]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/base/power/main.c
Merge tag 'mac80211-for-davem-2017-05-23' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-artful-kernel.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/timer.h>
37
38 #include "../base.h"
39 #include "power.h"
40
41 typedef int (*pm_callback_t)(struct device *);
42
43 /*
44 * The entries in the dpm_list list are in a depth first order, simply
45 * because children are guaranteed to be discovered after parents, and
46 * are inserted at the back of the list on discovery.
47 *
48 * Since device_pm_add() may be called with a device lock held,
49 * we must never try to acquire a device lock while holding
50 * dpm_list_mutex.
51 */
52
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62
63 static int async_error;
64
65 static char *pm_verb(int event)
66 {
67 switch (event) {
68 case PM_EVENT_SUSPEND:
69 return "suspend";
70 case PM_EVENT_RESUME:
71 return "resume";
72 case PM_EVENT_FREEZE:
73 return "freeze";
74 case PM_EVENT_QUIESCE:
75 return "quiesce";
76 case PM_EVENT_HIBERNATE:
77 return "hibernate";
78 case PM_EVENT_THAW:
79 return "thaw";
80 case PM_EVENT_RESTORE:
81 return "restore";
82 case PM_EVENT_RECOVER:
83 return "recover";
84 default:
85 return "(unknown PM event)";
86 }
87 }
88
89 /**
90 * device_pm_sleep_init - Initialize system suspend-related device fields.
91 * @dev: Device object being initialized.
92 */
93 void device_pm_sleep_init(struct device *dev)
94 {
95 dev->power.is_prepared = false;
96 dev->power.is_suspended = false;
97 dev->power.is_noirq_suspended = false;
98 dev->power.is_late_suspended = false;
99 init_completion(&dev->power.completion);
100 complete_all(&dev->power.completion);
101 dev->power.wakeup = NULL;
102 INIT_LIST_HEAD(&dev->power.entry);
103 }
104
105 /**
106 * device_pm_lock - Lock the list of active devices used by the PM core.
107 */
108 void device_pm_lock(void)
109 {
110 mutex_lock(&dpm_list_mtx);
111 }
112
113 /**
114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
115 */
116 void device_pm_unlock(void)
117 {
118 mutex_unlock(&dpm_list_mtx);
119 }
120
121 /**
122 * device_pm_add - Add a device to the PM core's list of active devices.
123 * @dev: Device to add to the list.
124 */
125 void device_pm_add(struct device *dev)
126 {
127 pr_debug("PM: Adding info for %s:%s\n",
128 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
129 device_pm_check_callbacks(dev);
130 mutex_lock(&dpm_list_mtx);
131 if (dev->parent && dev->parent->power.is_prepared)
132 dev_warn(dev, "parent %s should not be sleeping\n",
133 dev_name(dev->parent));
134 list_add_tail(&dev->power.entry, &dpm_list);
135 dev->power.in_dpm_list = true;
136 mutex_unlock(&dpm_list_mtx);
137 }
138
139 /**
140 * device_pm_remove - Remove a device from the PM core's list of active devices.
141 * @dev: Device to be removed from the list.
142 */
143 void device_pm_remove(struct device *dev)
144 {
145 pr_debug("PM: Removing info for %s:%s\n",
146 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147 complete_all(&dev->power.completion);
148 mutex_lock(&dpm_list_mtx);
149 list_del_init(&dev->power.entry);
150 dev->power.in_dpm_list = false;
151 mutex_unlock(&dpm_list_mtx);
152 device_wakeup_disable(dev);
153 pm_runtime_remove(dev);
154 device_pm_check_callbacks(dev);
155 }
156
157 /**
158 * device_pm_move_before - Move device in the PM core's list of active devices.
159 * @deva: Device to move in dpm_list.
160 * @devb: Device @deva should come before.
161 */
162 void device_pm_move_before(struct device *deva, struct device *devb)
163 {
164 pr_debug("PM: Moving %s:%s before %s:%s\n",
165 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
166 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
167 /* Delete deva from dpm_list and reinsert before devb. */
168 list_move_tail(&deva->power.entry, &devb->power.entry);
169 }
170
171 /**
172 * device_pm_move_after - Move device in the PM core's list of active devices.
173 * @deva: Device to move in dpm_list.
174 * @devb: Device @deva should come after.
175 */
176 void device_pm_move_after(struct device *deva, struct device *devb)
177 {
178 pr_debug("PM: Moving %s:%s after %s:%s\n",
179 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181 /* Delete deva from dpm_list and reinsert after devb. */
182 list_move(&deva->power.entry, &devb->power.entry);
183 }
184
185 /**
186 * device_pm_move_last - Move device to end of the PM core's list of devices.
187 * @dev: Device to move in dpm_list.
188 */
189 void device_pm_move_last(struct device *dev)
190 {
191 pr_debug("PM: Moving %s:%s to end of list\n",
192 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
193 list_move_tail(&dev->power.entry, &dpm_list);
194 }
195
196 static ktime_t initcall_debug_start(struct device *dev)
197 {
198 ktime_t calltime = 0;
199
200 if (pm_print_times_enabled) {
201 pr_info("calling %s+ @ %i, parent: %s\n",
202 dev_name(dev), task_pid_nr(current),
203 dev->parent ? dev_name(dev->parent) : "none");
204 calltime = ktime_get();
205 }
206
207 return calltime;
208 }
209
210 static void initcall_debug_report(struct device *dev, ktime_t calltime,
211 int error, pm_message_t state, char *info)
212 {
213 ktime_t rettime;
214 s64 nsecs;
215
216 rettime = ktime_get();
217 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
218
219 if (pm_print_times_enabled) {
220 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
221 error, (unsigned long long)nsecs >> 10);
222 }
223 }
224
225 /**
226 * dpm_wait - Wait for a PM operation to complete.
227 * @dev: Device to wait for.
228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
229 */
230 static void dpm_wait(struct device *dev, bool async)
231 {
232 if (!dev)
233 return;
234
235 if (async || (pm_async_enabled && dev->power.async_suspend))
236 wait_for_completion(&dev->power.completion);
237 }
238
239 static int dpm_wait_fn(struct device *dev, void *async_ptr)
240 {
241 dpm_wait(dev, *((bool *)async_ptr));
242 return 0;
243 }
244
245 static void dpm_wait_for_children(struct device *dev, bool async)
246 {
247 device_for_each_child(dev, &async, dpm_wait_fn);
248 }
249
250 static void dpm_wait_for_suppliers(struct device *dev, bool async)
251 {
252 struct device_link *link;
253 int idx;
254
255 idx = device_links_read_lock();
256
257 /*
258 * If the supplier goes away right after we've checked the link to it,
259 * we'll wait for its completion to change the state, but that's fine,
260 * because the only things that will block as a result are the SRCU
261 * callbacks freeing the link objects for the links in the list we're
262 * walking.
