]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq-tag.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / block / blk-mq-tag.c
1 /*
2 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
3 * fairer distribution of tags between multiple submitters when a shared tag map
4 * is used.
5 *
6 * Copyright (C) 2013-2014 Jens Axboe
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10
11 #include <linux/blk-mq.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-tag.h"
15
16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
17 {
18 if (!tags)
19 return true;
20
21 return sbitmap_any_bit_clear(&tags->bitmap_tags.sb);
22 }
23
24 /*
25 * If a previously inactive queue goes active, bump the active user count.
26 */
27 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
28 {
29 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
30 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
31 atomic_inc(&hctx->tags->active_queues);
32
33 return true;
34 }
35
36 /*
37 * Wakeup all potentially sleeping on tags
38 */
39 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
40 {
41 sbitmap_queue_wake_all(&tags->bitmap_tags);
42 if (include_reserve)
43 sbitmap_queue_wake_all(&tags->breserved_tags);
44 }
45
46 /*
47 * If a previously busy queue goes inactive, potential waiters could now
48 * be allowed to queue. Wake them up and check.
49 */
50 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
51 {
52 struct blk_mq_tags *tags = hctx->tags;
53
54 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
55 return;
56
57 atomic_dec(&tags->active_queues);
58
59 blk_mq_tag_wakeup_all(tags, false);
60 }
61
62 /*
63 * For shared tag users, we track the number of currently active users
64 * and attempt to provide a fair share of the tag depth for each of them.
65 */
66 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
67 struct sbitmap_queue *bt)
68 {
69 unsigned int depth, users;
70
71 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
72 return true;
73 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
74 return true;
75
76 /*
77 * Don't try dividing an ant
78 */
79 if (bt->sb.depth == 1)
80 return true;
81
82 users = atomic_read(&hctx->tags->active_queues);
83 if (!users)
84 return true;
85
86 /*
87 * Allow at least some tags
88 */
89 depth = max((bt->sb.depth + users - 1) / users, 4U);
90 return atomic_read(&hctx->nr_active) < depth;
91 }
92
93 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
94 struct sbitmap_queue *bt)
95 {
96 if (!(data->flags & BLK_MQ_REQ_INTERNAL) &&
97 !hctx_may_queue(data->hctx, bt))
98 return -1;
99 if (data->shallow_depth)
100 return __sbitmap_queue_get_shallow(bt, data->shallow_depth);
101 else
102 return __sbitmap_queue_get(bt);
103 }
104
105 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
106 {
107 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
108 struct sbitmap_queue *bt;
109 struct sbq_wait_state *ws;
110 DEFINE_WAIT(wait);
111 unsigned int tag_offset;
112 bool drop_ctx;
113 int tag;
114
115 if (data->flags & BLK_MQ_REQ_RESERVED) {
116 if (unlikely(!tags->nr_reserved_tags)) {
117 WARN_ON_ONCE(1);
118 return BLK_MQ_TAG_FAIL;
119 }
120 bt = &tags->breserved_tags;
121 tag_offset = 0;
122 } else {
123 bt = &tags->bitmap_tags;
124 tag_offset = tags->nr_reserved_tags;
125 }
126
127 tag = __blk_mq_get_tag(data, bt);
128 if (tag != -1)
129 goto found_tag;
130
131 if (data->flags & BLK_MQ_REQ_NOWAIT)
132 return BLK_MQ_TAG_FAIL;
133
134 ws = bt_wait_ptr(bt, data->hctx);
135 drop_ctx = data->ctx == NULL;
136 do {
137 prepare_to_wait(&ws->wait, &wait, TASK_UNINTERRUPTIBLE);
138
139 tag = __blk_mq_get_tag(data, bt);
140 if (tag != -1)
141 break;
142
143 /*
144 * We're out of tags on this hardware queue, kick any
145 * pending IO submits before going to sleep waiting for
146 * some to complete.
147 */
148 blk_mq_run_hw_queue(data->hctx, false);
149
150 /*
151 * Retry tag allocation after running the hardware queue,
152 * as running the queue may also have found completions.
