue_lld_busy() first.
2994 *
2995 * Basically, this function is used only by request stacking drivers
2996 * to stop dispatching requests to underlying devices when underlying
2997 * devices are busy. This behavior helps more I/O merging on the queue
2998 * of the request stacking driver and prevents I/O throughput regression
2999 * on burst I/O load.
3000 *
3001 * Return:
3002 * 0 - Not busy (The request stacking driver should dispatch request)
3003 * 1 - Busy (The request stacking driver should stop dispatching request)
3004 */
3005 int blk_lld_busy(struct request_queue *q)
3006 {
3007 if (q->lld_busy_fn)
3008 return q->lld_busy_fn(q);
3009
3010 return 0;
3011 }
3012 EXPORT_SYMBOL_GPL(blk_lld_busy);
3013
3014 /**
3015 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3016 * @rq: the clone request to be cleaned up
3017 *
3018 * Description:
3019 * Free all bios in @rq for a cloned request.
3020 */
3021 void blk_rq_unprep_clone(struct request *rq)
3022 {
3023 struct bio *bio;
3024
3025 while ((bio = rq->bio) != NULL) {
3026 rq->bio = bio->bi_next;
3027
3028 bio_put(bio);
3029 }
3030 }
3031 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3032
3033 /*
3034 * Copy attributes of the original request to the clone request.
3035 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3036 */
3037 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3038 {
3039 dst->cpu = src->cpu;
3040 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
3041 dst->cmd_type = src->cmd_type;
3042 dst->__sector = blk_rq_pos(src);
3043 dst->__data_len = blk_rq_bytes(src);
3044 dst->nr_phys_segments = src->nr_phys_segments;
3045 dst->ioprio = src->ioprio;
3046 dst->extra_len = src->extra_len;
3047 }
3048
3049 /**
3050 * blk_rq_prep_clone - Helper function to setup clone request
3051 * @rq: the request to be setup
3052 * @rq_src: original request to be cloned
3053 * @bs: bio_set that bios for clone are allocated from
3054 * @gfp_mask: memory allocation mask for bio
3055 * @bio_ctr: setup function to be called for each clone bio.
3056 * Returns %0 for success, non %0 for failure.
3057 * @data: private data to be passed to @bio_ctr
3058 *
3059 * Description:
3060 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3061 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3062 * are not copied, and copying such parts is the caller's responsibility.
3063 * Also, pages which the original bios are pointing to are not copied
3064 * and the cloned bios just point same pages.
3065 * So cloned bios must be completed before original bios, which means
3066 * the caller must complete @rq before @rq_src.
3067 */
3068 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3069 struct bio_set *bs, gfp_t gfp_mask,
3070 int (*bio_ctr)(struct bio *, struct bio *, void *),
3071 void *data)
3072 {
3073 struct bio *bio, *bio_src;
3074
3075 if (!bs)
3076 bs = fs_bio_set;
3077
3078 __rq_for_each_bio(bio_src, rq_src) {
3079 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3080 if (!bio)
3081 goto free_and_out;
3082
3083 if (bio_ctr && bio_ctr(bio, bio_src, data))
3084 goto free_and_out;
3085
3086 if (rq->bio) {
3087 rq->biotail->bi_next = bio;
3088 rq->biotail = bio;
3089 } else
3090 rq->bio = rq->biotail = bio;
3091 }
3092
3093 __blk_rq_prep_clone(rq, rq_src);
3094
3095 return 0;
3096
3097 free_and_out:
3098 if (bio)
3099 bio_put(bio);
3100 blk_rq_unprep_clone(rq);
3101
3102 return -ENOMEM;
3103 }
3104 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3105
3106 int kblockd_schedule_work(struct work_struct *work)
3107 {
3108 return queue_work(kblockd_workqueue, work);
3109 }
3110 EXPORT_SYMBOL(kblockd_schedule_work);
3111
3112 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3113 {
3114 return queue_work_on(cpu, kblockd_workqueue, work);
3115 }
3116 EXPORT_SYMBOL(kblockd_schedule_work_on);
3117
3118 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3119 unsigned long delay)
3120 {
3121 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3122 }
3123 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3124
3125 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3126 unsigned long delay)
3127 {
3128 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3129 }
3130 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3131
3132 /**
3133 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3134 * @plug: The &struct blk_plug that needs to be initialized
3135 *
3136 * Description:
3137 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3138 * pending I/O should the task end up blocking between blk_start_plug() and
3139 * blk_finish_plug(). This is important from a performance perspective, but
3140 * also ensures that we don't deadlock. For instance, if the task is blocking
3141 * for a memory allocation, memory reclaim could end up wanting to free a
3142 * page belonging to that request that is currently residing in our private
3143 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3144 * this kind of deadlock.
