]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134 {
135 if (error)
136 bio->bi_error = error;
137
138 if (unlikely(rq->rq_flags & RQF_QUIET))
139 bio_set_flag(bio, BIO_QUIET);
140
141 bio_advance(bio, nbytes);
142
143 /* don't actually finish bio if it's part of flush sequence */
144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 bio_endio(bio);
146 }
147
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 (unsigned long long) rq->cmd_flags);
153
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161
162 static void blk_delay_work(struct work_struct *work)
163 {
164 struct request_queue *q;
165
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
170 }
171
172 /**
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
176 *
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
181 */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189
190 /**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205
206 /**
207 * blk_start_queue - restart a previously stopped queue
208 * @q: The &struct request_queue in question
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 WARN_ON(!irqs_disabled());
218
219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 __blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223
224 /**
225 * blk_stop_queue - stop a queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 cancel_delayed_work(&q->delay_work);
241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244
245 /**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
254 * that the callbacks might use. The caller must already have made sure
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
258 * This function does not cancel any asynchronous activity arising
259 * out of elevator or throttling code. That would require elevator_exit()
260 * and blkcg_exit_queue() to be called with queue lock initialized.
261 *
262 */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 del_timer_sync(&q->timeout);
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
271 queue_for_each_hw_ctx(q, hctx, i) {
272 cancel_work_sync(&hctx->run_work);
273 cancel_delayed_work_sync(&hctx->delay_work);
274 }
275 } else {
276 cancel_delayed_work_sync(&q->delay_work);
277 }
278 }
279 EXPORT_SYMBOL(blk_sync_queue);
280
281 /**
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
284 *
285 * Description:
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
291 */
292 inline void __blk_run_queue_uncond(struct request_queue *q)
293 {
294 if (unlikely(blk_queue_dead(q)))
295 return;
296
297 /*
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
303 */
304 q->request_fn_active++;
305 q->request_fn(q);
306 q->request_fn_active--;
307 }
308 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
309
310 /**
311 * __blk_run_queue - run a single device queue
312 * @q: The queue to run
313 *
314 * Description:
315 * See @blk_run_queue. This variant must be called with the queue lock
316 * held and interrupts disabled.
317 */
318 void __blk_run_queue(struct request_queue *q)
319 {
320 if (unlikely(blk_queue_stopped(q)))
321 return;
322
323 __blk_run_queue_uncond(q);
324 }
325 EXPORT_SYMBOL(__blk_run_queue);
326
327 /**
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
330 *
331 * Description:
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
333 * of us. The caller must hold the queue lock.
334 */
335 void blk_run_queue_async(struct request_queue *q)
336 {
337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
339 }
340 EXPORT_SYMBOL(blk_run_queue_async);
341
342 /**
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
345 *
346 * Description:
347 * Invoke request handling on this queue, if it has pending work to do.
348 * May be used to restart queueing when a request has completed.
349 */
350 void blk_run_queue(struct request_queue *q)
351 {
352 unsigned long flags;
353
354 spin_lock_irqsave(q->queue_lock, flags);
355 __blk_run_queue(q);
356 spin_unlock_irqrestore(q->queue_lock, flags);
357 }
358 EXPORT_SYMBOL(blk_run_queue);
359
360 void blk_put_queue(struct request_queue *q)
361 {
362 kobject_put(&q->kobj);
363 }
364 EXPORT_SYMBOL(blk_put_queue);
365
366 /**
367 * __blk_drain_queue - drain requests from request_queue
368 * @q: queue to drain
369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
370 *
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
374 */
375 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 __releases(q->queue_lock)
377 __acquires(q->queue_lock)
378 {
379 int i;
380
381 lockdep_assert_held(q->queue_lock);
382
383 while (true) {
384 bool drain = false;
385
386 /*
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
389 */
390 if (q->elevator)
391 elv_drain_elevator(q);
392
393 blkcg_drain_queue(q);
394
395 /*
396 * This function might be called on a queue which failed
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
401 */
402 if (!list_empty(&q->queue_head) && q->request_fn)
403 __blk_run_queue(q);
404
405 drain |= q->nr_rqs_elvpriv;
406 drain |= q->request_fn_active;
407
408 /*
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
412 */
413 if (drain_all) {
414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
415 drain |= !list_empty(&q->queue_head);
416 for (i = 0; i < 2; i++) {
417 drain |= q->nr_rqs[i];
418 drain |= q->in_flight[i];
419 if (fq)
420 drain |= !list_empty(&fq->flush_queue[i]);
421 }
422 }
423
424 if (!drain)
425 break;
426
427 spin_unlock_irq(q->queue_lock);
428
429 msleep(10);
430
431 spin_lock_irq(q->queue_lock);
432 }
433
434 /*
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
438 */
439 if (q->request_fn) {
440 struct request_list *rl;
441
442 blk_queue_for_each_rl(rl, q)
443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 wake_up_all(&rl->wait[i]);
445 }
446 }
447
448 /**
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
451 *
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
454 * throttled or issued before. On return, it's guaranteed that no request
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
457 */
458 void blk_queue_bypass_start(struct request_queue *q)
459 {
460 spin_lock_irq(q->queue_lock);
461 q->bypass_depth++;
462 queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 spin_unlock_irq(q->queue_lock);
464
465 /*
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
469 */
470 if (blk_queue_init_done(q)) {
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
478 }
479 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481 /**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487 void blk_queue_bypass_end(struct request_queue *q)
488 {
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494 }
495 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
497 void blk_set_queue_dying(struct request_queue *q)
498 {
499 spin_lock_irq(q->queue_lock);
500 queue_flag_set(QUEUE_FLAG_DYING, q);
501 spin_unlock_irq(q->queue_lock);
502
503 if (q->mq_ops)
504 blk_mq_wake_waiters(q);
505 else {
506 struct request_list *rl;
507
508 spin_lock_irq(q->queue_lock);
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 spin_unlock_irq(q->queue_lock);
516 }
517 }
518 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
519
520 /**
521 * blk_cleanup_queue - shutdown a request queue
522 * @q: request queue to shutdown
523 *
524 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
525 * put it. All future requests will be failed immediately with -ENODEV.
526 */
527 void blk_cleanup_queue(struct request_queue *q)
528 {
529 spinlock_t *lock = q->queue_lock;
530
531 /* mark @q DYING, no new request or merges will be allowed afterwards */
532 mutex_lock(&q->sysfs_lock);
533 blk_set_queue_dying(q);
534 spin_lock_irq(lock);
535
536 /*
537 * A dying queue is permanently in bypass mode till released. Note
538 * that, unlike blk_queue_bypass_start(), we aren't performing
539 * synchronize_rcu() after entering bypass mode to avoid the delay
540 * as some drivers create and destroy a lot of queues while
541 * probing. This is still safe because blk_release_queue() will be
542 * called only after the queue refcnt drops to zero and nothing,
543 * RCU or not, would be traversing the queue by then.
544 */
545 q->bypass_depth++;
546 queue_flag_set(QUEUE_FLAG_BYPASS, q);
547
548 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
549 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
550 queue_flag_set(QUEUE_FLAG_DYING, q);
551 spin_unlock_irq(lock);
552 mutex_unlock(&q->sysfs_lock);
553
554 /*
555 * Drain all requests queued before DYING marking. Set DEAD flag to
556 * prevent that q->request_fn() gets invoked after draining finished.
557 */
558 blk_freeze_queue(q);
559 spin_lock_irq(lock);
560 if (!q->mq_ops)
561 __blk_drain_queue(q, true);
562 queue_flag_set(QUEUE_FLAG_DEAD, q);
563 spin_unlock_irq(lock);
564
565 /* for synchronous bio-based driver finish in-flight integrity i/o */
566 blk_flush_integrity();
567
568 /* @q won't process any more request, flush async actions */
569 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
570 blk_sync_queue(q);
571
572 if (q->mq_ops)
573 blk_mq_free_queue(q);
574 percpu_ref_exit(&q->q_usage_counter);
575
576 spin_lock_irq(lock);
577 if (q->queue_lock != &q->__queue_lock)
578 q->queue_lock = &q->__queue_lock;
579 spin_unlock_irq(lock);
580
581 /* @q is and will stay empty, shutdown and put */
582 blk_put_queue(q);
583 }
584 EXPORT_SYMBOL(blk_cleanup_queue);
585
586 /* Allocate memory local to the request queue */
587 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
588 {
589 struct request_queue *q = data;
590
591 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
592 }
593
594 static void free_request_simple(void *element, void *data)
595 {
596 kmem_cache_free(request_cachep, element);
597 }
598
599 static void *alloc_request_size(gfp_t gfp_mask, void *data)
600 {
601 struct request_queue *q = data;
602 struct request *rq;
603
604 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
605 q->node);
606 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
607 kfree(rq);
608 rq = NULL;
609 }
610 return rq;
611 }
612
613 static void free_request_size(void *element, void *data)
614 {
615 struct request_queue *q = data;
616
617 if (q->exit_rq_fn)
618 q->exit_rq_fn(q, element);
619 kfree(element);
620 }
621
622 int blk_init_rl(struct request_list *rl, struct request_queue *q,
623 gfp_t gfp_mask)
624 {
625 if (unlikely(rl->rq_pool))
626 return 0;
627
628 rl->q = q;
629 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
630 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
631 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
632 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
633
634 if (q->cmd_size) {
635 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
636 alloc_request_size, free_request_size,
637 q, gfp_mask, q->node);
638 } else {
639 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
640 alloc_request_simple, free_request_simple,
641 q, gfp_mask, q->node);
642 }
643 if (!rl->rq_pool)
644 return -ENOMEM;
645
646 return 0;
647 }
648
649 void blk_exit_rl(struct request_list *rl)
650 {
651 if (rl->rq_pool)
652 mempool_destroy(rl->rq_pool);
653 }
654
655 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
656 {
657 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
658 }
659 EXPORT_SYMBOL(blk_alloc_queue);
660
661 int blk_queue_enter(struct request_queue *q, bool nowait)
662 {
663 while (true) {
664 int ret;
665
666 if (percpu_ref_tryget_live(&q->q_usage_counter))
667 return 0;
668
669 if (nowait)
670 return -EBUSY;
671
672 ret = wait_event_interruptible(q->mq_freeze_wq,
673 !atomic_read(&q->mq_freeze_depth) ||
674 blk_queue_dying(q));
675 if (blk_queue_dying(q))
676 return -ENODEV;
677 if (ret)
678 return ret;
679 }
680 }
681
682 void blk_queue_exit(struct request_queue *q)
683 {
684 percpu_ref_put(&q->q_usage_counter);
685 }
686
687 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
688 {
689 struct request_queue *q =
690 container_of(ref, struct request_queue, q_usage_counter);
691
692 wake_up_all(&q->mq_freeze_wq);
693 }
694
695 static void blk_rq_timed_out_timer(unsigned long data)
696 {
697 struct request_queue *q = (struct request_queue *)data;
698
699 kblockd_schedule_work(&q->timeout_work);
700 }
701
702 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
703 {
704 struct request_queue *q;
705
706 q = kmem_cache_alloc_node(blk_requestq_cachep,
707 gfp_mask | __GFP_ZERO, node_id);
708 if (!q)
709 return NULL;
710
711 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
712 if (q->id < 0)
713 goto fail_q;
714
715 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
716 if (!q->bio_split)
717 goto fail_id;
718
719 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
720 if (!q->backing_dev_info)
721 goto fail_split;
722
723 q->backing_dev_info->ra_pages =
724 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
725 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
726 q->backing_dev_info->name = "block";
727 q->node = node_id;
728
729 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
730 laptop_mode_timer_fn, (unsigned long) q);
731 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
732 INIT_LIST_HEAD(&q->queue_head);
733 INIT_LIST_HEAD(&q->timeout_list);
734 INIT_LIST_HEAD(&q->icq_list);
735 #ifdef CONFIG_BLK_CGROUP
736 INIT_LIST_HEAD(&q->blkg_list);
737 #endif
738 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
739
740 kobject_init(&q->kobj, &blk_queue_ktype);
741
742 mutex_init(&q->sysfs_lock);
743 spin_lock_init(&q->__queue_lock);
744
745 /*
746 * By default initialize queue_lock to internal lock and driver can
747 * override it later if need be.
