]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-mq.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
42
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
44 {
45 int ddir, bytes, bucket;
46
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
49
50 bucket = ddir + 2*(ilog2(bytes) - 9);
51
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
56
57 return bucket;
58 }
59
60 /*
61 * Check if any of the ctx's have pending work in this hardware queue
62 */
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64 {
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
68 }
69
70 /*
71 * Mark this ctx as having pending work in this hardware queue
72 */
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 }
79
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 }
85
86 void blk_freeze_queue_start(struct request_queue *q)
87 {
88 int freeze_depth;
89
90 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
91 if (freeze_depth == 1) {
92 percpu_ref_kill(&q->q_usage_counter);
93 blk_mq_run_hw_queues(q, false);
94 }
95 }
96 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
97
98 void blk_mq_freeze_queue_wait(struct request_queue *q)
99 {
100 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
101 }
102 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
103
104 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
105 unsigned long timeout)
106 {
107 return wait_event_timeout(q->mq_freeze_wq,
108 percpu_ref_is_zero(&q->q_usage_counter),
109 timeout);
110 }
111 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
112
113 /*
114 * Guarantee no request is in use, so we can change any data structure of
115 * the queue afterward.
116 */
117 void blk_freeze_queue(struct request_queue *q)
118 {
119 /*
120 * In the !blk_mq case we are only calling this to kill the
121 * q_usage_counter, otherwise this increases the freeze depth
122 * and waits for it to return to zero. For this reason there is
123 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
124 * exported to drivers as the only user for unfreeze is blk_mq.
125 */
126 blk_freeze_queue_start(q);
127 blk_mq_freeze_queue_wait(q);
128 }
129
130 void blk_mq_freeze_queue(struct request_queue *q)
131 {
132 /*
133 * ...just an alias to keep freeze and unfreeze actions balanced
134 * in the blk_mq_* namespace
135 */
136 blk_freeze_queue(q);
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
139
140 void blk_mq_unfreeze_queue(struct request_queue *q)
141 {
142 int freeze_depth;
143
144 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
145 WARN_ON_ONCE(freeze_depth < 0);
146 if (!freeze_depth) {
147 percpu_ref_reinit(&q->q_usage_counter);
148 wake_up_all(&q->mq_freeze_wq);
149 }
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
152
153 /*
154 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
155 * mpt3sas driver such that this function can be removed.
156 */
157 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
158 {
159 unsigned long flags;
160
161 spin_lock_irqsave(q->queue_lock, flags);
162 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
163 spin_unlock_irqrestore(q->queue_lock, flags);
164 }
165 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
166
167 /**
168 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
169 * @q: request queue.
170 *
171 * Note: this function does not prevent that the struct request end_io()
172 * callback function is invoked. Once this function is returned, we make
173 * sure no dispatch can happen until the queue is unquiesced via
174 * blk_mq_unquiesce_queue().
175 */
176 void blk_mq_quiesce_queue(struct request_queue *q)
177 {
178 struct blk_mq_hw_ctx *hctx;
179 unsigned int i;
180 bool rcu = false;
181
182 blk_mq_quiesce_queue_nowait(q);
183
184 queue_for_each_hw_ctx(q, hctx, i) {
185 if (hctx->flags & BLK_MQ_F_BLOCKING)
186 synchronize_srcu(hctx->queue_rq_srcu);
187 else
188 rcu = true;
189 }
190 if (rcu)
191 synchronize_rcu();
192 }
193 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
194
195 /*
196 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
197 * @q: request queue.
198 *
199 * This function recovers queue into the state before quiescing
200 * which is done by blk_mq_quiesce_queue.
201 */
202 void blk_mq_unquiesce_queue(struct request_queue *q)
203 {
204 unsigned long flags;
205
206 spin_lock_irqsave(q->queue_lock, flags);
207 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
208 spin_unlock_irqrestore(q->queue_lock, flags);
209
210 /* dispatch requests which are inserted during quiescing */
211 blk_mq_run_hw_queues(q, true);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
214
215 void blk_mq_wake_waiters(struct request_queue *q)
216 {
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
219
220 queue_for_each_hw_ctx(q, hctx, i)
221 if (blk_mq_hw_queue_mapped(hctx))
222 blk_mq_tag_wakeup_all(hctx->tags, true);
223
224 /*
225 * If we are called because the queue has now been marked as
226 * dying, we need to ensure that processes currently waiting on
227 * the queue are notified as well.
228 */
229 wake_up_all(&q->mq_freeze_wq);
230 }
231
232 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
233 {
234 return blk_mq_has_free_tags(hctx->tags);
235 }
236 EXPORT_SYMBOL(blk_mq_can_queue);
237
238 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
239 unsigned int tag, unsigned int op)
240 {
241 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
242 struct request *rq = tags->static_rqs[tag];
243
244 rq->rq_flags = 0;
245
246 if (data->flags & BLK_MQ_REQ_INTERNAL) {
247 rq->tag = -1;
248 rq->internal_tag = tag;
249 } else {
250 if (blk_mq_tag_busy(data->hctx)) {
251 rq->rq_flags = RQF_MQ_INFLIGHT;
252 atomic_inc(&data->hctx->nr_active);
253 }
254 rq->tag = tag;
255 rq->internal_tag = -1;
256 data->hctx->tags->rqs[rq->tag] = rq;
257 }
258
259 INIT_LIST_HEAD(&rq->queuelist);
260 /* csd/requeue_work/fifo_time is initialized before use */
261 rq->q = data->q;
262 rq->mq_ctx = data->ctx;
263 rq->cmd_flags = op;
264 if (blk_queue_io_stat(data->q))
265 rq->rq_flags |= RQF_IO_STAT;
266 /* do not touch atomic flags, it needs atomic ops against the timer */
267 rq->cpu = -1;
268 INIT_HLIST_NODE(&rq->hash);
269 RB_CLEAR_NODE(&rq->rb_node);
270 rq->rq_disk = NULL;
271 rq->part = NULL;
272 rq->start_time = jiffies;
273 #ifdef CONFIG_BLK_CGROUP
274 rq->rl = NULL;
275 set_start_time_ns(rq);
276 rq->io_start_time_ns = 0;
277 #endif
278 rq->nr_phys_segments = 0;
279 #if defined(CONFIG_BLK_DEV_INTEGRITY)
280 rq->nr_integrity_segments = 0;
281 #endif
282 rq->special = NULL;
283 /* tag was already set */
284 rq->extra_len = 0;
285
286 INIT_LIST_HEAD(&rq->timeout_list);
287 rq->timeout = 0;
288
289 rq->end_io = NULL;
290 rq->end_io_data = NULL;
291 rq->next_rq = NULL;
292
293 data->ctx->rq_dispatched[op_is_sync(op)]++;
294 return rq;
295 }
296
297 static struct request *blk_mq_get_request(struct request_queue *q,
298 struct bio *bio, unsigned int op,
299 struct blk_mq_alloc_data *data)
300 {
301 struct elevator_queue *e = q->elevator;
302 struct request *rq;
303 unsigned int tag;
304 struct blk_mq_ctx *local_ctx = NULL;
305
306 blk_queue_enter_live(q);
307 data->q = q;
308 if (likely(!data->ctx))
309 data->ctx = local_ctx = blk_mq_get_ctx(q);
310 if (likely(!data->hctx))
311 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
312 if (op & REQ_NOWAIT)
313 data->flags |= BLK_MQ_REQ_NOWAIT;
314
315 if (e) {
316 data->flags |= BLK_MQ_REQ_INTERNAL;
317
318 /*
319 * Flush requests are special and go directly to the
320 * dispatch list.
321 */
322 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
323 e->type->ops.mq.limit_depth(op, data);
324 }
325
326 tag = blk_mq_get_tag(data);
327 if (tag == BLK_MQ_TAG_FAIL) {
328 if (local_ctx) {
329 blk_mq_put_ctx(local_ctx);
330 data->ctx = NULL;
331 }
332 blk_queue_exit(q);
333 return NULL;
334 }
335
336 rq = blk_mq_rq_ctx_init(data, tag, op);
337 if (!op_is_flush(op)) {
338 rq->elv.icq = NULL;
339 if (e && e->type->ops.mq.prepare_request) {
340 if (e->type->icq_cache && rq_ioc(bio))
341 blk_mq_sched_assign_ioc(rq, bio);
342
343 e->type->ops.mq.prepare_request(rq, bio);
344 rq->rq_flags |= RQF_ELVPRIV;
345 }
346 }
347 data->hctx->queued++;
348 return rq;
349 }
350
351 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
352 unsigned int flags)
353 {
354 struct blk_mq_alloc_data alloc_data = { .flags = flags };
355 struct request *rq;
356 int ret;
357
358 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
359 if (ret)
360 return ERR_PTR(ret);
361
362 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
363
364 if (!rq)
365 return ERR_PTR(-EWOULDBLOCK);
366
367 blk_mq_put_ctx(alloc_data.ctx);
368 blk_queue_exit(q);
369
370 rq->__data_len = 0;
371 rq->__sector = (sector_t) -1;
372 rq->bio = rq->biotail = NULL;
373 return rq;
374 }
375 EXPORT_SYMBOL(blk_mq_alloc_request);
376
377 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
378 unsigned int op, unsigned int flags, unsigned int hctx_idx)
379 {
380 struct blk_mq_alloc_data alloc_data = { .flags = flags };
381 struct request *rq;
382 unsigned int cpu;
383 int ret;
384
385 /*
386 * If the tag allocator sleeps we could get an allocation for a
387 * different hardware context. No need to complicate the low level
388 * allocator for this for the rare use case of a command tied to
389 * a specific queue.
390 */
391 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
392 return ERR_PTR(-EINVAL);
393
394 if (hctx_idx >= q->nr_hw_queues)
395 return ERR_PTR(-EIO);
396
397 ret = blk_queue_enter(q, true);
398 if (ret)
399 return ERR_PTR(ret);
400
401 /*
402 * Check if the hardware context is actually mapped to anything.