3145 */
3146 void blk_start_plug(struct blk_plug *plug)
3147 {
3148 struct task_struct *tsk = current;
3149
3150 /*
3151 * If this is a nested plug, don't actually assign it.
3152 */
3153 if (tsk->plug)
3154 return;
3155
3156 INIT_LIST_HEAD(&plug->list);
3157 INIT_LIST_HEAD(&plug->mq_list);
3158 INIT_LIST_HEAD(&plug->cb_list);
3159 /*
3160 * Store ordering should not be needed here, since a potential
3161 * preempt will imply a full memory barrier
3162 */
3163 tsk->plug = plug;
3164 }
3165 EXPORT_SYMBOL(blk_start_plug);
3166
3167 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3168 {
3169 struct request *rqa = container_of(a, struct request, queuelist);
3170 struct request *rqb = container_of(b, struct request, queuelist);
3171
3172 return !(rqa->q < rqb->q ||
3173 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3174 }
3175
3176 /*
3177 * If 'from_schedule' is true, then postpone the dispatch of requests
3178 * until a safe kblockd context. We due this to avoid accidental big
3179 * additional stack usage in driver dispatch, in places where the originally
3180 * plugger did not intend it.
3181 */
3182 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3183 bool from_schedule)
3184 __releases(q->queue_lock)
3185 {
3186 trace_block_unplug(q, depth, !from_schedule);
3187
3188 if (from_schedule)
3189 blk_run_queue_async(q);
3190 else
3191 __blk_run_queue(q);
3192 spin_unlock(q->queue_lock);
3193 }
3194
3195 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3196 {
3197 LIST_HEAD(callbacks);
3198
3199 while (!list_empty(&plug->cb_list)) {
3200 list_splice_init(&plug->cb_list, &callbacks);
3201
3202 while (!list_empty(&callbacks)) {
3203 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3204 struct blk_plug_cb,
3205 list);
3206 list_del(&cb->list);
3207 cb->callback(cb, from_schedule);
3208 }
3209 }
3210 }
3211
3212 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3213 int size)
3214 {
3215 struct blk_plug *plug = current->plug;
3216 struct blk_plug_cb *cb;
3217
3218 if (!plug)
3219 return NULL;
3220
3221 list_for_each_entry(cb, &plug->cb_list, list)
3222 if (cb->callback == unplug && cb->data == data)
3223 return cb;
3224
3225 /* Not currently on the callback list */
3226 BUG_ON(size < sizeof(*cb));
3227 cb = kzalloc(size, GFP_ATOMIC);
3228 if (cb) {
3229 cb->data = data;
3230 cb->callback = unplug;
3231 list_add(&cb->list, &plug->cb_list);
3232 }
3233 return cb;
3234 }
3235 EXPORT_SYMBOL(blk_check_plugged);
3236
3237 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3238 {
3239 struct request_queue *q;
3240 unsigned long flags;
3241 struct request *rq;
3242 LIST_HEAD(list);
3243 unsigned int depth;
3244
3245 flush_plug_callbacks(plug, from_schedule);
3246
3247 if (!list_empty(&plug->mq_list))
3248 blk_mq_flush_plug_list(plug, from_schedule);
3249
3250 if (list_empty(&plug->list))
3251 return;
3252
3253 list_splice_init(&plug->list, &list);
3254
3255 list_sort(NULL, &list, plug_rq_cmp);
3256
3257 q = NULL;
3258 depth = 0;
3259
3260 /*
3261 * Save and disable interrupts here, to avoid doing it for every
3262 * queue lock we have to take.