748 */
749 q->queue_lock = &q->__queue_lock;
750
751 /*
752 * A queue starts its life with bypass turned on to avoid
753 * unnecessary bypass on/off overhead and nasty surprises during
754 * init. The initial bypass will be finished when the queue is
755 * registered by blk_register_queue().
756 */
757 q->bypass_depth = 1;
758 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
759
760 init_waitqueue_head(&q->mq_freeze_wq);
761
762 /*
763 * Init percpu_ref in atomic mode so that it's faster to shutdown.
764 * See blk_register_queue() for details.
765 */
766 if (percpu_ref_init(&q->q_usage_counter,
767 blk_queue_usage_counter_release,
768 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
769 goto fail_bdi;
770
771 if (blkcg_init_queue(q))
772 goto fail_ref;
773
774 return q;
775
776 fail_ref:
777 percpu_ref_exit(&q->q_usage_counter);
778 fail_bdi:
779 bdi_put(q->backing_dev_info);
780 fail_split:
781 bioset_free(q->bio_split);
782 fail_id:
783 ida_simple_remove(&blk_queue_ida, q->id);
784 fail_q:
785 kmem_cache_free(blk_requestq_cachep, q);
786 return NULL;
787 }
788 EXPORT_SYMBOL(blk_alloc_queue_node);
789
790 /**
791 * blk_init_queue - prepare a request queue for use with a block device
792 * @rfn: The function to be called to process requests that have been
793 * placed on the queue.
794 * @lock: Request queue spin lock
795 *
796 * Description:
797 * If a block device wishes to use the standard request handling procedures,
798 * which sorts requests and coalesces adjacent requests, then it must
799 * call blk_init_queue(). The function @rfn will be called when there
800 * are requests on the queue that need to be processed. If the device
801 * supports plugging, then @rfn may not be called immediately when requests
802 * are available on the queue, but may be called at some time later instead.
803 * Plugged queues are generally unplugged when a buffer belonging to one
804 * of the requests on the queue is needed, or due to memory pressure.
805 *
806 * @rfn is not required, or even expected, to remove all requests off the
807 * queue, but only as many as it can handle at a time. If it does leave
808 * requests on the queue, it is responsible for arranging that the requests
809 * get dealt with eventually.
810 *
811 * The queue spin lock must be held while manipulating the requests on the
812 * request queue; this lock will be taken also from interrupt context, so irq
813 * disabling is needed for it.
814 *
815 * Function returns a pointer to the initialized request queue, or %NULL if
816 * it didn't succeed.
817 *
818 * Note:
819 * blk_init_queue() must be paired with a blk_cleanup_queue() call
820 * when the block device is deactivated (such as at module unload).
821 **/
822
823 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
824 {
825 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
826 }
827 EXPORT_SYMBOL(blk_init_queue);
828
829 struct request_queue *
830 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
831 {
832 struct request_queue *q;
833
834 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
835 if (!q)
836 return NULL;
837
838 q->request_fn = rfn;
839 if (lock)
840 q->queue_lock = lock;
841 if (blk_init_allocated_queue(q) < 0) {
842 blk_cleanup_queue(q);
843 return NULL;
844 }
845
846 return q;
847 }
848 EXPORT_SYMBOL(blk_init_queue_node);
849
850 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
851
852
853 int blk_init_allocated_queue(struct request_queue *q)
854 {
855 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
856 if (!q->fq)
857 return -ENOMEM;
858
859 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
860 goto out_free_flush_queue;
861
862 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
863 goto out_exit_flush_rq;
864
865 INIT_WORK(&q->timeout_work, blk_timeout_work);
866 q->queue_flags |= QUEUE_FLAG_DEFAULT;
867
868 /*
869 * This also sets hw/phys segments, boundary and size
870 */
871 blk_queue_make_request(q, blk_queue_bio);
872
873 q->sg_reserved_size = INT_MAX;
874
875 /* Protect q->elevator from elevator_change */
876 mutex_lock(&q->sysfs_lock);
877
878 /* init elevator */
879 if (elevator_init(q, NULL)) {
880 mutex_unlock(&q->sysfs_lock);
881 goto out_exit_flush_rq;
882 }
883
884 mutex_unlock(&q->sysfs_lock);
885 return 0;
886
887 out_exit_flush_rq:
888 if (q->exit_rq_fn)
889 q->exit_rq_fn(q, q->fq->flush_rq);
890 out_free_flush_queue:
891 blk_free_flush_queue(q->fq);
892 wbt_exit(q);
893 return -ENOMEM;
894 }
895 EXPORT_SYMBOL(blk_init_allocated_queue);
896
897 bool blk_get_queue(struct request_queue *q)
898 {
899 if (likely(!blk_queue_dying(q))) {
900 __blk_get_queue(q);
901 return true;
902 }
903
904 return false;
905 }
906 EXPORT_SYMBOL(blk_get_queue);
907
908 static inline void blk_free_request(struct request_list *rl, struct request *rq)
909 {
910 if (rq->rq_flags & RQF_ELVPRIV) {
911 elv_put_request(rl->q, rq);
912 if (rq->elv.icq)
913 put_io_context(rq->elv.icq->ioc);
914 }
915
916 mempool_free(rq, rl->rq_pool);
917 }
918
919 /*
920 * ioc_batching returns true if the ioc is a valid batching request and
921 * should be given priority access to a request.
922 */
923 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
924 {
925 if (!ioc)
926 return 0;
927
928 /*
929 * Make sure the process is able to allocate at least 1 request
930 * even if the batch times out, otherwise we could theoretically
931 * lose wakeups.
932 */
933 return ioc->nr_batch_requests == q->nr_batching ||
934 (ioc->nr_batch_requests > 0
935 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
936 }
937
938 /*
939 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
940 * will cause the process to be a "batcher" on all queues in the system. This
941 * is the behaviour we want though - once it gets a wakeup it should be given
942 * a nice run.
943 */
944 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
945 {
946 if (!ioc || ioc_batching(q, ioc))
947 return;
948
949 ioc->nr_batch_requests = q->nr_batching;
950 ioc->last_waited = jiffies;
951 }
952
953 static void __freed_request(struct request_list *rl, int sync)
954 {
955 struct request_queue *q = rl->q;
956
957 if (rl->count[sync] < queue_congestion_off_threshold(q))
958 blk_clear_congested(rl, sync);
959
960 if (rl->count[sync] + 1 <= q->nr_requests) {
961 if (waitqueue_active(&rl->wait[sync]))
962 wake_up(&rl->wait[sync]);
963
964 blk_clear_rl_full(rl, sync);
965 }
966 }
967
968 /*
969 * A request has just been released. Account for it, update the full and
970 * congestion status, wake up any waiters. Called under q->queue_lock.
971 */
972 static void freed_request(struct request_list *rl, bool sync,
973 req_flags_t rq_flags)
974 {
975 struct request_queue *q = rl->q;
976
977 q->nr_rqs[sync]--;
978 rl->count[sync]--;
979 if (rq_flags & RQF_ELVPRIV)
980 q->nr_rqs_elvpriv--;
981
982 __freed_request(rl, sync);
983
984 if (unlikely(rl->starved[sync ^ 1]))
985 __freed_request(rl, sync ^ 1);
986 }
987
988 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
989 {
990 struct request_list *rl;
991 int on_thresh, off_thresh;
992
993 spin_lock_irq(q->queue_lock);
994 q->nr_requests = nr;
995 blk_queue_congestion_threshold(q);
996 on_thresh = queue_congestion_on_threshold(q);
997 off_thresh = queue_congestion_off_threshold(q);
998
999 blk_queue_for_each_rl(rl, q) {
1000 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1001 blk_set_congested(rl, BLK_RW_SYNC);
1002 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1003 blk_clear_congested(rl, BLK_RW_SYNC);
1004
1005 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1006 blk_set_congested(rl, BLK_RW_ASYNC);
1007 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1008 blk_clear_congested(rl, BLK_RW_ASYNC);
1009
1010 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1011 blk_set_rl_full(rl, BLK_RW_SYNC);
1012 } else {
1013 blk_clear_rl_full(rl, BLK_RW_SYNC);
1014 wake_up(&rl->wait[BLK_RW_SYNC]);
1015 }
1016
1017 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1018 blk_set_rl_full(rl, BLK_RW_ASYNC);
1019 } else {
1020 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1021 wake_up(&rl->wait[BLK_RW_ASYNC]);
1022 }
1023 }
1024
1025 spin_unlock_irq(q->queue_lock);
1026 return 0;
1027 }
1028
1029 /**
1030 * __get_request - get a free request
1031 * @rl: request list to allocate from
1032 * @op: operation and flags
1033 * @bio: bio to allocate request for (can be %NULL)
1034 * @gfp_mask: allocation mask
1035 *
1036 * Get a free request from @q. This function may fail under memory
1037 * pressure or if @q is dead.
1038 *
1039 * Must be called with @q->queue_lock held and,
1040 * Returns ERR_PTR on failure, with @q->queue_lock held.
1041 * Returns request pointer on success, with @q->queue_lock *not held*.
1042 */
1043 static struct request *__get_request(struct request_list *rl, unsigned int op,
1044 struct bio *bio, gfp_t gfp_mask)
1045 {
1046 struct request_queue *q = rl->q;
1047 struct request *rq;
1048 struct elevator_type *et = q->elevator->type;
1049 struct io_context *ioc = rq_ioc(bio);
1050 struct io_cq *icq = NULL;
1051 const bool is_sync = op_is_sync(op);
1052 int may_queue;
1053 req_flags_t rq_flags = RQF_ALLOCED;
1054
1055 if (unlikely(blk_queue_dying(q)))
1056 return ERR_PTR(-ENODEV);
1057
1058 may_queue = elv_may_queue(q, op);
1059 if (may_queue == ELV_MQUEUE_NO)
1060 goto rq_starved;
1061
1062 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1063 if (rl->count[is_sync]+1 >= q->nr_requests) {
1064 /*
1065 * The queue will fill after this allocation, so set
1066 * it as full, and mark this process as "batching".
1067 * This process will be allowed to complete a batch of
1068 * requests, others will be blocked.
1069 */
1070 if (!blk_rl_full(rl, is_sync)) {
1071 ioc_set_batching(q, ioc);
1072 blk_set_rl_full(rl, is_sync);
1073 } else {
1074 if (may_queue != ELV_MQUEUE_MUST
1075 && !ioc_batching(q, ioc)) {
1076 /*
1077 * The queue is full and the allocating
1078 * process is not a "batcher", and not
1079 * exempted by the IO scheduler
1080 */
1081 return ERR_PTR(-ENOMEM);
1082 }
1083 }
1084 }
1085 blk_set_congested(rl, is_sync);
1086 }
1087
1088 /*
1089 * Only allow batching queuers to allocate up to 50% over the defined
1090 * limit of requests, otherwise we could have thousands of requests
1091 * allocated with any setting of ->nr_requests
1092 */
1093 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1094 return ERR_PTR(-ENOMEM);
1095
1096 q->nr_rqs[is_sync]++;
1097 rl->count[is_sync]++;
1098 rl->starved[is_sync] = 0;
1099
1100 /*
1101 * Decide whether the new request will be managed by elevator. If
1102 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1103 * prevent the current elevator from being destroyed until the new
1104 * request is freed. This guarantees icq's won't be destroyed and
1105 * makes creating new ones safe.
1106 *
1107 * Flush requests do not use the elevator so skip initialization.
1108 * This allows a request to share the flush and elevator data.
1109 *
1110 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1111 * it will be created after releasing queue_lock.
1112 */
1113 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1114 rq_flags |= RQF_ELVPRIV;
1115 q->nr_rqs_elvpriv++;
1116 if (et->icq_cache && ioc)
1117 icq = ioc_lookup_icq(ioc, q);
1118 }
1119
1120 if (blk_queue_io_stat(q))
1121 rq_flags |= RQF_IO_STAT;
1122 spin_unlock_irq(q->queue_lock);
1123
1124 /* allocate and init request */
1125 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1126 if (!rq)
1127 goto fail_alloc;
1128
1129 blk_rq_init(q, rq);
1130 blk_rq_set_rl(rq, rl);
1131 blk_rq_set_prio(rq, ioc);
1132 rq->cmd_flags = op;
1133 rq->rq_flags = rq_flags;
1134
1135 /* init elvpriv */
1136 if (rq_flags & RQF_ELVPRIV) {
1137 if (unlikely(et->icq_cache && !icq)) {
1138 if (ioc)
1139 icq = ioc_create_icq(ioc, q, gfp_mask);
1140 if (!icq)
1141 goto fail_elvpriv;
1142 }
1143
1144 rq->elv.icq = icq;
1145 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1146 goto fail_elvpriv;
1147
1148 /* @rq->elv.icq holds io_context until @rq is freed */
1149 if (icq)
1150 get_io_context(icq->ioc);
1151 }
1152 out:
1153 /*
1154 * ioc may be NULL here, and ioc_batching will be false. That's
1155 * OK, if the queue is under the request limit then requests need
1156 * not count toward the nr_batch_requests limit. There will always
1157 * be some limit enforced by BLK_BATCH_TIME.
