]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/acpi/device_pm.c
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle
[mirror_ubuntu-artful-kernel.git] / drivers / acpi / device_pm.c
1 /*
2 * drivers/acpi/device_pm.c - ACPI device power management routines.
3 *
4 * Copyright (C) 2012, Intel Corp.
5 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6 *
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19 */
20
21 #include <linux/acpi.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_domain.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/suspend.h>
28
29 #include "internal.h"
30
31 #define _COMPONENT ACPI_POWER_COMPONENT
32 ACPI_MODULE_NAME("device_pm");
33
34 /**
35 * acpi_power_state_string - String representation of ACPI device power state.
36 * @state: ACPI device power state to return the string representation of.
37 */
38 const char *acpi_power_state_string(int state)
39 {
40 switch (state) {
41 case ACPI_STATE_D0:
42 return "D0";
43 case ACPI_STATE_D1:
44 return "D1";
45 case ACPI_STATE_D2:
46 return "D2";
47 case ACPI_STATE_D3_HOT:
48 return "D3hot";
49 case ACPI_STATE_D3_COLD:
50 return "D3cold";
51 default:
52 return "(unknown)";
53 }
54 }
55
56 /**
57 * acpi_device_get_power - Get power state of an ACPI device.
58 * @device: Device to get the power state of.
59 * @state: Place to store the power state of the device.
60 *
61 * This function does not update the device's power.state field, but it may
62 * update its parent's power.state field (when the parent's power state is
63 * unknown and the device's power state turns out to be D0).
64 */
65 int acpi_device_get_power(struct acpi_device *device, int *state)
66 {
67 int result = ACPI_STATE_UNKNOWN;
68
69 if (!device || !state)
70 return -EINVAL;
71
72 if (!device->flags.power_manageable) {
73 /* TBD: Non-recursive algorithm for walking up hierarchy. */
74 *state = device->parent ?
75 device->parent->power.state : ACPI_STATE_D0;
76 goto out;
77 }
78
79 /*
80 * Get the device's power state from power resources settings and _PSC,
81 * if available.
82 */
83 if (device->power.flags.power_resources) {
84 int error = acpi_power_get_inferred_state(device, &result);
85 if (error)
86 return error;
87 }
88 if (device->power.flags.explicit_get) {
89 acpi_handle handle = device->handle;
90 unsigned long long psc;
91 acpi_status status;
92
93 status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
94 if (ACPI_FAILURE(status))
95 return -ENODEV;
96
97 /*
98 * The power resources settings may indicate a power state
99 * shallower than the actual power state of the device, because
100 * the same power resources may be referenced by other devices.
101 *
102 * For systems predating ACPI 4.0 we assume that D3hot is the
103 * deepest state that can be supported.
104 */
105 if (psc > result && psc < ACPI_STATE_D3_COLD)
106 result = psc;
107 else if (result == ACPI_STATE_UNKNOWN)
108 result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
109 }
110
111 /*
112 * If we were unsure about the device parent's power state up to this
113 * point, the fact that the device is in D0 implies that the parent has
114 * to be in D0 too, except if ignore_parent is set.
115 */
116 if (!device->power.flags.ignore_parent && device->parent
117 && device->parent->power.state == ACPI_STATE_UNKNOWN
118 && result == ACPI_STATE_D0)
119 device->parent->power.state = ACPI_STATE_D0;
120
121 *state = result;
122
123 out:
124 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
125 device->pnp.bus_id, acpi_power_state_string(*state)));
126
127 return 0;
128 }
129
130 static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
131 {
132 if (adev->power.states[state].flags.explicit_set) {
133 char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
134 acpi_status status;
135
136 status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
137 if (ACPI_FAILURE(status))
138 return -ENODEV;
139 }
140 return 0;
141 }
142
143 /**
144 * acpi_device_set_power - Set power state of an ACPI device.
145 * @device: Device to set the power state of.
146 * @state: New power state to set.
147 *
148 * Callers must ensure that the device is power manageable before using this
149 * function.
150 */
151 int acpi_device_set_power(struct acpi_device *device, int state)
152 {
153 int target_state = state;
154 int result = 0;
155
156 if (!device || !device->flags.power_manageable
157 || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
158 return -EINVAL;
159
160 /* Make sure this is a valid target state */
161
162 if (state == device->power.state) {
163 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
164 device->pnp.bus_id,
165 acpi_power_state_string(state)));
166 return 0;
167 }
168
169 if (state == ACPI_STATE_D3_COLD) {
170 /*
171 * For transitions to D3cold we need to execute _PS3 and then
172 * possibly drop references to the power resources in use.