403 * If not tell the caller that it should skip this queue.
404 */
405 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
406 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
407 blk_queue_exit(q);
408 return ERR_PTR(-EXDEV);
409 }
410 cpu = cpumask_first(alloc_data.hctx->cpumask);
411 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
412
413 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
414
415 if (!rq)
416 return ERR_PTR(-EWOULDBLOCK);
417
418 blk_queue_exit(q);
419
420 return rq;
421 }
422 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
423
424 void blk_mq_free_request(struct request *rq)
425 {
426 struct request_queue *q = rq->q;
427 struct elevator_queue *e = q->elevator;
428 struct blk_mq_ctx *ctx = rq->mq_ctx;
429 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
430 const int sched_tag = rq->internal_tag;
431
432 if (rq->rq_flags & RQF_ELVPRIV) {
433 if (e && e->type->ops.mq.finish_request)
434 e->type->ops.mq.finish_request(rq);
435 if (rq->elv.icq) {
436 put_io_context(rq->elv.icq->ioc);
437 rq->elv.icq = NULL;
438 }
439 }
440
441 ctx->rq_completed[rq_is_sync(rq)]++;
442 if (rq->rq_flags & RQF_MQ_INFLIGHT)
443 atomic_dec(&hctx->nr_active);
444
445 wbt_done(q->rq_wb, &rq->issue_stat);
446
447 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
448 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
449 if (rq->tag != -1)
450 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
451 if (sched_tag != -1)
452 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
453 blk_mq_sched_restart(hctx);
454 blk_queue_exit(q);
455 }
456 EXPORT_SYMBOL_GPL(blk_mq_free_request);
457
458 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
459 {
460 blk_account_io_done(rq);
461
462 if (rq->end_io) {
463 wbt_done(rq->q->rq_wb, &rq->issue_stat);
464 rq->end_io(rq, error);
465 } else {
466 if (unlikely(blk_bidi_rq(rq)))
467 blk_mq_free_request(rq->next_rq);
468 blk_mq_free_request(rq);
469 }
470 }
471 EXPORT_SYMBOL(__blk_mq_end_request);
472
473 void blk_mq_end_request(struct request *rq, blk_status_t error)
474 {
475 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
476 BUG();
477 __blk_mq_end_request(rq, error);
478 }
479 EXPORT_SYMBOL(blk_mq_end_request);
480
481 static void __blk_mq_complete_request_remote(void *data)
482 {
483 struct request *rq = data;
484
485 rq->q->softirq_done_fn(rq);
486 }
487
488 static void __blk_mq_complete_request(struct request *rq)
489 {
490 struct blk_mq_ctx *ctx = rq->mq_ctx;
491 bool shared = false;
492 int cpu;
493
494 if (rq->internal_tag != -1)
495 blk_mq_sched_completed_request(rq);
496 if (rq->rq_flags & RQF_STATS) {
497 blk_mq_poll_stats_start(rq->q);
498 blk_stat_add(rq);
499 }
500
501 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
502 rq->q->softirq_done_fn(rq);
503 return;
504 }
505
506 cpu = get_cpu();
507 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
508 shared = cpus_share_cache(cpu, ctx->cpu);
509
510 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
511 rq->csd.func = __blk_mq_complete_request_remote;
512 rq->csd.info = rq;
513 rq->csd.flags = 0;
514 smp_call_function_single_async(ctx->cpu, &rq->csd);
515 } else {
516 rq->q->softirq_done_fn(rq);
517 }
518 put_cpu();
519 }
520
521 /**
522 * blk_mq_complete_request - end I/O on a request
523 * @rq: the request being processed
524 *
525 * Description:
526 * Ends all I/O on a request. It does not handle partial completions.
527 * The actual completion happens out-of-order, through a IPI handler.
528 **/
529 void blk_mq_complete_request(struct request *rq)
530 {
531 struct request_queue *q = rq->q;
532
533 if (unlikely(blk_should_fake_timeout(q)))
534 return;
535 if (!blk_mark_rq_complete(rq))
536 __blk_mq_complete_request(rq);
537 }
538 EXPORT_SYMBOL(blk_mq_complete_request);
539
540 int blk_mq_request_started(struct request *rq)
541 {
542 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
543 }
544 EXPORT_SYMBOL_GPL(blk_mq_request_started);
545
546 void blk_mq_start_request(struct request *rq)
547 {
548 struct request_queue *q = rq->q;
549
550 blk_mq_sched_started_request(rq);
551
552 trace_block_rq_issue(q, rq);
553
554 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
555 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
556 rq->rq_flags |= RQF_STATS;
557 wbt_issue(q->rq_wb, &rq->issue_stat);
558 }
559
560 blk_add_timer(rq);
561
562 /*
563 * Ensure that ->deadline is visible before set the started
564 * flag and clear the completed flag.
565 */
566 smp_mb__before_atomic();
567
568 /*
569 * Mark us as started and clear complete. Complete might have been
570 * set if requeue raced with timeout, which then marked it as
571 * complete. So be sure to clear complete again when we start
572 * the request, otherwise we'll ignore the completion event.
573 */
574 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
575 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
576 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
577 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
578
579 if (q->dma_drain_size && blk_rq_bytes(rq)) {
580 /*
581 * Make sure space for the drain appears. We know we can do
582 * this because max_hw_segments has been adjusted to be one
583 * fewer than the device can handle.
584 */
585 rq->nr_phys_segments++;
586 }
587 }
588 EXPORT_SYMBOL(blk_mq_start_request);
589
590 /*
591 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
592 * flag isn't set yet, so there may be race with timeout handler,
593 * but given rq->deadline is just set in .queue_rq() under
594 * this situation, the race won't be possible in reality because
595 * rq->timeout should be set as big enough to cover the window
596 * between blk_mq_start_request() called from .queue_rq() and
597 * clearing REQ_ATOM_STARTED here.
598 */
599 static void __blk_mq_requeue_request(struct request *rq)
600 {
601 struct request_queue *q = rq->q;
602
603 trace_block_rq_requeue(q, rq);
604 wbt_requeue(q->rq_wb, &rq->issue_stat);
605 blk_mq_sched_requeue_request(rq);
606
607 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
608 if (q->dma_drain_size && blk_rq_bytes(rq))
609 rq->nr_phys_segments--;
610 }
611 }
612
613 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
614 {
615 __blk_mq_requeue_request(rq);
616
617 BUG_ON(blk_queued_rq(rq));
618 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
619 }
620 EXPORT_SYMBOL(blk_mq_requeue_request);
621
622 static void blk_mq_requeue_work(struct work_struct *work)
623 {
624 struct request_queue *q =
625 container_of(work, struct request_queue, requeue_work.work);
626 LIST_HEAD(rq_list);
627 struct request *rq, *next;
628 unsigned long flags;
629
630 spin_lock_irqsave(&q->requeue_lock, flags);
631 list_splice_init(&q->requeue_list, &rq_list);
632 spin_unlock_irqrestore(&q->requeue_lock, flags);
633
634 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
635 if (!(rq->rq_flags & RQF_SOFTBARRIER))
636 continue;
637
638 rq->rq_flags &= ~RQF_SOFTBARRIER;
639 list_del_init(&rq->queuelist);
640 blk_mq_sched_insert_request(rq, true, false, false, true);
641 }
642
643 while (!list_empty(&rq_list)) {
644 rq = list_entry(rq_list.next, struct request, queuelist);
645 list_del_init(&rq->queuelist);
646 blk_mq_sched_insert_request(rq, false, false, false, true);
647 }
648
649 blk_mq_run_hw_queues(q, false);
650 }
651
652 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
653 bool kick_requeue_list)
654 {
655 struct request_queue *q = rq->q;
656 unsigned long flags;
657
658 /*
659 * We abuse this flag that is otherwise used by the I/O scheduler to
660 * request head insertation from the workqueue.
661 */
662 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
663
664 spin_lock_irqsave(&q->requeue_lock, flags);
665 if (at_head) {
666 rq->rq_flags |= RQF_SOFTBARRIER;
667 list_add(&rq->queuelist, &q->requeue_list);
668 } else {
669 list_add_tail(&rq->queuelist, &q->requeue_list);
670 }
671 spin_unlock_irqrestore(&q->requeue_lock, flags);
672
673 if (kick_requeue_list)
674 blk_mq_kick_requeue_list(q);
675 }
676 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
677
678 void blk_mq_kick_requeue_list(struct request_queue *q)
679 {
680 kblockd_schedule_delayed_work(&q->requeue_work, 0);
681 }
682 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
683
684 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
685 unsigned long msecs)
686 {
687 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
688 msecs_to_jiffies(msecs));
689 }
690 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
691
692 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
693 {
694 if (tag < tags->nr_tags) {
695 prefetch(tags->rqs[tag]);
696 return tags->rqs[tag];
697 }
698
699 return NULL;
700 }
701 EXPORT_SYMBOL(blk_mq_tag_to_rq);
702
703 struct blk_mq_timeout_data {
704 unsigned long next;
705 unsigned int next_set;
706 };
707
708 void blk_mq_rq_timed_out(struct request *req, bool reserved)
709 {
710 const struct blk_mq_ops *ops = req->q->mq_ops;
711 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
712
713 /*
714 * We know that complete is set at this point. If STARTED isn't set
715 * anymore, then the request isn't active and the "timeout" should
716 * just be ignored. This can happen due to the bitflag ordering.
717 * Timeout first checks if STARTED is set, and if it is, assumes
718 * the request is active. But if we race with completion, then
719 * both flags will get cleared. So check here again, and ignore
720 * a timeout event with a request that isn't active.
