]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-settings.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / block / blk-settings.c
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14
15 #include "blk.h"
16 #include "blk-wbt.h"
17
18 unsigned long blk_max_low_pfn;
19 EXPORT_SYMBOL(blk_max_low_pfn);
20
21 unsigned long blk_max_pfn;
22
23 /**
24 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @q: queue
26 * @pfn: prepare_request function
27 *
28 * It's possible for a queue to register a prepare_request callback which
29 * is invoked before the request is handed to the request_fn. The goal of
30 * the function is to prepare a request for I/O, it can be used to build a
31 * cdb from the request data for instance.
32 *
33 */
34 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35 {
36 q->prep_rq_fn = pfn;
37 }
38 EXPORT_SYMBOL(blk_queue_prep_rq);
39
40 /**
41 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @q: queue
43 * @ufn: unprepare_request function
44 *
45 * It's possible for a queue to register an unprepare_request callback
46 * which is invoked before the request is finally completed. The goal
47 * of the function is to deallocate any data that was allocated in the
48 * prepare_request callback.
49 *
50 */
51 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52 {
53 q->unprep_rq_fn = ufn;
54 }
55 EXPORT_SYMBOL(blk_queue_unprep_rq);
56
57 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
58 {
59 q->softirq_done_fn = fn;
60 }
61 EXPORT_SYMBOL(blk_queue_softirq_done);
62
63 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
64 {
65 q->rq_timeout = timeout;
66 }
67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
68
69 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
70 {
71 q->rq_timed_out_fn = fn;
72 }
73 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
74
75 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
76 {
77 q->lld_busy_fn = fn;
78 }
79 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
80
81 /**
82 * blk_set_default_limits - reset limits to default values
83 * @lim: the queue_limits structure to reset
84 *
85 * Description:
86 * Returns a queue_limit struct to its default state.
87 */
88 void blk_set_default_limits(struct queue_limits *lim)
89 {
90 lim->max_segments = BLK_MAX_SEGMENTS;
91 lim->max_discard_segments = 1;
92 lim->max_integrity_segments = 0;
93 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
94 lim->virt_boundary_mask = 0;
95 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
96 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
97 lim->max_dev_sectors = 0;
98 lim->chunk_sectors = 0;
99 lim->max_write_same_sectors = 0;
100 lim->max_write_zeroes_sectors = 0;
101 lim->max_discard_sectors = 0;
102 lim->max_hw_discard_sectors = 0;
103 lim->discard_granularity = 0;
104 lim->discard_alignment = 0;
105 lim->discard_misaligned = 0;
106 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
107 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
108 lim->alignment_offset = 0;
109 lim->io_opt = 0;
110 lim->misaligned = 0;
111 lim->cluster = 1;
112 lim->zoned = BLK_ZONED_NONE;
113 }
114 EXPORT_SYMBOL(blk_set_default_limits);
115
116 /**
117 * blk_set_stacking_limits - set default limits for stacking devices
118 * @lim: the queue_limits structure to reset
119 *
120 * Description:
121 * Returns a queue_limit struct to its default state. Should be used
122 * by stacking drivers like DM that have no internal limits.
123 */
124 void blk_set_stacking_limits(struct queue_limits *lim)
125 {
126 blk_set_default_limits(lim);
127
128 /* Inherit limits from component devices */
129 lim->max_segments = USHRT_MAX;
130 lim->max_discard_segments = 1;
131 lim->max_hw_sectors = UINT_MAX;
132 lim->max_segment_size = UINT_MAX;
133 lim->max_sectors = UINT_MAX;
134 lim->max_dev_sectors = UINT_MAX;
135 lim->max_write_same_sectors = UINT_MAX;
136 lim->max_write_zeroes_sectors = UINT_MAX;
137 }
138 EXPORT_SYMBOL(blk_set_stacking_limits);
139
140 /**
141 * blk_queue_make_request - define an alternate make_request function for a device
142 * @q: the request queue for the device to be affected
143 * @mfn: the alternate make_request function
144 *
145 * Description:
146 * The normal way for &struct bios to be passed to a device
147 * driver is for them to be collected into requests on a request
148 * queue, and then to allow the device driver to select requests
149 * off that queue when it is ready. This works well for many block
150 * devices. However some block devices (typically virtual devices
151 * such as md or lvm) do not benefit from the processing on the
152 * request queue, and are served best by having the requests passed
153 * directly to them. This can be achieved by providing a function
154 * to blk_queue_make_request().