173 */
174 state = ACPI_STATE_D3_HOT;
175 /* If _PR3 is not available, use D3hot as the target state. */
176 if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
177 target_state = state;
178 } else if (!device->power.states[state].flags.valid) {
179 dev_warn(&device->dev, "Power state %s not supported\n",
180 acpi_power_state_string(state));
181 return -ENODEV;
182 }
183
184 if (!device->power.flags.ignore_parent &&
185 device->parent && (state < device->parent->power.state)) {
186 dev_warn(&device->dev,
187 "Cannot transition to power state %s for parent in %s\n",
188 acpi_power_state_string(state),
189 acpi_power_state_string(device->parent->power.state));
190 return -ENODEV;
191 }
192
193 /*
194 * Transition Power
195 * ----------------
196 * In accordance with ACPI 6, _PSx is executed before manipulating power
197 * resources, unless the target state is D0, in which case _PS0 is
198 * supposed to be executed after turning the power resources on.
199 */
200 if (state > ACPI_STATE_D0) {
201 /*
202 * According to ACPI 6, devices cannot go from lower-power
203 * (deeper) states to higher-power (shallower) states.
204 */
205 if (state < device->power.state) {
206 dev_warn(&device->dev, "Cannot transition from %s to %s\n",
207 acpi_power_state_string(device->power.state),
208 acpi_power_state_string(state));
209 return -ENODEV;
210 }
211
212 result = acpi_dev_pm_explicit_set(device, state);
213 if (result)
214 goto end;
215
216 if (device->power.flags.power_resources)
217 result = acpi_power_transition(device, target_state);
218 } else {
219 if (device->power.flags.power_resources) {
220 result = acpi_power_transition(device, ACPI_STATE_D0);
221 if (result)
222 goto end;
223 }
224 result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
225 }
226
227 end:
228 if (result) {
229 dev_warn(&device->dev, "Failed to change power state to %s\n",
230 acpi_power_state_string(state));
231 } else {
232 device->power.state = target_state;
233 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
234 "Device [%s] transitioned to %s\n",
235 device->pnp.bus_id,
236 acpi_power_state_string(state)));
237 }
238
239 return result;
240 }
241 EXPORT_SYMBOL(acpi_device_set_power);
242
243 int acpi_bus_set_power(acpi_handle handle, int state)
244 {
245 struct acpi_device *device;
246 int result;
247
248 result = acpi_bus_get_device(handle, &device);
249 if (result)
250 return result;
251
252 return acpi_device_set_power(device, state);
253 }
254 EXPORT_SYMBOL(acpi_bus_set_power);
255
256 int acpi_bus_init_power(struct acpi_device *device)
257 {
258 int state;
259 int result;
260
261 if (!device)
262 return -EINVAL;
263
264 device->power.state = ACPI_STATE_UNKNOWN;
265 if (!acpi_device_is_present(device))
266 return -ENXIO;
267
268 result = acpi_device_get_power(device, &state);
269 if (result)
270 return result;
271
272 if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
273 /* Reference count the power resources. */
274 result = acpi_power_on_resources(device, state);
275 if (result)
276 return result;
277
278 if (state == ACPI_STATE_D0) {
279 /*
280 * If _PSC is not present and the state inferred from
281 * power resources appears to be D0, it still may be
282 * necessary to execute _PS0 at this point, because
283 * another device using the same power resources may
284 * have been put into D0 previously and that's why we
285 * see D0 here.
286 */
287 result = acpi_dev_pm_explicit_set(device, state);
288 if (result)
289 return result;
290 }
291 } else if (state == ACPI_STATE_UNKNOWN) {
292 /*
293 * No power resources and missing _PSC? Cross fingers and make
294 * it D0 in hope that this is what the BIOS put the device into.
295 * [We tried to force D0 here by executing _PS0, but that broke
296 * Toshiba P870-303 in a nasty way.]
297 */
298 state = ACPI_STATE_D0;
299 }
300 device->power.state = state;
301 return 0;
302 }
303
304 /**
305 * acpi_device_fix_up_power - Force device with missing _PSC into D0.