721 */
722 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
723 return;
724
725 if (ops->timeout)
726 ret = ops->timeout(req, reserved);
727
728 switch (ret) {
729 case BLK_EH_HANDLED:
730 __blk_mq_complete_request(req);
731 break;
732 case BLK_EH_RESET_TIMER:
733 blk_add_timer(req);
734 blk_clear_rq_complete(req);
735 break;
736 case BLK_EH_NOT_HANDLED:
737 break;
738 default:
739 printk(KERN_ERR "block: bad eh return: %d\n", ret);
740 break;
741 }
742 }
743
744 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
745 struct request *rq, void *priv, bool reserved)
746 {
747 struct blk_mq_timeout_data *data = priv;
748
749 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
750 return;
751
752 /*
753 * The rq being checked may have been freed and reallocated
754 * out already here, we avoid this race by checking rq->deadline
755 * and REQ_ATOM_COMPLETE flag together:
756 *
757 * - if rq->deadline is observed as new value because of
758 * reusing, the rq won't be timed out because of timing.
759 * - if rq->deadline is observed as previous value,
760 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
761 * because we put a barrier between setting rq->deadline
762 * and clearing the flag in blk_mq_start_request(), so
763 * this rq won't be timed out too.
764 */
765 if (time_after_eq(jiffies, rq->deadline)) {
766 if (!blk_mark_rq_complete(rq))
767 blk_mq_rq_timed_out(rq, reserved);
768 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
769 data->next = rq->deadline;
770 data->next_set = 1;
771 }
772 }
773
774 static void blk_mq_timeout_work(struct work_struct *work)
775 {
776 struct request_queue *q =
777 container_of(work, struct request_queue, timeout_work);
778 struct blk_mq_timeout_data data = {
779 .next = 0,
780 .next_set = 0,
781 };
782 int i;
783
784 /* A deadlock might occur if a request is stuck requiring a
785 * timeout at the same time a queue freeze is waiting
786 * completion, since the timeout code would not be able to
787 * acquire the queue reference here.
788 *
789 * That's why we don't use blk_queue_enter here; instead, we use
790 * percpu_ref_tryget directly, because we need to be able to
791 * obtain a reference even in the short window between the queue
792 * starting to freeze, by dropping the first reference in
793 * blk_freeze_queue_start, and the moment the last request is
794 * consumed, marked by the instant q_usage_counter reaches
795 * zero.
796 */
797 if (!percpu_ref_tryget(&q->q_usage_counter))
798 return;
799
800 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
801
802 if (data.next_set) {
803 data.next = blk_rq_timeout(round_jiffies_up(data.next));
804 mod_timer(&q->timeout, data.next);
805 } else {
806 struct blk_mq_hw_ctx *hctx;
807
808 queue_for_each_hw_ctx(q, hctx, i) {
809 /* the hctx may be unmapped, so check it here */
810 if (blk_mq_hw_queue_mapped(hctx))
811 blk_mq_tag_idle(hctx);
812 }
813 }
814 blk_queue_exit(q);
815 }
816
817 struct flush_busy_ctx_data {
818 struct blk_mq_hw_ctx *hctx;
819 struct list_head *list;
820 };
821
822 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823 {
824 struct flush_busy_ctx_data *flush_data = data;
825 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828 sbitmap_clear_bit(sb, bitnr);
829 spin_lock(&ctx->lock);
830 list_splice_tail_init(&ctx->rq_list, flush_data->list);
831 spin_unlock(&ctx->lock);
832 return true;
833 }
834
835 /*
836 * Process software queues that have been marked busy, splicing them
837 * to the for-dispatch
838 */
839 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840 {
841 struct flush_busy_ctx_data data = {
842 .hctx = hctx,
843 .list = list,
844 };
845
846 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847 }
848 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849
850 static inline unsigned int queued_to_index(unsigned int queued)
851 {
852 if (!queued)
853 return 0;
854
855 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 }
857
858 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859 bool wait)
860 {
861 struct blk_mq_alloc_data data = {
862 .q = rq->q,
863 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865 };
866
867 might_sleep_if(wait);
868
869 if (rq->tag != -1)
870 goto done;
871
872 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
873 data.flags |= BLK_MQ_REQ_RESERVED;
874
875 rq->tag = blk_mq_get_tag(&data);
876 if (rq->tag >= 0) {
877 if (blk_mq_tag_busy(data.hctx)) {
878 rq->rq_flags |= RQF_MQ_INFLIGHT;
879 atomic_inc(&data.hctx->nr_active);
880 }
881 data.hctx->tags->rqs[rq->tag] = rq;
882 }
883
884 done:
885 if (hctx)
886 *hctx = data.hctx;
887 return rq->tag != -1;
888 }
889
890 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
891 struct request *rq)
892 {
893 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
894 rq->tag = -1;
895
896 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
897 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
898 atomic_dec(&hctx->nr_active);
899 }
900 }
901
902 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
903 struct request *rq)
904 {
905 if (rq->tag == -1 || rq->internal_tag == -1)
906 return;
907
908 __blk_mq_put_driver_tag(hctx, rq);
909 }
910
911 static void blk_mq_put_driver_tag(struct request *rq)
912 {
913 struct blk_mq_hw_ctx *hctx;
914
915 if (rq->tag == -1 || rq->internal_tag == -1)
916 return;
917
918 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
919 __blk_mq_put_driver_tag(hctx, rq);
920 }
921
922 /*
923 * If we fail getting a driver tag because all the driver tags are already
924 * assigned and on the dispatch list, BUT the first entry does not have a
925 * tag, then we could deadlock. For that case, move entries with assigned
926 * driver tags to the front, leaving the set of tagged requests in the
927 * same order, and the untagged set in the same order.
928 */
929 static bool reorder_tags_to_front(struct list_head *list)
930 {
931 struct request *rq, *tmp, *first = NULL;
932
933 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
934 if (rq == first)
935 break;
936 if (rq->tag != -1) {
937 list_move(&rq->queuelist, list);
938 if (!first)
939 first = rq;
940 }
941 }
942
943 return first != NULL;
944 }
945
946 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
947 void *key)
948 {
949 struct blk_mq_hw_ctx *hctx;
950
951 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
952
953 list_del(&wait->entry);
954 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
955 blk_mq_run_hw_queue(hctx, true);
956 return 1;
957 }
958
959 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
960 {
961 struct sbq_wait_state *ws;
962
963 /*
964 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
965 * The thread which wins the race to grab this bit adds the hardware
966 * queue to the wait queue.
967 */
968 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
969 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
970 return false;
971
972 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
973 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
974
975 /*
976 * As soon as this returns, it's no longer safe to fiddle with
977 * hctx->dispatch_wait, since a completion can wake up the wait queue
978 * and unlock the bit.
979 */
980 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
981 return true;
982 }
983
984 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
985 {
986 struct blk_mq_hw_ctx *hctx;
987 struct request *rq;
988 int errors, queued;
989
990 if (list_empty(list))
991 return false;
992
993 /*
994 * Now process all the entries, sending them to the driver.
995 */
996 errors = queued = 0;
997 do {
998 struct blk_mq_queue_data bd;
999 blk_status_t ret;
1000
1001 rq = list_first_entry(list, struct request, queuelist);
1002 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1003 if (!queued && reorder_tags_to_front(list))
1004 continue;
1005
1006 /*
1007 * The initial allocation attempt failed, so we need to
1008 * rerun the hardware queue when a tag is freed.
1009 */
1010 if (!blk_mq_dispatch_wait_add(hctx))
1011 break;
1012
1013 /*
1014 * It's possible that a tag was freed in the window
1015 * between the allocation failure and adding the
1016 * hardware queue to the wait queue.
1017 */
1018 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1019 break;
1020 }
1021
1022 list_del_init(&rq->queuelist);
1023
1024 bd.rq = rq;
1025
1026 /*
1027 * Flag last if we have no more requests, or if we have more
1028 * but can't assign a driver tag to it.
1029 */
1030 if (list_empty(list))
1031 bd.last = true;
1032 else {
1033 struct request *nxt;
1034
1035 nxt = list_first_entry(list, struct request, queuelist);
1036 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1037 }
1038
1039 ret = q->mq_ops->queue_rq(hctx, &bd);
1040 if (ret == BLK_STS_RESOURCE) {
1041 blk_mq_put_driver_tag_hctx(hctx, rq);
1042 list_add(&rq->queuelist, list);
1043 __blk_mq_requeue_request(rq);
1044 break;
1045 }
1046
1047 if (unlikely(ret != BLK_STS_OK)) {
1048 errors++;
1049 blk_mq_end_request(rq, BLK_STS_IOERR);
1050 continue;
1051 }
1052
1053 queued++;
1054 } while (!list_empty(list));
1055
1056 hctx->dispatched[queued_to_index(queued)]++;
1057
1058 /*
1059 * Any items that need requeuing? Stuff them into hctx->dispatch,
1060 * that is where we will continue on next queue run.
1061 */
1062 if (!list_empty(list)) {
1063 /*
1064 * If an I/O scheduler has been configured and we got a driver
1065 * tag for the next request already, free it again.
1066 */
1067 rq = list_first_entry(list, struct request, queuelist);
1068 blk_mq_put_driver_tag(rq);
1069
1070 spin_lock(&hctx->lock);
1071 list_splice_init(list, &hctx->dispatch);
1072 spin_unlock(&hctx->lock);
1073
1074 /*
1075 * If SCHED_RESTART was set by the caller of this function and
1076 * it is no longer set that means that it was cleared by another
1077 * thread and hence that a queue rerun is needed.
1078 *
1079 * If TAG_WAITING is set that means that an I/O scheduler has
1080 * been configured and another thread is waiting for a driver
1081 * tag. To guarantee fairness, do not rerun this hardware queue
1082 * but let the other thread grab the driver tag.
1083 *
1084 * If no I/O scheduler has been configured it is possible that
1085 * the hardware queue got stopped and restarted before requests
1086 * were pushed back onto the dispatch list. Rerun the queue to
1087 * avoid starvation. Notes:
1088 * - blk_mq_run_hw_queue() checks whether or not a queue has
1089 * been stopped before rerunning a queue.
1090 * - Some but not all block drivers stop a queue before
1091 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1092 * and dm-rq.