3263 */
3264 local_irq_save(flags);
3265 while (!list_empty(&list)) {
3266 rq = list_entry_rq(list.next);
3267 list_del_init(&rq->queuelist);
3268 BUG_ON(!rq->q);
3269 if (rq->q != q) {
3270 /*
3271 * This drops the queue lock
3272 */
3273 if (q)
3274 queue_unplugged(q, depth, from_schedule);
3275 q = rq->q;
3276 depth = 0;
3277 spin_lock(q->queue_lock);
3278 }
3279
3280 /*
3281 * Short-circuit if @q is dead
3282 */
3283 if (unlikely(blk_queue_dying(q))) {
3284 __blk_end_request_all(rq, -ENODEV);
3285 continue;
3286 }
3287
3288 /*
3289 * rq is already accounted, so use raw insert
3290 */
3291 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3292 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3293 else
3294 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3295
3296 depth++;
3297 }
3298
3299 /*
3300 * This drops the queue lock
3301 */
3302 if (q)
3303 queue_unplugged(q, depth, from_schedule);
3304
3305 local_irq_restore(flags);
3306 }
3307
3308 void blk_finish_plug(struct blk_plug *plug)
3309 {
3310 if (plug != current->plug)
3311 return;
3312 blk_flush_plug_list(plug, false);
3313
3314 current->plug = NULL;
3315 }
3316 EXPORT_SYMBOL(blk_finish_plug);
3317
3318 #ifdef CONFIG_PM
3319 /**
3320 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3321 * @q: the queue of the device
3322 * @dev: the device the queue belongs to
3323 *
3324 * Description:
3325 * Initialize runtime-PM-related fields for @q and start auto suspend for
3326 * @dev. Drivers that want to take advantage of request-based runtime PM
3327 * should call this function after @dev has been initialized, and its
3328 * request queue @q has been allocated, and runtime PM for it can not happen
3329 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3330 * cases, driver should call this function before any I/O has taken place.
3331 *
3332 * This function takes care of setting up using auto suspend for the device,
3333 * the autosuspend delay is set to -1 to make runtime suspend impossible
3334 * until an updated value is either set by user or by driver. Drivers do
3335 * not need to touch other autosuspend settings.
3336 *
3337 * The block layer runtime PM is request based, so only works for drivers
3338 * that use request as their IO unit instead of those directly use bio's.
3339 */
3340 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3341 {
3342 q->dev = dev;
3343 q->rpm_status = RPM_ACTIVE;
3344 pm_runtime_set_autosuspend_delay(q->dev, -1);
3345 pm_runtime_use_autosuspend(q->dev);
3346 }
3347 EXPORT_SYMBOL(blk_pm_runtime_init);
3348
3349 /**
3350 * blk_pre_runtime_suspend - Pre runtime suspend check
3351 * @q: the queue of the device
3352 *
3353 * Description:
3354 * This function will check if runtime suspend is allowed for the device
3355 * by examining if there are any requests pending in the queue. If there
3356 * are requests pending, the device can not be runtime suspended; otherwise,
3357 * the queue's status will be updated to SUSPENDING and the driver can
3358 * proceed to suspend the device.
3359 *
3360 * For the not allowed case, we mark last busy for the device so that
3361 * runtime PM core will try to autosuspend it some time later.
3362 *
3363 * This function should be called near the start of the device's
3364 * runtime_suspend callback.
3365 *
3366 * Return:
3367 * 0 - OK to runtime suspend the device
3368 * -EBUSY - Device should not be runtime suspended
3369 */
3370 int blk_pre_runtime_suspend(struct request_queue *q)
3371 {
3372 int ret = 0;
3373
3374 if (!q->dev)
3375 return ret;
3376
3377 spin_lock_irq(q->queue_lock);
3378 if (q->nr_pending) {
3379 ret = -EBUSY;
3380 pm_runtime_mark_last_busy(q->dev);
3381 } else {
3382 q->rpm_status = RPM_SUSPENDING;
3383 }
3384 spin_unlock_irq(q->queue_lock);
3385 return ret;
3386 }
3387 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3388
3389 /**
3390 * blk_post_runtime_suspend - Post runtime suspend processing
3391 * @q: the queue of the device
3392 * @err: return value of the device's runtime_suspend function
3393 *
3394 * Description:
3395 * Update the queue's runtime status according to the return value of the
3396 * device's runtime suspend function and mark last busy for the device so
3397 * that PM core will try to auto suspend the device at a later time.
3398 *
3399 * This function should be called near the end of the device's
3400 * runtime_suspend callback.
