]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-merge.c
block: optionally merge discontiguous discard bios into a single request
[mirror_ubuntu-artful-kernel.git] / block / blk-merge.c
1 /*
2 * Functions related to segment and merge handling
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/bio.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13
14 static struct bio *blk_bio_discard_split(struct request_queue *q,
15 struct bio *bio,
16 struct bio_set *bs,
17 unsigned *nsegs)
18 {
19 unsigned int max_discard_sectors, granularity;
20 int alignment;
21 sector_t tmp;
22 unsigned split_sectors;
23
24 *nsegs = 1;
25
26 /* Zero-sector (unknown) and one-sector granularities are the same. */
27 granularity = max(q->limits.discard_granularity >> 9, 1U);
28
29 max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
30 max_discard_sectors -= max_discard_sectors % granularity;
31
32 if (unlikely(!max_discard_sectors)) {
33 /* XXX: warn */
34 return NULL;
35 }
36
37 if (bio_sectors(bio) <= max_discard_sectors)
38 return NULL;
39
40 split_sectors = max_discard_sectors;
41
42 /*
43 * If the next starting sector would be misaligned, stop the discard at
44 * the previous aligned sector.
45 */
46 alignment = (q->limits.discard_alignment >> 9) % granularity;
47
48 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
49 tmp = sector_div(tmp, granularity);
50
51 if (split_sectors > tmp)
52 split_sectors -= tmp;
53
54 return bio_split(bio, split_sectors, GFP_NOIO, bs);
55 }
56
57 static struct bio *blk_bio_write_same_split(struct request_queue *q,
58 struct bio *bio,
59 struct bio_set *bs,
60 unsigned *nsegs)
61 {
62 *nsegs = 1;
63
64 if (!q->limits.max_write_same_sectors)
65 return NULL;
66
67 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
68 return NULL;
69
70 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
71 }
72
73 static inline unsigned get_max_io_size(struct request_queue *q,
74 struct bio *bio)
75 {
76 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
77 unsigned mask = queue_logical_block_size(q) - 1;
78
79 /* aligned to logical block size */
80 sectors &= ~(mask >> 9);
81
82 return sectors;
83 }
84
85 static struct bio *blk_bio_segment_split(struct request_queue *q,
86 struct bio *bio,
87 struct bio_set *bs,
88 unsigned *segs)
89 {
90 struct bio_vec bv, bvprv, *bvprvp = NULL;
91 struct bvec_iter iter;
92 unsigned seg_size = 0, nsegs = 0, sectors = 0;
93 unsigned front_seg_size = bio->bi_seg_front_size;
94 bool do_split = true;
95 struct bio *new = NULL;
96 const unsigned max_sectors = get_max_io_size(q, bio);
97 unsigned bvecs = 0;
98
99 bio_for_each_segment(bv, bio, iter) {
100 /*
101 * With arbitrary bio size, the incoming bio may be very
102 * big. We have to split the bio into small bios so that
103 * each holds at most BIO_MAX_PAGES bvecs because
104 * bio_clone() can fail to allocate big bvecs.
105 *
106 * It should have been better to apply the limit per
107 * request queue in which bio_clone() is involved,
108 * instead of globally. The biggest blocker is the
109 * bio_clone() in bio bounce.
110 *
111 * If bio is splitted by this reason, we should have
112 * allowed to continue bios merging, but don't do
113 * that now for making the change simple.
114 *
115 * TODO: deal with bio bounce's bio_clone() gracefully
116 * and convert the global limit into per-queue limit.
117 */
118 if (bvecs++ >= BIO_MAX_PAGES)
119 goto split;
120
121 /*
122 * If the queue doesn't support SG gaps and adding this
123 * offset would create a gap, disallow it.
124 */
125 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
126 goto split;
127
128 if (sectors + (bv.bv_len >> 9) > max_sectors) {
129 /*
130 * Consider this a new segment if we're splitting in
131 * the middle of this vector.