306 * @device: Device object whose power state is to be fixed up.
307 *
308 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
309 * are assumed to be put into D0 by the BIOS. However, in some cases that may
310 * not be the case and this function should be used then.
311 */
312 int acpi_device_fix_up_power(struct acpi_device *device)
313 {
314 int ret = 0;
315
316 if (!device->power.flags.power_resources
317 && !device->power.flags.explicit_get
318 && device->power.state == ACPI_STATE_D0)
319 ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
320
321 return ret;
322 }
323 EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
324
325 int acpi_device_update_power(struct acpi_device *device, int *state_p)
326 {
327 int state;
328 int result;
329
330 if (device->power.state == ACPI_STATE_UNKNOWN) {
331 result = acpi_bus_init_power(device);
332 if (!result && state_p)
333 *state_p = device->power.state;
334
335 return result;
336 }
337
338 result = acpi_device_get_power(device, &state);
339 if (result)
340 return result;
341
342 if (state == ACPI_STATE_UNKNOWN) {
343 state = ACPI_STATE_D0;
344 result = acpi_device_set_power(device, state);
345 if (result)
346 return result;
347 } else {
348 if (device->power.flags.power_resources) {
349 /*
350 * We don't need to really switch the state, bu we need
351 * to update the power resources' reference counters.
352 */
353 result = acpi_power_transition(device, state);
354 if (result)
355 return result;
356 }
357 device->power.state = state;
358 }
359 if (state_p)
360 *state_p = state;
361
362 return 0;
363 }
364 EXPORT_SYMBOL_GPL(acpi_device_update_power);
365
366 int acpi_bus_update_power(acpi_handle handle, int *state_p)
367 {
368 struct acpi_device *device;
369 int result;
370
371 result = acpi_bus_get_device(handle, &device);
372 return result ? result : acpi_device_update_power(device, state_p);
373 }
374 EXPORT_SYMBOL_GPL(acpi_bus_update_power);
375
376 bool acpi_bus_power_manageable(acpi_handle handle)
377 {
378 struct acpi_device *device;
379 int result;
380
381 result = acpi_bus_get_device(handle, &device);
382 return result ? false : device->flags.power_manageable;
383 }
384 EXPORT_SYMBOL(acpi_bus_power_manageable);
385
386 #ifdef CONFIG_PM
387 static DEFINE_MUTEX(acpi_pm_notifier_lock);
388
389 void acpi_pm_wakeup_event(struct device *dev)
390 {
391 pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
392 }
393 EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
394
395 static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
396 {
397 struct acpi_device *adev;
398
399 if (val != ACPI_NOTIFY_DEVICE_WAKE)
400 return;
401
402 adev = acpi_bus_get_acpi_device(handle);
403 if (!adev)
404 return;
405
406 mutex_lock(&acpi_pm_notifier_lock);
407
408 if (adev->wakeup.flags.notifier_present) {
409 pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
410 if (adev->wakeup.context.func)
411 adev->wakeup.context.func(&adev->wakeup.context);
412 }
413
414 mutex_unlock(&acpi_pm_notifier_lock);
415
416 acpi_bus_put_acpi_device(adev);
417 }
418
419 /**
420 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
421 * @adev: ACPI device to add the notify handler for.
422 * @dev: Device to generate a wakeup event for while handling the notification.
423 * @func: Work function to execute when handling the notification.
424 *
425 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
426 * PM wakeup events. For example, wakeup events may be generated for bridges
427 * if one of the devices below the bridge is signaling wakeup, even if the
428 * bridge itself doesn't have a wakeup GPE associated with it.
429 */
430 acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
431 void (*func)(struct acpi_device_wakeup_context *context))
432 {
433 acpi_status status = AE_ALREADY_EXISTS;
434
435 if (!dev && !func)
436 return AE_BAD_PARAMETER;
437
438 mutex_lock(&acpi_pm_notifier_lock);
439
440 if (adev->wakeup.flags.notifier_present)
441 goto out;
442
443 adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
444 adev->wakeup.context.dev = dev;
445 adev->wakeup.context.func = func;
446
447 status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
448 acpi_pm_notify_handler, NULL);
449 if (ACPI_FAILURE(status))
450 goto out;
451
452 adev->wakeup.flags.notifier_present = true;
453
454 out:
455 mutex_unlock(&acpi_pm_notifier_lock);
456 return status;
457 }
458
459 /**
460 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
461 * @adev: ACPI device to remove the notifier from.