1093 */
1094 if (!blk_mq_sched_needs_restart(hctx) &&
1095 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1096 blk_mq_run_hw_queue(hctx, true);
1097 }
1098
1099 return (queued + errors) != 0;
1100 }
1101
1102 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1103 {
1104 int srcu_idx;
1105
1106 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1107 cpu_online(hctx->next_cpu));
1108
1109 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1110 rcu_read_lock();
1111 blk_mq_sched_dispatch_requests(hctx);
1112 rcu_read_unlock();
1113 } else {
1114 might_sleep();
1115
1116 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1117 blk_mq_sched_dispatch_requests(hctx);
1118 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1119 }
1120 }
1121
1122 /*
1123 * It'd be great if the workqueue API had a way to pass
1124 * in a mask and had some smarts for more clever placement.
1125 * For now we just round-robin here, switching for every
1126 * BLK_MQ_CPU_WORK_BATCH queued items.
1127 */
1128 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1129 {
1130 if (hctx->queue->nr_hw_queues == 1)
1131 return WORK_CPU_UNBOUND;
1132
1133 if (--hctx->next_cpu_batch <= 0) {
1134 int next_cpu;
1135
1136 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1137 if (next_cpu >= nr_cpu_ids)
1138 next_cpu = cpumask_first(hctx->cpumask);
1139
1140 hctx->next_cpu = next_cpu;
1141 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1142 }
1143
1144 return hctx->next_cpu;
1145 }
1146
1147 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1148 unsigned long msecs)
1149 {
1150 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1151 return;
1152
1153 if (unlikely(blk_mq_hctx_stopped(hctx)))
1154 return;
1155
1156 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1157 int cpu = get_cpu();
1158 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1159 __blk_mq_run_hw_queue(hctx);
1160 put_cpu();
1161 return;
1162 }
1163
1164 put_cpu();
1165 }
1166
1167 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1168 &hctx->run_work,
1169 msecs_to_jiffies(msecs));
1170 }
1171
1172 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1173 {
1174 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1175 }
1176 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1177
1178 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1179 {
1180 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1181 }
1182 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1183
1184 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1185 {
1186 struct blk_mq_hw_ctx *hctx;
1187 int i;
1188
1189 queue_for_each_hw_ctx(q, hctx, i) {
1190 if (!blk_mq_hctx_has_pending(hctx) ||
1191 blk_mq_hctx_stopped(hctx))
1192 continue;
1193
1194 blk_mq_run_hw_queue(hctx, async);
1195 }
1196 }
1197 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1198
1199 /**
1200 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1201 * @q: request queue.
1202 *
1203 * The caller is responsible for serializing this function against
1204 * blk_mq_{start,stop}_hw_queue().
1205 */
1206 bool blk_mq_queue_stopped(struct request_queue *q)
1207 {
1208 struct blk_mq_hw_ctx *hctx;
1209 int i;
1210
1211 queue_for_each_hw_ctx(q, hctx, i)
1212 if (blk_mq_hctx_stopped(hctx))
1213 return true;
1214
1215 return false;
1216 }
1217 EXPORT_SYMBOL(blk_mq_queue_stopped);
1218
1219 /*
1220 * This function is often used for pausing .queue_rq() by driver when
1221 * there isn't enough resource or some conditions aren't satisfied, and
1222 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1223 *
1224 * We do not guarantee that dispatch can be drained or blocked
1225 * after blk_mq_stop_hw_queue() returns. Please use
1226 * blk_mq_quiesce_queue() for that requirement.
1227 */
1228 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1229 {
1230 cancel_delayed_work(&hctx->run_work);
1231
1232 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1233 }
1234 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1235
1236 /*
1237 * This function is often used for pausing .queue_rq() by driver when
1238 * there isn't enough resource or some conditions aren't satisfied, and
1239 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1240 *
1241 * We do not guarantee that dispatch can be drained or blocked
1242 * after blk_mq_stop_hw_queues() returns. Please use
1243 * blk_mq_quiesce_queue() for that requirement.
1244 */
1245 void blk_mq_stop_hw_queues(struct request_queue *q)
1246 {
1247 struct blk_mq_hw_ctx *hctx;
1248 int i;
1249
1250 queue_for_each_hw_ctx(q, hctx, i)
1251 blk_mq_stop_hw_queue(hctx);
1252 }
1253 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1254
1255 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1256 {
1257 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1258
1259 blk_mq_run_hw_queue(hctx, false);
1260 }
1261 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1262
1263 void blk_mq_start_hw_queues(struct request_queue *q)
1264 {
1265 struct blk_mq_hw_ctx *hctx;
1266 int i;
1267
1268 queue_for_each_hw_ctx(q, hctx, i)
1269 blk_mq_start_hw_queue(hctx);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1272
1273 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1274 {
1275 if (!blk_mq_hctx_stopped(hctx))
1276 return;
1277
1278 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1279 blk_mq_run_hw_queue(hctx, async);
1280 }
1281 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1282
1283 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1284 {
1285 struct blk_mq_hw_ctx *hctx;
1286 int i;
1287
1288 queue_for_each_hw_ctx(q, hctx, i)
1289 blk_mq_start_stopped_hw_queue(hctx, async);
1290 }
1291 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1292
1293 static void blk_mq_run_work_fn(struct work_struct *work)
1294 {
1295 struct blk_mq_hw_ctx *hctx;
1296
1297 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1298
1299 /*
1300 * If we are stopped, don't run the queue. The exception is if
1301 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1302 * the STOPPED bit and run it.
1303 */
1304 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1305 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1306 return;
1307
1308 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1309 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1310 }
1311
1312 __blk_mq_run_hw_queue(hctx);
1313 }
1314
1315
1316 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1317 {
1318 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1319 return;
1320
1321 /*
1322 * Stop the hw queue, then modify currently delayed work.
1323 * This should prevent us from running the queue prematurely.
1324 * Mark the queue as auto-clearing STOPPED when it runs.
1325 */
1326 blk_mq_stop_hw_queue(hctx);
1327 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1328 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1329 &hctx->run_work,
1330 msecs_to_jiffies(msecs));
1331 }
1332 EXPORT_SYMBOL(blk_mq_delay_queue);
1333
1334 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1335 struct request *rq,
1336 bool at_head)
1337 {
1338 struct blk_mq_ctx *ctx = rq->mq_ctx;
1339
1340 lockdep_assert_held(&ctx->lock);
1341
1342 trace_block_rq_insert(hctx->queue, rq);
1343
1344 if (at_head)
1345 list_add(&rq->queuelist, &ctx->rq_list);
1346 else
1347 list_add_tail(&rq->queuelist, &ctx->rq_list);
1348 }
1349
1350 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1351 bool at_head)
1352 {
1353 struct blk_mq_ctx *ctx = rq->mq_ctx;
1354
1355 lockdep_assert_held(&ctx->lock);
1356
1357 __blk_mq_insert_req_list(hctx, rq, at_head);
1358 blk_mq_hctx_mark_pending(hctx, ctx);
1359 }
1360
1361 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1362 struct list_head *list)
1363
1364 {
1365 /*
1366 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1367 * offline now
1368 */
1369 spin_lock(&ctx->lock);
1370 while (!list_empty(list)) {
1371 struct request *rq;
1372
1373 rq = list_first_entry(list, struct request, queuelist);
1374 BUG_ON(rq->mq_ctx != ctx);
1375 list_del_init(&rq->queuelist);
1376 __blk_mq_insert_req_list(hctx, rq, false);
1377 }
1378 blk_mq_hctx_mark_pending(hctx, ctx);
1379 spin_unlock(&ctx->lock);
1380 }
1381
1382 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1383 {
1384 struct request *rqa = container_of(a, struct request, queuelist);
1385 struct request *rqb = container_of(b, struct request, queuelist);
1386
1387 return !(rqa->mq_ctx < rqb->mq_ctx ||
1388 (rqa->mq_ctx == rqb->mq_ctx &&
1389 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1390 }
1391
1392 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1393 {
1394 struct blk_mq_ctx *this_ctx;
1395 struct request_queue *this_q;
1396 struct request *rq;
1397 LIST_HEAD(list);
1398 LIST_HEAD(ctx_list);
1399 unsigned int depth;
1400
1401 list_splice_init(&plug->mq_list, &list);
1402
1403 list_sort(NULL, &list, plug_ctx_cmp);
1404
1405 this_q = NULL;
1406 this_ctx = NULL;
1407 depth = 0;
1408
1409 while (!list_empty(&list)) {
1410 rq = list_entry_rq(list.next);
1411 list_del_init(&rq->queuelist);
1412 BUG_ON(!rq->q);
1413 if (rq->mq_ctx != this_ctx) {
1414 if (this_ctx) {
1415 trace_block_unplug(this_q, depth, from_schedule);
1416 blk_mq_sched_insert_requests(this_q, this_ctx,
1417 &ctx_list,
1418 from_schedule);
1419 }
1420
1421 this_ctx = rq->mq_ctx;
1422 this_q = rq->q;
1423 depth = 0;
1424 }
1425
1426 depth++;
1427 list_add_tail(&rq->queuelist, &ctx_list);
1428 }
1429
1430 /*
1431 * If 'this_ctx' is set, we know we have entries to complete
1432 * on 'ctx_list'. Do those.