155 *
156 * Caveat:
157 * The driver that does this *must* be able to deal appropriately
158 * with buffers in "highmemory". This can be accomplished by either calling
159 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
160 * blk_queue_bounce() to create a buffer in normal memory.
161 **/
162 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
163 {
164 /*
165 * set defaults
166 */
167 q->nr_requests = BLKDEV_MAX_RQ;
168
169 q->make_request_fn = mfn;
170 blk_queue_dma_alignment(q, 511);
171 blk_queue_congestion_threshold(q);
172 q->nr_batching = BLK_BATCH_REQ;
173
174 blk_set_default_limits(&q->limits);
175 }
176 EXPORT_SYMBOL(blk_queue_make_request);
177
178 /**
179 * blk_queue_bounce_limit - set bounce buffer limit for queue
180 * @q: the request queue for the device
181 * @max_addr: the maximum address the device can handle
182 *
183 * Description:
184 * Different hardware can have different requirements as to what pages
185 * it can do I/O directly to. A low level driver can call
186 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
187 * buffers for doing I/O to pages residing above @max_addr.
188 **/
189 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
190 {
191 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
192 int dma = 0;
193
194 q->bounce_gfp = GFP_NOIO;
195 #if BITS_PER_LONG == 64
196 /*
197 * Assume anything <= 4GB can be handled by IOMMU. Actually
198 * some IOMMUs can handle everything, but I don't know of a
199 * way to test this here.
200 */
201 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
202 dma = 1;
203 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
204 #else
205 if (b_pfn < blk_max_low_pfn)
206 dma = 1;
207 q->limits.bounce_pfn = b_pfn;
208 #endif
209 if (dma) {
210 init_emergency_isa_pool();
211 q->bounce_gfp = GFP_NOIO | GFP_DMA;
212 q->limits.bounce_pfn = b_pfn;
213 }
214 }
215 EXPORT_SYMBOL(blk_queue_bounce_limit);
216
217 /**
218 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
219 * @q: the request queue for the device
220 * @max_hw_sectors: max hardware sectors in the usual 512b unit
221 *
222 * Description:
223 * Enables a low level driver to set a hard upper limit,
224 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
225 * the device driver based upon the capabilities of the I/O
226 * controller.
227 *
228 * max_dev_sectors is a hard limit imposed by the storage device for
229 * READ/WRITE requests. It is set by the disk driver.
230 *
231 * max_sectors is a soft limit imposed by the block layer for
232 * filesystem type requests. This value can be overridden on a
233 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
234 * The soft limit can not exceed max_hw_sectors.
235 **/
236 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
237 {
238 struct queue_limits *limits = &q->limits;
239 unsigned int max_sectors;
240
241 if ((max_hw_sectors << 9) < PAGE_SIZE) {
242 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
243 printk(KERN_INFO "%s: set to minimum %d\n",
244 __func__, max_hw_sectors);
245 }
246
247 limits->max_hw_sectors = max_hw_sectors;
248 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
249 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
250 limits->max_sectors = max_sectors;
251 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
252 }
253 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
254
255 /**
256 * blk_queue_chunk_sectors - set size of the chunk for this queue
257 * @q: the request queue for the device
258 * @chunk_sectors: chunk sectors in the usual 512b unit
259 *
260 * Description:
261 * If a driver doesn't want IOs to cross a given chunk size, it can set
262 * this limit and prevent merging across chunks. Note that the chunk size
263 * must currently be a power-of-2 in sectors. Also note that the block
264 * layer must accept a page worth of data at any offset. So if the
265 * crossing of chunks is a hard limitation in the driver, it must still be
266 * prepared to split single page bios.