153 */
154 tag = __blk_mq_get_tag(data, bt);
155 if (tag != -1)
156 break;
157
158 if (data->ctx)
159 blk_mq_put_ctx(data->ctx);
160
161 io_schedule();
162
163 data->ctx = blk_mq_get_ctx(data->q);
164 data->hctx = blk_mq_map_queue(data->q, data->ctx->cpu);
165 tags = blk_mq_tags_from_data(data);
166 if (data->flags & BLK_MQ_REQ_RESERVED)
167 bt = &tags->breserved_tags;
168 else
169 bt = &tags->bitmap_tags;
170
171 finish_wait(&ws->wait, &wait);
172 ws = bt_wait_ptr(bt, data->hctx);
173 } while (1);
174
175 if (drop_ctx && data->ctx)
176 blk_mq_put_ctx(data->ctx);
177
178 finish_wait(&ws->wait, &wait);
179
180 found_tag:
181 return tag + tag_offset;
182 }
183
184 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags,
185 struct blk_mq_ctx *ctx, unsigned int tag)
186 {
187 if (!blk_mq_tag_is_reserved(tags, tag)) {
188 const int real_tag = tag - tags->nr_reserved_tags;
189
190 BUG_ON(real_tag >= tags->nr_tags);
191 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
192 } else {
193 BUG_ON(tag >= tags->nr_reserved_tags);
194 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
195 }
196 }
197
198 struct bt_iter_data {
199 struct blk_mq_hw_ctx *hctx;
200 busy_iter_fn *fn;
201 void *data;
202 bool reserved;
203 };
204
205 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
206 {
207 struct bt_iter_data *iter_data = data;
208 struct blk_mq_hw_ctx *hctx = iter_data->hctx;
209 struct blk_mq_tags *tags = hctx->tags;
210 bool reserved = iter_data->reserved;
211 struct request *rq;
212
213 if (!reserved)
214 bitnr += tags->nr_reserved_tags;
215 rq = tags->rqs[bitnr];
216
217 /*
218 * We can hit rq == NULL here, because the tagging functions
219 * test and set the bit before assining ->rqs[].
220 */
221 if (rq && rq->q == hctx->queue)
222 iter_data->fn(hctx, rq, iter_data->data, reserved);
223 return true;
224 }
225
226 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt,
227 busy_iter_fn *fn, void *data, bool reserved)
228 {
229 struct bt_iter_data iter_data = {
230 .hctx = hctx,
231 .fn = fn,
232 .data = data,
233 .reserved = reserved,
234 };
235
236 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
237 }
238
239 struct bt_tags_iter_data {
240 struct blk_mq_tags *tags;
241 busy_tag_iter_fn *fn;
242 void *data;
243 bool reserved;
244 };
245
246 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
247 {
248 struct bt_tags_iter_data *iter_data = data;
249 struct blk_mq_tags *tags = iter_data->tags;
250 bool reserved = iter_data->reserved;
251 struct request *rq;
252
253 if (!reserved)
254 bitnr += tags->nr_reserved_tags;
255
256 /*
257 * We can hit rq == NULL here, because the tagging functions
258 * test and set the bit before assining ->rqs[].
259 */
260 rq = tags->rqs[bitnr];
261 if (rq)
262 iter_data->fn(rq, iter_data->data, reserved);
263
264 return true;
265 }
266
267 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
268 busy_tag_iter_fn *fn, void *data, bool reserved)
269 {
270 struct bt_tags_iter_data iter_data = {
271 .tags = tags,
272 .fn = fn,
273 .data = data,
274 .reserved = reserved,
275 };
276
277 if (tags->rqs)
278 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
279 }
280
281 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags,
282 busy_tag_iter_fn *fn, void *priv)
283 {
284 if (tags->nr_reserved_tags)
285 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true);
286 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false);
287 }
288
289 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
290 busy_tag_iter_fn *fn, void *priv)
291 {
292 int i;
293
294 for (i = 0; i < tagset->nr_hw_queues; i++) {
295 if (tagset->tags && tagset->tags[i])
296 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv);
297 }
298 }
299 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
300
301 int blk_mq_reinit_tagset(struct blk_mq_tag_set *set)
302 {
303 int i, j, ret = 0;
304
305 if (!set->ops->reinit_request)
306 goto out;
307
308 for (i = 0; i < set->nr_hw_queues; i++) {
309 struct blk_mq_tags *tags = set->tags[i];
310
311 if (!tags)
312 continue;
313
314 for (j = 0; j < tags->nr_tags; j++) {
315 if (!tags->static_rqs[j])
316 continue;
317
318 ret = set->ops->reinit_request(set->driver_data,
319 tags->static_rqs[j]);
320 if (ret)
321 goto out;
322 }
323 }
324
325 out:
326 return ret;
327 }
328 EXPORT_SYMBOL_GPL(blk_mq_reinit_tagset);