1158 */
1159 if (ioc_batching(q, ioc))
1160 ioc->nr_batch_requests--;
1161
1162 trace_block_getrq(q, bio, op);
1163 return rq;
1164
1165 fail_elvpriv:
1166 /*
1167 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1168 * and may fail indefinitely under memory pressure and thus
1169 * shouldn't stall IO. Treat this request as !elvpriv. This will
1170 * disturb iosched and blkcg but weird is bettern than dead.
1171 */
1172 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1173 __func__, dev_name(q->backing_dev_info->dev));
1174
1175 rq->rq_flags &= ~RQF_ELVPRIV;
1176 rq->elv.icq = NULL;
1177
1178 spin_lock_irq(q->queue_lock);
1179 q->nr_rqs_elvpriv--;
1180 spin_unlock_irq(q->queue_lock);
1181 goto out;
1182
1183 fail_alloc:
1184 /*
1185 * Allocation failed presumably due to memory. Undo anything we
1186 * might have messed up.
1187 *
1188 * Allocating task should really be put onto the front of the wait
1189 * queue, but this is pretty rare.
1190 */
1191 spin_lock_irq(q->queue_lock);
1192 freed_request(rl, is_sync, rq_flags);
1193
1194 /*
1195 * in the very unlikely event that allocation failed and no
1196 * requests for this direction was pending, mark us starved so that
1197 * freeing of a request in the other direction will notice
1198 * us. another possible fix would be to split the rq mempool into
1199 * READ and WRITE
1200 */
1201 rq_starved:
1202 if (unlikely(rl->count[is_sync] == 0))
1203 rl->starved[is_sync] = 1;
1204 return ERR_PTR(-ENOMEM);
1205 }
1206
1207 /**
1208 * get_request - get a free request
1209 * @q: request_queue to allocate request from
1210 * @op: operation and flags
1211 * @bio: bio to allocate request for (can be %NULL)
1212 * @gfp_mask: allocation mask
1213 *
1214 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1215 * this function keeps retrying under memory pressure and fails iff @q is dead.
1216 *
1217 * Must be called with @q->queue_lock held and,
1218 * Returns ERR_PTR on failure, with @q->queue_lock held.
1219 * Returns request pointer on success, with @q->queue_lock *not held*.
1220 */
1221 static struct request *get_request(struct request_queue *q, unsigned int op,
1222 struct bio *bio, gfp_t gfp_mask)
1223 {
1224 const bool is_sync = op_is_sync(op);
1225 DEFINE_WAIT(wait);
1226 struct request_list *rl;
1227 struct request *rq;
1228
1229 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1230 retry:
1231 rq = __get_request(rl, op, bio, gfp_mask);
1232 if (!IS_ERR(rq))
1233 return rq;
1234
1235 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1236 blk_put_rl(rl);
1237 return rq;
1238 }
1239
1240 /* wait on @rl and retry */
1241 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1242 TASK_UNINTERRUPTIBLE);
1243
1244 trace_block_sleeprq(q, bio, op);
1245
1246 spin_unlock_irq(q->queue_lock);
1247 io_schedule();
1248
1249 /*
1250 * After sleeping, we become a "batching" process and will be able
1251 * to allocate at least one request, and up to a big batch of them
1252 * for a small period time. See ioc_batching, ioc_set_batching
1253 */
1254 ioc_set_batching(q, current->io_context);
1255
1256 spin_lock_irq(q->queue_lock);
1257 finish_wait(&rl->wait[is_sync], &wait);
1258
1259 goto retry;
1260 }
1261
1262 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1263 gfp_t gfp_mask)
1264 {
1265 struct request *rq;
1266
1267 /* create ioc upfront */
1268 create_io_context(gfp_mask, q->node);
1269
1270 spin_lock_irq(q->queue_lock);
1271 rq = get_request(q, rw, NULL, gfp_mask);
1272 if (IS_ERR(rq)) {
1273 spin_unlock_irq(q->queue_lock);
1274 return rq;
1275 }
1276
1277 /* q->queue_lock is unlocked at this point */
1278 rq->__data_len = 0;
1279 rq->__sector = (sector_t) -1;
1280 rq->bio = rq->biotail = NULL;
1281 return rq;
1282 }
1283
1284 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1285 {
1286 if (q->mq_ops)
1287 return blk_mq_alloc_request(q, rw,
1288 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1289 0 : BLK_MQ_REQ_NOWAIT);
1290 else
1291 return blk_old_get_request(q, rw, gfp_mask);
1292 }
1293 EXPORT_SYMBOL(blk_get_request);
1294
1295 /**
1296 * blk_requeue_request - put a request back on queue
1297 * @q: request queue where request should be inserted
1298 * @rq: request to be inserted
1299 *
1300 * Description:
1301 * Drivers often keep queueing requests until the hardware cannot accept
1302 * more, when that condition happens we need to put the request back
1303 * on the queue. Must be called with queue lock held.
1304 */
1305 void blk_requeue_request(struct request_queue *q, struct request *rq)
1306 {
1307 blk_delete_timer(rq);
1308 blk_clear_rq_complete(rq);
1309 trace_block_rq_requeue(q, rq);
1310 wbt_requeue(q->rq_wb, &rq->issue_stat);
1311
1312 if (rq->rq_flags & RQF_QUEUED)
1313 blk_queue_end_tag(q, rq);
1314
1315 BUG_ON(blk_queued_rq(rq));
1316
1317 elv_requeue_request(q, rq);
1318 }
1319 EXPORT_SYMBOL(blk_requeue_request);
1320
1321 static void add_acct_request(struct request_queue *q, struct request *rq,
1322 int where)
1323 {
1324 blk_account_io_start(rq, true);
1325 __elv_add_request(q, rq, where);
1326 }
1327
1328 static void part_round_stats_single(int cpu, struct hd_struct *part,
1329 unsigned long now)
1330 {
1331 int inflight;
1332
1333 if (now == part->stamp)
1334 return;
1335
1336 inflight = part_in_flight(part);
1337 if (inflight) {
1338 __part_stat_add(cpu, part, time_in_queue,
1339 inflight * (now - part->stamp));
1340 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1341 }
1342 part->stamp = now;
1343 }
1344
1345 /**
1346 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1347 * @cpu: cpu number for stats access
1348 * @part: target partition
1349 *
1350 * The average IO queue length and utilisation statistics are maintained
1351 * by observing the current state of the queue length and the amount of
1352 * time it has been in this state for.
1353 *
1354 * Normally, that accounting is done on IO completion, but that can result
1355 * in more than a second's worth of IO being accounted for within any one
1356 * second, leading to >100% utilisation. To deal with that, we call this
1357 * function to do a round-off before returning the results when reading
1358 * /proc/diskstats. This accounts immediately for all queue usage up to
1359 * the current jiffies and restarts the counters again.
1360 */
1361 void part_round_stats(int cpu, struct hd_struct *part)
1362 {
1363 unsigned long now = jiffies;
1364
1365 if (part->partno)
1366 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1367 part_round_stats_single(cpu, part, now);
1368 }
1369 EXPORT_SYMBOL_GPL(part_round_stats);
1370
1371 #ifdef CONFIG_PM
1372 static void blk_pm_put_request(struct request *rq)
1373 {
1374 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1375 pm_runtime_mark_last_busy(rq->q->dev);
1376 }
1377 #else
1378 static inline void blk_pm_put_request(struct request *rq) {}
1379 #endif
1380
1381 /*
1382 * queue lock must be held
1383 */
1384 void __blk_put_request(struct request_queue *q, struct request *req)
1385 {
1386 req_flags_t rq_flags = req->rq_flags;
1387
1388 if (unlikely(!q))
1389 return;
1390
1391 if (q->mq_ops) {
1392 blk_mq_free_request(req);
1393 return;
1394 }
1395
1396 blk_pm_put_request(req);
1397
1398 elv_completed_request(q, req);
1399
1400 /* this is a bio leak */
1401 WARN_ON(req->bio != NULL);
1402
1403 wbt_done(q->rq_wb, &req->issue_stat);
1404
1405 /*
1406 * Request may not have originated from ll_rw_blk. if not,
1407 * it didn't come out of our reserved rq pools
1408 */
1409 if (rq_flags & RQF_ALLOCED) {
1410 struct request_list *rl = blk_rq_rl(req);
1411 bool sync = op_is_sync(req->cmd_flags);
1412
1413 BUG_ON(!list_empty(&req->queuelist));
1414 BUG_ON(ELV_ON_HASH(req));
1415
1416 blk_free_request(rl, req);
1417 freed_request(rl, sync, rq_flags);
1418 blk_put_rl(rl);
1419 }
1420 }
1421 EXPORT_SYMBOL_GPL(__blk_put_request);
1422
1423 void blk_put_request(struct request *req)
1424 {
1425 struct request_queue *q = req->q;
1426
1427 if (q->mq_ops)
1428 blk_mq_free_request(req);
1429 else {
1430 unsigned long flags;
1431
1432 spin_lock_irqsave(q->queue_lock, flags);
1433 __blk_put_request(q, req);
1434 spin_unlock_irqrestore(q->queue_lock, flags);
1435 }
1436 }
1437 EXPORT_SYMBOL(blk_put_request);
1438
1439 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1440 struct bio *bio)
1441 {
1442 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1443
1444 if (!ll_back_merge_fn(q, req, bio))
1445 return false;
1446
1447 trace_block_bio_backmerge(q, req, bio);
1448
1449 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1450 blk_rq_set_mixed_merge(req);
1451
1452 req->biotail->bi_next = bio;
1453 req->biotail = bio;
1454 req->__data_len += bio->bi_iter.bi_size;
1455 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1456
1457 blk_account_io_start(req, false);
1458 return true;
1459 }
1460
1461 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1462 struct bio *bio)
1463 {
1464 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1465
1466 if (!ll_front_merge_fn(q, req, bio))
1467 return false;
1468
1469 trace_block_bio_frontmerge(q, req, bio);
1470
1471 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1472 blk_rq_set_mixed_merge(req);
1473
1474 bio->bi_next = req->bio;
1475 req->bio = bio;
1476
1477 req->__sector = bio->bi_iter.bi_sector;
1478 req->__data_len += bio->bi_iter.bi_size;
1479 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1480
1481 blk_account_io_start(req, false);
1482 return true;
1483 }
1484
1485 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1486 struct bio *bio)
1487 {
1488 unsigned short segments = blk_rq_nr_discard_segments(req);
1489
1490 if (segments >= queue_max_discard_segments(q))
1491 goto no_merge;
1492 if (blk_rq_sectors(req) + bio_sectors(bio) >
1493 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1494 goto no_merge;
1495
1496 req->biotail->bi_next = bio;
1497 req->biotail = bio;
1498 req->__data_len += bio->bi_iter.bi_size;
1499 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1500 req->nr_phys_segments = segments + 1;
1501
1502 blk_account_io_start(req, false);
1503 return true;
1504 no_merge:
1505 req_set_nomerge(q, req);
1506 return false;
1507 }
1508
1509 /**
1510 * blk_attempt_plug_merge - try to merge with %current's plugged list
1511 * @q: request_queue new bio is being queued at
1512 * @bio: new bio being queued
1513 * @request_count: out parameter for number of traversed plugged requests
1514 * @same_queue_rq: pointer to &struct request that gets filled in when
1515 * another request associated with @q is found on the plug list
1516 * (optional, may be %NULL)
1517 *
1518 * Determine whether @bio being queued on @q can be merged with a request
1519 * on %current's plugged list. Returns %true if merge was successful,
1520 * otherwise %false.