267 **/
268 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
269 {
270 BUG_ON(!is_power_of_2(chunk_sectors));
271 q->limits.chunk_sectors = chunk_sectors;
272 }
273 EXPORT_SYMBOL(blk_queue_chunk_sectors);
274
275 /**
276 * blk_queue_max_discard_sectors - set max sectors for a single discard
277 * @q: the request queue for the device
278 * @max_discard_sectors: maximum number of sectors to discard
279 **/
280 void blk_queue_max_discard_sectors(struct request_queue *q,
281 unsigned int max_discard_sectors)
282 {
283 q->limits.max_hw_discard_sectors = max_discard_sectors;
284 q->limits.max_discard_sectors = max_discard_sectors;
285 }
286 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
287
288 /**
289 * blk_queue_max_write_same_sectors - set max sectors for a single write same
290 * @q: the request queue for the device
291 * @max_write_same_sectors: maximum number of sectors to write per command
292 **/
293 void blk_queue_max_write_same_sectors(struct request_queue *q,
294 unsigned int max_write_same_sectors)
295 {
296 q->limits.max_write_same_sectors = max_write_same_sectors;
297 }
298 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
299
300 /**
301 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
302 * write zeroes
303 * @q: the request queue for the device
304 * @max_write_zeroes_sectors: maximum number of sectors to write per command
305 **/
306 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
307 unsigned int max_write_zeroes_sectors)
308 {
309 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
310 }
311 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
312
313 /**
314 * blk_queue_max_segments - set max hw segments for a request for this queue
315 * @q: the request queue for the device
316 * @max_segments: max number of segments
317 *
318 * Description:
319 * Enables a low level driver to set an upper limit on the number of
320 * hw data segments in a request.
321 **/
322 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
323 {
324 if (!max_segments) {
325 max_segments = 1;
326 printk(KERN_INFO "%s: set to minimum %d\n",
327 __func__, max_segments);
328 }
329
330 q->limits.max_segments = max_segments;
331 }
332 EXPORT_SYMBOL(blk_queue_max_segments);
333
334 /**
335 * blk_queue_max_discard_segments - set max segments for discard requests
336 * @q: the request queue for the device
337 * @max_segments: max number of segments
338 *
339 * Description:
340 * Enables a low level driver to set an upper limit on the number of
341 * segments in a discard request.
342 **/
343 void blk_queue_max_discard_segments(struct request_queue *q,
344 unsigned short max_segments)
345 {
346 q->limits.max_discard_segments = max_segments;
347 }
348 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
349
350 /**
351 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
352 * @q: the request queue for the device
353 * @max_size: max size of segment in bytes
354 *
355 * Description:
356 * Enables a low level driver to set an upper limit on the size of a
357 * coalesced segment
358 **/
359 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
360 {
361 if (max_size < PAGE_SIZE) {
362 max_size = PAGE_SIZE;
363 printk(KERN_INFO "%s: set to minimum %d\n",
364 __func__, max_size);
365 }
366
367 q->limits.max_segment_size = max_size;
368 }
369 EXPORT_SYMBOL(blk_queue_max_segment_size);
370
371 /**
372 * blk_queue_logical_block_size - set logical block size for the queue
373 * @q: the request queue for the device
374 * @size: the logical block size, in bytes
375 *
376 * Description:
377 * This should be set to the lowest possible block size that the
378 * storage device can address. The default of 512 covers most
379 * hardware.
380 **/
381 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
382 {
383 q->limits.logical_block_size = size;
384
385 if (q->limits.physical_block_size < size)
386 q->limits.physical_block_size = size;
387
388 if (q->limits.io_min < q->limits.physical_block_size)
389 q->limits.io_min = q->limits.physical_block_size;
390 }
391 EXPORT_SYMBOL(blk_queue_logical_block_size);
392
393 /**
394 * blk_queue_physical_block_size - set physical block size for the queue
395 * @q: the request queue for the device
396 * @size: the physical block size, in bytes
397 *
398 * Description:
399 * This should be set to the lowest possible sector size that the
400 * hardware can operate on without reverting to read-modify-write
401 * operations.
