]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq-sched.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / block / blk-mq-sched.c
1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 struct blk_mq_hw_ctx *hctx;
23 int i;
24
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
30 }
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
39
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
43
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
48 }
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
51 }
52
53 /*
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
56 */
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 {
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
61
62 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
63 struct request_queue *q = hctx->queue;
64
65 if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
66 atomic_inc(&q->shared_hctx_restart);
67 } else
68 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
69 }
70
71 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
72 {
73 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
74 return false;
75
76 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
77 struct request_queue *q = hctx->queue;
78
79 if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
80 atomic_dec(&q->shared_hctx_restart);
81 } else
82 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
83
84 if (blk_mq_hctx_has_pending(hctx)) {
85 blk_mq_run_hw_queue(hctx, true);
86 return true;
87 }
88
89 return false;
90 }
91
92 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
93 {
94 struct request_queue *q = hctx->queue;
95 struct elevator_queue *e = q->elevator;
96 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
97 bool did_work = false;
98 LIST_HEAD(rq_list);
99
100 /* RCU or SRCU read lock is needed before checking quiesced flag */
101 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
102 return;
103
104 hctx->run++;
105
106 /*
107 * If we have previous entries on our dispatch list, grab them first for
108 * more fair dispatch.
109 */
110 if (!list_empty_careful(&hctx->dispatch)) {
111 spin_lock(&hctx->lock);
112 if (!list_empty(&hctx->dispatch))
113 list_splice_init(&hctx->dispatch, &rq_list);
114 spin_unlock(&hctx->lock);
115 }
116
117 /*
118 * Only ask the scheduler for requests, if we didn't have residual
119 * requests from the dispatch list. This is to avoid the case where
120 * we only ever dispatch a fraction of the requests available because
121 * of low device queue depth. Once we pull requests out of the IO
122 * scheduler, we can no longer merge or sort them. So it's best to
123 * leave them there for as long as we can. Mark the hw queue as
124 * needing a restart in that case.
125 */
126 if (!list_empty(&rq_list)) {
127 blk_mq_sched_mark_restart_hctx(hctx);
128 did_work = blk_mq_dispatch_rq_list(q, &rq_list);
129 } else if (!has_sched_dispatch) {
130 blk_mq_flush_busy_ctxs(hctx, &rq_list);
131 blk_mq_dispatch_rq_list(q, &rq_list);
132 }
133
134 /*
135 * We want to dispatch from the scheduler if we had no work left
136 * on the dispatch list, OR if we did have work but weren't able
137 * to make progress.
138 */
139 if (!did_work && has_sched_dispatch) {
140 do {
141 struct request *rq;
142
143 rq = e->type->ops.mq.dispatch_request(hctx);
144 if (!rq)
145 break;
146 list_add(&rq->queuelist, &rq_list);
147 } while (blk_mq_dispatch_rq_list(q, &rq_list));
148 }
149 }
150
151 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
152 struct request **merged_request)
153 {
154 struct request *rq;
155
156 switch (elv_merge(q, &rq, bio)) {
157 case ELEVATOR_BACK_MERGE:
158 if (!blk_mq_sched_allow_merge(q, rq, bio))
159 return false;
160 if (!bio_attempt_back_merge(q, rq, bio))
161 return false;
162 *merged_request = attempt_back_merge(q, rq);
163 if (!*merged_request)
164 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
165 return true;
166 case ELEVATOR_FRONT_MERGE:
167 if (!blk_mq_sched_allow_merge(q, rq, bio))
168 return false;
169 if (!bio_attempt_front_merge(q, rq, bio))
170 return false;
171 *merged_request = attempt_front_merge(q, rq);
172 if (!*merged_request)
173 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
174 return true;
175 default:
176 return false;
177 }
178 }
179 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
180
181 /*
182 * Reverse check our software queue for entries that we could potentially
183 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
184 * too much time checking for merges.
185 */
186 static bool blk_mq_attempt_merge(struct request_queue *q,
187 struct blk_mq_ctx *ctx, struct bio *bio)
188 {
189 struct request *rq;
190 int checked = 8;
191
192 lockdep_assert_held(&ctx->lock);
193
194 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
195 bool merged = false;
196
197 if (!checked--)
198 break;
199
200 if (!blk_rq_merge_ok(rq, bio))
201 continue;
202
203 switch (blk_try_merge(rq, bio)) {
204 case ELEVATOR_BACK_MERGE:
205 if (blk_mq_sched_allow_merge(q, rq, bio))
206 merged = bio_attempt_back_merge(q, rq, bio);
207 break;
208 case ELEVATOR_FRONT_MERGE:
209 if (blk_mq_sched_allow_merge(q, rq, bio))
210 merged = bio_attempt_front_merge(q, rq, bio);
211 break;
212 case ELEVATOR_DISCARD_MERGE:
213 merged = bio_attempt_discard_merge(q, rq, bio);
214 break;
215 default:
216 continue;
217 }
218
219 if (merged)
220 ctx->rq_merged++;
221 return merged;
222 }
223
224 return false;
225 }
226
227 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
228 {
229 struct elevator_queue *e = q->elevator;
230 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
231 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
232 bool ret = false;
233
234 if (e && e->type->ops.mq.bio_merge) {
235 blk_mq_put_ctx(ctx);
236 return e->type->ops.mq.bio_merge(hctx, bio);
237 }
238
239 if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
240 /* default per sw-queue merge */
241 spin_lock(&ctx->lock);
242 ret = blk_mq_attempt_merge(q, ctx, bio);
243 spin_unlock(&ctx->lock);
244 }
245
246 blk_mq_put_ctx(ctx);
247 return ret;
248 }
249
250 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
251 {
252 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
255
256 void blk_mq_sched_request_inserted(struct request *rq)
257 {
258 trace_block_rq_insert(rq->q, rq);
259 }
260 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
261
262 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
263 struct request *rq)
264 {
265 if (rq->tag == -1) {
266 rq->rq_flags |= RQF_SORTED;
267 return false;
268 }
269
270 /*
271 * If we already have a real request tag, send directly to
272 * the dispatch list.