462 */
463 acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
464 {
465 acpi_status status = AE_BAD_PARAMETER;
466
467 mutex_lock(&acpi_pm_notifier_lock);
468
469 if (!adev->wakeup.flags.notifier_present)
470 goto out;
471
472 status = acpi_remove_notify_handler(adev->handle,
473 ACPI_SYSTEM_NOTIFY,
474 acpi_pm_notify_handler);
475 if (ACPI_FAILURE(status))
476 goto out;
477
478 adev->wakeup.context.func = NULL;
479 adev->wakeup.context.dev = NULL;
480 wakeup_source_unregister(adev->wakeup.ws);
481
482 adev->wakeup.flags.notifier_present = false;
483
484 out:
485 mutex_unlock(&acpi_pm_notifier_lock);
486 return status;
487 }
488
489 bool acpi_bus_can_wakeup(acpi_handle handle)
490 {
491 struct acpi_device *device;
492 int result;
493
494 result = acpi_bus_get_device(handle, &device);
495 return result ? false : device->wakeup.flags.valid;
496 }
497 EXPORT_SYMBOL(acpi_bus_can_wakeup);
498
499 /**
500 * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
501 * @dev: Device whose preferred target power state to return.
502 * @adev: ACPI device node corresponding to @dev.
503 * @target_state: System state to match the resultant device state.
504 * @d_min_p: Location to store the highest power state available to the device.
505 * @d_max_p: Location to store the lowest power state available to the device.
506 *
507 * Find the lowest power (highest number) and highest power (lowest number) ACPI
508 * device power states that the device can be in while the system is in the
509 * state represented by @target_state. Store the integer numbers representing
510 * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
511 * respectively.
512 *
513 * Callers must ensure that @dev and @adev are valid pointers and that @adev
514 * actually corresponds to @dev before using this function.
515 *
516 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
517 * returns a value that doesn't make sense. The memory locations pointed to by
518 * @d_max_p and @d_min_p are only modified on success.
519 */
520 static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
521 u32 target_state, int *d_min_p, int *d_max_p)
522 {
523 char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
524 acpi_handle handle = adev->handle;
525 unsigned long long ret;
526 int d_min, d_max;
527 bool wakeup = false;
528 acpi_status status;
529
530 /*
531 * If the system state is S0, the lowest power state the device can be
532 * in is D3cold, unless the device has _S0W and is supposed to signal
533 * wakeup, in which case the return value of _S0W has to be used as the
534 * lowest power state available to the device.
535 */
536 d_min = ACPI_STATE_D0;
537 d_max = ACPI_STATE_D3_COLD;
538
539 /*
540 * If present, _SxD methods return the minimum D-state (highest power
541 * state) we can use for the corresponding S-states. Otherwise, the
542 * minimum D-state is D0 (ACPI 3.x).
543 */
544 if (target_state > ACPI_STATE_S0) {
545 /*
546 * We rely on acpi_evaluate_integer() not clobbering the integer
547 * provided if AE_NOT_FOUND is returned.
548 */
549 ret = d_min;
550 status = acpi_evaluate_integer(handle, method, NULL, &ret);
551 if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
552 || ret > ACPI_STATE_D3_COLD)
553 return -ENODATA;
554
555 /*
556 * We need to handle legacy systems where D3hot and D3cold are
557 * the same and 3 is returned in both cases, so fall back to
558 * D3cold if D3hot is not a valid state.
559 */
560 if (!adev->power.states[ret].flags.valid) {
561 if (ret == ACPI_STATE_D3_HOT)
562 ret = ACPI_STATE_D3_COLD;
563 else
564 return -ENODATA;
565 }
566 d_min = ret;
567 wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
568 && adev->wakeup.sleep_state >= target_state;
569 } else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) !=
570 PM_QOS_FLAGS_NONE) {
571 wakeup = adev->wakeup.flags.valid;
572 }
573
574 /*
575 * If _PRW says we can wake up the system from the target sleep state,
576 * the D-state returned by _SxD is sufficient for that (we assume a
577 * wakeup-aware driver if wake is set). Still, if _SxW exists
578 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
579 * can wake the system. _S0W may be valid, too.