402 */
403 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
404 {
405 q->limits.physical_block_size = size;
406
407 if (q->limits.physical_block_size < q->limits.logical_block_size)
408 q->limits.physical_block_size = q->limits.logical_block_size;
409
410 if (q->limits.io_min < q->limits.physical_block_size)
411 q->limits.io_min = q->limits.physical_block_size;
412 }
413 EXPORT_SYMBOL(blk_queue_physical_block_size);
414
415 /**
416 * blk_queue_alignment_offset - set physical block alignment offset
417 * @q: the request queue for the device
418 * @offset: alignment offset in bytes
419 *
420 * Description:
421 * Some devices are naturally misaligned to compensate for things like
422 * the legacy DOS partition table 63-sector offset. Low-level drivers
423 * should call this function for devices whose first sector is not
424 * naturally aligned.
425 */
426 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
427 {
428 q->limits.alignment_offset =
429 offset & (q->limits.physical_block_size - 1);
430 q->limits.misaligned = 0;
431 }
432 EXPORT_SYMBOL(blk_queue_alignment_offset);
433
434 /**
435 * blk_limits_io_min - set minimum request size for a device
436 * @limits: the queue limits
437 * @min: smallest I/O size in bytes
438 *
439 * Description:
440 * Some devices have an internal block size bigger than the reported
441 * hardware sector size. This function can be used to signal the
442 * smallest I/O the device can perform without incurring a performance
443 * penalty.
444 */
445 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
446 {
447 limits->io_min = min;
448
449 if (limits->io_min < limits->logical_block_size)
450 limits->io_min = limits->logical_block_size;
451
452 if (limits->io_min < limits->physical_block_size)
453 limits->io_min = limits->physical_block_size;
454 }
455 EXPORT_SYMBOL(blk_limits_io_min);
456
457 /**
458 * blk_queue_io_min - set minimum request size for the queue
459 * @q: the request queue for the device
460 * @min: smallest I/O size in bytes
461 *
462 * Description:
463 * Storage devices may report a granularity or preferred minimum I/O
464 * size which is the smallest request the device can perform without
465 * incurring a performance penalty. For disk drives this is often the
466 * physical block size. For RAID arrays it is often the stripe chunk
467 * size. A properly aligned multiple of minimum_io_size is the
468 * preferred request size for workloads where a high number of I/O
469 * operations is desired.
470 */
471 void blk_queue_io_min(struct request_queue *q, unsigned int min)
472 {
473 blk_limits_io_min(&q->limits, min);
474 }
475 EXPORT_SYMBOL(blk_queue_io_min);
476
477 /**
478 * blk_limits_io_opt - set optimal request size for a device
479 * @limits: the queue limits
480 * @opt: smallest I/O size in bytes
481 *
482 * Description:
483 * Storage devices may report an optimal I/O size, which is the
484 * device's preferred unit for sustained I/O. This is rarely reported
485 * for disk drives. For RAID arrays it is usually the stripe width or
486 * the internal track size. A properly aligned multiple of
487 * optimal_io_size is the preferred request size for workloads where
488 * sustained throughput is desired.
489 */
490 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
491 {
492 limits->io_opt = opt;
493 }
494 EXPORT_SYMBOL(blk_limits_io_opt);
495
496 /**
497 * blk_queue_io_opt - set optimal request size for the queue
498 * @q: the request queue for the device
499 * @opt: optimal request size in bytes
500 *
501 * Description:
502 * Storage devices may report an optimal I/O size, which is the
503 * device's preferred unit for sustained I/O. This is rarely reported
504 * for disk drives. For RAID arrays it is usually the stripe width or
505 * the internal track size. A properly aligned multiple of
506 * optimal_io_size is the preferred request size for workloads where
507 * sustained throughput is desired.