263 */
264 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
265 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
266 dpm_wait(link->supplier, async);
267
268 device_links_read_unlock(idx);
269 }
270
271 static void dpm_wait_for_superior(struct device *dev, bool async)
272 {
273 dpm_wait(dev->parent, async);
274 dpm_wait_for_suppliers(dev, async);
275 }
276
277 static void dpm_wait_for_consumers(struct device *dev, bool async)
278 {
279 struct device_link *link;
280 int idx;
281
282 idx = device_links_read_lock();
283
284 /*
285 * The status of a device link can only be changed from "dormant" by a
286 * probe, but that cannot happen during system suspend/resume. In
287 * theory it can change to "dormant" at that time, but then it is
288 * reasonable to wait for the target device anyway (eg. if it goes
289 * away, it's better to wait for it to go away completely and then
290 * continue instead of trying to continue in parallel with its
291 * unregistration).
292 */
293 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
294 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
295 dpm_wait(link->consumer, async);
296
297 device_links_read_unlock(idx);
298 }
299
300 static void dpm_wait_for_subordinate(struct device *dev, bool async)
301 {
302 dpm_wait_for_children(dev, async);
303 dpm_wait_for_consumers(dev, async);
304 }
305
306 /**
307 * pm_op - Return the PM operation appropriate for given PM event.
308 * @ops: PM operations to choose from.
309 * @state: PM transition of the system being carried out.
310 */
311 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
312 {
313 switch (state.event) {
314 #ifdef CONFIG_SUSPEND
315 case PM_EVENT_SUSPEND:
316 return ops->suspend;
317 case PM_EVENT_RESUME:
318 return ops->resume;
319 #endif /* CONFIG_SUSPEND */
320 #ifdef CONFIG_HIBERNATE_CALLBACKS
321 case PM_EVENT_FREEZE:
322 case PM_EVENT_QUIESCE:
323 return ops->freeze;
324 case PM_EVENT_HIBERNATE:
325 return ops->poweroff;
326 case PM_EVENT_THAW:
327 case PM_EVENT_RECOVER:
328 return ops->thaw;
329 break;
330 case PM_EVENT_RESTORE:
331 return ops->restore;
332 #endif /* CONFIG_HIBERNATE_CALLBACKS */
333 }
334
335 return NULL;
336 }
337
338 /**
339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
340 * @ops: PM operations to choose from.
341 * @state: PM transition of the system being carried out.
342 *
343 * Runtime PM is disabled for @dev while this function is being executed.
344 */
345 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
346 pm_message_t state)
347 {
348 switch (state.event) {
349 #ifdef CONFIG_SUSPEND
350 case PM_EVENT_SUSPEND:
351 return ops->suspend_late;
352 case PM_EVENT_RESUME:
353 return ops->resume_early;
354 #endif /* CONFIG_SUSPEND */
355 #ifdef CONFIG_HIBERNATE_CALLBACKS
356 case PM_EVENT_FREEZE:
357 case PM_EVENT_QUIESCE:
358 return ops->freeze_late;
359 case PM_EVENT_HIBERNATE:
360 return ops->poweroff_late;
361 case PM_EVENT_THAW:
362 case PM_EVENT_RECOVER:
363 return ops->thaw_early;
364 case PM_EVENT_RESTORE:
365 return ops->restore_early;
366 #endif /* CONFIG_HIBERNATE_CALLBACKS */
367 }
368
369 return NULL;
370 }
371
372 /**
373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
374 * @ops: PM operations to choose from.
375 * @state: PM transition of the system being carried out.
376 *
377 * The driver of @dev will not receive interrupts while this function is being
378 * executed.
379 */
380 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
381 {
382 switch (state.event) {
383 #ifdef CONFIG_SUSPEND
384 case PM_EVENT_SUSPEND:
385 return ops->suspend_noirq;
386 case PM_EVENT_RESUME:
387 return ops->resume_noirq;
388 #endif /* CONFIG_SUSPEND */
389 #ifdef CONFIG_HIBERNATE_CALLBACKS
390 case PM_EVENT_FREEZE:
391 case PM_EVENT_QUIESCE:
392 return ops->freeze_noirq;
393 case PM_EVENT_HIBERNATE:
394 return ops->poweroff_noirq;
395 case PM_EVENT_THAW:
396 case PM_EVENT_RECOVER:
397 return ops->thaw_noirq;
398 case PM_EVENT_RESTORE:
399 return ops->restore_noirq;
400 #endif /* CONFIG_HIBERNATE_CALLBACKS */
401 }
402
403 return NULL;
404 }
405
406 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
407 {
408 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
409 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
410 ", may wakeup" : "");
411 }
412
413 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
414 int error)
415 {
416 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
417 dev_name(dev), pm_verb(state.event), info, error);
418 }
419
420 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
421 {
422 ktime_t calltime;
423 u64 usecs64;
424 int usecs;
425
426 calltime = ktime_get();
427 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
428 do_div(usecs64, NSEC_PER_USEC);
429 usecs = usecs64;
430 if (usecs == 0)
431 usecs = 1;
432 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
433 info ?: "", info ? " " : "", pm_verb(state.event),
434 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
435 }
436
437 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
438 pm_message_t state, char *info)
439 {
440 ktime_t calltime;
441 int error;
442
443 if (!cb)
444 return 0;
445
446 calltime = initcall_debug_start(dev);
447
448 pm_dev_dbg(dev, state, info);
449 trace_device_pm_callback_start(dev, info, state.event);
450 error = cb(dev);
451 trace_device_pm_callback_end(dev, error);
452 suspend_report_result(cb, error);
453
454 initcall_debug_report(dev, calltime, error, state, info);
455
456 return error;
457 }
458
459 #ifdef CONFIG_DPM_WATCHDOG
460 struct dpm_watchdog {
461 struct device *dev;
462 struct task_struct *tsk;
463 struct timer_list timer;
464 };
465
466 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
467 struct dpm_watchdog wd
468
469 /**
470 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
471 * @data: Watchdog object address.
472 *
473 * Called when a driver has timed out suspending or resuming.
474 * There's not much we can do here to recover so panic() to
475 * capture a crash-dump in pstore.
476 */
477 static void dpm_watchdog_handler(unsigned long data)
478 {
479 struct dpm_watchdog *wd = (void *)data;
480
481 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
482 show_stack(wd->tsk, NULL);
483 panic("%s %s: unrecoverable failure\n",
484 dev_driver_string(wd->dev), dev_name(wd->dev));
485 }
486
487 /**
488 * dpm_watchdog_set - Enable pm watchdog for given device.