580 */
581 if (wakeup) {
582 method[3] = 'W';
583 status = acpi_evaluate_integer(handle, method, NULL, &ret);
584 if (status == AE_NOT_FOUND) {
585 if (target_state > ACPI_STATE_S0)
586 d_max = d_min;
587 } else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
588 /* Fall back to D3cold if ret is not a valid state. */
589 if (!adev->power.states[ret].flags.valid)
590 ret = ACPI_STATE_D3_COLD;
591
592 d_max = ret > d_min ? ret : d_min;
593 } else {
594 return -ENODATA;
595 }
596 }
597
598 if (d_min_p)
599 *d_min_p = d_min;
600
601 if (d_max_p)
602 *d_max_p = d_max;
603
604 return 0;
605 }
606
607 /**
608 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
609 * @dev: Device whose preferred target power state to return.
610 * @d_min_p: Location to store the upper limit of the allowed states range.
611 * @d_max_in: Deepest low-power state to take into consideration.
612 * Return value: Preferred power state of the device on success, -ENODEV
613 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
614 * incorrect, or -ENODATA on ACPI method failure.
615 *
616 * The caller must ensure that @dev is valid before using this function.
617 */
618 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
619 {
620 struct acpi_device *adev;
621 int ret, d_min, d_max;
622
623 if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
624 return -EINVAL;
625
626 if (d_max_in > ACPI_STATE_D2) {
627 enum pm_qos_flags_status stat;
628
629 stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
630 if (stat == PM_QOS_FLAGS_ALL)
631 d_max_in = ACPI_STATE_D2;
632 }
633
634 adev = ACPI_COMPANION(dev);
635 if (!adev) {
636 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
637 return -ENODEV;
638 }
639
640 ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
641 &d_min, &d_max);
642 if (ret)
643 return ret;
644
645 if (d_max_in < d_min)
646 return -EINVAL;
647
648 if (d_max > d_max_in) {
649 for (d_max = d_max_in; d_max > d_min; d_max--) {
650 if (adev->power.states[d_max].flags.valid)
651 break;
652 }
653 }
654
655 if (d_min_p)
656 *d_min_p = d_min;
657
658 return d_max;
659 }
660 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
661
662 /**
663 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
664 * @context: Device wakeup context.
665 */
666 static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
667 {
668 struct device *dev = context->dev;
669
670 if (dev) {
671 pm_wakeup_event(dev, 0);
672 pm_request_resume(dev);
673 }
674 }
675
676 /**
677 * acpi_device_wakeup - Enable/disable wakeup functionality for device.
678 * @adev: ACPI device to enable/disable wakeup functionality for.
679 * @target_state: State the system is transitioning into.
680 * @enable: Whether to enable or disable the wakeup functionality.
681 *
682 * Enable/disable the GPE associated with @adev so that it can generate
683 * wakeup signals for the device in response to external (remote) events and
684 * enable/disable device wakeup power.
685 *
686 * Callers must ensure that @adev is a valid ACPI device node before executing
687 * this function.
688 */
689 static int acpi_device_wakeup(struct acpi_device *adev, u32 target_state,
690 bool enable)
691 {
692 struct acpi_device_wakeup *wakeup = &adev->wakeup;
693
694 if (enable) {
695 acpi_status res;
696 int error;
697
698 if (adev->wakeup.flags.enabled)
699 return 0;
700
701 error = acpi_enable_wakeup_device_power(adev, target_state);
702 if (error)
703 return error;
704
705 res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
706 if (ACPI_FAILURE(res)) {
707 acpi_disable_wakeup_device_power(adev);
708 return -EIO;
709 }
710 adev->wakeup.flags.enabled = 1;
711 } else if (adev->wakeup.flags.enabled) {
712 acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
713 acpi_disable_wakeup_device_power(adev);
714 adev->wakeup.flags.enabled = 0;
715 }
716 return 0;
717 }
718
719 /**
720 * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device.
721 * @dev: Device to enable/disable the platform to wake up.
722 * @enable: Whether to enable or disable the wakeup functionality.
723 */
724 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
725 {
726 struct acpi_device *adev;
727
728 if (!device_run_wake(phys_dev))
729 return -EINVAL;
730
731 adev = ACPI_COMPANION(phys_dev);
732 if (!adev) {
733 dev_dbg(phys_dev, "ACPI companion missing in %s!\n", __func__);
734 return -ENODEV;
735 }
736
737 return acpi_device_wakeup(adev, ACPI_STATE_S0, enable);
738 }
739 EXPORT_SYMBOL(acpi_pm_device_run_wake);
740
741 #ifdef CONFIG_PM_SLEEP
742 /**
743 * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system.