508 */
509 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
510 {
511 blk_limits_io_opt(&q->limits, opt);
512 }
513 EXPORT_SYMBOL(blk_queue_io_opt);
514
515 /**
516 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
517 * @t: the stacking driver (top)
518 * @b: the underlying device (bottom)
519 **/
520 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
521 {
522 blk_stack_limits(&t->limits, &b->limits, 0);
523 }
524 EXPORT_SYMBOL(blk_queue_stack_limits);
525
526 /**
527 * blk_stack_limits - adjust queue_limits for stacked devices
528 * @t: the stacking driver limits (top device)
529 * @b: the underlying queue limits (bottom, component device)
530 * @start: first data sector within component device
531 *
532 * Description:
533 * This function is used by stacking drivers like MD and DM to ensure
534 * that all component devices have compatible block sizes and
535 * alignments. The stacking driver must provide a queue_limits
536 * struct (top) and then iteratively call the stacking function for
537 * all component (bottom) devices. The stacking function will
538 * attempt to combine the values and ensure proper alignment.
539 *
540 * Returns 0 if the top and bottom queue_limits are compatible. The
541 * top device's block sizes and alignment offsets may be adjusted to
542 * ensure alignment with the bottom device. If no compatible sizes
543 * and alignments exist, -1 is returned and the resulting top
544 * queue_limits will have the misaligned flag set to indicate that
545 * the alignment_offset is undefined.
546 */
547 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
548 sector_t start)
549 {
550 unsigned int top, bottom, alignment, ret = 0;
551
552 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
553 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
554 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
555 t->max_write_same_sectors = min(t->max_write_same_sectors,
556 b->max_write_same_sectors);
557 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
558 b->max_write_zeroes_sectors);
559 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
560
561 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
562 b->seg_boundary_mask);
563 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
564 b->virt_boundary_mask);
565
566 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
567 t->max_discard_segments = min_not_zero(t->max_discard_segments,
568 b->max_discard_segments);
569 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
570 b->max_integrity_segments);
571
572 t->max_segment_size = min_not_zero(t->max_segment_size,
573 b->max_segment_size);
574
575 t->misaligned |= b->misaligned;
576
577 alignment = queue_limit_alignment_offset(b, start);
578
579 /* Bottom device has different alignment. Check that it is
580 * compatible with the current top alignment.
581 */
582 if (t->alignment_offset != alignment) {
583
584 top = max(t->physical_block_size, t->io_min)
585 + t->alignment_offset;
586 bottom = max(b->physical_block_size, b->io_min) + alignment;
587
588 /* Verify that top and bottom intervals line up */
589 if (max(top, bottom) % min(top, bottom)) {
590 t->misaligned = 1;
591 ret = -1;
592 }
593 }
594
595 t->logical_block_size = max(t->logical_block_size,
596 b->logical_block_size);
597
598 t->physical_block_size = max(t->physical_block_size,
599 b->physical_block_size);
600
601 t->io_min = max(t->io_min, b->io_min);
602 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
603
604 t->cluster &= b->cluster;
605
606 /* Physical block size a multiple of the logical block size? */
607 if (t->physical_block_size & (t->logical_block_size - 1)) {
608 t->physical_block_size = t->logical_block_size;
609 t->misaligned = 1;
610 ret = -1;
611 }
612
613 /* Minimum I/O a multiple of the physical block size? */
614 if (t->io_min & (t->physical_block_size - 1)) {
615 t->io_min = t->physical_block_size;
616 t->misaligned = 1;
617 ret = -1;
618 }
619
620 /* Optimal I/O a multiple of the physical block size? */
621 if (t->io_opt & (t->physical_block_size - 1)) {
622 t->io_opt = 0;
623 t->misaligned = 1;
624 ret = -1;
625 }
626
627 t->raid_partial_stripes_expensive =
628 max(t->raid_partial_stripes_expensive,
629 b->raid_partial_stripes_expensive);
630
631 /* Find lowest common alignment_offset */
632 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
633 % max(t->physical_block_size, t->io_min);
634
635 /* Verify that new alignment_offset is on a logical block boundary */
636 if (t->alignment_offset & (t->logical_block_size - 1)) {
637 t->misaligned = 1;
638 ret = -1;
639 }
640
641 /* Discard alignment and granularity */
642 if (b->discard_granularity) {
643 alignment = queue_limit_discard_alignment(b, start);
644
645 if (t->discard_granularity != 0 &&
646 t->discard_alignment != alignment) {
647 top = t->discard_granularity + t->discard_alignment;
648 bottom = b->discard_granularity + alignment;
649
650 /* Verify that top and bottom intervals line up */
651 if ((max(top, bottom) % min(top, bottom)) != 0)
652 t->discard_misaligned = 1;
653 }
654
655 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
656 b->max_discard_sectors);
657 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
658 b->max_hw_discard_sectors);
659 t->discard_granularity = max(t->discard_granularity,
660 b->discard_granularity);
661 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
662 t->discard_granularity;
663 }
664
665 if (b->chunk_sectors)
666 t->chunk_sectors = min_not_zero(t->chunk_sectors,
667 b->chunk_sectors);
668
669 return ret;
670 }
671 EXPORT_SYMBOL(blk_stack_limits);
672
673 /**
674 * bdev_stack_limits - adjust queue limits for stacked drivers
675 * @t: the stacking driver limits (top device)
676 * @bdev: the component block_device (bottom)
677 * @start: first data sector within component device
678 *
679 * Description:
680 * Merges queue limits for a top device and a block_device. Returns
681 * 0 if alignment didn't change. Returns -1 if adding the bottom
682 * device caused misalignment.