1521 *
1522 * Plugging coalesces IOs from the same issuer for the same purpose without
1523 * going through @q->queue_lock. As such it's more of an issuing mechanism
1524 * than scheduling, and the request, while may have elvpriv data, is not
1525 * added on the elevator at this point. In addition, we don't have
1526 * reliable access to the elevator outside queue lock. Only check basic
1527 * merging parameters without querying the elevator.
1528 *
1529 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1530 */
1531 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1532 unsigned int *request_count,
1533 struct request **same_queue_rq)
1534 {
1535 struct blk_plug *plug;
1536 struct request *rq;
1537 struct list_head *plug_list;
1538
1539 plug = current->plug;
1540 if (!plug)
1541 return false;
1542 *request_count = 0;
1543
1544 if (q->mq_ops)
1545 plug_list = &plug->mq_list;
1546 else
1547 plug_list = &plug->list;
1548
1549 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1550 bool merged = false;
1551
1552 if (rq->q == q) {
1553 (*request_count)++;
1554 /*
1555 * Only blk-mq multiple hardware queues case checks the
1556 * rq in the same queue, there should be only one such
1557 * rq in a queue
1558 **/
1559 if (same_queue_rq)
1560 *same_queue_rq = rq;
1561 }
1562
1563 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1564 continue;
1565
1566 switch (blk_try_merge(rq, bio)) {
1567 case ELEVATOR_BACK_MERGE:
1568 merged = bio_attempt_back_merge(q, rq, bio);
1569 break;
1570 case ELEVATOR_FRONT_MERGE:
1571 merged = bio_attempt_front_merge(q, rq, bio);
1572 break;
1573 case ELEVATOR_DISCARD_MERGE:
1574 merged = bio_attempt_discard_merge(q, rq, bio);
1575 break;
1576 default:
1577 break;
1578 }
1579
1580 if (merged)
1581 return true;
1582 }
1583
1584 return false;
1585 }
1586
1587 unsigned int blk_plug_queued_count(struct request_queue *q)
1588 {
1589 struct blk_plug *plug;
1590 struct request *rq;
1591 struct list_head *plug_list;
1592 unsigned int ret = 0;
1593
1594 plug = current->plug;
1595 if (!plug)
1596 goto out;
1597
1598 if (q->mq_ops)
1599 plug_list = &plug->mq_list;
1600 else
1601 plug_list = &plug->list;
1602
1603 list_for_each_entry(rq, plug_list, queuelist) {
1604 if (rq->q == q)
1605 ret++;
1606 }
1607 out:
1608 return ret;
1609 }
1610
1611 void init_request_from_bio(struct request *req, struct bio *bio)
1612 {
1613 if (bio->bi_opf & REQ_RAHEAD)
1614 req->cmd_flags |= REQ_FAILFAST_MASK;
1615
1616 req->errors = 0;
1617 req->__sector = bio->bi_iter.bi_sector;
1618 if (ioprio_valid(bio_prio(bio)))
1619 req->ioprio = bio_prio(bio);
1620 blk_rq_bio_prep(req->q, req, bio);
1621 }
1622
1623 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1624 {
1625 struct blk_plug *plug;
1626 int where = ELEVATOR_INSERT_SORT;
1627 struct request *req, *free;
1628 unsigned int request_count = 0;
1629 unsigned int wb_acct;
1630
1631 /*
1632 * low level driver can indicate that it wants pages above a
1633 * certain limit bounced to low memory (ie for highmem, or even
1634 * ISA dma in theory)
1635 */
1636 blk_queue_bounce(q, &bio);
1637
1638 blk_queue_split(q, &bio, q->bio_split);
1639
1640 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1641 bio->bi_error = -EIO;
1642 bio_endio(bio);
1643 return BLK_QC_T_NONE;
1644 }
1645
1646 if (op_is_flush(bio->bi_opf)) {
1647 spin_lock_irq(q->queue_lock);
1648 where = ELEVATOR_INSERT_FLUSH;
1649 goto get_rq;
1650 }
1651
1652 /*
1653 * Check if we can merge with the plugged list before grabbing
1654 * any locks.
1655 */
1656 if (!blk_queue_nomerges(q)) {
1657 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1658 return BLK_QC_T_NONE;
1659 } else
1660 request_count = blk_plug_queued_count(q);
1661
1662 spin_lock_irq(q->queue_lock);
1663
1664 switch (elv_merge(q, &req, bio)) {
1665 case ELEVATOR_BACK_MERGE:
1666 if (!bio_attempt_back_merge(q, req, bio))
1667 break;
1668 elv_bio_merged(q, req, bio);
1669 free = attempt_back_merge(q, req);
1670 if (free)
1671 __blk_put_request(q, free);
1672 else
1673 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1674 goto out_unlock;
1675 case ELEVATOR_FRONT_MERGE:
1676 if (!bio_attempt_front_merge(q, req, bio))
1677 break;
1678 elv_bio_merged(q, req, bio);
1679 free = attempt_front_merge(q, req);
1680 if (free)
1681 __blk_put_request(q, free);
1682 else
1683 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1684 goto out_unlock;
1685 default:
1686 break;
1687 }
1688
1689 get_rq:
1690 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1691
1692 /*
1693 * Grab a free request. This is might sleep but can not fail.
1694 * Returns with the queue unlocked.
1695 */
1696 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1697 if (IS_ERR(req)) {
1698 __wbt_done(q->rq_wb, wb_acct);
1699 bio->bi_error = PTR_ERR(req);
1700 bio_endio(bio);
1701 goto out_unlock;
1702 }
1703
1704 wbt_track(&req->issue_stat, wb_acct);
1705
1706 /*
1707 * After dropping the lock and possibly sleeping here, our request
1708 * may now be mergeable after it had proven unmergeable (above).
1709 * We don't worry about that case for efficiency. It won't happen
1710 * often, and the elevators are able to handle it.
1711 */
1712 init_request_from_bio(req, bio);
1713
1714 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1715 req->cpu = raw_smp_processor_id();
1716
1717 plug = current->plug;
1718 if (plug) {
1719 /*
1720 * If this is the first request added after a plug, fire
1721 * of a plug trace.
1722 *
1723 * @request_count may become stale because of schedule
1724 * out, so check plug list again.
1725 */
1726 if (!request_count || list_empty(&plug->list))
1727 trace_block_plug(q);
1728 else {
1729 struct request *last = list_entry_rq(plug->list.prev);
1730 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1731 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1732 blk_flush_plug_list(plug, false);
1733 trace_block_plug(q);
1734 }
1735 }
1736 list_add_tail(&req->queuelist, &plug->list);
1737 blk_account_io_start(req, true);
1738 } else {
1739 spin_lock_irq(q->queue_lock);
1740 add_acct_request(q, req, where);
1741 __blk_run_queue(q);
1742 out_unlock:
1743 spin_unlock_irq(q->queue_lock);
1744 }
1745
1746 return BLK_QC_T_NONE;
1747 }
1748
1749 /*
1750 * If bio->bi_dev is a partition, remap the location
1751 */
1752 static inline void blk_partition_remap(struct bio *bio)
1753 {
1754 struct block_device *bdev = bio->bi_bdev;
1755
1756 /*
1757 * Zone reset does not include bi_size so bio_sectors() is always 0.
1758 * Include a test for the reset op code and perform the remap if needed.
1759 */
1760 if (bdev != bdev->bd_contains &&
1761 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1762 struct hd_struct *p = bdev->bd_part;
1763
1764 bio->bi_iter.bi_sector += p->start_sect;
1765 bio->bi_bdev = bdev->bd_contains;
1766
1767 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1768 bdev->bd_dev,
1769 bio->bi_iter.bi_sector - p->start_sect);
1770 }
1771 }
1772
1773 static void handle_bad_sector(struct bio *bio)
1774 {
1775 char b[BDEVNAME_SIZE];
1776
1777 printk(KERN_INFO "attempt to access beyond end of device\n");
1778 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1779 bdevname(bio->bi_bdev, b),
1780 bio->bi_opf,
1781 (unsigned long long)bio_end_sector(bio),
1782 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1783 }
1784
1785 #ifdef CONFIG_FAIL_MAKE_REQUEST
1786
1787 static DECLARE_FAULT_ATTR(fail_make_request);
1788
1789 static int __init setup_fail_make_request(char *str)
1790 {
1791 return setup_fault_attr(&fail_make_request, str);
1792 }
1793 __setup("fail_make_request=", setup_fail_make_request);
1794
1795 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1796 {
1797 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1798 }
1799
1800 static int __init fail_make_request_debugfs(void)
1801 {
1802 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1803 NULL, &fail_make_request);
1804
1805 return PTR_ERR_OR_ZERO(dir);
1806 }
1807
1808 late_initcall(fail_make_request_debugfs);
1809
1810 #else /* CONFIG_FAIL_MAKE_REQUEST */
1811
1812 static inline bool should_fail_request(struct hd_struct *part,
1813 unsigned int bytes)
1814 {
1815 return false;
1816 }
1817
1818 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1819
1820 /*
1821 * Check whether this bio extends beyond the end of the device.
1822 */
1823 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1824 {
1825 sector_t maxsector;
1826
1827 if (!nr_sectors)
1828 return 0;
1829
1830 /* Test device or partition size, when known. */
1831 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1832 if (maxsector) {
1833 sector_t sector = bio->bi_iter.bi_sector;
1834
1835 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1836 /*
1837 * This may well happen - the kernel calls bread()
1838 * without checking the size of the device, e.g., when
1839 * mounting a device.
1840 */
1841 handle_bad_sector(bio);
1842 return 1;
1843 }
1844 }
1845
1846 return 0;
1847 }
1848
1849 static noinline_for_stack bool
1850 generic_make_request_checks(struct bio *bio)
1851 {
1852 struct request_queue *q;
1853 int nr_sectors = bio_sectors(bio);
1854 int err = -EIO;
1855 char b[BDEVNAME_SIZE];
1856 struct hd_struct *part;
1857
1858 might_sleep();
1859
1860 if (bio_check_eod(bio, nr_sectors))
1861 goto end_io;
1862
1863 q = bdev_get_queue(bio->bi_bdev);
1864 if (unlikely(!q)) {
1865 printk(KERN_ERR
1866 "generic_make_request: Trying to access "
1867 "nonexistent block-device %s (%Lu)\n",
1868 bdevname(bio->bi_bdev, b),
1869 (long long) bio->bi_iter.bi_sector);
1870 goto end_io;
1871 }
1872
1873 part = bio->bi_bdev->bd_part;
1874 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1875 should_fail_request(&part_to_disk(part)->part0,
1876 bio->bi_iter.bi_size))
1877 goto end_io;
1878
1879 /*
1880 * If this device has partitions, remap block n
1881 * of partition p to block n+start(p) of the disk.
1882 */
1883 blk_partition_remap(bio);
1884
1885 if (bio_check_eod(bio, nr_sectors))
1886 goto end_io;
1887
1888 /*
1889 * Filter flush bio's early so that make_request based
1890 * drivers without flush support don't have to worry
1891 * about them.
1892 */
1893 if (op_is_flush(bio->bi_opf) &&
1894 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1895 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1896 if (!nr_sectors) {
1897 err = 0;
1898 goto end_io;
1899 }
1900 }
1901
1902 switch (bio_op(bio)) {
1903 case REQ_OP_DISCARD:
1904 if (!blk_queue_discard(q))
1905 goto not_supported;
1906 break;
1907 case REQ_OP_SECURE_ERASE:
1908 if (!blk_queue_secure_erase(q))
1909 goto not_supported;
1910 break;
1911 case REQ_OP_WRITE_SAME:
1912 if (!bdev_write_same(bio->bi_bdev))
1913 goto not_supported;
1914 break;
1915 case REQ_OP_ZONE_REPORT:
1916 case REQ_OP_ZONE_RESET:
1917 if (!bdev_is_zoned(bio->bi_bdev))
1918 goto not_supported;
1919 break;
1920 case REQ_OP_WRITE_ZEROES:
1921 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1922 goto not_supported;
1923 break;
1924 default:
1925 break;
1926 }
1927
1928 /*
1929 * Various block parts want %current->io_context and lazy ioc
1930 * allocation ends up trading a lot of pain for a small amount of
1931 * memory. Just allocate it upfront. This may fail and block
1932 * layer knows how to live with it.