132 */
133 if (nsegs < queue_max_segments(q) &&
134 sectors < max_sectors) {
135 nsegs++;
136 sectors = max_sectors;
137 }
138 if (sectors)
139 goto split;
140 /* Make this single bvec as the 1st segment */
141 }
142
143 if (bvprvp && blk_queue_cluster(q)) {
144 if (seg_size + bv.bv_len > queue_max_segment_size(q))
145 goto new_segment;
146 if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
147 goto new_segment;
148 if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
149 goto new_segment;
150
151 seg_size += bv.bv_len;
152 bvprv = bv;
153 bvprvp = &bvprv;
154 sectors += bv.bv_len >> 9;
155
156 if (nsegs == 1 && seg_size > front_seg_size)
157 front_seg_size = seg_size;
158 continue;
159 }
160 new_segment:
161 if (nsegs == queue_max_segments(q))
162 goto split;
163
164 nsegs++;
165 bvprv = bv;
166 bvprvp = &bvprv;
167 seg_size = bv.bv_len;
168 sectors += bv.bv_len >> 9;
169
170 if (nsegs == 1 && seg_size > front_seg_size)
171 front_seg_size = seg_size;
172 }
173
174 do_split = false;
175 split:
176 *segs = nsegs;
177
178 if (do_split) {
179 new = bio_split(bio, sectors, GFP_NOIO, bs);
180 if (new)
181 bio = new;
182 }
183
184 bio->bi_seg_front_size = front_seg_size;
185 if (seg_size > bio->bi_seg_back_size)
186 bio->bi_seg_back_size = seg_size;
187
188 return do_split ? new : NULL;
189 }
190
191 void blk_queue_split(struct request_queue *q, struct bio **bio,
192 struct bio_set *bs)
193 {
194 struct bio *split, *res;
195 unsigned nsegs;
196
197 switch (bio_op(*bio)) {
198 case REQ_OP_DISCARD:
199 case REQ_OP_SECURE_ERASE:
200 split = blk_bio_discard_split(q, *bio, bs, &nsegs);
201 break;
202 case REQ_OP_WRITE_ZEROES:
203 split = NULL;
204 nsegs = (*bio)->bi_phys_segments;
205 break;
206 case REQ_OP_WRITE_SAME:
207 split = blk_bio_write_same_split(q, *bio, bs, &nsegs);
208 break;
209 default:
210 split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
211 break;
212 }
213
214 /* physical segments can be figured out during splitting */
215 res = split ? split : *bio;
216 res->bi_phys_segments = nsegs;
217 bio_set_flag(res, BIO_SEG_VALID);
218
219 if (split) {
220 /* there isn't chance to merge the splitted bio */
221 split->bi_opf |= REQ_NOMERGE;
222
223 bio_chain(split, *bio);
224 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
225 generic_make_request(*bio);
226 *bio = split;
227 }
228 }
229 EXPORT_SYMBOL(blk_queue_split);
230
231 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
232 struct bio *bio,
233 bool no_sg_merge)
234 {
235 struct bio_vec bv, bvprv = { NULL };
236 int cluster, prev = 0;
237 unsigned int seg_size, nr_phys_segs;
238 struct bio *fbio, *bbio;
239 struct bvec_iter iter;
240
241 if (!bio)
242 return 0;
243
244 switch (bio_op(bio)) {
245 case REQ_OP_DISCARD:
246 case REQ_OP_SECURE_ERASE:
247 case REQ_OP_WRITE_ZEROES:
248 return 0;
249 case REQ_OP_WRITE_SAME:
250 return 1;
251 }
252
253 fbio = bio;
254 cluster = blk_queue_cluster(q);
255 seg_size = 0;
256 nr_phys_segs = 0;
257 for_each_bio(bio) {
258 bio_for_each_segment(bv, bio, iter) {
259 /*
260 * If SG merging is disabled, each bio vector is
261 * a segment
262 */
263 if (no_sg_merge)
264 goto new_segment;
265
266 if (prev && cluster) {
267 if (seg_size + bv.bv_len
268 > queue_max_segment_size(q))
269 goto new_segment;
270 if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
271 goto new_segment;
272 if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
273 goto new_segment;
274
275 seg_size += bv.bv_len;
276 bvprv = bv;
277 continue;
278 }
279 new_segment:
280 if (nr_phys_segs == 1 && seg_size >
281 fbio->bi_seg_front_size)
282 fbio->bi_seg_front_size = seg_size;
283
284 nr_phys_segs++;
285 bvprv = bv;
286 prev = 1;
287 seg_size = bv.bv_len;
288 }
289 bbio = bio;
290 }
291
292 if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
293 fbio->bi_seg_front_size = seg_size;
294 if (seg_size > bbio->bi_seg_back_size)
295 bbio->bi_seg_back_size = seg_size;
296
297 return nr_phys_segs;
298 }
299
300 void blk_recalc_rq_segments(struct request *rq)
301 {
302 bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
303 &rq->q->queue_flags);
304
305 rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
306 no_sg_merge);
307 }
308
309 void blk_recount_segments(struct request_queue *q, struct bio *bio)
310 {
311 unsigned short seg_cnt;
312
313 /* estimate segment number by bi_vcnt for non-cloned bio */
314 if (bio_flagged(bio, BIO_CLONED))
315 seg_cnt = bio_segments(bio);
316 else
317 seg_cnt = bio->bi_vcnt;
318
319 if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
320 (seg_cnt < queue_max_segments(q)))
321 bio->bi_phys_segments = seg_cnt;
322 else {
323 struct bio *nxt = bio->bi_next;
324
325 bio->bi_next = NULL;