683 */
684 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
685 sector_t start)
686 {
687 struct request_queue *bq = bdev_get_queue(bdev);
688
689 start += get_start_sect(bdev);
690
691 return blk_stack_limits(t, &bq->limits, start);
692 }
693 EXPORT_SYMBOL(bdev_stack_limits);
694
695 /**
696 * disk_stack_limits - adjust queue limits for stacked drivers
697 * @disk: MD/DM gendisk (top)
698 * @bdev: the underlying block device (bottom)
699 * @offset: offset to beginning of data within component device
700 *
701 * Description:
702 * Merges the limits for a top level gendisk and a bottom level
703 * block_device.
704 */
705 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
706 sector_t offset)
707 {
708 struct request_queue *t = disk->queue;
709
710 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
711 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
712
713 disk_name(disk, 0, top);
714 bdevname(bdev, bottom);
715
716 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
717 top, bottom);
718 }
719 }
720 EXPORT_SYMBOL(disk_stack_limits);
721
722 /**
723 * blk_queue_dma_pad - set pad mask
724 * @q: the request queue for the device
725 * @mask: pad mask
726 *
727 * Set dma pad mask.
728 *
729 * Appending pad buffer to a request modifies the last entry of a
730 * scatter list such that it includes the pad buffer.
731 **/
732 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
733 {
734 q->dma_pad_mask = mask;
735 }
736 EXPORT_SYMBOL(blk_queue_dma_pad);
737
738 /**
739 * blk_queue_update_dma_pad - update pad mask
740 * @q: the request queue for the device
741 * @mask: pad mask
742 *
743 * Update dma pad mask.
744 *
745 * Appending pad buffer to a request modifies the last entry of a
746 * scatter list such that it includes the pad buffer.
747 **/
748 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
749 {
750 if (mask > q->dma_pad_mask)
751 q->dma_pad_mask = mask;
752 }
753 EXPORT_SYMBOL(blk_queue_update_dma_pad);
754
755 /**
756 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
757 * @q: the request queue for the device
758 * @dma_drain_needed: fn which returns non-zero if drain is necessary
759 * @buf: physically contiguous buffer
760 * @size: size of the buffer in bytes
761 *
762 * Some devices have excess DMA problems and can't simply discard (or
763 * zero fill) the unwanted piece of the transfer. They have to have a
764 * real area of memory to transfer it into. The use case for this is
765 * ATAPI devices in DMA mode. If the packet command causes a transfer
766 * bigger than the transfer size some HBAs will lock up if there
767 * aren't DMA elements to contain the excess transfer. What this API
768 * does is adjust the queue so that the buf is always appended
769 * silently to the scatterlist.
770 *
771 * Note: This routine adjusts max_hw_segments to make room for appending
772 * the drain buffer. If you call blk_queue_max_segments() after calling
773 * this routine, you must set the limit to one fewer than your device
774 * can support otherwise there won't be room for the drain buffer.