1433 */
1434 if (this_ctx) {
1435 trace_block_unplug(this_q, depth, from_schedule);
1436 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1437 from_schedule);
1438 }
1439 }
1440
1441 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1442 {
1443 blk_init_request_from_bio(rq, bio);
1444
1445 blk_account_io_start(rq, true);
1446 }
1447
1448 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1449 {
1450 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1451 !blk_queue_nomerges(hctx->queue);
1452 }
1453
1454 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1455 struct blk_mq_ctx *ctx,
1456 struct request *rq)
1457 {
1458 spin_lock(&ctx->lock);
1459 __blk_mq_insert_request(hctx, rq, false);
1460 spin_unlock(&ctx->lock);
1461 }
1462
1463 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1464 {
1465 if (rq->tag != -1)
1466 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1467
1468 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1469 }
1470
1471 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1472 struct request *rq,
1473 blk_qc_t *cookie, bool may_sleep)
1474 {
1475 struct request_queue *q = rq->q;
1476 struct blk_mq_queue_data bd = {
1477 .rq = rq,
1478 .last = true,
1479 };
1480 blk_qc_t new_cookie;
1481 blk_status_t ret;
1482 bool run_queue = true;
1483
1484 /* RCU or SRCU read lock is needed before checking quiesced flag */
1485 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1486 run_queue = false;
1487 goto insert;
1488 }
1489
1490 if (q->elevator)
1491 goto insert;
1492
1493 if (!blk_mq_get_driver_tag(rq, NULL, false))
1494 goto insert;
1495
1496 new_cookie = request_to_qc_t(hctx, rq);
1497
1498 /*
1499 * For OK queue, we are done. For error, kill it. Any other
1500 * error (busy), just add it to our list as we previously
1501 * would have done
1502 */
1503 ret = q->mq_ops->queue_rq(hctx, &bd);
1504 switch (ret) {
1505 case BLK_STS_OK:
1506 *cookie = new_cookie;
1507 return;
1508 case BLK_STS_RESOURCE:
1509 __blk_mq_requeue_request(rq);
1510 goto insert;
1511 default:
1512 *cookie = BLK_QC_T_NONE;
1513 blk_mq_end_request(rq, ret);
1514 return;
1515 }
1516
1517 insert:
1518 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1519 }
1520
1521 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1522 struct request *rq, blk_qc_t *cookie)
1523 {
1524 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1525 rcu_read_lock();
1526 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1527 rcu_read_unlock();
1528 } else {
1529 unsigned int srcu_idx;
1530
1531 might_sleep();
1532
1533 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1534 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1535 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1536 }
1537 }
1538
1539 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1540 {
1541 const int is_sync = op_is_sync(bio->bi_opf);
1542 const int is_flush_fua = op_is_flush(bio->bi_opf);
1543 struct blk_mq_alloc_data data = { .flags = 0 };
1544 struct request *rq;
1545 unsigned int request_count = 0;
1546 struct blk_plug *plug;
1547 struct request *same_queue_rq = NULL;
1548 blk_qc_t cookie;
1549 unsigned int wb_acct;
1550
1551 blk_queue_bounce(q, &bio);
1552
1553 blk_queue_split(q, &bio);
1554
1555 if (!bio_integrity_prep(bio))
1556 return BLK_QC_T_NONE;
1557
1558 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1559 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1560 return BLK_QC_T_NONE;
1561
1562 if (blk_mq_sched_bio_merge(q, bio))
1563 return BLK_QC_T_NONE;
1564
1565 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1566
1567 trace_block_getrq(q, bio, bio->bi_opf);
1568
1569 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1570 if (unlikely(!rq)) {
1571 __wbt_done(q->rq_wb, wb_acct);
1572 if (bio->bi_opf & REQ_NOWAIT)
1573 bio_wouldblock_error(bio);
1574 return BLK_QC_T_NONE;
1575 }
1576
1577 wbt_track(&rq->issue_stat, wb_acct);
1578
1579 cookie = request_to_qc_t(data.hctx, rq);
1580
1581 plug = current->plug;
1582 if (unlikely(is_flush_fua)) {
1583 blk_mq_put_ctx(data.ctx);
1584 blk_mq_bio_to_request(rq, bio);
1585 if (q->elevator) {
1586 blk_mq_sched_insert_request(rq, false, true, true,
1587 true);
1588 } else {
1589 blk_insert_flush(rq);
1590 blk_mq_run_hw_queue(data.hctx, true);
1591 }
1592 } else if (plug && q->nr_hw_queues == 1) {
1593 struct request *last = NULL;
1594
1595 blk_mq_put_ctx(data.ctx);
1596 blk_mq_bio_to_request(rq, bio);
1597
1598 /*
1599 * @request_count may become stale because of schedule
1600 * out, so check the list again.
1601 */
1602 if (list_empty(&plug->mq_list))
1603 request_count = 0;
1604 else if (blk_queue_nomerges(q))
1605 request_count = blk_plug_queued_count(q);
1606
1607 if (!request_count)
1608 trace_block_plug(q);
1609 else
1610 last = list_entry_rq(plug->mq_list.prev);
1611
1612 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1613 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1614 blk_flush_plug_list(plug, false);
1615 trace_block_plug(q);
1616 }
1617
1618 list_add_tail(&rq->queuelist, &plug->mq_list);
1619 } else if (plug && !blk_queue_nomerges(q)) {
1620 blk_mq_bio_to_request(rq, bio);
1621
1622 /*
1623 * We do limited plugging. If the bio can be merged, do that.
1624 * Otherwise the existing request in the plug list will be
1625 * issued. So the plug list will have one request at most
1626 * The plug list might get flushed before this. If that happens,
1627 * the plug list is empty, and same_queue_rq is invalid.
1628 */
1629 if (list_empty(&plug->mq_list))
1630 same_queue_rq = NULL;
1631 if (same_queue_rq)
1632 list_del_init(&same_queue_rq->queuelist);
1633 list_add_tail(&rq->queuelist, &plug->mq_list);
1634
1635 blk_mq_put_ctx(data.ctx);
1636
1637 if (same_queue_rq) {
1638 data.hctx = blk_mq_map_queue(q,
1639 same_queue_rq->mq_ctx->cpu);
1640 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1641 &cookie);
1642 }
1643 } else if (q->nr_hw_queues > 1 && is_sync) {
1644 blk_mq_put_ctx(data.ctx);
1645 blk_mq_bio_to_request(rq, bio);
1646 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1647 } else if (q->elevator) {
1648 blk_mq_put_ctx(data.ctx);
1649 blk_mq_bio_to_request(rq, bio);
1650 blk_mq_sched_insert_request(rq, false, true, true, true);
1651 } else {
1652 blk_mq_put_ctx(data.ctx);
1653 blk_mq_bio_to_request(rq, bio);
1654 blk_mq_queue_io(data.hctx, data.ctx, rq);
1655 blk_mq_run_hw_queue(data.hctx, true);
1656 }
1657
1658 return cookie;
1659 }
1660
1661 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1662 unsigned int hctx_idx)
1663 {
1664 struct page *page;
1665
1666 if (tags->rqs && set->ops->exit_request) {
1667 int i;
1668
1669 for (i = 0; i < tags->nr_tags; i++) {
1670 struct request *rq = tags->static_rqs[i];
1671
1672 if (!rq)
1673 continue;
1674 set->ops->exit_request(set, rq, hctx_idx);
1675 tags->static_rqs[i] = NULL;
1676 }
1677 }
1678
1679 while (!list_empty(&tags->page_list)) {
1680 page = list_first_entry(&tags->page_list, struct page, lru);
1681 list_del_init(&page->lru);
1682 /*
1683 * Remove kmemleak object previously allocated in
1684 * blk_mq_init_rq_map().
1685 */
1686 kmemleak_free(page_address(page));
1687 __free_pages(page, page->private);
1688 }
1689 }
1690
1691 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1692 {
1693 kfree(tags->rqs);
1694 tags->rqs = NULL;
1695 kfree(tags->static_rqs);
1696 tags->static_rqs = NULL;
1697
1698 blk_mq_free_tags(tags);
1699 }
1700
1701 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1702 unsigned int hctx_idx,
1703 unsigned int nr_tags,
1704 unsigned int reserved_tags)
1705 {
1706 struct blk_mq_tags *tags;
1707 int node;
1708
1709 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1710 if (node == NUMA_NO_NODE)
1711 node = set->numa_node;
1712
1713 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1714 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1715 if (!tags)
1716 return NULL;
1717
1718 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1719 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1720 node);
1721 if (!tags->rqs) {
1722 blk_mq_free_tags(tags);
1723 return NULL;
1724 }
1725
1726 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1727 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1728 node);
1729 if (!tags->static_rqs) {
1730 kfree(tags->rqs);
1731 blk_mq_free_tags(tags);
1732 return NULL;
1733 }
1734
1735 return tags;
1736 }
1737
1738 static size_t order_to_size(unsigned int order)
1739 {
1740 return (size_t)PAGE_SIZE << order;
1741 }
1742
1743 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1744 unsigned int hctx_idx, unsigned int depth)
1745 {
1746 unsigned int i, j, entries_per_page, max_order = 4;
1747 size_t rq_size, left;
1748 int node;
1749
1750 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1751 if (node == NUMA_NO_NODE)
1752 node = set->numa_node;
1753
1754 INIT_LIST_HEAD(&tags->page_list);
1755
1756 /*
1757 * rq_size is the size of the request plus driver payload, rounded
1758 * to the cacheline size
1759 */
1760 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1761 cache_line_size());
1762 left = rq_size * depth;
1763
1764 for (i = 0; i < depth; ) {
1765 int this_order = max_order;
1766 struct page *page;
1767 int to_do;
1768 void *p;
1769
1770 while (this_order && left < order_to_size(this_order - 1))
1771 this_order--;
1772
1773 do {
1774 page = alloc_pages_node(node,
1775 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1776 this_order);
1777 if (page)
1778 break;
1779 if (!this_order--)
1780 break;
1781 if (order_to_size(this_order) < rq_size)
1782 break;
1783 } while (1);
1784
1785 if (!page)
1786 goto fail;
1787
1788 page->private = this_order;
1789 list_add_tail(&page->lru, &tags->page_list);
1790
1791 p = page_address(page);
1792 /*
1793 * Allow kmemleak to scan these pages as they contain pointers
1794 * to additional allocations like via ops->init_request().