1933 */
1934 create_io_context(GFP_ATOMIC, q->node);
1935
1936 if (!blkcg_bio_issue_check(q, bio))
1937 return false;
1938
1939 trace_block_bio_queue(q, bio);
1940 return true;
1941
1942 not_supported:
1943 err = -EOPNOTSUPP;
1944 end_io:
1945 bio->bi_error = err;
1946 bio_endio(bio);
1947 return false;
1948 }
1949
1950 /**
1951 * generic_make_request - hand a buffer to its device driver for I/O
1952 * @bio: The bio describing the location in memory and on the device.
1953 *
1954 * generic_make_request() is used to make I/O requests of block
1955 * devices. It is passed a &struct bio, which describes the I/O that needs
1956 * to be done.
1957 *
1958 * generic_make_request() does not return any status. The
1959 * success/failure status of the request, along with notification of
1960 * completion, is delivered asynchronously through the bio->bi_end_io
1961 * function described (one day) else where.
1962 *
1963 * The caller of generic_make_request must make sure that bi_io_vec
1964 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1965 * set to describe the device address, and the
1966 * bi_end_io and optionally bi_private are set to describe how
1967 * completion notification should be signaled.
1968 *
1969 * generic_make_request and the drivers it calls may use bi_next if this
1970 * bio happens to be merged with someone else, and may resubmit the bio to
1971 * a lower device by calling into generic_make_request recursively, which
1972 * means the bio should NOT be touched after the call to ->make_request_fn.
1973 */
1974 blk_qc_t generic_make_request(struct bio *bio)
1975 {
1976 struct bio_list bio_list_on_stack;
1977 blk_qc_t ret = BLK_QC_T_NONE;
1978
1979 if (!generic_make_request_checks(bio))
1980 goto out;
1981
1982 /*
1983 * We only want one ->make_request_fn to be active at a time, else
1984 * stack usage with stacked devices could be a problem. So use
1985 * current->bio_list to keep a list of requests submited by a
1986 * make_request_fn function. current->bio_list is also used as a
1987 * flag to say if generic_make_request is currently active in this
1988 * task or not. If it is NULL, then no make_request is active. If
1989 * it is non-NULL, then a make_request is active, and new requests
1990 * should be added at the tail
1991 */
1992 if (current->bio_list) {
1993 bio_list_add(current->bio_list, bio);
1994 goto out;
1995 }
1996
1997 /* following loop may be a bit non-obvious, and so deserves some
1998 * explanation.
1999 * Before entering the loop, bio->bi_next is NULL (as all callers
2000 * ensure that) so we have a list with a single bio.
2001 * We pretend that we have just taken it off a longer list, so
2002 * we assign bio_list to a pointer to the bio_list_on_stack,
2003 * thus initialising the bio_list of new bios to be
2004 * added. ->make_request() may indeed add some more bios
2005 * through a recursive call to generic_make_request. If it
2006 * did, we find a non-NULL value in bio_list and re-enter the loop
2007 * from the top. In this case we really did just take the bio
2008 * of the top of the list (no pretending) and so remove it from
2009 * bio_list, and call into ->make_request() again.
2010 */
2011 BUG_ON(bio->bi_next);
2012 bio_list_init(&bio_list_on_stack);
2013 current->bio_list = &bio_list_on_stack;
2014 do {
2015 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2016
2017 if (likely(blk_queue_enter(q, false) == 0)) {
2018 struct bio_list hold;
2019 struct bio_list lower, same;
2020
2021 /* Create a fresh bio_list for all subordinate requests */
2022 hold = bio_list_on_stack;
2023 bio_list_init(&bio_list_on_stack);
2024 ret = q->make_request_fn(q, bio);
2025
2026 blk_queue_exit(q);
2027
2028 /* sort new bios into those for a lower level
2029 * and those for the same level
2030 */
2031 bio_list_init(&lower);
2032 bio_list_init(&same);
2033 while ((bio = bio_list_pop(&bio_list_on_stack)) != NULL)
2034 if (q == bdev_get_queue(bio->bi_bdev))
2035 bio_list_add(&same, bio);
2036 else
2037 bio_list_add(&lower, bio);
2038 /* now assemble so we handle the lowest level first */
2039 bio_list_merge(&bio_list_on_stack, &lower);
2040 bio_list_merge(&bio_list_on_stack, &same);
2041 bio_list_merge(&bio_list_on_stack, &hold);
2042 } else {
2043 bio_io_error(bio);
2044 }
2045 bio = bio_list_pop(current->bio_list);
2046 } while (bio);
2047 current->bio_list = NULL; /* deactivate */
2048
2049 out:
2050 return ret;
2051 }
2052 EXPORT_SYMBOL(generic_make_request);
2053
2054 /**
2055 * submit_bio - submit a bio to the block device layer for I/O
2056 * @bio: The &struct bio which describes the I/O
2057 *
2058 * submit_bio() is very similar in purpose to generic_make_request(), and
2059 * uses that function to do most of the work. Both are fairly rough
2060 * interfaces; @bio must be presetup and ready for I/O.
2061 *
2062 */
2063 blk_qc_t submit_bio(struct bio *bio)
2064 {
2065 /*
2066 * If it's a regular read/write or a barrier with data attached,
2067 * go through the normal accounting stuff before submission.
2068 */
2069 if (bio_has_data(bio)) {
2070 unsigned int count;
2071
2072 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2073 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2074 else
2075 count = bio_sectors(bio);
2076
2077 if (op_is_write(bio_op(bio))) {
2078 count_vm_events(PGPGOUT, count);
2079 } else {
2080 task_io_account_read(bio->bi_iter.bi_size);
2081 count_vm_events(PGPGIN, count);
2082 }
2083
2084 if (unlikely(block_dump)) {
2085 char b[BDEVNAME_SIZE];
2086 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2087 current->comm, task_pid_nr(current),
2088 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2089 (unsigned long long)bio->bi_iter.bi_sector,
2090 bdevname(bio->bi_bdev, b),
2091 count);
2092 }
2093 }
2094
2095 return generic_make_request(bio);
2096 }
2097 EXPORT_SYMBOL(submit_bio);
2098
2099 /**
2100 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2101 * for new the queue limits
2102 * @q: the queue
2103 * @rq: the request being checked
2104 *
2105 * Description:
2106 * @rq may have been made based on weaker limitations of upper-level queues
2107 * in request stacking drivers, and it may violate the limitation of @q.
2108 * Since the block layer and the underlying device driver trust @rq
2109 * after it is inserted to @q, it should be checked against @q before
2110 * the insertion using this generic function.
2111 *
2112 * Request stacking drivers like request-based dm may change the queue
2113 * limits when retrying requests on other queues. Those requests need
2114 * to be checked against the new queue limits again during dispatch.
2115 */
2116 static int blk_cloned_rq_check_limits(struct request_queue *q,
2117 struct request *rq)
2118 {
2119 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2120 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2121 return -EIO;
2122 }
2123
2124 /*
2125 * queue's settings related to segment counting like q->bounce_pfn
2126 * may differ from that of other stacking queues.
2127 * Recalculate it to check the request correctly on this queue's
2128 * limitation.
2129 */
2130 blk_recalc_rq_segments(rq);
2131 if (rq->nr_phys_segments > queue_max_segments(q)) {
2132 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2133 return -EIO;
2134 }
2135
2136 return 0;
2137 }
2138
2139 /**
2140 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2141 * @q: the queue to submit the request
2142 * @rq: the request being queued
2143 */
2144 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2145 {
2146 unsigned long flags;
2147 int where = ELEVATOR_INSERT_BACK;
2148
2149 if (blk_cloned_rq_check_limits(q, rq))
2150 return -EIO;
2151
2152 if (rq->rq_disk &&
2153 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2154 return -EIO;
2155
2156 if (q->mq_ops) {
2157 if (blk_queue_io_stat(q))
2158 blk_account_io_start(rq, true);
2159 blk_mq_sched_insert_request(rq, false, true, false, false);
2160 return 0;
2161 }
2162
2163 spin_lock_irqsave(q->queue_lock, flags);
2164 if (unlikely(blk_queue_dying(q))) {
2165 spin_unlock_irqrestore(q->queue_lock, flags);
2166 return -ENODEV;
2167 }
2168
2169 /*
2170 * Submitting request must be dequeued before calling this function
2171 * because it will be linked to another request_queue
2172 */
2173 BUG_ON(blk_queued_rq(rq));
2174
2175 if (op_is_flush(rq->cmd_flags))
2176 where = ELEVATOR_INSERT_FLUSH;
2177
2178 add_acct_request(q, rq, where);
2179 if (where == ELEVATOR_INSERT_FLUSH)
2180 __blk_run_queue(q);
2181 spin_unlock_irqrestore(q->queue_lock, flags);
2182
2183 return 0;
2184 }
2185 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2186
2187 /**
2188 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2189 * @rq: request to examine
2190 *
2191 * Description:
2192 * A request could be merge of IOs which require different failure
2193 * handling. This function determines the number of bytes which
2194 * can be failed from the beginning of the request without
2195 * crossing into area which need to be retried further.
2196 *
2197 * Return:
2198 * The number of bytes to fail.
2199 *
2200 * Context:
2201 * queue_lock must be held.
2202 */
2203 unsigned int blk_rq_err_bytes(const struct request *rq)
2204 {
2205 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2206 unsigned int bytes = 0;
2207 struct bio *bio;
2208
2209 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2210 return blk_rq_bytes(rq);
2211
2212 /*
2213 * Currently the only 'mixing' which can happen is between
2214 * different fastfail types. We can safely fail portions
2215 * which have all the failfast bits that the first one has -
2216 * the ones which are at least as eager to fail as the first
2217 * one.
2218 */
2219 for (bio = rq->bio; bio; bio = bio->bi_next) {
2220 if ((bio->bi_opf & ff) != ff)
2221 break;
2222 bytes += bio->bi_iter.bi_size;
2223 }
2224
2225 /* this could lead to infinite loop */
2226 BUG_ON(blk_rq_bytes(rq) && !bytes);
2227 return bytes;
2228 }
2229 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2230
2231 void blk_account_io_completion(struct request *req, unsigned int bytes)
2232 {
2233 if (blk_do_io_stat(req)) {
2234 const int rw = rq_data_dir(req);
2235 struct hd_struct *part;
2236 int cpu;
2237
2238 cpu = part_stat_lock();
2239 part = req->part;
2240 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2241 part_stat_unlock();
2242 }
2243 }
2244
2245 void blk_account_io_done(struct request *req)
2246 {
2247 /*
2248 * Account IO completion. flush_rq isn't accounted as a
2249 * normal IO on queueing nor completion. Accounting the
2250 * containing request is enough.
2251 */
2252 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2253 unsigned long duration = jiffies - req->start_time;
2254 const int rw = rq_data_dir(req);
2255 struct hd_struct *part;
2256 int cpu;
2257
2258 cpu = part_stat_lock();
2259 part = req->part;
2260
2261 part_stat_inc(cpu, part, ios[rw]);
2262 part_stat_add(cpu, part, ticks[rw], duration);
2263 part_round_stats(cpu, part);
2264 part_dec_in_flight(part, rw);
2265
2266 hd_struct_put(part);
2267 part_stat_unlock();
2268 }
2269 }
2270
2271 #ifdef CONFIG_PM
2272 /*
2273 * Don't process normal requests when queue is suspended
2274 * or in the process of suspending/resuming
2275 */
2276 static struct request *blk_pm_peek_request(struct request_queue *q,
2277 struct request *rq)
2278 {
2279 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2280 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2281 return NULL;
2282 else
2283 return rq;
2284 }
2285 #else
2286 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2287 struct request *rq)
2288 {
2289 return rq;
2290 }
2291 #endif
2292
2293 void blk_account_io_start(struct request *rq, bool new_io)
2294 {
2295 struct hd_struct *part;
2296 int rw = rq_data_dir(rq);
2297 int cpu;
2298
2299 if (!blk_do_io_stat(rq))
2300 return;
2301
2302 cpu = part_stat_lock();
2303
2304 if (!new_io) {
2305 part = rq->part;
2306 part_stat_inc(cpu, part, merges[rw]);
2307 } else {
2308 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2309 if (!hd_struct_try_get(part)) {
2310 /*
2311 * The partition is already being removed,
2312 * the request will be accounted on the disk only
2313 *
2314 * We take a reference on disk->part0 although that
2315 * partition will never be deleted, so we can treat
2316 * it as any other partition.