489 * @wd: Watchdog. Must be allocated on the stack.
490 * @dev: Device to handle.
491 */
492 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
493 {
494 struct timer_list *timer = &wd->timer;
495
496 wd->dev = dev;
497 wd->tsk = current;
498
499 init_timer_on_stack(timer);
500 /* use same timeout value for both suspend and resume */
501 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
502 timer->function = dpm_watchdog_handler;
503 timer->data = (unsigned long)wd;
504 add_timer(timer);
505 }
506
507 /**
508 * dpm_watchdog_clear - Disable suspend/resume watchdog.
509 * @wd: Watchdog to disable.
510 */
511 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
512 {
513 struct timer_list *timer = &wd->timer;
514
515 del_timer_sync(timer);
516 destroy_timer_on_stack(timer);
517 }
518 #else
519 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
520 #define dpm_watchdog_set(x, y)
521 #define dpm_watchdog_clear(x)
522 #endif
523
524 /*------------------------- Resume routines -------------------------*/
525
526 /**
527 * device_resume_noirq - Execute an "early resume" callback for given device.
528 * @dev: Device to handle.
529 * @state: PM transition of the system being carried out.
530 * @async: If true, the device is being resumed asynchronously.
531 *
532 * The driver of @dev will not receive interrupts while this function is being
533 * executed.
534 */
535 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
536 {
537 pm_callback_t callback = NULL;
538 char *info = NULL;
539 int error = 0;
540
541 TRACE_DEVICE(dev);
542 TRACE_RESUME(0);
543
544 if (dev->power.syscore || dev->power.direct_complete)
545 goto Out;
546
547 if (!dev->power.is_noirq_suspended)
548 goto Out;
549
550 dpm_wait_for_superior(dev, async);
551
552 if (dev->pm_domain) {
553 info = "noirq power domain ";
554 callback = pm_noirq_op(&dev->pm_domain->ops, state);
555 } else if (dev->type && dev->type->pm) {
556 info = "noirq type ";
557 callback = pm_noirq_op(dev->type->pm, state);
558 } else if (dev->class && dev->class->pm) {
559 info = "noirq class ";
560 callback = pm_noirq_op(dev->class->pm, state);
561 } else if (dev->bus && dev->bus->pm) {
562 info = "noirq bus ";
563 callback = pm_noirq_op(dev->bus->pm, state);
564 }
565
566 if (!callback && dev->driver && dev->driver->pm) {
567 info = "noirq driver ";
568 callback = pm_noirq_op(dev->driver->pm, state);
569 }
570
571 error = dpm_run_callback(callback, dev, state, info);
572 dev->power.is_noirq_suspended = false;
573
574 Out:
575 complete_all(&dev->power.completion);
576 TRACE_RESUME(error);
577 return error;
578 }
579
580 static bool is_async(struct device *dev)
581 {
582 return dev->power.async_suspend && pm_async_enabled
583 && !pm_trace_is_enabled();
584 }
585
586 static void async_resume_noirq(void *data, async_cookie_t cookie)
587 {
588 struct device *dev = (struct device *)data;
589 int error;
590
591 error = device_resume_noirq(dev, pm_transition, true);
592 if (error)
593 pm_dev_err(dev, pm_transition, " async", error);
594
595 put_device(dev);
596 }
597
598 /**
599 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
600 * @state: PM transition of the system being carried out.
601 *
602 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
603 * enable device drivers to receive interrupts.
604 */
605 void dpm_resume_noirq(pm_message_t state)
606 {
607 struct device *dev;
608 ktime_t starttime = ktime_get();
609
610 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
611 mutex_lock(&dpm_list_mtx);
612 pm_transition = state;
613
614 /*
615 * Advanced the async threads upfront,
616 * in case the starting of async threads is
617 * delayed by non-async resuming devices.
618 */
619 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
620 reinit_completion(&dev->power.completion);
621 if (is_async(dev)) {
622 get_device(dev);
623 async_schedule(async_resume_noirq, dev);
624 }
625 }
626
627 while (!list_empty(&dpm_noirq_list)) {
628 dev = to_device(dpm_noirq_list.next);
629 get_device(dev);
630 list_move_tail(&dev->power.entry, &dpm_late_early_list);
631 mutex_unlock(&dpm_list_mtx);
632
633 if (!is_async(dev)) {
634 int error;
635
636 error = device_resume_noirq(dev, state, false);
637 if (error) {
638 suspend_stats.failed_resume_noirq++;
639 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
640 dpm_save_failed_dev(dev_name(dev));
641 pm_dev_err(dev, state, " noirq", error);
642 }
643 }
644
645 mutex_lock(&dpm_list_mtx);
646 put_device(dev);
647 }
648 mutex_unlock(&dpm_list_mtx);
649 async_synchronize_full();
650 dpm_show_time(starttime, state, "noirq");
651 resume_device_irqs();
652 device_wakeup_disarm_wake_irqs();
653 cpuidle_resume();
654 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
655 }
656
657 /**
658 * device_resume_early - Execute an "early resume" callback for given device.
659 * @dev: Device to handle.
660 * @state: PM transition of the system being carried out.
661 * @async: If true, the device is being resumed asynchronously.
662 *
663 * Runtime PM is disabled for @dev while this function is being executed.
664 */
665 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
666 {
667 pm_callback_t callback = NULL;
668 char *info = NULL;
669 int error = 0;
670
671 TRACE_DEVICE(dev);
672 TRACE_RESUME(0);
673
674 if (dev->power.syscore || dev->power.direct_complete)
675 goto Out;
676
677 if (!dev->power.is_late_suspended)
678 goto Out;
679
680 dpm_wait_for_superior(dev, async);
681
682 if (dev->pm_domain) {
683 info = "early power domain ";
684 callback = pm_late_early_op(&dev->pm_domain->ops, state);
685 } else if (dev->type && dev->type->pm) {
686 info = "early type ";
687 callback = pm_late_early_op(dev->type->pm, state);
688 } else if (dev->class && dev->class->pm) {
689 info = "early class ";
690 callback = pm_late_early_op(dev->class->pm, state);
691 } else if (dev->bus && dev->bus->pm) {
692 info = "early bus ";
693 callback = pm_late_early_op(dev->bus->pm, state);
694 }
695
696 if (!callback && dev->driver && dev->driver->pm) {
697 info = "early driver ";
698 callback = pm_late_early_op(dev->driver->pm, state);
699 }
700
701 error = dpm_run_callback(callback, dev, state, info);
702 dev->power.is_late_suspended = false;
703
704 Out:
705 TRACE_RESUME(error);
706
707 pm_runtime_enable(dev);
708 complete_all(&dev->power.completion);
709 return error;
710 }
711
712 static void async_resume_early(void *data, async_cookie_t cookie)
713 {
714 struct device *dev = (struct device *)data;
715 int error;
716
717 error = device_resume_early(dev, pm_transition, true);
718 if (error)
719 pm_dev_err(dev, pm_transition, " async", error);
720
721 put_device(dev);
722 }
723
724 /**
725 * dpm_resume_early - Execute "early resume" callbacks for all devices.