326 bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
327 bio->bi_next = nxt;
328 }
329
330 bio_set_flag(bio, BIO_SEG_VALID);
331 }
332 EXPORT_SYMBOL(blk_recount_segments);
333
334 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
335 struct bio *nxt)
336 {
337 struct bio_vec end_bv = { NULL }, nxt_bv;
338
339 if (!blk_queue_cluster(q))
340 return 0;
341
342 if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
343 queue_max_segment_size(q))
344 return 0;
345
346 if (!bio_has_data(bio))
347 return 1;
348
349 bio_get_last_bvec(bio, &end_bv);
350 bio_get_first_bvec(nxt, &nxt_bv);
351
352 if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
353 return 0;
354
355 /*
356 * bio and nxt are contiguous in memory; check if the queue allows
357 * these two to be merged into one
358 */
359 if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
360 return 1;
361
362 return 0;
363 }
364
365 static inline void
366 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
367 struct scatterlist *sglist, struct bio_vec *bvprv,
368 struct scatterlist **sg, int *nsegs, int *cluster)
369 {
370
371 int nbytes = bvec->bv_len;
372
373 if (*sg && *cluster) {
374 if ((*sg)->length + nbytes > queue_max_segment_size(q))
375 goto new_segment;
376
377 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
378 goto new_segment;
379 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
380 goto new_segment;
381
382 (*sg)->length += nbytes;
383 } else {
384 new_segment:
385 if (!*sg)
386 *sg = sglist;
387 else {
388 /*
389 * If the driver previously mapped a shorter
390 * list, we could see a termination bit
391 * prematurely unless it fully inits the sg
392 * table on each mapping. We KNOW that there
393 * must be more entries here or the driver
394 * would be buggy, so force clear the
395 * termination bit to avoid doing a full
396 * sg_init_table() in drivers for each command.
397 */
398 sg_unmark_end(*sg);
399 *sg = sg_next(*sg);
400 }
401
402 sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
403 (*nsegs)++;
404 }
405 *bvprv = *bvec;
406 }
407
408 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
409 struct scatterlist *sglist, struct scatterlist **sg)
410 {
411 *sg = sglist;
412 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
413 return 1;
414 }
415
416 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
417 struct scatterlist *sglist,
418 struct scatterlist **sg)
419 {
420 struct bio_vec bvec, bvprv = { NULL };
421 struct bvec_iter iter;
422 int cluster = blk_queue_cluster(q), nsegs = 0;
423
424 for_each_bio(bio)
425 bio_for_each_segment(bvec, bio, iter)
426 __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
427 &nsegs, &cluster);
428
429 return nsegs;
430 }
431
432 /*
433 * map a request to scatterlist, return number of sg entries setup. Caller
434 * must make sure sg can hold rq->nr_phys_segments entries
435 */
436 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
437 struct scatterlist *sglist)
438 {
439 struct scatterlist *sg = NULL;
440 int nsegs = 0;
441
442 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
443 nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
444 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
445 nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
446 else if (rq->bio)
447 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
448
449 if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
450 (blk_rq_bytes(rq) & q->dma_pad_mask)) {
451 unsigned int pad_len =
452 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
453
454 sg->length += pad_len;
455 rq->extra_len += pad_len;
456 }
457
458 if (q->dma_drain_size && q->dma_drain_needed(rq)) {
459 if (op_is_write(req_op(rq)))
460 memset(q->dma_drain_buffer, 0, q->dma_drain_size);
461
462 sg_unmark_end(sg);
463 sg = sg_next(sg);
464 sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
465 q->dma_drain_size,
466 ((unsigned long)q->dma_drain_buffer) &
467 (PAGE_SIZE - 1));
468 nsegs++;
469 rq->extra_len += q->dma_drain_size;
470 }
471
472 if (sg)
473 sg_mark_end(sg);
474
475 /*
476 * Something must have been wrong if the figured number of
477 * segment is bigger than number of req's physical segments
478 */
479 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
480
481 return nsegs;
482 }
483 EXPORT_SYMBOL(blk_rq_map_sg);
484
485 static inline int ll_new_hw_segment(struct request_queue *q,
486 struct request *req,
487 struct bio *bio)
488 {
489 int nr_phys_segs = bio_phys_segments(q, bio);
490
491 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
492 goto no_merge;
493
494 if (blk_integrity_merge_bio(q, req, bio) == false)
495 goto no_merge;
496
497 /*
498 * This will form the start of a new hw segment. Bump both
499 * counters.