329
330 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
331 void *priv)
332 {
333 struct blk_mq_hw_ctx *hctx;
334 int i;
335
336
337 queue_for_each_hw_ctx(q, hctx, i) {
338 struct blk_mq_tags *tags = hctx->tags;
339
340 /*
341 * If not software queues are currently mapped to this
342 * hardware queue, there's nothing to check
343 */
344 if (!blk_mq_hw_queue_mapped(hctx))
345 continue;
346
347 if (tags->nr_reserved_tags)
348 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true);
349 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false);
350 }
351
352 }
353
354 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
355 bool round_robin, int node)
356 {
357 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
358 node);
359 }
360
361 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
362 int node, int alloc_policy)
363 {
364 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
365 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
366
367 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
368 goto free_tags;
369 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin,
370 node))
371 goto free_bitmap_tags;
372
373 return tags;
374 free_bitmap_tags:
375 sbitmap_queue_free(&tags->bitmap_tags);
376 free_tags:
377 kfree(tags);
378 return NULL;
379 }
380
381 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
382 unsigned int reserved_tags,
383 int node, int alloc_policy)
384 {
385 struct blk_mq_tags *tags;
386
387 if (total_tags > BLK_MQ_TAG_MAX) {
388 pr_err("blk-mq: tag depth too large\n");
389 return NULL;
390 }
391
392 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
393 if (!tags)
394 return NULL;
395
396 tags->nr_tags = total_tags;
397 tags->nr_reserved_tags = reserved_tags;
398
399 return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
400 }
401
402 void blk_mq_free_tags(struct blk_mq_tags *tags)
403 {
404 sbitmap_queue_free(&tags->bitmap_tags);
405 sbitmap_queue_free(&tags->breserved_tags);
406 kfree(tags);
407 }
408
409 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
410 struct blk_mq_tags **tagsptr, unsigned int tdepth,
411 bool can_grow)
412 {
413 struct blk_mq_tags *tags = *tagsptr;
414
415 if (tdepth <= tags->nr_reserved_tags)
416 return -EINVAL;
417
418 tdepth -= tags->nr_reserved_tags;
419
420 /*
421 * If we are allowed to grow beyond the original size, allocate
422 * a new set of tags before freeing the old one.
423 */
424 if (tdepth > tags->nr_tags) {
425 struct blk_mq_tag_set *set = hctx->queue->tag_set;
426 struct blk_mq_tags *new;
427 bool ret;
428
429 if (!can_grow)
430 return -EINVAL;
431
432 /*
433 * We need some sort of upper limit, set it high enough that
434 * no valid use cases should require more.
435 */
436 if (tdepth > 16 * BLKDEV_MAX_RQ)
437 return -EINVAL;
438
439 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 0);
440 if (!new)
441 return -ENOMEM;
442 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth);
443 if (ret) {
444 blk_mq_free_rq_map(new);
445 return -ENOMEM;
446 }
447
448 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num);
449 blk_mq_free_rq_map(*tagsptr);
450 *tagsptr = new;
451 } else {
452 /*
453 * Don't need (or can't) update reserved tags here, they
454 * remain static and should never need resizing.
455 */
456 sbitmap_queue_resize(&tags->bitmap_tags, tdepth);
457 }
458
459 return 0;
460 }
461
462 /**
463 * blk_mq_unique_tag() - return a tag that is unique queue-wide
464 * @rq: request for which to compute a unique tag
465 *
466 * The tag field in struct request is unique per hardware queue but not over
467 * all hardware queues. Hence this function that returns a tag with the
468 * hardware context index in the upper bits and the per hardware queue tag in
469 * the lower bits.
470 *
471 * Note: When called for a request that is queued on a non-multiqueue request
472 * queue, the hardware context index is set to zero.
473 */
474 u32 blk_mq_unique_tag(struct request *rq)
475 {
476 struct request_queue *q = rq->q;
477 struct blk_mq_hw_ctx *hctx;
478 int hwq = 0;
479
480 if (q->mq_ops) {
481 hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
482 hwq = hctx->queue_num;
483 }
484
485 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
486 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
487 }
488 EXPORT_SYMBOL(blk_mq_unique_tag);