744 * @dev: Device to enable/desible to wake up the system from sleep states.
745 * @enable: Whether to enable or disable @dev to wake up the system.
746 */
747 int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
748 {
749 struct acpi_device *adev;
750 int error;
751
752 if (!device_can_wakeup(dev))
753 return -EINVAL;
754
755 adev = ACPI_COMPANION(dev);
756 if (!adev) {
757 dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
758 return -ENODEV;
759 }
760
761 error = acpi_device_wakeup(adev, acpi_target_system_state(), enable);
762 if (!error)
763 dev_dbg(dev, "System wakeup %s by ACPI\n",
764 enable ? "enabled" : "disabled");
765
766 return error;
767 }
768 #endif /* CONFIG_PM_SLEEP */
769
770 /**
771 * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
772 * @dev: Device to put into a low-power state.
773 * @adev: ACPI device node corresponding to @dev.
774 * @system_state: System state to choose the device state for.
775 */
776 static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
777 u32 system_state)
778 {
779 int ret, state;
780
781 if (!acpi_device_power_manageable(adev))
782 return 0;
783
784 ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
785 return ret ? ret : acpi_device_set_power(adev, state);
786 }
787
788 /**
789 * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
790 * @adev: ACPI device node to put into the full-power state.
791 */
792 static int acpi_dev_pm_full_power(struct acpi_device *adev)
793 {
794 return acpi_device_power_manageable(adev) ?
795 acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
796 }
797
798 /**
799 * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI.
800 * @dev: Device to put into a low-power state.
801 *
802 * Put the given device into a runtime low-power state using the standard ACPI
803 * mechanism. Set up remote wakeup if desired, choose the state to put the
804 * device into (this checks if remote wakeup is expected to work too), and set
805 * the power state of the device.
806 */
807 int acpi_dev_runtime_suspend(struct device *dev)
808 {
809 struct acpi_device *adev = ACPI_COMPANION(dev);
810 bool remote_wakeup;
811 int error;
812
813 if (!adev)
814 return 0;
815
816 remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) >
817 PM_QOS_FLAGS_NONE;
818 error = acpi_device_wakeup(adev, ACPI_STATE_S0, remote_wakeup);
819 if (remote_wakeup && error)
820 return -EAGAIN;
821
822 error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
823 if (error)
824 acpi_device_wakeup(adev, ACPI_STATE_S0, false);
825
826 return error;
827 }
828 EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend);
829
830 /**
831 * acpi_dev_runtime_resume - Put device into the full-power state using ACPI.
832 * @dev: Device to put into the full-power state.
833 *
834 * Put the given device into the full-power state using the standard ACPI
835 * mechanism at run time. Set the power state of the device to ACPI D0 and
836 * disable remote wakeup.
837 */
838 int acpi_dev_runtime_resume(struct device *dev)
839 {
840 struct acpi_device *adev = ACPI_COMPANION(dev);
841 int error;
842
843 if (!adev)
844 return 0;
845
846 error = acpi_dev_pm_full_power(adev);
847 acpi_device_wakeup(adev, ACPI_STATE_S0, false);
848 return error;
849 }
850 EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume);
851
852 /**
853 * acpi_subsys_runtime_suspend - Suspend device using ACPI.
854 * @dev: Device to suspend.
855 *
856 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
857 * it into a runtime low-power state.
858 */
859 int acpi_subsys_runtime_suspend(struct device *dev)
860 {
861 int ret = pm_generic_runtime_suspend(dev);
862 return ret ? ret : acpi_dev_runtime_suspend(dev);
863 }
864 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
865
866 /**
867 * acpi_subsys_runtime_resume - Resume device using ACPI.
868 * @dev: Device to Resume.
869 *
870 * Use ACPI to put the given device into the full-power state and carry out the
871 * generic runtime resume procedure for it.
872 */
873 int acpi_subsys_runtime_resume(struct device *dev)
874 {
875 int ret = acpi_dev_runtime_resume(dev);
876 return ret ? ret : pm_generic_runtime_resume(dev);
877 }
878 EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
879
880 #ifdef CONFIG_PM_SLEEP
881 /**
882 * acpi_dev_suspend_late - Put device into a low-power state using ACPI.