726 * @state: PM transition of the system being carried out.
727 */
728 void dpm_resume_early(pm_message_t state)
729 {
730 struct device *dev;
731 ktime_t starttime = ktime_get();
732
733 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
734 mutex_lock(&dpm_list_mtx);
735 pm_transition = state;
736
737 /*
738 * Advanced the async threads upfront,
739 * in case the starting of async threads is
740 * delayed by non-async resuming devices.
741 */
742 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
743 reinit_completion(&dev->power.completion);
744 if (is_async(dev)) {
745 get_device(dev);
746 async_schedule(async_resume_early, dev);
747 }
748 }
749
750 while (!list_empty(&dpm_late_early_list)) {
751 dev = to_device(dpm_late_early_list.next);
752 get_device(dev);
753 list_move_tail(&dev->power.entry, &dpm_suspended_list);
754 mutex_unlock(&dpm_list_mtx);
755
756 if (!is_async(dev)) {
757 int error;
758
759 error = device_resume_early(dev, state, false);
760 if (error) {
761 suspend_stats.failed_resume_early++;
762 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
763 dpm_save_failed_dev(dev_name(dev));
764 pm_dev_err(dev, state, " early", error);
765 }
766 }
767 mutex_lock(&dpm_list_mtx);
768 put_device(dev);
769 }
770 mutex_unlock(&dpm_list_mtx);
771 async_synchronize_full();
772 dpm_show_time(starttime, state, "early");
773 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
774 }
775
776 /**
777 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
778 * @state: PM transition of the system being carried out.
779 */
780 void dpm_resume_start(pm_message_t state)
781 {
782 dpm_resume_noirq(state);
783 dpm_resume_early(state);
784 }
785 EXPORT_SYMBOL_GPL(dpm_resume_start);
786
787 /**
788 * device_resume - Execute "resume" callbacks for given device.
789 * @dev: Device to handle.
790 * @state: PM transition of the system being carried out.
791 * @async: If true, the device is being resumed asynchronously.
792 */
793 static int device_resume(struct device *dev, pm_message_t state, bool async)
794 {
795 pm_callback_t callback = NULL;
796 char *info = NULL;
797 int error = 0;
798 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
799
800 TRACE_DEVICE(dev);
801 TRACE_RESUME(0);
802
803 if (dev->power.syscore)
804 goto Complete;
805
806 if (dev->power.direct_complete) {
807 /* Match the pm_runtime_disable() in __device_suspend(). */
808 pm_runtime_enable(dev);
809 goto Complete;
810 }
811
812 dpm_wait_for_superior(dev, async);
813 dpm_watchdog_set(&wd, dev);
814 device_lock(dev);
815
816 /*
817 * This is a fib. But we'll allow new children to be added below
818 * a resumed device, even if the device hasn't been completed yet.
819 */
820 dev->power.is_prepared = false;
821
822 if (!dev->power.is_suspended)
823 goto Unlock;
824
825 if (dev->pm_domain) {
826 info = "power domain ";
827 callback = pm_op(&dev->pm_domain->ops, state);
828 goto Driver;
829 }
830
831 if (dev->type && dev->type->pm) {
832 info = "type ";
833 callback = pm_op(dev->type->pm, state);
834 goto Driver;
835 }
836
837 if (dev->class) {
838 if (dev->class->pm) {
839 info = "class ";
840 callback = pm_op(dev->class->pm, state);
841 goto Driver;
842 } else if (dev->class->resume) {
843 info = "legacy class ";
844 callback = dev->class->resume;
845 goto End;
846 }
847 }
848
849 if (dev->bus) {
850 if (dev->bus->pm) {
851 info = "bus ";
852 callback = pm_op(dev->bus->pm, state);
853 } else if (dev->bus->resume) {
854 info = "legacy bus ";
855 callback = dev->bus->resume;
856 goto End;
857 }
858 }
859
860 Driver:
861 if (!callback && dev->driver && dev->driver->pm) {
862 info = "driver ";
863 callback = pm_op(dev->driver->pm, state);
864 }
865
866 End:
867 error = dpm_run_callback(callback, dev, state, info);
868 dev->power.is_suspended = false;
869
870 Unlock:
871 device_unlock(dev);
872 dpm_watchdog_clear(&wd);
873
874 Complete:
875 complete_all(&dev->power.completion);
876
877 TRACE_RESUME(error);
878
879 return error;
880 }
881
882 static void async_resume(void *data, async_cookie_t cookie)
883 {
884 struct device *dev = (struct device *)data;
885 int error;
886
887 error = device_resume(dev, pm_transition, true);
888 if (error)
889 pm_dev_err(dev, pm_transition, " async", error);
890 put_device(dev);
891 }
892
893 /**
894 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
895 * @state: PM transition of the system being carried out.
896 *
897 * Execute the appropriate "resume" callback for all devices whose status
898 * indicates that they are suspended.
899 */
900 void dpm_resume(pm_message_t state)
901 {
902 struct device *dev;
903 ktime_t starttime = ktime_get();
904
905 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
906 might_sleep();
907
908 mutex_lock(&dpm_list_mtx);
909 pm_transition = state;
910 async_error = 0;
911
912 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
913 reinit_completion(&dev->power.completion);
914 if (is_async(dev)) {
915 get_device(dev);
916 async_schedule(async_resume, dev);
917 }
918 }
919
920 while (!list_empty(&dpm_suspended_list)) {
921 dev = to_device(dpm_suspended_list.next);
922 get_device(dev);
923 if (!is_async(dev)) {
924 int error;
925
926 mutex_unlock(&dpm_list_mtx);
927
928 error = device_resume(dev, state, false);
929 if (error) {
930 suspend_stats.failed_resume++;
931 dpm_save_failed_step(SUSPEND_RESUME);
932 dpm_save_failed_dev(dev_name(dev));
933 pm_dev_err(dev, state, "", error);
934 }
935
936 mutex_lock(&dpm_list_mtx);
937 }
938 if (!list_empty(&dev->power.entry))
939 list_move_tail(&dev->power.entry, &dpm_prepared_list);
940 put_device(dev);
941 }
942 mutex_unlock(&dpm_list_mtx);
943 async_synchronize_full();
944 dpm_show_time(starttime, state, NULL);
945
946 cpufreq_resume();
947 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
948 }
949
950 /**
951 * device_complete - Complete a PM transition for given device.