2317 */
2318 part = &rq->rq_disk->part0;
2319 hd_struct_get(part);
2320 }
2321 part_round_stats(cpu, part);
2322 part_inc_in_flight(part, rw);
2323 rq->part = part;
2324 }
2325
2326 part_stat_unlock();
2327 }
2328
2329 /**
2330 * blk_peek_request - peek at the top of a request queue
2331 * @q: request queue to peek at
2332 *
2333 * Description:
2334 * Return the request at the top of @q. The returned request
2335 * should be started using blk_start_request() before LLD starts
2336 * processing it.
2337 *
2338 * Return:
2339 * Pointer to the request at the top of @q if available. Null
2340 * otherwise.
2341 *
2342 * Context:
2343 * queue_lock must be held.
2344 */
2345 struct request *blk_peek_request(struct request_queue *q)
2346 {
2347 struct request *rq;
2348 int ret;
2349
2350 while ((rq = __elv_next_request(q)) != NULL) {
2351
2352 rq = blk_pm_peek_request(q, rq);
2353 if (!rq)
2354 break;
2355
2356 if (!(rq->rq_flags & RQF_STARTED)) {
2357 /*
2358 * This is the first time the device driver
2359 * sees this request (possibly after
2360 * requeueing). Notify IO scheduler.
2361 */
2362 if (rq->rq_flags & RQF_SORTED)
2363 elv_activate_rq(q, rq);
2364
2365 /*
2366 * just mark as started even if we don't start
2367 * it, a request that has been delayed should
2368 * not be passed by new incoming requests
2369 */
2370 rq->rq_flags |= RQF_STARTED;
2371 trace_block_rq_issue(q, rq);
2372 }
2373
2374 if (!q->boundary_rq || q->boundary_rq == rq) {
2375 q->end_sector = rq_end_sector(rq);
2376 q->boundary_rq = NULL;
2377 }
2378
2379 if (rq->rq_flags & RQF_DONTPREP)
2380 break;
2381
2382 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2383 /*
2384 * make sure space for the drain appears we
2385 * know we can do this because max_hw_segments
2386 * has been adjusted to be one fewer than the
2387 * device can handle
2388 */
2389 rq->nr_phys_segments++;
2390 }
2391
2392 if (!q->prep_rq_fn)
2393 break;
2394
2395 ret = q->prep_rq_fn(q, rq);
2396 if (ret == BLKPREP_OK) {
2397 break;
2398 } else if (ret == BLKPREP_DEFER) {
2399 /*
2400 * the request may have been (partially) prepped.
2401 * we need to keep this request in the front to
2402 * avoid resource deadlock. RQF_STARTED will
2403 * prevent other fs requests from passing this one.
2404 */
2405 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2406 !(rq->rq_flags & RQF_DONTPREP)) {
2407 /*
2408 * remove the space for the drain we added
2409 * so that we don't add it again
2410 */
2411 --rq->nr_phys_segments;
2412 }
2413
2414 rq = NULL;
2415 break;
2416 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2417 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2418
2419 rq->rq_flags |= RQF_QUIET;
2420 /*
2421 * Mark this request as started so we don't trigger
2422 * any debug logic in the end I/O path.
2423 */
2424 blk_start_request(rq);
2425 __blk_end_request_all(rq, err);
2426 } else {
2427 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2428 break;
2429 }
2430 }
2431
2432 return rq;
2433 }
2434 EXPORT_SYMBOL(blk_peek_request);
2435
2436 void blk_dequeue_request(struct request *rq)
2437 {
2438 struct request_queue *q = rq->q;
2439
2440 BUG_ON(list_empty(&rq->queuelist));
2441 BUG_ON(ELV_ON_HASH(rq));
2442
2443 list_del_init(&rq->queuelist);
2444
2445 /*
2446 * the time frame between a request being removed from the lists
2447 * and to it is freed is accounted as io that is in progress at
2448 * the driver side.
2449 */
2450 if (blk_account_rq(rq)) {
2451 q->in_flight[rq_is_sync(rq)]++;
2452 set_io_start_time_ns(rq);
2453 }
2454 }
2455
2456 /**
2457 * blk_start_request - start request processing on the driver
2458 * @req: request to dequeue
2459 *
2460 * Description:
2461 * Dequeue @req and start timeout timer on it. This hands off the
2462 * request to the driver.
2463 *
2464 * Block internal functions which don't want to start timer should
2465 * call blk_dequeue_request().
2466 *
2467 * Context:
2468 * queue_lock must be held.
2469 */
2470 void blk_start_request(struct request *req)
2471 {
2472 blk_dequeue_request(req);
2473
2474 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2475 blk_stat_set_issue_time(&req->issue_stat);
2476 req->rq_flags |= RQF_STATS;
2477 wbt_issue(req->q->rq_wb, &req->issue_stat);
2478 }
2479
2480 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2481 blk_add_timer(req);
2482 }
2483 EXPORT_SYMBOL(blk_start_request);
2484
2485 /**
2486 * blk_fetch_request - fetch a request from a request queue
2487 * @q: request queue to fetch a request from
2488 *
2489 * Description:
2490 * Return the request at the top of @q. The request is started on
2491 * return and LLD can start processing it immediately.
2492 *
2493 * Return:
2494 * Pointer to the request at the top of @q if available. Null
2495 * otherwise.
2496 *
2497 * Context:
2498 * queue_lock must be held.
2499 */
2500 struct request *blk_fetch_request(struct request_queue *q)
2501 {
2502 struct request *rq;
2503
2504 rq = blk_peek_request(q);
2505 if (rq)
2506 blk_start_request(rq);
2507 return rq;
2508 }
2509 EXPORT_SYMBOL(blk_fetch_request);
2510
2511 /**
2512 * blk_update_request - Special helper function for request stacking drivers
2513 * @req: the request being processed
2514 * @error: %0 for success, < %0 for error
2515 * @nr_bytes: number of bytes to complete @req
2516 *
2517 * Description:
2518 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2519 * the request structure even if @req doesn't have leftover.
2520 * If @req has leftover, sets it up for the next range of segments.
2521 *
2522 * This special helper function is only for request stacking drivers
2523 * (e.g. request-based dm) so that they can handle partial completion.
2524 * Actual device drivers should use blk_end_request instead.
2525 *
2526 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2527 * %false return from this function.
2528 *
2529 * Return:
2530 * %false - this request doesn't have any more data
2531 * %true - this request has more data
2532 **/
2533 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2534 {
2535 int total_bytes;
2536
2537 trace_block_rq_complete(req->q, req, nr_bytes);
2538
2539 if (!req->bio)
2540 return false;
2541
2542 /*
2543 * For fs requests, rq is just carrier of independent bio's
2544 * and each partial completion should be handled separately.
2545 * Reset per-request error on each partial completion.
2546 *
2547 * TODO: tj: This is too subtle. It would be better to let
2548 * low level drivers do what they see fit.
2549 */
2550 if (!blk_rq_is_passthrough(req))
2551 req->errors = 0;
2552
2553 if (error && !blk_rq_is_passthrough(req) &&
2554 !(req->rq_flags & RQF_QUIET)) {
2555 char *error_type;
2556
2557 switch (error) {
2558 case -ENOLINK:
2559 error_type = "recoverable transport";
2560 break;
2561 case -EREMOTEIO:
2562 error_type = "critical target";
2563 break;
2564 case -EBADE:
2565 error_type = "critical nexus";
2566 break;
2567 case -ETIMEDOUT:
2568 error_type = "timeout";
2569 break;
2570 case -ENOSPC:
2571 error_type = "critical space allocation";
2572 break;
2573 case -ENODATA:
2574 error_type = "critical medium";
2575 break;
2576 case -EIO:
2577 default:
2578 error_type = "I/O";
2579 break;
2580 }
2581 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2582 __func__, error_type, req->rq_disk ?
2583 req->rq_disk->disk_name : "?",
2584 (unsigned long long)blk_rq_pos(req));
2585
2586 }
2587
2588 blk_account_io_completion(req, nr_bytes);
2589
2590 total_bytes = 0;
2591 while (req->bio) {
2592 struct bio *bio = req->bio;
2593 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2594
2595 if (bio_bytes == bio->bi_iter.bi_size)
2596 req->bio = bio->bi_next;
2597
2598 req_bio_endio(req, bio, bio_bytes, error);
2599
2600 total_bytes += bio_bytes;
2601 nr_bytes -= bio_bytes;
2602
2603 if (!nr_bytes)
2604 break;
2605 }
2606
2607 /*
2608 * completely done
2609 */
2610 if (!req->bio) {
2611 /*
2612 * Reset counters so that the request stacking driver
2613 * can find how many bytes remain in the request
2614 * later.
2615 */
2616 req->__data_len = 0;
2617 return false;
2618 }
2619
2620 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2621
2622 req->__data_len -= total_bytes;
2623
2624 /* update sector only for requests with clear definition of sector */
2625 if (!blk_rq_is_passthrough(req))
2626 req->__sector += total_bytes >> 9;
2627
2628 /* mixed attributes always follow the first bio */
2629 if (req->rq_flags & RQF_MIXED_MERGE) {
2630 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2631 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2632 }
2633
2634 /*
2635 * If total number of sectors is less than the first segment
2636 * size, something has gone terribly wrong.
2637 */
2638 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2639 blk_dump_rq_flags(req, "request botched");
2640 req->__data_len = blk_rq_cur_bytes(req);
2641 }
2642
2643 /* recalculate the number of segments */
2644 blk_recalc_rq_segments(req);
2645
2646 return true;
2647 }
2648 EXPORT_SYMBOL_GPL(blk_update_request);
2649
2650 static bool blk_update_bidi_request(struct request *rq, int error,
2651 unsigned int nr_bytes,
2652 unsigned int bidi_bytes)
2653 {
2654 if (blk_update_request(rq, error, nr_bytes))
2655 return true;
2656
2657 /* Bidi request must be completed as a whole */
2658 if (unlikely(blk_bidi_rq(rq)) &&
2659 blk_update_request(rq->next_rq, error, bidi_bytes))
2660 return true;
2661
2662 if (blk_queue_add_random(rq->q))
2663 add_disk_randomness(rq->rq_disk);
2664
2665 return false;
2666 }
2667
2668 /**
2669 * blk_unprep_request - unprepare a request
2670 * @req: the request
2671 *
2672 * This function makes a request ready for complete resubmission (or
2673 * completion). It happens only after all error handling is complete,
2674 * so represents the appropriate moment to deallocate any resources
2675 * that were allocated to the request in the prep_rq_fn. The queue
2676 * lock is held when calling this.
2677 */
2678 void blk_unprep_request(struct request *req)
2679 {
2680 struct request_queue *q = req->q;
2681
2682 req->rq_flags &= ~RQF_DONTPREP;
2683 if (q->unprep_rq_fn)
2684 q->unprep_rq_fn(q, req);
2685 }
2686 EXPORT_SYMBOL_GPL(blk_unprep_request);
2687
2688 /*
2689 * queue lock must be held
2690 */
2691 void blk_finish_request(struct request *req, int error)
2692 {
2693 struct request_queue *q = req->q;
2694
2695 if (req->rq_flags & RQF_STATS)
2696 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2697
2698 if (req->rq_flags & RQF_QUEUED)
2699 blk_queue_end_tag(q, req);
2700
2701 BUG_ON(blk_queued_rq(req));
2702
2703 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2704 laptop_io_completion(req->q->backing_dev_info);
2705
2706 blk_delete_timer(req);
2707
2708 if (req->rq_flags & RQF_DONTPREP)
2709 blk_unprep_request(req);
2710
2711 blk_account_io_done(req);
2712
2713 if (req->end_io) {
2714 wbt_done(req->q->rq_wb, &req->issue_stat);
2715 req->end_io(req, error);
2716 } else {
2717 if (blk_bidi_rq(req))
2718 __blk_put_request(req->next_rq->q, req->next_rq);
2719
2720 __blk_put_request(q, req);
2721 }
2722 }
2723 EXPORT_SYMBOL(blk_finish_request);
2724
2725 /**
2726 * blk_end_bidi_request - Complete a bidi request
2727 * @rq: the request to complete
2728 * @error: %0 for success, < %0 for error
2729 * @nr_bytes: number of bytes to complete @rq
2730 * @bidi_bytes: number of bytes to complete @rq->next_rq
2731 *
2732 * Description:
2733 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2734 * Drivers that supports bidi can safely call this member for any
2735 * type of request, bidi or uni. In the later case @bidi_bytes is
2736 * just ignored.