1795 */
1796 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1797 entries_per_page = order_to_size(this_order) / rq_size;
1798 to_do = min(entries_per_page, depth - i);
1799 left -= to_do * rq_size;
1800 for (j = 0; j < to_do; j++) {
1801 struct request *rq = p;
1802
1803 tags->static_rqs[i] = rq;
1804 if (set->ops->init_request) {
1805 if (set->ops->init_request(set, rq, hctx_idx,
1806 node)) {
1807 tags->static_rqs[i] = NULL;
1808 goto fail;
1809 }
1810 }
1811
1812 p += rq_size;
1813 i++;
1814 }
1815 }
1816 return 0;
1817
1818 fail:
1819 blk_mq_free_rqs(set, tags, hctx_idx);
1820 return -ENOMEM;
1821 }
1822
1823 /*
1824 * 'cpu' is going away. splice any existing rq_list entries from this
1825 * software queue to the hw queue dispatch list, and ensure that it
1826 * gets run.
1827 */
1828 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1829 {
1830 struct blk_mq_hw_ctx *hctx;
1831 struct blk_mq_ctx *ctx;
1832 LIST_HEAD(tmp);
1833
1834 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1835 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1836
1837 spin_lock(&ctx->lock);
1838 if (!list_empty(&ctx->rq_list)) {
1839 list_splice_init(&ctx->rq_list, &tmp);
1840 blk_mq_hctx_clear_pending(hctx, ctx);
1841 }
1842 spin_unlock(&ctx->lock);
1843
1844 if (list_empty(&tmp))
1845 return 0;
1846
1847 spin_lock(&hctx->lock);
1848 list_splice_tail_init(&tmp, &hctx->dispatch);
1849 spin_unlock(&hctx->lock);
1850
1851 blk_mq_run_hw_queue(hctx, true);
1852 return 0;
1853 }
1854
1855 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1856 {
1857 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1858 &hctx->cpuhp_dead);
1859 }
1860
1861 /* hctx->ctxs will be freed in queue's release handler */
1862 static void blk_mq_exit_hctx(struct request_queue *q,
1863 struct blk_mq_tag_set *set,
1864 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1865 {
1866 blk_mq_debugfs_unregister_hctx(hctx);
1867
1868 blk_mq_tag_idle(hctx);
1869
1870 if (set->ops->exit_request)
1871 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1872
1873 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1874
1875 if (set->ops->exit_hctx)
1876 set->ops->exit_hctx(hctx, hctx_idx);
1877
1878 if (hctx->flags & BLK_MQ_F_BLOCKING)
1879 cleanup_srcu_struct(hctx->queue_rq_srcu);
1880
1881 blk_mq_remove_cpuhp(hctx);
1882 blk_free_flush_queue(hctx->fq);
1883 sbitmap_free(&hctx->ctx_map);
1884 }
1885
1886 static void blk_mq_exit_hw_queues(struct request_queue *q,
1887 struct blk_mq_tag_set *set, int nr_queue)
1888 {
1889 struct blk_mq_hw_ctx *hctx;
1890 unsigned int i;
1891
1892 queue_for_each_hw_ctx(q, hctx, i) {
1893 if (i == nr_queue)
1894 break;
1895 blk_mq_exit_hctx(q, set, hctx, i);
1896 }
1897 }
1898
1899 static int blk_mq_init_hctx(struct request_queue *q,
1900 struct blk_mq_tag_set *set,
1901 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1902 {
1903 int node;
1904
1905 node = hctx->numa_node;
1906 if (node == NUMA_NO_NODE)
1907 node = hctx->numa_node = set->numa_node;
1908
1909 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1910 spin_lock_init(&hctx->lock);
1911 INIT_LIST_HEAD(&hctx->dispatch);
1912 hctx->queue = q;
1913 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1914
1915 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1916
1917 hctx->tags = set->tags[hctx_idx];
1918
1919 /*
1920 * Allocate space for all possible cpus to avoid allocation at
1921 * runtime
1922 */
1923 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1924 GFP_KERNEL, node);
1925 if (!hctx->ctxs)
1926 goto unregister_cpu_notifier;
1927
1928 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1929 node))
1930 goto free_ctxs;
1931
1932 hctx->nr_ctx = 0;
1933
1934 if (set->ops->init_hctx &&
1935 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1936 goto free_bitmap;
1937
1938 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1939 goto exit_hctx;
1940
1941 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1942 if (!hctx->fq)
1943 goto sched_exit_hctx;
1944
1945 if (set->ops->init_request &&
1946 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1947 node))
1948 goto free_fq;
1949
1950 if (hctx->flags & BLK_MQ_F_BLOCKING)
1951 init_srcu_struct(hctx->queue_rq_srcu);
1952
1953 blk_mq_debugfs_register_hctx(q, hctx);
1954
1955 return 0;
1956
1957 free_fq:
1958 kfree(hctx->fq);
1959 sched_exit_hctx:
1960 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1961 exit_hctx:
1962 if (set->ops->exit_hctx)
1963 set->ops->exit_hctx(hctx, hctx_idx);
1964 free_bitmap:
1965 sbitmap_free(&hctx->ctx_map);
1966 free_ctxs:
1967 kfree(hctx->ctxs);
1968 unregister_cpu_notifier:
1969 blk_mq_remove_cpuhp(hctx);
1970 return -1;
1971 }
1972
1973 static void blk_mq_init_cpu_queues(struct request_queue *q,
1974 unsigned int nr_hw_queues)
1975 {
1976 unsigned int i;
1977
1978 for_each_possible_cpu(i) {
1979 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1980 struct blk_mq_hw_ctx *hctx;
1981
1982 __ctx->cpu = i;
1983 spin_lock_init(&__ctx->lock);
1984 INIT_LIST_HEAD(&__ctx->rq_list);
1985 __ctx->queue = q;
1986
1987 /* If the cpu isn't present, the cpu is mapped to first hctx */
1988 if (!cpu_present(i))
1989 continue;
1990
1991 hctx = blk_mq_map_queue(q, i);
1992
1993 /*
1994 * Set local node, IFF we have more than one hw queue. If
1995 * not, we remain on the home node of the device
1996 */
1997 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1998 hctx->numa_node = local_memory_node(cpu_to_node(i));
1999 }
2000 }
2001
2002 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2003 {
2004 int ret = 0;
2005
2006 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2007 set->queue_depth, set->reserved_tags);
2008 if (!set->tags[hctx_idx])
2009 return false;
2010
2011 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2012 set->queue_depth);
2013 if (!ret)
2014 return true;
2015
2016 blk_mq_free_rq_map(set->tags[hctx_idx]);
2017 set->tags[hctx_idx] = NULL;
2018 return false;
2019 }
2020
2021 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2022 unsigned int hctx_idx)
2023 {
2024 if (set->tags[hctx_idx]) {
2025 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2026 blk_mq_free_rq_map(set->tags[hctx_idx]);
2027 set->tags[hctx_idx] = NULL;
2028 }
2029 }
2030
2031 static void blk_mq_map_swqueue(struct request_queue *q)
2032 {
2033 unsigned int i, hctx_idx;
2034 struct blk_mq_hw_ctx *hctx;
2035 struct blk_mq_ctx *ctx;
2036 struct blk_mq_tag_set *set = q->tag_set;
2037
2038 /*
2039 * Avoid others reading imcomplete hctx->cpumask through sysfs
2040 */
2041 mutex_lock(&q->sysfs_lock);
2042
2043 queue_for_each_hw_ctx(q, hctx, i) {
2044 cpumask_clear(hctx->cpumask);
2045 hctx->nr_ctx = 0;
2046 }
2047
2048 /*
2049 * Map software to hardware queues.
2050 *
2051 * If the cpu isn't present, the cpu is mapped to first hctx.
2052 */
2053 for_each_present_cpu(i) {
2054 hctx_idx = q->mq_map[i];
2055 /* unmapped hw queue can be remapped after CPU topo changed */
2056 if (!set->tags[hctx_idx] &&
2057 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2058 /*
2059 * If tags initialization fail for some hctx,
2060 * that hctx won't be brought online. In this
2061 * case, remap the current ctx to hctx[0] which
2062 * is guaranteed to always have tags allocated
2063 */
2064 q->mq_map[i] = 0;
2065 }
2066
2067 ctx = per_cpu_ptr(q->queue_ctx, i);
2068 hctx = blk_mq_map_queue(q, i);
2069
2070 cpumask_set_cpu(i, hctx->cpumask);
2071 ctx->index_hw = hctx->nr_ctx;
2072 hctx->ctxs[hctx->nr_ctx++] = ctx;
2073 }
2074
2075 mutex_unlock(&q->sysfs_lock);
2076
2077 queue_for_each_hw_ctx(q, hctx, i) {
2078 /*
2079 * If no software queues are mapped to this hardware queue,
2080 * disable it and free the request entries.
2081 */
2082 if (!hctx->nr_ctx) {
2083 /* Never unmap queue 0. We need it as a
2084 * fallback in case of a new remap fails
2085 * allocation
2086 */
2087 if (i && set->tags[i])
2088 blk_mq_free_map_and_requests(set, i);
2089
2090 hctx->tags = NULL;
2091 continue;
2092 }
2093
2094 hctx->tags = set->tags[i];
2095 WARN_ON(!hctx->tags);
2096
2097 /*
2098 * Set the map size to the number of mapped software queues.
2099 * This is more accurate and more efficient than looping
2100 * over all possibly mapped software queues.
2101 */
2102 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2103
2104 /*
2105 * Initialize batch roundrobin counts
2106 */
2107 hctx->next_cpu = cpumask_first(hctx->cpumask);
2108 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2109 }
2110 }
2111
2112 /*
2113 * Caller needs to ensure that we're either frozen/quiesced, or that
2114 * the queue isn't live yet.