952 * @dev: Device to handle.
953 * @state: PM transition of the system being carried out.
954 */
955 static void device_complete(struct device *dev, pm_message_t state)
956 {
957 void (*callback)(struct device *) = NULL;
958 char *info = NULL;
959
960 if (dev->power.syscore)
961 return;
962
963 device_lock(dev);
964
965 if (dev->pm_domain) {
966 info = "completing power domain ";
967 callback = dev->pm_domain->ops.complete;
968 } else if (dev->type && dev->type->pm) {
969 info = "completing type ";
970 callback = dev->type->pm->complete;
971 } else if (dev->class && dev->class->pm) {
972 info = "completing class ";
973 callback = dev->class->pm->complete;
974 } else if (dev->bus && dev->bus->pm) {
975 info = "completing bus ";
976 callback = dev->bus->pm->complete;
977 }
978
979 if (!callback && dev->driver && dev->driver->pm) {
980 info = "completing driver ";
981 callback = dev->driver->pm->complete;
982 }
983
984 if (callback) {
985 pm_dev_dbg(dev, state, info);
986 callback(dev);
987 }
988
989 device_unlock(dev);
990
991 pm_runtime_put(dev);
992 }
993
994 /**
995 * dpm_complete - Complete a PM transition for all non-sysdev devices.
996 * @state: PM transition of the system being carried out.
997 *
998 * Execute the ->complete() callbacks for all devices whose PM status is not
999 * DPM_ON (this allows new devices to be registered).
1000 */
1001 void dpm_complete(pm_message_t state)
1002 {
1003 struct list_head list;
1004
1005 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1006 might_sleep();
1007
1008 INIT_LIST_HEAD(&list);
1009 mutex_lock(&dpm_list_mtx);
1010 while (!list_empty(&dpm_prepared_list)) {
1011 struct device *dev = to_device(dpm_prepared_list.prev);
1012
1013 get_device(dev);
1014 dev->power.is_prepared = false;
1015 list_move(&dev->power.entry, &list);
1016 mutex_unlock(&dpm_list_mtx);
1017
1018 trace_device_pm_callback_start(dev, "", state.event);
1019 device_complete(dev, state);
1020 trace_device_pm_callback_end(dev, 0);
1021
1022 mutex_lock(&dpm_list_mtx);
1023 put_device(dev);
1024 }
1025 list_splice(&list, &dpm_list);
1026 mutex_unlock(&dpm_list_mtx);
1027
1028 /* Allow device probing and trigger re-probing of deferred devices */
1029 device_unblock_probing();
1030 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1031 }
1032
1033 /**
1034 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1035 * @state: PM transition of the system being carried out.
1036 *
1037 * Execute "resume" callbacks for all devices and complete the PM transition of
1038 * the system.
1039 */
1040 void dpm_resume_end(pm_message_t state)
1041 {
1042 dpm_resume(state);
1043 dpm_complete(state);
1044 }
1045 EXPORT_SYMBOL_GPL(dpm_resume_end);
1046
1047
1048 /*------------------------- Suspend routines -------------------------*/
1049
1050 /**
1051 * resume_event - Return a "resume" message for given "suspend" sleep state.
1052 * @sleep_state: PM message representing a sleep state.
1053 *
1054 * Return a PM message representing the resume event corresponding to given
1055 * sleep state.
1056 */
1057 static pm_message_t resume_event(pm_message_t sleep_state)
1058 {
1059 switch (sleep_state.event) {
1060 case PM_EVENT_SUSPEND:
1061 return PMSG_RESUME;
1062 case PM_EVENT_FREEZE:
1063 case PM_EVENT_QUIESCE:
1064 return PMSG_RECOVER;
1065 case PM_EVENT_HIBERNATE:
1066 return PMSG_RESTORE;
1067 }
1068 return PMSG_ON;
1069 }
1070
1071 /**
1072 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1073 * @dev: Device to handle.
1074 * @state: PM transition of the system being carried out.
1075 * @async: If true, the device is being suspended asynchronously.
1076 *
1077 * The driver of @dev will not receive interrupts while this function is being
1078 * executed.
1079 */
1080 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1081 {
1082 pm_callback_t callback = NULL;
1083 char *info = NULL;
1084 int error = 0;
1085
1086 TRACE_DEVICE(dev);
1087 TRACE_SUSPEND(0);
1088
1089 dpm_wait_for_subordinate(dev, async);
1090
1091 if (async_error)
1092 goto Complete;
1093
1094 if (dev->power.syscore || dev->power.direct_complete)
1095 goto Complete;
1096
1097 if (dev->pm_domain) {
1098 info = "noirq power domain ";
1099 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1100 } else if (dev->type && dev->type->pm) {
1101 info = "noirq type ";
1102 callback = pm_noirq_op(dev->type->pm, state);
1103 } else if (dev->class && dev->class->pm) {
1104 info = "noirq class ";
1105 callback = pm_noirq_op(dev->class->pm, state);
1106 } else if (dev->bus && dev->bus->pm) {
1107 info = "noirq bus ";
1108 callback = pm_noirq_op(dev->bus->pm, state);
1109 }
1110
1111 if (!callback && dev->driver && dev->driver->pm) {
1112 info = "noirq driver ";
1113 callback = pm_noirq_op(dev->driver->pm, state);
1114 }
1115
1116 error = dpm_run_callback(callback, dev, state, info);
1117 if (!error)
1118 dev->power.is_noirq_suspended = true;
1119 else
1120 async_error = error;
1121
1122 Complete:
1123 complete_all(&dev->power.completion);
1124 TRACE_SUSPEND(error);
1125 return error;
1126 }
1127
1128 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1129 {
1130 struct device *dev = (struct device *)data;
1131 int error;
1132
1133 error = __device_suspend_noirq(dev, pm_transition, true);
1134 if (error) {
1135 dpm_save_failed_dev(dev_name(dev));
1136 pm_dev_err(dev, pm_transition, " async", error);
1137 }
1138
1139 put_device(dev);
1140 }
1141
1142 static int device_suspend_noirq(struct device *dev)
1143 {
1144 reinit_completion(&dev->power.completion);
1145
1146 if (is_async(dev)) {
1147 get_device(dev);
1148 async_schedule(async_suspend_noirq, dev);
1149 return 0;
1150 }
1151 return __device_suspend_noirq(dev, pm_transition, false);
1152 }
1153
1154 /**
1155 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1156 * @state: PM transition of the system being carried out.
1157 *
1158 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1159 * handlers for all non-sysdev devices.