500 */
501 req->nr_phys_segments += nr_phys_segs;
502 return 1;
503
504 no_merge:
505 req_set_nomerge(q, req);
506 return 0;
507 }
508
509 int ll_back_merge_fn(struct request_queue *q, struct request *req,
510 struct bio *bio)
511 {
512 if (req_gap_back_merge(req, bio))
513 return 0;
514 if (blk_integrity_rq(req) &&
515 integrity_req_gap_back_merge(req, bio))
516 return 0;
517 if (blk_rq_sectors(req) + bio_sectors(bio) >
518 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
519 req_set_nomerge(q, req);
520 return 0;
521 }
522 if (!bio_flagged(req->biotail, BIO_SEG_VALID))
523 blk_recount_segments(q, req->biotail);
524 if (!bio_flagged(bio, BIO_SEG_VALID))
525 blk_recount_segments(q, bio);
526
527 return ll_new_hw_segment(q, req, bio);
528 }
529
530 int ll_front_merge_fn(struct request_queue *q, struct request *req,
531 struct bio *bio)
532 {
533
534 if (req_gap_front_merge(req, bio))
535 return 0;
536 if (blk_integrity_rq(req) &&
537 integrity_req_gap_front_merge(req, bio))
538 return 0;
539 if (blk_rq_sectors(req) + bio_sectors(bio) >
540 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
541 req_set_nomerge(q, req);
542 return 0;
543 }
544 if (!bio_flagged(bio, BIO_SEG_VALID))
545 blk_recount_segments(q, bio);
546 if (!bio_flagged(req->bio, BIO_SEG_VALID))
547 blk_recount_segments(q, req->bio);
548
549 return ll_new_hw_segment(q, req, bio);
550 }
551
552 /*
553 * blk-mq uses req->special to carry normal driver per-request payload, it
554 * does not indicate a prepared command that we cannot merge with.
555 */
556 static bool req_no_special_merge(struct request *req)
557 {
558 struct request_queue *q = req->q;
559
560 return !q->mq_ops && req->special;
561 }
562
563 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
564 struct request *next)
565 {
566 int total_phys_segments;
567 unsigned int seg_size =
568 req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
569
570 /*
571 * First check if the either of the requests are re-queued
572 * requests. Can't merge them if they are.
573 */
574 if (req_no_special_merge(req) || req_no_special_merge(next))
575 return 0;
576
577 if (req_gap_back_merge(req, next->bio))
578 return 0;
579
580 /*
581 * Will it become too large?
582 */
583 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
584 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
585 return 0;
586
587 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
588 if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
589 if (req->nr_phys_segments == 1)
590 req->bio->bi_seg_front_size = seg_size;
591 if (next->nr_phys_segments == 1)
592 next->biotail->bi_seg_back_size = seg_size;
593 total_phys_segments--;
594 }
595
596 if (total_phys_segments > queue_max_segments(q))
597 return 0;
598
599 if (blk_integrity_merge_rq(q, req, next) == false)
600 return 0;
601
602 /* Merge is OK... */
603 req->nr_phys_segments = total_phys_segments;
604 return 1;
605 }
606
607 /**
608 * blk_rq_set_mixed_merge - mark a request as mixed merge
609 * @rq: request to mark as mixed merge
610 *
611 * Description:
612 * @rq is about to be mixed merged. Make sure the attributes
613 * which can be mixed are set in each bio and mark @rq as mixed
614 * merged.
615 */
616 void blk_rq_set_mixed_merge(struct request *rq)
617 {
618 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
619 struct bio *bio;
620
621 if (rq->rq_flags & RQF_MIXED_MERGE)
622 return;
623
624 /*
625 * @rq will no longer represent mixable attributes for all the
626 * contained bios. It will just track those of the first one.
627 * Distributes the attributs to each bio.
628 */
629 for (bio = rq->bio; bio; bio = bio->bi_next) {
630 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
631 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
632 bio->bi_opf |= ff;
633 }
634 rq->rq_flags |= RQF_MIXED_MERGE;
635 }
636
637 static void blk_account_io_merge(struct request *req)
638 {
639 if (blk_do_io_stat(req)) {
640 struct hd_struct *part;
641 int cpu;
642
643 cpu = part_stat_lock();
644 part = req->part;
645
646 part_round_stats(cpu, part);
647 part_dec_in_flight(part, rq_data_dir(req));
648
649 hd_struct_put(part);
650 part_stat_unlock();
651 }
652 }
653
654 /*
655 * For non-mq, this has to be called with the request spinlock acquired.