775 */
776 int blk_queue_dma_drain(struct request_queue *q,
777 dma_drain_needed_fn *dma_drain_needed,
778 void *buf, unsigned int size)
779 {
780 if (queue_max_segments(q) < 2)
781 return -EINVAL;
782 /* make room for appending the drain */
783 blk_queue_max_segments(q, queue_max_segments(q) - 1);
784 q->dma_drain_needed = dma_drain_needed;
785 q->dma_drain_buffer = buf;
786 q->dma_drain_size = size;
787
788 return 0;
789 }
790 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
791
792 /**
793 * blk_queue_segment_boundary - set boundary rules for segment merging
794 * @q: the request queue for the device
795 * @mask: the memory boundary mask
796 **/
797 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
798 {
799 if (mask < PAGE_SIZE - 1) {
800 mask = PAGE_SIZE - 1;
801 printk(KERN_INFO "%s: set to minimum %lx\n",
802 __func__, mask);
803 }
804
805 q->limits.seg_boundary_mask = mask;
806 }
807 EXPORT_SYMBOL(blk_queue_segment_boundary);
808
809 /**
810 * blk_queue_virt_boundary - set boundary rules for bio merging
811 * @q: the request queue for the device
812 * @mask: the memory boundary mask
813 **/
814 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
815 {
816 q->limits.virt_boundary_mask = mask;
817 }
818 EXPORT_SYMBOL(blk_queue_virt_boundary);
819
820 /**
821 * blk_queue_dma_alignment - set dma length and memory alignment
822 * @q: the request queue for the device
823 * @mask: alignment mask
824 *
825 * description:
826 * set required memory and length alignment for direct dma transactions.
827 * this is used when building direct io requests for the queue.
828 *
829 **/
830 void blk_queue_dma_alignment(struct request_queue *q, int mask)
831 {
832 q->dma_alignment = mask;
833 }
834 EXPORT_SYMBOL(blk_queue_dma_alignment);
835
836 /**
837 * blk_queue_update_dma_alignment - update dma length and memory alignment
838 * @q: the request queue for the device
839 * @mask: alignment mask
840 *
841 * description:
842 * update required memory and length alignment for direct dma transactions.
843 * If the requested alignment is larger than the current alignment, then
844 * the current queue alignment is updated to the new value, otherwise it
845 * is left alone. The design of this is to allow multiple objects
846 * (driver, device, transport etc) to set their respective
847 * alignments without having them interfere.
848 *
849 **/
850 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
851 {
852 BUG_ON(mask > PAGE_SIZE);
853
854 if (mask > q->dma_alignment)
855 q->dma_alignment = mask;
856 }
857 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
858
859 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
860 {
861 spin_lock_irq(q->queue_lock);
862 if (queueable)
863 clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
864 else
865 set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
866 spin_unlock_irq(q->queue_lock);
867 }
868 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
869
870 /**
871 * blk_set_queue_depth - tell the block layer about the device queue depth
872 * @q: the request queue for the device
873 * @depth: queue depth
874 *
875 */
876 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
877 {
878 q->queue_depth = depth;
879 wbt_set_queue_depth(q->rq_wb, depth);
880 }
881 EXPORT_SYMBOL(blk_set_queue_depth);
882
883 /**
884 * blk_queue_write_cache - configure queue's write cache
885 * @q: the request queue for the device
886 * @wc: write back cache on or off
887 * @fua: device supports FUA writes, if true
888 *
889 * Tell the block layer about the write cache of @q.
890 */
891 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
892 {
893 spin_lock_irq(q->queue_lock);
894 if (wc)
895 queue_flag_set(QUEUE_FLAG_WC, q);
896 else
897 queue_flag_clear(QUEUE_FLAG_WC, q);
898 if (fua)
899 queue_flag_set(QUEUE_FLAG_FUA, q);
900 else
901 queue_flag_clear(QUEUE_FLAG_FUA, q);
902 spin_unlock_irq(q->queue_lock);
903
904 wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
905 }
906 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
907
908 static int __init blk_settings_init(void)
909 {
910 blk_max_low_pfn = max_low_pfn - 1;
911 blk_max_pfn = max_pfn - 1;
912 return 0;
913 }
914 subsys_initcall(blk_settings_init);