1160 */
1161 int dpm_suspend_noirq(pm_message_t state)
1162 {
1163 ktime_t starttime = ktime_get();
1164 int error = 0;
1165
1166 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1167 cpuidle_pause();
1168 device_wakeup_arm_wake_irqs();
1169 suspend_device_irqs();
1170 mutex_lock(&dpm_list_mtx);
1171 pm_transition = state;
1172 async_error = 0;
1173
1174 while (!list_empty(&dpm_late_early_list)) {
1175 struct device *dev = to_device(dpm_late_early_list.prev);
1176
1177 get_device(dev);
1178 mutex_unlock(&dpm_list_mtx);
1179
1180 error = device_suspend_noirq(dev);
1181
1182 mutex_lock(&dpm_list_mtx);
1183 if (error) {
1184 pm_dev_err(dev, state, " noirq", error);
1185 dpm_save_failed_dev(dev_name(dev));
1186 put_device(dev);
1187 break;
1188 }
1189 if (!list_empty(&dev->power.entry))
1190 list_move(&dev->power.entry, &dpm_noirq_list);
1191 put_device(dev);
1192
1193 if (async_error)
1194 break;
1195 }
1196 mutex_unlock(&dpm_list_mtx);
1197 async_synchronize_full();
1198 if (!error)
1199 error = async_error;
1200
1201 if (error) {
1202 suspend_stats.failed_suspend_noirq++;
1203 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1204 dpm_resume_noirq(resume_event(state));
1205 } else {
1206 dpm_show_time(starttime, state, "noirq");
1207 }
1208 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1209 return error;
1210 }
1211
1212 /**
1213 * device_suspend_late - Execute a "late suspend" callback for given device.
1214 * @dev: Device to handle.
1215 * @state: PM transition of the system being carried out.
1216 * @async: If true, the device is being suspended asynchronously.
1217 *
1218 * Runtime PM is disabled for @dev while this function is being executed.
1219 */
1220 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1221 {
1222 pm_callback_t callback = NULL;
1223 char *info = NULL;
1224 int error = 0;
1225
1226 TRACE_DEVICE(dev);
1227 TRACE_SUSPEND(0);
1228
1229 __pm_runtime_disable(dev, false);
1230
1231 dpm_wait_for_subordinate(dev, async);
1232
1233 if (async_error)
1234 goto Complete;
1235
1236 if (pm_wakeup_pending()) {
1237 async_error = -EBUSY;
1238 goto Complete;
1239 }
1240
1241 if (dev->power.syscore || dev->power.direct_complete)
1242 goto Complete;
1243
1244 if (dev->pm_domain) {
1245 info = "late power domain ";
1246 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1247 } else if (dev->type && dev->type->pm) {
1248 info = "late type ";
1249 callback = pm_late_early_op(dev->type->pm, state);
1250 } else if (dev->class && dev->class->pm) {
1251 info = "late class ";
1252 callback = pm_late_early_op(dev->class->pm, state);
1253 } else if (dev->bus && dev->bus->pm) {
1254 info = "late bus ";
1255 callback = pm_late_early_op(dev->bus->pm, state);
1256 }
1257
1258 if (!callback && dev->driver && dev->driver->pm) {
1259 info = "late driver ";
1260 callback = pm_late_early_op(dev->driver->pm, state);
1261 }
1262
1263 error = dpm_run_callback(callback, dev, state, info);
1264 if (!error)
1265 dev->power.is_late_suspended = true;
1266 else
1267 async_error = error;
1268
1269 Complete:
1270 TRACE_SUSPEND(error);
1271 complete_all(&dev->power.completion);
1272 return error;
1273 }
1274
1275 static void async_suspend_late(void *data, async_cookie_t cookie)
1276 {
1277 struct device *dev = (struct device *)data;
1278 int error;
1279
1280 error = __device_suspend_late(dev, pm_transition, true);
1281 if (error) {
1282 dpm_save_failed_dev(dev_name(dev));
1283 pm_dev_err(dev, pm_transition, " async", error);
1284 }
1285 put_device(dev);
1286 }
1287
1288 static int device_suspend_late(struct device *dev)
1289 {
1290 reinit_completion(&dev->power.completion);
1291
1292 if (is_async(dev)) {
1293 get_device(dev);
1294 async_schedule(async_suspend_late, dev);
1295 return 0;
1296 }
1297
1298 return __device_suspend_late(dev, pm_transition, false);
1299 }
1300
1301 /**
1302 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1303 * @state: PM transition of the system being carried out.
1304 */
1305 int dpm_suspend_late(pm_message_t state)
1306 {
1307 ktime_t starttime = ktime_get();
1308 int error = 0;
1309
1310 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1311 mutex_lock(&dpm_list_mtx);
1312 pm_transition = state;
1313 async_error = 0;
1314
1315 while (!list_empty(&dpm_suspended_list)) {
1316 struct device *dev = to_device(dpm_suspended_list.prev);
1317
1318 get_device(dev);
1319 mutex_unlock(&dpm_list_mtx);
1320
1321 error = device_suspend_late(dev);
1322
1323 mutex_lock(&dpm_list_mtx);
1324 if (!list_empty(&dev->power.entry))
1325 list_move(&dev->power.entry, &dpm_late_early_list);
1326
1327 if (error) {
1328 pm_dev_err(dev, state, " late", error);
1329 dpm_save_failed_dev(dev_name(dev));
1330 put_device(dev);
1331 break;
1332 }
1333 put_device(dev);
1334
1335 if (async_error)
1336 break;
1337 }
1338 mutex_unlock(&dpm_list_mtx);
1339 async_synchronize_full();
1340 if (!error)
1341 error = async_error;
1342 if (error) {
1343 suspend_stats.failed_suspend_late++;
1344 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1345 dpm_resume_early(resume_event(state));
1346 } else {
1347 dpm_show_time(starttime, state, "late");
1348 }
1349 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1350 return error;
1351 }
1352
1353 /**
1354 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1355 * @state: PM transition of the system being carried out.
1356 */
1357 int dpm_suspend_end(pm_message_t state)
1358 {
1359 int error = dpm_suspend_late(state);
1360 if (error)
1361 return error;
1362
1363 error = dpm_suspend_noirq(state);
1364 if (error) {
1365 dpm_resume_early(resume_event(state));
1366 return error;
1367 }
1368
1369 return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1372
1373 /**
1374 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1375 * @dev: Device to suspend.
1376 * @state: PM transition of the system being carried out.
1377 * @cb: Suspend callback to execute.
1378 * @info: string description of caller.