883 * @dev: Device to put into a low-power state.
884 *
885 * Put the given device into a low-power state during system transition to a
886 * sleep state using the standard ACPI mechanism. Set up system wakeup if
887 * desired, choose the state to put the device into (this checks if system
888 * wakeup is expected to work too), and set the power state of the device.
889 */
890 int acpi_dev_suspend_late(struct device *dev)
891 {
892 struct acpi_device *adev = ACPI_COMPANION(dev);
893 u32 target_state;
894 bool wakeup;
895 int error;
896
897 if (!adev)
898 return 0;
899
900 target_state = acpi_target_system_state();
901 wakeup = device_may_wakeup(dev) && acpi_device_can_wakeup(adev);
902 error = acpi_device_wakeup(adev, target_state, wakeup);
903 if (wakeup && error)
904 return error;
905
906 error = acpi_dev_pm_low_power(dev, adev, target_state);
907 if (error)
908 acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
909
910 return error;
911 }
912 EXPORT_SYMBOL_GPL(acpi_dev_suspend_late);
913
914 /**
915 * acpi_dev_resume_early - Put device into the full-power state using ACPI.
916 * @dev: Device to put into the full-power state.
917 *
918 * Put the given device into the full-power state using the standard ACPI
919 * mechanism during system transition to the working state. Set the power
920 * state of the device to ACPI D0 and disable remote wakeup.
921 */
922 int acpi_dev_resume_early(struct device *dev)
923 {
924 struct acpi_device *adev = ACPI_COMPANION(dev);
925 int error;
926
927 if (!adev)
928 return 0;
929
930 error = acpi_dev_pm_full_power(adev);
931 acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
932 return error;
933 }
934 EXPORT_SYMBOL_GPL(acpi_dev_resume_early);
935
936 /**
937 * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
938 * @dev: Device to prepare.
939 */
940 int acpi_subsys_prepare(struct device *dev)
941 {
942 struct acpi_device *adev = ACPI_COMPANION(dev);
943 u32 sys_target;
944 int ret, state;
945
946 ret = pm_generic_prepare(dev);
947 if (ret < 0)
948 return ret;
949
950 if (!adev || !pm_runtime_suspended(dev)
951 || device_may_wakeup(dev) != !!adev->wakeup.prepare_count)
952 return 0;
953
954 sys_target = acpi_target_system_state();
955 if (sys_target == ACPI_STATE_S0)
956 return 1;
957
958 if (adev->power.flags.dsw_present)
959 return 0;
960
961 ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
962 return !ret && state == adev->power.state;
963 }
964 EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
965
966 /**
967 * acpi_subsys_suspend - Run the device driver's suspend callback.
968 * @dev: Device to handle.
969 *
970 * Follow PCI and resume devices suspended at run time before running their
971 * system suspend callbacks.
972 */
973 int acpi_subsys_suspend(struct device *dev)
974 {
975 pm_runtime_resume(dev);
976 return pm_generic_suspend(dev);
977 }
978 EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
979
980 /**
981 * acpi_subsys_suspend_late - Suspend device using ACPI.
982 * @dev: Device to suspend.
983 *
984 * Carry out the generic late suspend procedure for @dev and use ACPI to put
985 * it into a low-power state during system transition into a sleep state.
986 */
987 int acpi_subsys_suspend_late(struct device *dev)
988 {
989 int ret = pm_generic_suspend_late(dev);
990 return ret ? ret : acpi_dev_suspend_late(dev);
991 }
992 EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
993
994 /**
995 * acpi_subsys_resume_early - Resume device using ACPI.
996 * @dev: Device to Resume.
997 *
998 * Use ACPI to put the given device into the full-power state and carry out the
999 * generic early resume procedure for it during system transition into the
1000 * working state.
1001 */
1002 int acpi_subsys_resume_early(struct device *dev)
1003 {
1004 int ret = acpi_dev_resume_early(dev);
1005 return ret ? ret : pm_generic_resume_early(dev);
1006 }
1007 EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1008
1009 /**
1010 * acpi_subsys_freeze - Run the device driver's freeze callback.
1011 * @dev: Device to handle.