273 */
274 spin_lock(&hctx->lock);
275 list_add(&rq->queuelist, &hctx->dispatch);
276 spin_unlock(&hctx->lock);
277 return true;
278 }
279
280 /**
281 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
282 * @pos: loop cursor.
283 * @skip: the list element that will not be examined. Iteration starts at
284 * @skip->next.
285 * @head: head of the list to examine. This list must have at least one
286 * element, namely @skip.
287 * @member: name of the list_head structure within typeof(*pos).
288 */
289 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
290 for ((pos) = (skip); \
291 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
292 (pos)->member.next, typeof(*pos), member) : \
293 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
294 (pos) != (skip); )
295
296 /*
297 * Called after a driver tag has been freed to check whether a hctx needs to
298 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
299 * queues in a round-robin fashion if the tag set of @hctx is shared with other
300 * hardware queues.
301 */
302 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
303 {
304 struct blk_mq_tags *const tags = hctx->tags;
305 struct blk_mq_tag_set *const set = hctx->queue->tag_set;
306 struct request_queue *const queue = hctx->queue, *q;
307 struct blk_mq_hw_ctx *hctx2;
308 unsigned int i, j;
309
310 if (set->flags & BLK_MQ_F_TAG_SHARED) {
311 /*
312 * If this is 0, then we know that no hardware queues
313 * have RESTART marked. We're done.
314 */
315 if (!atomic_read(&queue->shared_hctx_restart))
316 return;
317
318 rcu_read_lock();
319 list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
320 tag_set_list) {
321 queue_for_each_hw_ctx(q, hctx2, i)
322 if (hctx2->tags == tags &&
323 blk_mq_sched_restart_hctx(hctx2))
324 goto done;
325 }
326 j = hctx->queue_num + 1;
327 for (i = 0; i < queue->nr_hw_queues; i++, j++) {
328 if (j == queue->nr_hw_queues)
329 j = 0;
330 hctx2 = queue->queue_hw_ctx[j];
331 if (hctx2->tags == tags &&
332 blk_mq_sched_restart_hctx(hctx2))
333 break;
334 }
335 done:
336 rcu_read_unlock();
337 } else {
338 blk_mq_sched_restart_hctx(hctx);
339 }
340 }
341
342 /*
343 * Add flush/fua to the queue. If we fail getting a driver tag, then
344 * punt to the requeue list. Requeue will re-invoke us from a context
345 * that's safe to block from.
346 */
347 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
348 struct request *rq, bool can_block)
349 {
350 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
351 blk_insert_flush(rq);
352 blk_mq_run_hw_queue(hctx, true);
353 } else
354 blk_mq_add_to_requeue_list(rq, false, true);
355 }
356
357 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
358 bool run_queue, bool async, bool can_block)
359 {
360 struct request_queue *q = rq->q;
361 struct elevator_queue *e = q->elevator;
362 struct blk_mq_ctx *ctx = rq->mq_ctx;
363 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
364
365 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
366 blk_mq_sched_insert_flush(hctx, rq, can_block);
367 return;
368 }
369
370 if (e && blk_mq_sched_bypass_insert(hctx, rq))
371 goto run;
372
373 if (e && e->type->ops.mq.insert_requests) {
374 LIST_HEAD(list);
375
376 list_add(&rq->queuelist, &list);
377 e->type->ops.mq.insert_requests(hctx, &list, at_head);
378 } else {
379 spin_lock(&ctx->lock);
380 __blk_mq_insert_request(hctx, rq, at_head);
381 spin_unlock(&ctx->lock);
382 }
383
384 run:
385 if (run_queue)
386 blk_mq_run_hw_queue(hctx, async);
387 }
388
389 void blk_mq_sched_insert_requests(struct request_queue *q,
390 struct blk_mq_ctx *ctx,
391 struct list_head *list, bool run_queue_async)
392 {
393 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
394 struct elevator_queue *e = hctx->queue->elevator;
395
396 if (e) {
397 struct request *rq, *next;
398
399 /*
400 * We bypass requests that already have a driver tag assigned,
401 * which should only be flushes. Flushes are only ever inserted
402 * as single requests, so we shouldn't ever hit the
403 * WARN_ON_ONCE() below (but let's handle it just in case).