1379 */
1380 static int legacy_suspend(struct device *dev, pm_message_t state,
1381 int (*cb)(struct device *dev, pm_message_t state),
1382 char *info)
1383 {
1384 int error;
1385 ktime_t calltime;
1386
1387 calltime = initcall_debug_start(dev);
1388
1389 trace_device_pm_callback_start(dev, info, state.event);
1390 error = cb(dev, state);
1391 trace_device_pm_callback_end(dev, error);
1392 suspend_report_result(cb, error);
1393
1394 initcall_debug_report(dev, calltime, error, state, info);
1395
1396 return error;
1397 }
1398
1399 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1400 {
1401 struct device_link *link;
1402 int idx;
1403
1404 idx = device_links_read_lock();
1405
1406 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1407 spin_lock_irq(&link->supplier->power.lock);
1408 link->supplier->power.direct_complete = false;
1409 spin_unlock_irq(&link->supplier->power.lock);
1410 }
1411
1412 device_links_read_unlock(idx);
1413 }
1414
1415 /**
1416 * device_suspend - Execute "suspend" callbacks for given device.
1417 * @dev: Device to handle.
1418 * @state: PM transition of the system being carried out.
1419 * @async: If true, the device is being suspended asynchronously.
1420 */
1421 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1422 {
1423 pm_callback_t callback = NULL;
1424 char *info = NULL;
1425 int error = 0;
1426 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1427
1428 TRACE_DEVICE(dev);
1429 TRACE_SUSPEND(0);
1430
1431 dpm_wait_for_subordinate(dev, async);
1432
1433 if (async_error)
1434 goto Complete;
1435
1436 /*
1437 * If a device configured to wake up the system from sleep states
1438 * has been suspended at run time and there's a resume request pending
1439 * for it, this is equivalent to the device signaling wakeup, so the
1440 * system suspend operation should be aborted.
1441 */
1442 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1443 pm_wakeup_event(dev, 0);
1444
1445 if (pm_wakeup_pending()) {
1446 async_error = -EBUSY;
1447 goto Complete;
1448 }
1449
1450 if (dev->power.syscore)
1451 goto Complete;
1452
1453 if (dev->power.direct_complete) {
1454 if (pm_runtime_status_suspended(dev)) {
1455 pm_runtime_disable(dev);
1456 if (pm_runtime_status_suspended(dev))
1457 goto Complete;
1458
1459 pm_runtime_enable(dev);
1460 }
1461 dev->power.direct_complete = false;
1462 }
1463
1464 dpm_watchdog_set(&wd, dev);
1465 device_lock(dev);
1466
1467 if (dev->pm_domain) {
1468 info = "power domain ";
1469 callback = pm_op(&dev->pm_domain->ops, state);
1470 goto Run;
1471 }
1472
1473 if (dev->type && dev->type->pm) {
1474 info = "type ";
1475 callback = pm_op(dev->type->pm, state);
1476 goto Run;
1477 }
1478
1479 if (dev->class) {
1480 if (dev->class->pm) {
1481 info = "class ";
1482 callback = pm_op(dev->class->pm, state);
1483 goto Run;
1484 } else if (dev->class->suspend) {
1485 pm_dev_dbg(dev, state, "legacy class ");
1486 error = legacy_suspend(dev, state, dev->class->suspend,
1487 "legacy class ");
1488 goto End;
1489 }
1490 }
1491
1492 if (dev->bus) {
1493 if (dev->bus->pm) {
1494 info = "bus ";
1495 callback = pm_op(dev->bus->pm, state);
1496 } else if (dev->bus->suspend) {
1497 pm_dev_dbg(dev, state, "legacy bus ");
1498 error = legacy_suspend(dev, state, dev->bus->suspend,
1499 "legacy bus ");
1500 goto End;
1501 }
1502 }
1503
1504 Run:
1505 if (!callback && dev->driver && dev->driver->pm) {
1506 info = "driver ";
1507 callback = pm_op(dev->driver->pm, state);
1508 }
1509
1510 error = dpm_run_callback(callback, dev, state, info);
1511
1512 End:
1513 if (!error) {
1514 struct device *parent = dev->parent;
1515
1516 dev->power.is_suspended = true;
1517 if (parent) {
1518 spin_lock_irq(&parent->power.lock);
1519
1520 dev->parent->power.direct_complete = false;
1521 if (dev->power.wakeup_path
1522 && !dev->parent->power.ignore_children)
1523 dev->parent->power.wakeup_path = true;
1524
1525 spin_unlock_irq(&parent->power.lock);
1526 }
1527 dpm_clear_suppliers_direct_complete(dev);
1528 }
1529
1530 device_unlock(dev);
1531 dpm_watchdog_clear(&wd);
1532
1533 Complete:
1534 if (error)
1535 async_error = error;
1536
1537 complete_all(&dev->power.completion);
1538 TRACE_SUSPEND(error);
1539 return error;
1540 }
1541
1542 static void async_suspend(void *data, async_cookie_t cookie)
1543 {
1544 struct device *dev = (struct device *)data;
1545 int error;
1546
1547 error = __device_suspend(dev, pm_transition, true);
1548 if (error) {
1549 dpm_save_failed_dev(dev_name(dev));
1550 pm_dev_err(dev, pm_transition, " async", error);
1551 }
1552
1553 put_device(dev);
1554 }
1555
1556 static int device_suspend(struct device *dev)
1557 {
1558 reinit_completion(&dev->power.completion);
1559
1560 if (is_async(dev)) {
1561 get_device(dev);
1562 async_schedule(async_suspend, dev);
1563 return 0;
1564 }
1565
1566 return __device_suspend(dev, pm_transition, false);
1567 }
1568
1569 /**
1570 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1571 * @state: PM transition of the system being carried out.
1572 */
1573 int dpm_suspend(pm_message_t state)
1574 {
1575 ktime_t starttime = ktime_get();
1576 int error = 0;
1577
1578 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1579 might_sleep();
1580
1581 cpufreq_suspend();
1582
1583 mutex_lock(&dpm_list_mtx);
1584 pm_transition = state;
1585 async_error = 0;
1586 while (!list_empty(&dpm_prepared_list)) {
1587 struct device *dev = to_device(dpm_prepared_list.prev);
1588
1589 get_device(dev);
1590 mutex_unlock(&dpm_list_mtx);
1591
1592 error = device_suspend(dev);
1593
1594 mutex_lock(&dpm_list_mtx);
1595 if (error) {
1596 pm_dev_err(dev, state, "", error);
1597 dpm_save_failed_dev(dev_name(dev));
1598 put_device(dev);
1599 break;
1600 }
1601 if (!list_empty(&dev->power.entry))
1602 list_move(&dev->power.entry, &dpm_suspended_list);
1603 put_device(dev);
1604 if (async_error)
1605 break;
1606 }
1607 mutex_unlock(&dpm_list_mtx);
1608 async_synchronize_full();
1609 if (!error)
1610 error = async_error;
1611 if (error) {
1612 suspend_stats.failed_suspend++;
1613 dpm_save_failed_step(SUSPEND_SUSPEND);
1614 } else
1615 dpm_show_time(starttime, state, NULL);
1616 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1617 return error;
1618 }
1619
1620 /**
1621 * device_prepare - Prepare a device for system power transition.