2737 *
2738 * Return:
2739 * %false - we are done with this request
2740 * %true - still buffers pending for this request
2741 **/
2742 static bool blk_end_bidi_request(struct request *rq, int error,
2743 unsigned int nr_bytes, unsigned int bidi_bytes)
2744 {
2745 struct request_queue *q = rq->q;
2746 unsigned long flags;
2747
2748 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2749 return true;
2750
2751 spin_lock_irqsave(q->queue_lock, flags);
2752 blk_finish_request(rq, error);
2753 spin_unlock_irqrestore(q->queue_lock, flags);
2754
2755 return false;
2756 }
2757
2758 /**
2759 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2760 * @rq: the request to complete
2761 * @error: %0 for success, < %0 for error
2762 * @nr_bytes: number of bytes to complete @rq
2763 * @bidi_bytes: number of bytes to complete @rq->next_rq
2764 *
2765 * Description:
2766 * Identical to blk_end_bidi_request() except that queue lock is
2767 * assumed to be locked on entry and remains so on return.
2768 *
2769 * Return:
2770 * %false - we are done with this request
2771 * %true - still buffers pending for this request
2772 **/
2773 bool __blk_end_bidi_request(struct request *rq, int error,
2774 unsigned int nr_bytes, unsigned int bidi_bytes)
2775 {
2776 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2777 return true;
2778
2779 blk_finish_request(rq, error);
2780
2781 return false;
2782 }
2783
2784 /**
2785 * blk_end_request - Helper function for drivers to complete the request.
2786 * @rq: the request being processed
2787 * @error: %0 for success, < %0 for error
2788 * @nr_bytes: number of bytes to complete
2789 *
2790 * Description:
2791 * Ends I/O on a number of bytes attached to @rq.
2792 * If @rq has leftover, sets it up for the next range of segments.
2793 *
2794 * Return:
2795 * %false - we are done with this request
2796 * %true - still buffers pending for this request
2797 **/
2798 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2799 {
2800 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2801 }
2802 EXPORT_SYMBOL(blk_end_request);
2803
2804 /**
2805 * blk_end_request_all - Helper function for drives to finish the request.
2806 * @rq: the request to finish
2807 * @error: %0 for success, < %0 for error
2808 *
2809 * Description:
2810 * Completely finish @rq.
2811 */
2812 void blk_end_request_all(struct request *rq, int error)
2813 {
2814 bool pending;
2815 unsigned int bidi_bytes = 0;
2816
2817 if (unlikely(blk_bidi_rq(rq)))
2818 bidi_bytes = blk_rq_bytes(rq->next_rq);
2819
2820 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2821 BUG_ON(pending);
2822 }
2823 EXPORT_SYMBOL(blk_end_request_all);
2824
2825 /**
2826 * blk_end_request_cur - Helper function to finish the current request chunk.
2827 * @rq: the request to finish the current chunk for
2828 * @error: %0 for success, < %0 for error
2829 *
2830 * Description:
2831 * Complete the current consecutively mapped chunk from @rq.
2832 *
2833 * Return:
2834 * %false - we are done with this request
2835 * %true - still buffers pending for this request
2836 */
2837 bool blk_end_request_cur(struct request *rq, int error)
2838 {
2839 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2840 }
2841 EXPORT_SYMBOL(blk_end_request_cur);
2842
2843 /**
2844 * blk_end_request_err - Finish a request till the next failure boundary.
2845 * @rq: the request to finish till the next failure boundary for
2846 * @error: must be negative errno
2847 *
2848 * Description:
2849 * Complete @rq till the next failure boundary.
2850 *
2851 * Return:
2852 * %false - we are done with this request
2853 * %true - still buffers pending for this request
2854 */
2855 bool blk_end_request_err(struct request *rq, int error)
2856 {
2857 WARN_ON(error >= 0);
2858 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2859 }
2860 EXPORT_SYMBOL_GPL(blk_end_request_err);
2861
2862 /**
2863 * __blk_end_request - Helper function for drivers to complete the request.
2864 * @rq: the request being processed
2865 * @error: %0 for success, < %0 for error
2866 * @nr_bytes: number of bytes to complete
2867 *
2868 * Description:
2869 * Must be called with queue lock held unlike blk_end_request().
2870 *
2871 * Return:
2872 * %false - we are done with this request
2873 * %true - still buffers pending for this request
2874 **/
2875 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2876 {
2877 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2878 }
2879 EXPORT_SYMBOL(__blk_end_request);
2880
2881 /**
2882 * __blk_end_request_all - Helper function for drives to finish the request.
2883 * @rq: the request to finish
2884 * @error: %0 for success, < %0 for error
2885 *
2886 * Description:
2887 * Completely finish @rq. Must be called with queue lock held.
2888 */
2889 void __blk_end_request_all(struct request *rq, int error)
2890 {
2891 bool pending;
2892 unsigned int bidi_bytes = 0;
2893
2894 if (unlikely(blk_bidi_rq(rq)))
2895 bidi_bytes = blk_rq_bytes(rq->next_rq);
2896
2897 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2898 BUG_ON(pending);
2899 }
2900 EXPORT_SYMBOL(__blk_end_request_all);
2901
2902 /**
2903 * __blk_end_request_cur - Helper function to finish the current request chunk.
2904 * @rq: the request to finish the current chunk for
2905 * @error: %0 for success, < %0 for error
2906 *
2907 * Description:
2908 * Complete the current consecutively mapped chunk from @rq. Must
2909 * be called with queue lock held.
2910 *
2911 * Return:
2912 * %false - we are done with this request
2913 * %true - still buffers pending for this request
2914 */
2915 bool __blk_end_request_cur(struct request *rq, int error)
2916 {
2917 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2918 }
2919 EXPORT_SYMBOL(__blk_end_request_cur);
2920
2921 /**
2922 * __blk_end_request_err - Finish a request till the next failure boundary.
2923 * @rq: the request to finish till the next failure boundary for
2924 * @error: must be negative errno
2925 *
2926 * Description:
2927 * Complete @rq till the next failure boundary. Must be called
2928 * with queue lock held.
2929 *
2930 * Return:
2931 * %false - we are done with this request
2932 * %true - still buffers pending for this request
2933 */
2934 bool __blk_end_request_err(struct request *rq, int error)
2935 {
2936 WARN_ON(error >= 0);
2937 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2938 }
2939 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2940
2941 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2942 struct bio *bio)
2943 {
2944 if (bio_has_data(bio))
2945 rq->nr_phys_segments = bio_phys_segments(q, bio);
2946
2947 rq->__data_len = bio->bi_iter.bi_size;
2948 rq->bio = rq->biotail = bio;
2949
2950 if (bio->bi_bdev)
2951 rq->rq_disk = bio->bi_bdev->bd_disk;
2952 }
2953
2954 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2955 /**
2956 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2957 * @rq: the request to be flushed
2958 *
2959 * Description:
2960 * Flush all pages in @rq.
2961 */
2962 void rq_flush_dcache_pages(struct request *rq)
2963 {
2964 struct req_iterator iter;
2965 struct bio_vec bvec;
2966
2967 rq_for_each_segment(bvec, rq, iter)
2968 flush_dcache_page(bvec.bv_page);
2969 }
2970 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2971 #endif
2972
2973 /**
2974 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2975 * @q : the queue of the device being checked
2976 *
2977 * Description:
2978 * Check if underlying low-level drivers of a device are busy.
2979 * If the drivers want to export their busy state, they must set own
2980 * exporting function using blk_queue_lld_busy() first.
2981 *
2982 * Basically, this function is used only by request stacking drivers
2983 * to stop dispatching requests to underlying devices when underlying
2984 * devices are busy. This behavior helps more I/O merging on the queue
2985 * of the request stacking driver and prevents I/O throughput regression
2986 * on burst I/O load.
2987 *
2988 * Return:
2989 * 0 - Not busy (The request stacking driver should dispatch request)
2990 * 1 - Busy (The request stacking driver should stop dispatching request)
2991 */
2992 int blk_lld_busy(struct request_queue *q)
2993 {
2994 if (q->lld_busy_fn)
2995 return q->lld_busy_fn(q);
2996
2997 return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(blk_lld_busy);
3000
3001 /**
3002 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3003 * @rq: the clone request to be cleaned up
3004 *
3005 * Description:
3006 * Free all bios in @rq for a cloned request.
3007 */
3008 void blk_rq_unprep_clone(struct request *rq)
3009 {
3010 struct bio *bio;
3011
3012 while ((bio = rq->bio) != NULL) {
3013 rq->bio = bio->bi_next;
3014
3015 bio_put(bio);
3016 }
3017 }
3018 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3019
3020 /*
3021 * Copy attributes of the original request to the clone request.
3022 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3023 */
3024 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3025 {
3026 dst->cpu = src->cpu;
3027 dst->__sector = blk_rq_pos(src);
3028 dst->__data_len = blk_rq_bytes(src);
3029 dst->nr_phys_segments = src->nr_phys_segments;
3030 dst->ioprio = src->ioprio;
3031 dst->extra_len = src->extra_len;
3032 }
3033
3034 /**
3035 * blk_rq_prep_clone - Helper function to setup clone request
3036 * @rq: the request to be setup
3037 * @rq_src: original request to be cloned
3038 * @bs: bio_set that bios for clone are allocated from
3039 * @gfp_mask: memory allocation mask for bio
3040 * @bio_ctr: setup function to be called for each clone bio.
3041 * Returns %0 for success, non %0 for failure.
3042 * @data: private data to be passed to @bio_ctr
3043 *
3044 * Description:
3045 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3046 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3047 * are not copied, and copying such parts is the caller's responsibility.
3048 * Also, pages which the original bios are pointing to are not copied
3049 * and the cloned bios just point same pages.
3050 * So cloned bios must be completed before original bios, which means
3051 * the caller must complete @rq before @rq_src.
3052 */
3053 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3054 struct bio_set *bs, gfp_t gfp_mask,
3055 int (*bio_ctr)(struct bio *, struct bio *, void *),
3056 void *data)
3057 {
3058 struct bio *bio, *bio_src;
3059
3060 if (!bs)
3061 bs = fs_bio_set;
3062
3063 __rq_for_each_bio(bio_src, rq_src) {
3064 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3065 if (!bio)
3066 goto free_and_out;
3067
3068 if (bio_ctr && bio_ctr(bio, bio_src, data))
3069 goto free_and_out;
3070
3071 if (rq->bio) {
3072 rq->biotail->bi_next = bio;
3073 rq->biotail = bio;
3074 } else
3075 rq->bio = rq->biotail = bio;
3076 }
3077
3078 __blk_rq_prep_clone(rq, rq_src);
3079
3080 return 0;
3081
3082 free_and_out:
3083 if (bio)
3084 bio_put(bio);
3085 blk_rq_unprep_clone(rq);
3086
3087 return -ENOMEM;
3088 }
3089 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3090
3091 int kblockd_schedule_work(struct work_struct *work)
3092 {
3093 return queue_work(kblockd_workqueue, work);
3094 }
3095 EXPORT_SYMBOL(kblockd_schedule_work);
3096
3097 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3098 {
3099 return queue_work_on(cpu, kblockd_workqueue, work);
3100 }
3101 EXPORT_SYMBOL(kblockd_schedule_work_on);
3102
3103 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3104 unsigned long delay)
3105 {
3106 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3107 }
3108 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3109
3110 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3111 unsigned long delay)
3112 {
3113 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3114 }
3115 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3116
3117 /**
3118 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3119 * @plug: The &struct blk_plug that needs to be initialized
3120 *
3121 * Description:
3122 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3123 * pending I/O should the task end up blocking between blk_start_plug() and
3124 * blk_finish_plug(). This is important from a performance perspective, but
3125 * also ensures that we don't deadlock. For instance, if the task is blocking
3126 * for a memory allocation, memory reclaim could end up wanting to free a
3127 * page belonging to that request that is currently residing in our private
3128 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3129 * this kind of deadlock.