404 */
405 list_for_each_entry_safe(rq, next, list, queuelist) {
406 if (WARN_ON_ONCE(rq->tag != -1)) {
407 list_del_init(&rq->queuelist);
408 blk_mq_sched_bypass_insert(hctx, rq);
409 }
410 }
411 }
412
413 if (e && e->type->ops.mq.insert_requests)
414 e->type->ops.mq.insert_requests(hctx, list, false);
415 else
416 blk_mq_insert_requests(hctx, ctx, list);
417
418 blk_mq_run_hw_queue(hctx, run_queue_async);
419 }
420
421 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
422 struct blk_mq_hw_ctx *hctx,
423 unsigned int hctx_idx)
424 {
425 if (hctx->sched_tags) {
426 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
427 blk_mq_free_rq_map(hctx->sched_tags);
428 hctx->sched_tags = NULL;
429 }
430 }
431
432 static int blk_mq_sched_alloc_tags(struct request_queue *q,
433 struct blk_mq_hw_ctx *hctx,
434 unsigned int hctx_idx)
435 {
436 struct blk_mq_tag_set *set = q->tag_set;
437 int ret;
438
439 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
440 set->reserved_tags);
441 if (!hctx->sched_tags)
442 return -ENOMEM;
443
444 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
445 if (ret)
446 blk_mq_sched_free_tags(set, hctx, hctx_idx);
447
448 return ret;
449 }
450
451 static void blk_mq_sched_tags_teardown(struct request_queue *q)
452 {
453 struct blk_mq_tag_set *set = q->tag_set;
454 struct blk_mq_hw_ctx *hctx;
455 int i;
456
457 queue_for_each_hw_ctx(q, hctx, i)
458 blk_mq_sched_free_tags(set, hctx, i);
459 }
460
461 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
462 unsigned int hctx_idx)
463 {
464 struct elevator_queue *e = q->elevator;
465 int ret;
466
467 if (!e)
468 return 0;
469
470 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
471 if (ret)
472 return ret;
473
474 if (e->type->ops.mq.init_hctx) {
475 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
476 if (ret) {
477 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
478 return ret;
479 }
480 }
481
482 blk_mq_debugfs_register_sched_hctx(q, hctx);
483
484 return 0;
485 }
486
487 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
488 unsigned int hctx_idx)
489 {
490 struct elevator_queue *e = q->elevator;
491
492 if (!e)
493 return;
494
495 blk_mq_debugfs_unregister_sched_hctx(hctx);
496
497 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
498 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
499 hctx->sched_data = NULL;
500 }
501
502 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
503 }
504
505 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
506 {
507 struct blk_mq_hw_ctx *hctx;
508 struct elevator_queue *eq;
509 unsigned int i;
510 int ret;
511
512 if (!e) {
513 q->elevator = NULL;
514 return 0;
515 }
516
517 /*
518 * Default to double of smaller one between hw queue_depth and 128,
519 * since we don't split into sync/async like the old code did.
520 * Additionally, this is a per-hw queue depth.
521 */
522 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
523 BLKDEV_MAX_RQ);
524
525 queue_for_each_hw_ctx(q, hctx, i) {
526 ret = blk_mq_sched_alloc_tags(q, hctx, i);
527 if (ret)
528 goto err;
529 }
530
531 ret = e->ops.mq.init_sched(q, e);
532 if (ret)
533 goto err;
534
535 blk_mq_debugfs_register_sched(q);
536
537 queue_for_each_hw_ctx(q, hctx, i) {
538 if (e->ops.mq.init_hctx) {
539 ret = e->ops.mq.init_hctx(hctx, i);
540 if (ret) {
541 eq = q->elevator;
542 blk_mq_exit_sched(q, eq);
543 kobject_put(&eq->kobj);
544 return ret;
545 }
546 }
547 blk_mq_debugfs_register_sched_hctx(q, hctx);
548 }
549
550 return 0;
551
552 err:
553 blk_mq_sched_tags_teardown(q);
554 q->elevator = NULL;
555 return ret;
556 }
557
558 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
559 {
560 struct blk_mq_hw_ctx *hctx;
561 unsigned int i;
562
563 queue_for_each_hw_ctx(q, hctx, i) {
564 blk_mq_debugfs_unregister_sched_hctx(hctx);
565 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
566 e->type->ops.mq.exit_hctx(hctx, i);
567 hctx->sched_data = NULL;
568 }
569 }
570 blk_mq_debugfs_unregister_sched(q);
571 if (e->type->ops.mq.exit_sched)
572 e->type->ops.mq.exit_sched(e);
573 blk_mq_sched_tags_teardown(q);
574 q->elevator = NULL;
575 }
576
577 int blk_mq_sched_init(struct request_queue *q)
578 {
579 int ret;
580
581 mutex_lock(&q->sysfs_lock);
582 ret = elevator_init(q, NULL);
583 mutex_unlock(&q->sysfs_lock);
584
585 return ret;
586 }