1622 * @dev: Device to handle.
1623 * @state: PM transition of the system being carried out.
1624 *
1625 * Execute the ->prepare() callback(s) for given device. No new children of the
1626 * device may be registered after this function has returned.
1627 */
1628 static int device_prepare(struct device *dev, pm_message_t state)
1629 {
1630 int (*callback)(struct device *) = NULL;
1631 int ret = 0;
1632
1633 if (dev->power.syscore)
1634 return 0;
1635
1636 /*
1637 * If a device's parent goes into runtime suspend at the wrong time,
1638 * it won't be possible to resume the device. To prevent this we
1639 * block runtime suspend here, during the prepare phase, and allow
1640 * it again during the complete phase.
1641 */
1642 pm_runtime_get_noresume(dev);
1643
1644 device_lock(dev);
1645
1646 dev->power.wakeup_path = device_may_wakeup(dev);
1647
1648 if (dev->power.no_pm_callbacks) {
1649 ret = 1; /* Let device go direct_complete */
1650 goto unlock;
1651 }
1652
1653 if (dev->pm_domain)
1654 callback = dev->pm_domain->ops.prepare;
1655 else if (dev->type && dev->type->pm)
1656 callback = dev->type->pm->prepare;
1657 else if (dev->class && dev->class->pm)
1658 callback = dev->class->pm->prepare;
1659 else if (dev->bus && dev->bus->pm)
1660 callback = dev->bus->pm->prepare;
1661
1662 if (!callback && dev->driver && dev->driver->pm)
1663 callback = dev->driver->pm->prepare;
1664
1665 if (callback)
1666 ret = callback(dev);
1667
1668 unlock:
1669 device_unlock(dev);
1670
1671 if (ret < 0) {
1672 suspend_report_result(callback, ret);
1673 pm_runtime_put(dev);
1674 return ret;
1675 }
1676 /*
1677 * A positive return value from ->prepare() means "this device appears
1678 * to be runtime-suspended and its state is fine, so if it really is
1679 * runtime-suspended, you can leave it in that state provided that you
1680 * will do the same thing with all of its descendants". This only
1681 * applies to suspend transitions, however.
1682 */
1683 spin_lock_irq(&dev->power.lock);
1684 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1685 spin_unlock_irq(&dev->power.lock);
1686 return 0;
1687 }
1688
1689 /**
1690 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1691 * @state: PM transition of the system being carried out.
1692 *
1693 * Execute the ->prepare() callback(s) for all devices.
1694 */
1695 int dpm_prepare(pm_message_t state)
1696 {
1697 int error = 0;
1698
1699 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1700 might_sleep();
1701
1702 /*
1703 * Give a chance for the known devices to complete their probes, before
1704 * disable probing of devices. This sync point is important at least
1705 * at boot time + hibernation restore.
1706 */
1707 wait_for_device_probe();
1708 /*
1709 * It is unsafe if probing of devices will happen during suspend or
1710 * hibernation and system behavior will be unpredictable in this case.
1711 * So, let's prohibit device's probing here and defer their probes
1712 * instead. The normal behavior will be restored in dpm_complete().
1713 */
1714 device_block_probing();
1715
1716 mutex_lock(&dpm_list_mtx);
1717 while (!list_empty(&dpm_list)) {
1718 struct device *dev = to_device(dpm_list.next);
1719
1720 get_device(dev);
1721 mutex_unlock(&dpm_list_mtx);
1722
1723 trace_device_pm_callback_start(dev, "", state.event);
1724 error = device_prepare(dev, state);
1725 trace_device_pm_callback_end(dev, error);
1726
1727 mutex_lock(&dpm_list_mtx);
1728 if (error) {
1729 if (error == -EAGAIN) {
1730 put_device(dev);
1731 error = 0;
1732 continue;
1733 }
1734 printk(KERN_INFO "PM: Device %s not prepared "
1735 "for power transition: code %d\n",
1736 dev_name(dev), error);
1737 put_device(dev);
1738 break;
1739 }
1740 dev->power.is_prepared = true;
1741 if (!list_empty(&dev->power.entry))
1742 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1743 put_device(dev);
1744 }
1745 mutex_unlock(&dpm_list_mtx);
1746 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1747 return error;
1748 }
1749
1750 /**
1751 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1752 * @state: PM transition of the system being carried out.
1753 *
1754 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1755 * callbacks for them.
1756 */
1757 int dpm_suspend_start(pm_message_t state)
1758 {
1759 int error;
1760
1761 error = dpm_prepare(state);
1762 if (error) {
1763 suspend_stats.failed_prepare++;
1764 dpm_save_failed_step(SUSPEND_PREPARE);
1765 } else
1766 error = dpm_suspend(state);
1767 return error;
1768 }
1769 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1770
1771 void __suspend_report_result(const char *function, void *fn, int ret)
1772 {
1773 if (ret)
1774 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1775 }
1776 EXPORT_SYMBOL_GPL(__suspend_report_result);
1777
1778 /**
1779 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1780 * @dev: Device to wait for.
1781 * @subordinate: Device that needs to wait for @dev.
1782 */
1783 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1784 {
1785 dpm_wait(dev, subordinate->power.async_suspend);
1786 return async_error;
1787 }
1788 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1789
1790 /**
1791 * dpm_for_each_dev - device iterator.
1792 * @data: data for the callback.
1793 * @fn: function to be called for each device.
1794 *
1795 * Iterate over devices in dpm_list, and call @fn for each device,
1796 * passing it @data.
1797 */
1798 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1799 {
1800 struct device *dev;
1801
1802 if (!fn)
1803 return;
1804
1805 device_pm_lock();
1806 list_for_each_entry(dev, &dpm_list, power.entry)
1807 fn(dev, data);
1808 device_pm_unlock();
1809 }
1810 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1811
1812 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1813 {
1814 if (!ops)
1815 return true;
1816
1817 return !ops->prepare &&
1818 !ops->suspend &&
1819 !ops->suspend_late &&
1820 !ops->suspend_noirq &&
1821 !ops->resume_noirq &&
1822 !ops->resume_early &&
1823 !ops->resume &&
1824 !ops->complete;
1825 }
1826
1827 void device_pm_check_callbacks(struct device *dev)
1828 {
1829 spin_lock_irq(&dev->power.lock);
1830 dev->power.no_pm_callbacks =
1831 (!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1832 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1833 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1834 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1835 (!dev->driver || pm_ops_is_empty(dev->driver->pm));
1836 spin_unlock_irq(&dev->power.lock);
1837 }