2115 */
2116 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2117 {
2118 struct blk_mq_hw_ctx *hctx;
2119 int i;
2120
2121 queue_for_each_hw_ctx(q, hctx, i) {
2122 if (shared) {
2123 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2124 atomic_inc(&q->shared_hctx_restart);
2125 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2126 } else {
2127 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2128 atomic_dec(&q->shared_hctx_restart);
2129 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2130 }
2131 }
2132 }
2133
2134 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2135 bool shared)
2136 {
2137 struct request_queue *q;
2138
2139 lockdep_assert_held(&set->tag_list_lock);
2140
2141 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2142 blk_mq_freeze_queue(q);
2143 queue_set_hctx_shared(q, shared);
2144 blk_mq_unfreeze_queue(q);
2145 }
2146 }
2147
2148 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2149 {
2150 struct blk_mq_tag_set *set = q->tag_set;
2151
2152 mutex_lock(&set->tag_list_lock);
2153 list_del_rcu(&q->tag_set_list);
2154 INIT_LIST_HEAD(&q->tag_set_list);
2155 if (list_is_singular(&set->tag_list)) {
2156 /* just transitioned to unshared */
2157 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2158 /* update existing queue */
2159 blk_mq_update_tag_set_depth(set, false);
2160 }
2161 mutex_unlock(&set->tag_list_lock);
2162
2163 synchronize_rcu();
2164 }
2165
2166 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2167 struct request_queue *q)
2168 {
2169 q->tag_set = set;
2170
2171 mutex_lock(&set->tag_list_lock);
2172
2173 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2174 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2175 set->flags |= BLK_MQ_F_TAG_SHARED;
2176 /* update existing queue */
2177 blk_mq_update_tag_set_depth(set, true);
2178 }
2179 if (set->flags & BLK_MQ_F_TAG_SHARED)
2180 queue_set_hctx_shared(q, true);
2181 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2182
2183 mutex_unlock(&set->tag_list_lock);
2184 }
2185
2186 /*
2187 * It is the actual release handler for mq, but we do it from
2188 * request queue's release handler for avoiding use-after-free
2189 * and headache because q->mq_kobj shouldn't have been introduced,
2190 * but we can't group ctx/kctx kobj without it.
2191 */
2192 void blk_mq_release(struct request_queue *q)
2193 {
2194 struct blk_mq_hw_ctx *hctx;
2195 unsigned int i;
2196
2197 /* hctx kobj stays in hctx */
2198 queue_for_each_hw_ctx(q, hctx, i) {
2199 if (!hctx)
2200 continue;
2201 kobject_put(&hctx->kobj);
2202 }
2203
2204 q->mq_map = NULL;
2205
2206 kfree(q->queue_hw_ctx);
2207
2208 /*
2209 * release .mq_kobj and sw queue's kobject now because
2210 * both share lifetime with request queue.
2211 */
2212 blk_mq_sysfs_deinit(q);
2213
2214 free_percpu(q->queue_ctx);
2215 }
2216
2217 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2218 {
2219 struct request_queue *uninit_q, *q;
2220
2221 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2222 if (!uninit_q)
2223 return ERR_PTR(-ENOMEM);
2224
2225 q = blk_mq_init_allocated_queue(set, uninit_q);
2226 if (IS_ERR(q))
2227 blk_cleanup_queue(uninit_q);
2228
2229 return q;
2230 }
2231 EXPORT_SYMBOL(blk_mq_init_queue);
2232
2233 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2234 {
2235 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2236
2237 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2238 __alignof__(struct blk_mq_hw_ctx)) !=
2239 sizeof(struct blk_mq_hw_ctx));
2240
2241 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2242 hw_ctx_size += sizeof(struct srcu_struct);
2243
2244 return hw_ctx_size;
2245 }
2246
2247 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2248 struct request_queue *q)
2249 {
2250 int i, j;
2251 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2252
2253 blk_mq_sysfs_unregister(q);
2254 for (i = 0; i < set->nr_hw_queues; i++) {
2255 int node;
2256
2257 if (hctxs[i])
2258 continue;
2259
2260 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2261 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2262 GFP_KERNEL, node);
2263 if (!hctxs[i])
2264 break;
2265
2266 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2267 node)) {
2268 kfree(hctxs[i]);
2269 hctxs[i] = NULL;
2270 break;
2271 }
2272
2273 atomic_set(&hctxs[i]->nr_active, 0);
2274 hctxs[i]->numa_node = node;
2275 hctxs[i]->queue_num = i;
2276
2277 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2278 free_cpumask_var(hctxs[i]->cpumask);
2279 kfree(hctxs[i]);
2280 hctxs[i] = NULL;
2281 break;
2282 }
2283 blk_mq_hctx_kobj_init(hctxs[i]);
2284 }
2285 for (j = i; j < q->nr_hw_queues; j++) {
2286 struct blk_mq_hw_ctx *hctx = hctxs[j];
2287
2288 if (hctx) {
2289 if (hctx->tags)
2290 blk_mq_free_map_and_requests(set, j);
2291 blk_mq_exit_hctx(q, set, hctx, j);
2292 kobject_put(&hctx->kobj);
2293 hctxs[j] = NULL;
2294
2295 }
2296 }
2297 q->nr_hw_queues = i;
2298 blk_mq_sysfs_register(q);
2299 }
2300
2301 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2302 struct request_queue *q)
2303 {
2304 /* mark the queue as mq asap */
2305 q->mq_ops = set->ops;
2306
2307 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2308 blk_mq_poll_stats_bkt,
2309 BLK_MQ_POLL_STATS_BKTS, q);
2310 if (!q->poll_cb)
2311 goto err_exit;
2312
2313 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2314 if (!q->queue_ctx)
2315 goto err_exit;
2316
2317 /* init q->mq_kobj and sw queues' kobjects */
2318 blk_mq_sysfs_init(q);
2319
2320 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2321 GFP_KERNEL, set->numa_node);
2322 if (!q->queue_hw_ctx)
2323 goto err_percpu;
2324
2325 q->mq_map = set->mq_map;
2326
2327 blk_mq_realloc_hw_ctxs(set, q);
2328 if (!q->nr_hw_queues)
2329 goto err_hctxs;
2330
2331 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2332 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2333
2334 q->nr_queues = nr_cpu_ids;
2335
2336 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2337
2338 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2339 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2340
2341 q->sg_reserved_size = INT_MAX;
2342
2343 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2344 INIT_LIST_HEAD(&q->requeue_list);
2345 spin_lock_init(&q->requeue_lock);
2346
2347 blk_queue_make_request(q, blk_mq_make_request);
2348
2349 /*
2350 * Do this after blk_queue_make_request() overrides it...
2351 */
2352 q->nr_requests = set->queue_depth;
2353
2354 /*
2355 * Default to classic polling
2356 */
2357 q->poll_nsec = -1;
2358
2359 if (set->ops->complete)
2360 blk_queue_softirq_done(q, set->ops->complete);
2361
2362 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2363 blk_mq_add_queue_tag_set(set, q);
2364 blk_mq_map_swqueue(q);
2365
2366 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2367 int ret;
2368
2369 ret = blk_mq_sched_init(q);
2370 if (ret)
2371 return ERR_PTR(ret);
2372 }
2373
2374 return q;
2375
2376 err_hctxs:
2377 kfree(q->queue_hw_ctx);
2378 err_percpu:
2379 free_percpu(q->queue_ctx);
2380 err_exit:
2381 q->mq_ops = NULL;
2382 return ERR_PTR(-ENOMEM);
2383 }
2384 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2385
2386 void blk_mq_free_queue(struct request_queue *q)
2387 {
2388 struct blk_mq_tag_set *set = q->tag_set;
2389
2390 blk_mq_del_queue_tag_set(q);
2391 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2392 }
2393
2394 /* Basically redo blk_mq_init_queue with queue frozen */
2395 static void blk_mq_queue_reinit(struct request_queue *q)
2396 {
2397 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2398
2399 blk_mq_debugfs_unregister_hctxs(q);
2400 blk_mq_sysfs_unregister(q);
2401
2402 /*
2403 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2404 * we should change hctx numa_node according to new topology (this
2405 * involves free and re-allocate memory, worthy doing?)
2406 */
2407
2408 blk_mq_map_swqueue(q);
2409
2410 blk_mq_sysfs_register(q);
2411 blk_mq_debugfs_register_hctxs(q);
2412 }
2413
2414 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2415 {
2416 int i;
2417
2418 for (i = 0; i < set->nr_hw_queues; i++)
2419 if (!__blk_mq_alloc_rq_map(set, i))
2420 goto out_unwind;
2421
2422 return 0;
2423
2424 out_unwind:
2425 while (--i >= 0)
2426 blk_mq_free_rq_map(set->tags[i]);
2427
2428 return -ENOMEM;
2429 }
2430
2431 /*
2432 * Allocate the request maps associated with this tag_set. Note that this
2433 * may reduce the depth asked for, if memory is tight. set->queue_depth
2434 * will be updated to reflect the allocated depth.
2435 */
2436 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2437 {
2438 unsigned int depth;
2439 int err;
2440
2441 depth = set->queue_depth;
2442 do {
2443 err = __blk_mq_alloc_rq_maps(set);
2444 if (!err)
2445 break;
2446
2447 set->queue_depth >>= 1;
2448 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2449 err = -ENOMEM;
2450 break;
2451 }
2452 } while (set->queue_depth);
2453
2454 if (!set->queue_depth || err) {
2455 pr_err("blk-mq: failed to allocate request map\n");
2456 return -ENOMEM;
2457 }
2458
2459 if (depth != set->queue_depth)
2460 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2461 depth, set->queue_depth);
2462
2463 return 0;
2464 }
2465
2466 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2467 {
2468 if (set->ops->map_queues)
2469 return set->ops->map_queues(set);
2470 else
2471 return blk_mq_map_queues(set);
2472 }
2473
2474 /*
2475 * Alloc a tag set to be associated with one or more request queues.
2476 * May fail with EINVAL for various error conditions. May adjust the
2477 * requested depth down, if if it too large. In that case, the set
2478 * value will be stored in set->queue_depth.