3401 */
3402 void blk_post_runtime_suspend(struct request_queue *q, int err)
3403 {
3404 if (!q->dev)
3405 return;
3406
3407 spin_lock_irq(q->queue_lock);
3408 if (!err) {
3409 q->rpm_status = RPM_SUSPENDED;
3410 } else {
3411 q->rpm_status = RPM_ACTIVE;
3412 pm_runtime_mark_last_busy(q->dev);
3413 }
3414 spin_unlock_irq(q->queue_lock);
3415 }
3416 EXPORT_SYMBOL(blk_post_runtime_suspend);
3417
3418 /**
3419 * blk_pre_runtime_resume - Pre runtime resume processing
3420 * @q: the queue of the device
3421 *
3422 * Description:
3423 * Update the queue's runtime status to RESUMING in preparation for the
3424 * runtime resume of the device.
3425 *
3426 * This function should be called near the start of the device's
3427 * runtime_resume callback.
3428 */
3429 void blk_pre_runtime_resume(struct request_queue *q)
3430 {
3431 if (!q->dev)
3432 return;
3433
3434 spin_lock_irq(q->queue_lock);
3435 q->rpm_status = RPM_RESUMING;
3436 spin_unlock_irq(q->queue_lock);
3437 }
3438 EXPORT_SYMBOL(blk_pre_runtime_resume);
3439
3440 /**
3441 * blk_post_runtime_resume - Post runtime resume processing
3442 * @q: the queue of the device
3443 * @err: return value of the device's runtime_resume function
3444 *
3445 * Description:
3446 * Update the queue's runtime status according to the return value of the
3447 * device's runtime_resume function. If it is successfully resumed, process
3448 * the requests that are queued into the device's queue when it is resuming
3449 * and then mark last busy and initiate autosuspend for it.
3450 *
3451 * This function should be called near the end of the device's
3452 * runtime_resume callback.
3453 */
3454 void blk_post_runtime_resume(struct request_queue *q, int err)
3455 {
3456 if (!q->dev)
3457 return;
3458
3459 spin_lock_irq(q->queue_lock);
3460 if (!err) {
3461 q->rpm_status = RPM_ACTIVE;
3462 __blk_run_queue(q);
3463 pm_runtime_mark_last_busy(q->dev);
3464 pm_request_autosuspend(q->dev);
3465 } else {
3466 q->rpm_status = RPM_SUSPENDED;
3467 }
3468 spin_unlock_irq(q->queue_lock);
3469 }
3470 EXPORT_SYMBOL(blk_post_runtime_resume);
3471
3472 /**
3473 * blk_set_runtime_active - Force runtime status of the queue to be active
3474 * @q: the queue of the device
3475 *
3476 * If the device is left runtime suspended during system suspend the resume
3477 * hook typically resumes the device and corrects runtime status
3478 * accordingly. However, that does not affect the queue runtime PM status
3479 * which is still "suspended". This prevents processing requests from the
3480 * queue.
3481 *
3482 * This function can be used in driver's resume hook to correct queue
3483 * runtime PM status and re-enable peeking requests from the queue. It
3484 * should be called before first request is added to the queue.
3485 */
3486 void blk_set_runtime_active(struct request_queue *q)
3487 {
3488 spin_lock_irq(q->queue_lock);
3489 q->rpm_status = RPM_ACTIVE;
3490 pm_runtime_mark_last_busy(q->dev);
3491 pm_request_autosuspend(q->dev);
3492 spin_unlock_irq(q->queue_lock);
3493 }
3494 EXPORT_SYMBOL(blk_set_runtime_active);
3495 #endif
3496
3497 int __init blk_dev_init(void)
3498 {
3499 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3500 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3501 FIELD_SIZEOF(struct request, cmd_flags));
3502 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3503 FIELD_SIZEOF(struct bio, bi_opf));
3504
3505 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3506 kblockd_workqueue = alloc_workqueue("kblockd",
3507 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3508 if (!kblockd_workqueue)
3509 panic("Failed to create kblockd\n");
3510
3511 request_cachep = kmem_cache_create("blkdev_requests",
3512 sizeof(struct request), 0, SLAB_PANIC, NULL);
3513
3514 blk_requestq_cachep = kmem_cache_create("request_queue",
3515 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3516
3517 return 0;
3518 }