3130 */
3131 void blk_start_plug(struct blk_plug *plug)
3132 {
3133 struct task_struct *tsk = current;
3134
3135 /*
3136 * If this is a nested plug, don't actually assign it.
3137 */
3138 if (tsk->plug)
3139 return;
3140
3141 INIT_LIST_HEAD(&plug->list);
3142 INIT_LIST_HEAD(&plug->mq_list);
3143 INIT_LIST_HEAD(&plug->cb_list);
3144 /*
3145 * Store ordering should not be needed here, since a potential
3146 * preempt will imply a full memory barrier
3147 */
3148 tsk->plug = plug;
3149 }
3150 EXPORT_SYMBOL(blk_start_plug);
3151
3152 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3153 {
3154 struct request *rqa = container_of(a, struct request, queuelist);
3155 struct request *rqb = container_of(b, struct request, queuelist);
3156
3157 return !(rqa->q < rqb->q ||
3158 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3159 }
3160
3161 /*
3162 * If 'from_schedule' is true, then postpone the dispatch of requests
3163 * until a safe kblockd context. We due this to avoid accidental big
3164 * additional stack usage in driver dispatch, in places where the originally
3165 * plugger did not intend it.
3166 */
3167 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3168 bool from_schedule)
3169 __releases(q->queue_lock)
3170 {
3171 trace_block_unplug(q, depth, !from_schedule);
3172
3173 if (from_schedule)
3174 blk_run_queue_async(q);
3175 else
3176 __blk_run_queue(q);
3177 spin_unlock(q->queue_lock);
3178 }
3179
3180 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3181 {
3182 LIST_HEAD(callbacks);
3183
3184 while (!list_empty(&plug->cb_list)) {
3185 list_splice_init(&plug->cb_list, &callbacks);
3186
3187 while (!list_empty(&callbacks)) {
3188 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3189 struct blk_plug_cb,
3190 list);
3191 list_del(&cb->list);
3192 cb->callback(cb, from_schedule);
3193 }
3194 }
3195 }
3196
3197 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3198 int size)
3199 {
3200 struct blk_plug *plug = current->plug;
3201 struct blk_plug_cb *cb;
3202
3203 if (!plug)
3204 return NULL;
3205
3206 list_for_each_entry(cb, &plug->cb_list, list)
3207 if (cb->callback == unplug && cb->data == data)
3208 return cb;
3209
3210 /* Not currently on the callback list */
3211 BUG_ON(size < sizeof(*cb));
3212 cb = kzalloc(size, GFP_ATOMIC);
3213 if (cb) {
3214 cb->data = data;
3215 cb->callback = unplug;
3216 list_add(&cb->list, &plug->cb_list);
3217 }
3218 return cb;
3219 }
3220 EXPORT_SYMBOL(blk_check_plugged);
3221
3222 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3223 {
3224 struct request_queue *q;
3225 unsigned long flags;
3226 struct request *rq;
3227 LIST_HEAD(list);
3228 unsigned int depth;
3229
3230 flush_plug_callbacks(plug, from_schedule);
3231
3232 if (!list_empty(&plug->mq_list))
3233 blk_mq_flush_plug_list(plug, from_schedule);
3234
3235 if (list_empty(&plug->list))
3236 return;
3237
3238 list_splice_init(&plug->list, &list);
3239
3240 list_sort(NULL, &list, plug_rq_cmp);
3241
3242 q = NULL;
3243 depth = 0;
3244
3245 /*
3246 * Save and disable interrupts here, to avoid doing it for every
3247 * queue lock we have to take.
3248 */
3249 local_irq_save(flags);
3250 while (!list_empty(&list)) {
3251 rq = list_entry_rq(list.next);
3252 list_del_init(&rq->queuelist);
3253 BUG_ON(!rq->q);
3254 if (rq->q != q) {
3255 /*
3256 * This drops the queue lock
3257 */
3258 if (q)
3259 queue_unplugged(q, depth, from_schedule);
3260 q = rq->q;
3261 depth = 0;
3262 spin_lock(q->queue_lock);
3263 }
3264
3265 /*
3266 * Short-circuit if @q is dead
3267 */
3268 if (unlikely(blk_queue_dying(q))) {
3269 __blk_end_request_all(rq, -ENODEV);
3270 continue;
3271 }
3272
3273 /*
3274 * rq is already accounted, so use raw insert
3275 */
3276 if (op_is_flush(rq->cmd_flags))
3277 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3278 else
3279 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3280
3281 depth++;
3282 }
3283
3284 /*
3285 * This drops the queue lock
3286 */
3287 if (q)
3288 queue_unplugged(q, depth, from_schedule);
3289
3290 local_irq_restore(flags);
3291 }
3292
3293 void blk_finish_plug(struct blk_plug *plug)
3294 {
3295 if (plug != current->plug)
3296 return;
3297 blk_flush_plug_list(plug, false);
3298
3299 current->plug = NULL;
3300 }
3301 EXPORT_SYMBOL(blk_finish_plug);
3302
3303 #ifdef CONFIG_PM
3304 /**
3305 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3306 * @q: the queue of the device
3307 * @dev: the device the queue belongs to
3308 *
3309 * Description:
3310 * Initialize runtime-PM-related fields for @q and start auto suspend for
3311 * @dev. Drivers that want to take advantage of request-based runtime PM
3312 * should call this function after @dev has been initialized, and its
3313 * request queue @q has been allocated, and runtime PM for it can not happen
3314 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3315 * cases, driver should call this function before any I/O has taken place.
3316 *
3317 * This function takes care of setting up using auto suspend for the device,
3318 * the autosuspend delay is set to -1 to make runtime suspend impossible
3319 * until an updated value is either set by user or by driver. Drivers do
3320 * not need to touch other autosuspend settings.
3321 *
3322 * The block layer runtime PM is request based, so only works for drivers
3323 * that use request as their IO unit instead of those directly use bio's.
3324 */
3325 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3326 {
3327 q->dev = dev;
3328 q->rpm_status = RPM_ACTIVE;
3329 pm_runtime_set_autosuspend_delay(q->dev, -1);
3330 pm_runtime_use_autosuspend(q->dev);
3331 }
3332 EXPORT_SYMBOL(blk_pm_runtime_init);
3333
3334 /**
3335 * blk_pre_runtime_suspend - Pre runtime suspend check
3336 * @q: the queue of the device
3337 *
3338 * Description:
3339 * This function will check if runtime suspend is allowed for the device
3340 * by examining if there are any requests pending in the queue. If there
3341 * are requests pending, the device can not be runtime suspended; otherwise,
3342 * the queue's status will be updated to SUSPENDING and the driver can
3343 * proceed to suspend the device.
3344 *
3345 * For the not allowed case, we mark last busy for the device so that
3346 * runtime PM core will try to autosuspend it some time later.
3347 *
3348 * This function should be called near the start of the device's
3349 * runtime_suspend callback.
3350 *
3351 * Return:
3352 * 0 - OK to runtime suspend the device
3353 * -EBUSY - Device should not be runtime suspended
3354 */
3355 int blk_pre_runtime_suspend(struct request_queue *q)
3356 {
3357 int ret = 0;
3358
3359 if (!q->dev)
3360 return ret;
3361
3362 spin_lock_irq(q->queue_lock);
3363 if (q->nr_pending) {
3364 ret = -EBUSY;
3365 pm_runtime_mark_last_busy(q->dev);
3366 } else {
3367 q->rpm_status = RPM_SUSPENDING;
3368 }
3369 spin_unlock_irq(q->queue_lock);
3370 return ret;
3371 }
3372 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3373
3374 /**
3375 * blk_post_runtime_suspend - Post runtime suspend processing
3376 * @q: the queue of the device
3377 * @err: return value of the device's runtime_suspend function
3378 *
3379 * Description:
3380 * Update the queue's runtime status according to the return value of the
3381 * device's runtime suspend function and mark last busy for the device so
3382 * that PM core will try to auto suspend the device at a later time.
3383 *
3384 * This function should be called near the end of the device's
3385 * runtime_suspend callback.
3386 */
3387 void blk_post_runtime_suspend(struct request_queue *q, int err)
3388 {
3389 if (!q->dev)
3390 return;
3391
3392 spin_lock_irq(q->queue_lock);
3393 if (!err) {
3394 q->rpm_status = RPM_SUSPENDED;
3395 } else {
3396 q->rpm_status = RPM_ACTIVE;
3397 pm_runtime_mark_last_busy(q->dev);
3398 }
3399 spin_unlock_irq(q->queue_lock);
3400 }
3401 EXPORT_SYMBOL(blk_post_runtime_suspend);
3402
3403 /**
3404 * blk_pre_runtime_resume - Pre runtime resume processing
3405 * @q: the queue of the device
3406 *
3407 * Description:
3408 * Update the queue's runtime status to RESUMING in preparation for the
3409 * runtime resume of the device.
3410 *
3411 * This function should be called near the start of the device's
3412 * runtime_resume callback.
3413 */
3414 void blk_pre_runtime_resume(struct request_queue *q)
3415 {
3416 if (!q->dev)
3417 return;
3418
3419 spin_lock_irq(q->queue_lock);
3420 q->rpm_status = RPM_RESUMING;
3421 spin_unlock_irq(q->queue_lock);
3422 }
3423 EXPORT_SYMBOL(blk_pre_runtime_resume);
3424
3425 /**
3426 * blk_post_runtime_resume - Post runtime resume processing
3427 * @q: the queue of the device
3428 * @err: return value of the device's runtime_resume function
3429 *
3430 * Description:
3431 * Update the queue's runtime status according to the return value of the
3432 * device's runtime_resume function. If it is successfully resumed, process
3433 * the requests that are queued into the device's queue when it is resuming
3434 * and then mark last busy and initiate autosuspend for it.
3435 *
3436 * This function should be called near the end of the device's
3437 * runtime_resume callback.
3438 */
3439 void blk_post_runtime_resume(struct request_queue *q, int err)
3440 {
3441 if (!q->dev)
3442 return;
3443
3444 spin_lock_irq(q->queue_lock);
3445 if (!err) {
3446 q->rpm_status = RPM_ACTIVE;
3447 __blk_run_queue(q);
3448 pm_runtime_mark_last_busy(q->dev);
3449 pm_request_autosuspend(q->dev);
3450 } else {
3451 q->rpm_status = RPM_SUSPENDED;
3452 }
3453 spin_unlock_irq(q->queue_lock);
3454 }
3455 EXPORT_SYMBOL(blk_post_runtime_resume);
3456
3457 /**
3458 * blk_set_runtime_active - Force runtime status of the queue to be active
3459 * @q: the queue of the device
3460 *
3461 * If the device is left runtime suspended during system suspend the resume
3462 * hook typically resumes the device and corrects runtime status
3463 * accordingly. However, that does not affect the queue runtime PM status
3464 * which is still "suspended". This prevents processing requests from the
3465 * queue.
3466 *
3467 * This function can be used in driver's resume hook to correct queue
3468 * runtime PM status and re-enable peeking requests from the queue. It
3469 * should be called before first request is added to the queue.
3470 */
3471 void blk_set_runtime_active(struct request_queue *q)
3472 {
3473 spin_lock_irq(q->queue_lock);
3474 q->rpm_status = RPM_ACTIVE;
3475 pm_runtime_mark_last_busy(q->dev);
3476 pm_request_autosuspend(q->dev);
3477 spin_unlock_irq(q->queue_lock);
3478 }
3479 EXPORT_SYMBOL(blk_set_runtime_active);
3480 #endif
3481
3482 int __init blk_dev_init(void)
3483 {
3484 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3485 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3486 FIELD_SIZEOF(struct request, cmd_flags));
3487 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3488 FIELD_SIZEOF(struct bio, bi_opf));
3489
3490 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3491 kblockd_workqueue = alloc_workqueue("kblockd",
3492 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3493 if (!kblockd_workqueue)
3494 panic("Failed to create kblockd\n");
3495
3496 request_cachep = kmem_cache_create("blkdev_requests",
3497 sizeof(struct request), 0, SLAB_PANIC, NULL);
3498
3499 blk_requestq_cachep = kmem_cache_create("request_queue",
3500 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3501
3502 #ifdef CONFIG_DEBUG_FS
3503 blk_debugfs_root = debugfs_create_dir("block", NULL);
3504 #endif
3505
3506 return 0;
3507 }