656 * For mq with scheduling, the appropriate queue wide lock should be held.
657 */
658 static struct request *attempt_merge(struct request_queue *q,
659 struct request *req, struct request *next)
660 {
661 if (!rq_mergeable(req) || !rq_mergeable(next))
662 return NULL;
663
664 if (req_op(req) != req_op(next))
665 return NULL;
666
667 /*
668 * not contiguous
669 */
670 if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
671 return NULL;
672
673 if (rq_data_dir(req) != rq_data_dir(next)
674 || req->rq_disk != next->rq_disk
675 || req_no_special_merge(next))
676 return NULL;
677
678 if (req_op(req) == REQ_OP_WRITE_SAME &&
679 !blk_write_same_mergeable(req->bio, next->bio))
680 return NULL;
681
682 /*
683 * If we are allowed to merge, then append bio list
684 * from next to rq and release next. merge_requests_fn
685 * will have updated segment counts, update sector
686 * counts here.
687 */
688 if (!ll_merge_requests_fn(q, req, next))
689 return NULL;
690
691 /*
692 * If failfast settings disagree or any of the two is already
693 * a mixed merge, mark both as mixed before proceeding. This
694 * makes sure that all involved bios have mixable attributes
695 * set properly.
696 */
697 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
698 (req->cmd_flags & REQ_FAILFAST_MASK) !=
699 (next->cmd_flags & REQ_FAILFAST_MASK)) {
700 blk_rq_set_mixed_merge(req);
701 blk_rq_set_mixed_merge(next);
702 }
703
704 /*
705 * At this point we have either done a back merge
706 * or front merge. We need the smaller start_time of
707 * the merged requests to be the current request
708 * for accounting purposes.
709 */
710 if (time_after(req->start_time, next->start_time))
711 req->start_time = next->start_time;
712
713 req->biotail->bi_next = next->bio;
714 req->biotail = next->biotail;
715
716 req->__data_len += blk_rq_bytes(next);
717
718 elv_merge_requests(q, req, next);
719
720 /*
721 * 'next' is going away, so update stats accordingly
722 */
723 blk_account_io_merge(next);
724
725 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
726 if (blk_rq_cpu_valid(next))
727 req->cpu = next->cpu;
728
729 /*
730 * ownership of bio passed from next to req, return 'next' for
731 * the caller to free
732 */
733 next->bio = NULL;
734 return next;
735 }
736
737 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
738 {
739 struct request *next = elv_latter_request(q, rq);
740
741 if (next)
742 return attempt_merge(q, rq, next);
743
744 return NULL;
745 }
746
747 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
748 {
749 struct request *prev = elv_former_request(q, rq);
750
751 if (prev)
752 return attempt_merge(q, prev, rq);
753
754 return NULL;
755 }
756
757 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
758 struct request *next)
759 {
760 struct elevator_queue *e = q->elevator;
761 struct request *free;
762
763 if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn)
764 if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next))
765 return 0;
766
767 free = attempt_merge(q, rq, next);
768 if (free) {
769 __blk_put_request(q, free);
770 return 1;
771 }
772
773 return 0;
774 }
775
776 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
777 {
778 if (!rq_mergeable(rq) || !bio_mergeable(bio))
779 return false;
780
781 if (req_op(rq) != bio_op(bio))
782 return false;
783
784 /* different data direction or already started, don't merge */
785 if (bio_data_dir(bio) != rq_data_dir(rq))
786 return false;
787
788 /* must be same device and not a special request */
789 if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq))
790 return false;
791
792 /* only merge integrity protected bio into ditto rq */
793 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
794 return false;
795
796 /* must be using the same buffer */
797 if (req_op(rq) == REQ_OP_WRITE_SAME &&
798 !blk_write_same_mergeable(rq->bio, bio))
799 return false;
800
801 return true;
802 }
803
804 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
805 {
806 if (req_op(rq) == REQ_OP_DISCARD &&
807 queue_max_discard_segments(rq->q) > 1)
808 return ELEVATOR_DISCARD_MERGE;
809 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
810 return ELEVATOR_BACK_MERGE;
811 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
812 return ELEVATOR_FRONT_MERGE;
813 return ELEVATOR_NO_MERGE;
814 }