1012 */
1013 int acpi_subsys_freeze(struct device *dev)
1014 {
1015 /*
1016 * This used to be done in acpi_subsys_prepare() for all devices and
1017 * some drivers may depend on it, so do it here. Ideally, however,
1018 * runtime-suspended devices should not be touched during freeze/thaw
1019 * transitions.
1020 */
1021 pm_runtime_resume(dev);
1022 return pm_generic_freeze(dev);
1023 }
1024 EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1025
1026 #endif /* CONFIG_PM_SLEEP */
1027
1028 static struct dev_pm_domain acpi_general_pm_domain = {
1029 .ops = {
1030 .runtime_suspend = acpi_subsys_runtime_suspend,
1031 .runtime_resume = acpi_subsys_runtime_resume,
1032 #ifdef CONFIG_PM_SLEEP
1033 .prepare = acpi_subsys_prepare,
1034 .complete = pm_complete_with_resume_check,
1035 .suspend = acpi_subsys_suspend,
1036 .suspend_late = acpi_subsys_suspend_late,
1037 .resume_early = acpi_subsys_resume_early,
1038 .freeze = acpi_subsys_freeze,
1039 .poweroff = acpi_subsys_suspend,
1040 .poweroff_late = acpi_subsys_suspend_late,
1041 .restore_early = acpi_subsys_resume_early,
1042 #endif
1043 },
1044 };
1045
1046 /**
1047 * acpi_dev_pm_detach - Remove ACPI power management from the device.
1048 * @dev: Device to take care of.
1049 * @power_off: Whether or not to try to remove power from the device.
1050 *
1051 * Remove the device from the general ACPI PM domain and remove its wakeup
1052 * notifier. If @power_off is set, additionally remove power from the device if
1053 * possible.
1054 *
1055 * Callers must ensure proper synchronization of this function with power
1056 * management callbacks.
1057 */
1058 static void acpi_dev_pm_detach(struct device *dev, bool power_off)
1059 {
1060 struct acpi_device *adev = ACPI_COMPANION(dev);
1061
1062 if (adev && dev->pm_domain == &acpi_general_pm_domain) {
1063 dev_pm_domain_set(dev, NULL);
1064 acpi_remove_pm_notifier(adev);
1065 if (power_off) {
1066 /*
1067 * If the device's PM QoS resume latency limit or flags
1068 * have been exposed to user space, they have to be
1069 * hidden at this point, so that they don't affect the
1070 * choice of the low-power state to put the device into.
1071 */
1072 dev_pm_qos_hide_latency_limit(dev);
1073 dev_pm_qos_hide_flags(dev);
1074 acpi_device_wakeup(adev, ACPI_STATE_S0, false);
1075 acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
1076 }
1077 }
1078 }
1079
1080 /**
1081 * acpi_dev_pm_attach - Prepare device for ACPI power management.
1082 * @dev: Device to prepare.
1083 * @power_on: Whether or not to power on the device.
1084 *
1085 * If @dev has a valid ACPI handle that has a valid struct acpi_device object
1086 * attached to it, install a wakeup notification handler for the device and
1087 * add it to the general ACPI PM domain. If @power_on is set, the device will
1088 * be put into the ACPI D0 state before the function returns.
1089 *
1090 * This assumes that the @dev's bus type uses generic power management callbacks
1091 * (or doesn't use any power management callbacks at all).
1092 *
1093 * Callers must ensure proper synchronization of this function with power
1094 * management callbacks.
1095 */
1096 int acpi_dev_pm_attach(struct device *dev, bool power_on)
1097 {
1098 struct acpi_device *adev = ACPI_COMPANION(dev);
1099
1100 if (!adev)
1101 return -ENODEV;
1102
1103 if (dev->pm_domain)
1104 return -EEXIST;
1105
1106 /*
1107 * Only attach the power domain to the first device if the
1108 * companion is shared by multiple. This is to prevent doing power
1109 * management twice.
1110 */
1111 if (!acpi_device_is_first_physical_node(adev, dev))
1112 return -EBUSY;
1113
1114 acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1115 dev_pm_domain_set(dev, &acpi_general_pm_domain);
1116 if (power_on) {
1117 acpi_dev_pm_full_power(adev);
1118 acpi_device_wakeup(adev, ACPI_STATE_S0, false);
1119 }
1120
1121 dev->pm_domain->detach = acpi_dev_pm_detach;
1122 return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1125 #endif /* CONFIG_PM */