2479 */
2480 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2481 {
2482 int ret;
2483
2484 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2485
2486 if (!set->nr_hw_queues)
2487 return -EINVAL;
2488 if (!set->queue_depth)
2489 return -EINVAL;
2490 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2491 return -EINVAL;
2492
2493 if (!set->ops->queue_rq)
2494 return -EINVAL;
2495
2496 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2497 pr_info("blk-mq: reduced tag depth to %u\n",
2498 BLK_MQ_MAX_DEPTH);
2499 set->queue_depth = BLK_MQ_MAX_DEPTH;
2500 }
2501
2502 /*
2503 * If a crashdump is active, then we are potentially in a very
2504 * memory constrained environment. Limit us to 1 queue and
2505 * 64 tags to prevent using too much memory.
2506 */
2507 if (is_kdump_kernel()) {
2508 set->nr_hw_queues = 1;
2509 set->queue_depth = min(64U, set->queue_depth);
2510 }
2511 /*
2512 * There is no use for more h/w queues than cpus.
2513 */
2514 if (set->nr_hw_queues > nr_cpu_ids)
2515 set->nr_hw_queues = nr_cpu_ids;
2516
2517 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2518 GFP_KERNEL, set->numa_node);
2519 if (!set->tags)
2520 return -ENOMEM;
2521
2522 ret = -ENOMEM;
2523 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2524 GFP_KERNEL, set->numa_node);
2525 if (!set->mq_map)
2526 goto out_free_tags;
2527
2528 ret = blk_mq_update_queue_map(set);
2529 if (ret)
2530 goto out_free_mq_map;
2531
2532 ret = blk_mq_alloc_rq_maps(set);
2533 if (ret)
2534 goto out_free_mq_map;
2535
2536 mutex_init(&set->tag_list_lock);
2537 INIT_LIST_HEAD(&set->tag_list);
2538
2539 return 0;
2540
2541 out_free_mq_map:
2542 kfree(set->mq_map);
2543 set->mq_map = NULL;
2544 out_free_tags:
2545 kfree(set->tags);
2546 set->tags = NULL;
2547 return ret;
2548 }
2549 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2550
2551 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2552 {
2553 int i;
2554
2555 for (i = 0; i < nr_cpu_ids; i++)
2556 blk_mq_free_map_and_requests(set, i);
2557
2558 kfree(set->mq_map);
2559 set->mq_map = NULL;
2560
2561 kfree(set->tags);
2562 set->tags = NULL;
2563 }
2564 EXPORT_SYMBOL(blk_mq_free_tag_set);
2565
2566 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2567 {
2568 struct blk_mq_tag_set *set = q->tag_set;
2569 struct blk_mq_hw_ctx *hctx;
2570 int i, ret;
2571
2572 if (!set)
2573 return -EINVAL;
2574
2575 blk_mq_freeze_queue(q);
2576
2577 ret = 0;
2578 queue_for_each_hw_ctx(q, hctx, i) {
2579 if (!hctx->tags)
2580 continue;
2581 /*
2582 * If we're using an MQ scheduler, just update the scheduler
2583 * queue depth. This is similar to what the old code would do.
2584 */
2585 if (!hctx->sched_tags) {
2586 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2587 min(nr, set->queue_depth),
2588 false);
2589 } else {
2590 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2591 nr, true);
2592 }
2593 if (ret)
2594 break;
2595 }
2596
2597 if (!ret)
2598 q->nr_requests = nr;
2599
2600 blk_mq_unfreeze_queue(q);
2601
2602 return ret;
2603 }
2604
2605 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2606 int nr_hw_queues)
2607 {
2608 struct request_queue *q;
2609
2610 lockdep_assert_held(&set->tag_list_lock);
2611
2612 if (nr_hw_queues > nr_cpu_ids)
2613 nr_hw_queues = nr_cpu_ids;
2614 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2615 return;
2616
2617 list_for_each_entry(q, &set->tag_list, tag_set_list)
2618 blk_mq_freeze_queue(q);
2619
2620 set->nr_hw_queues = nr_hw_queues;
2621 blk_mq_update_queue_map(set);
2622 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2623 blk_mq_realloc_hw_ctxs(set, q);
2624 blk_mq_queue_reinit(q);
2625 }
2626
2627 list_for_each_entry(q, &set->tag_list, tag_set_list)
2628 blk_mq_unfreeze_queue(q);
2629 }
2630
2631 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2632 {
2633 mutex_lock(&set->tag_list_lock);
2634 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2635 mutex_unlock(&set->tag_list_lock);
2636 }
2637 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2638
2639 /* Enable polling stats and return whether they were already enabled. */
2640 static bool blk_poll_stats_enable(struct request_queue *q)
2641 {
2642 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2643 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2644 return true;
2645 blk_stat_add_callback(q, q->poll_cb);
2646 return false;
2647 }
2648
2649 static void blk_mq_poll_stats_start(struct request_queue *q)
2650 {
2651 /*
2652 * We don't arm the callback if polling stats are not enabled or the
2653 * callback is already active.
2654 */
2655 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2656 blk_stat_is_active(q->poll_cb))
2657 return;
2658
2659 blk_stat_activate_msecs(q->poll_cb, 100);
2660 }
2661
2662 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2663 {
2664 struct request_queue *q = cb->data;
2665 int bucket;
2666
2667 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2668 if (cb->stat[bucket].nr_samples)
2669 q->poll_stat[bucket] = cb->stat[bucket];
2670 }
2671 }
2672
2673 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2674 struct blk_mq_hw_ctx *hctx,
2675 struct request *rq)
2676 {
2677 unsigned long ret = 0;
2678 int bucket;
2679
2680 /*
2681 * If stats collection isn't on, don't sleep but turn it on for
2682 * future users
2683 */
2684 if (!blk_poll_stats_enable(q))
2685 return 0;
2686
2687 /*
2688 * As an optimistic guess, use half of the mean service time
2689 * for this type of request. We can (and should) make this smarter.
2690 * For instance, if the completion latencies are tight, we can
2691 * get closer than just half the mean. This is especially
2692 * important on devices where the completion latencies are longer
2693 * than ~10 usec. We do use the stats for the relevant IO size
2694 * if available which does lead to better estimates.
2695 */
2696 bucket = blk_mq_poll_stats_bkt(rq);
2697 if (bucket < 0)
2698 return ret;
2699
2700 if (q->poll_stat[bucket].nr_samples)
2701 ret = (q->poll_stat[bucket].mean + 1) / 2;
2702
2703 return ret;
2704 }
2705
2706 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2707 struct blk_mq_hw_ctx *hctx,
2708 struct request *rq)
2709 {
2710 struct hrtimer_sleeper hs;
2711 enum hrtimer_mode mode;
2712 unsigned int nsecs;
2713 ktime_t kt;
2714
2715 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2716 return false;
2717
2718 /*
2719 * poll_nsec can be:
2720 *
2721 * -1: don't ever hybrid sleep
2722 * 0: use half of prev avg
2723 * >0: use this specific value
2724 */
2725 if (q->poll_nsec == -1)
2726 return false;
2727 else if (q->poll_nsec > 0)
2728 nsecs = q->poll_nsec;
2729 else
2730 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2731
2732 if (!nsecs)
2733 return false;
2734
2735 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2736
2737 /*
2738 * This will be replaced with the stats tracking code, using
2739 * 'avg_completion_time / 2' as the pre-sleep target.
2740 */
2741 kt = nsecs;
2742
2743 mode = HRTIMER_MODE_REL;
2744 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2745 hrtimer_set_expires(&hs.timer, kt);
2746
2747 hrtimer_init_sleeper(&hs, current);
2748 do {
2749 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2750 break;
2751 set_current_state(TASK_UNINTERRUPTIBLE);
2752 hrtimer_start_expires(&hs.timer, mode);
2753 if (hs.task)
2754 io_schedule();
2755 hrtimer_cancel(&hs.timer);
2756 mode = HRTIMER_MODE_ABS;
2757 } while (hs.task && !signal_pending(current));
2758
2759 __set_current_state(TASK_RUNNING);
2760 destroy_hrtimer_on_stack(&hs.timer);
2761 return true;
2762 }
2763
2764 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2765 {
2766 struct request_queue *q = hctx->queue;
2767 long state;
2768
2769 /*
2770 * If we sleep, have the caller restart the poll loop to reset
2771 * the state. Like for the other success return cases, the
2772 * caller is responsible for checking if the IO completed. If
2773 * the IO isn't complete, we'll get called again and will go
2774 * straight to the busy poll loop.
2775 */
2776 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2777 return true;
2778
2779 hctx->poll_considered++;
2780
2781 state = current->state;
2782 while (!need_resched()) {
2783 int ret;
2784
2785 hctx->poll_invoked++;
2786
2787 ret = q->mq_ops->poll(hctx, rq->tag);
2788 if (ret > 0) {
2789 hctx->poll_success++;
2790 set_current_state(TASK_RUNNING);
2791 return true;
2792 }
2793
2794 if (signal_pending_state(state, current))
2795 set_current_state(TASK_RUNNING);
2796
2797 if (current->state == TASK_RUNNING)
2798 return true;
2799 if (ret < 0)
2800 break;
2801 cpu_relax();
2802 }
2803
2804 return false;
2805 }
2806
2807 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2808 {
2809 struct blk_mq_hw_ctx *hctx;
2810 struct blk_plug *plug;
2811 struct request *rq;
2812
2813 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2814 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2815 return false;
2816
2817 plug = current->plug;
2818 if (plug)
2819 blk_flush_plug_list(plug, false);
2820
2821 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2822 if (!blk_qc_t_is_internal(cookie))
2823 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2824 else {
2825 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2826 /*
2827 * With scheduling, if the request has completed, we'll
2828 * get a NULL return here, as we clear the sched tag when
2829 * that happens. The request still remains valid, like always,
2830 * so we should be safe with just the NULL check.
2831 */
2832 if (!rq)
2833 return false;
2834 }
2835
2836 return __blk_mq_poll(hctx, rq);
2837 }
2838 EXPORT_SYMBOL_GPL(blk_mq_poll);
2839
2840 static int __init blk_mq_init(void)
2841 {
2842 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2843 blk_mq_hctx_notify_dead);
2844 return 0;
2845 }
2846 subsys_initcall(blk_mq_init);