]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/block/as-iosched.c
[PATCH] 02/05: update ioscheds to use generic dispatch queue
[mirror_ubuntu-artful-kernel.git] / drivers / block / as-iosched.c
1 /*
2 * linux/drivers/block/as-iosched.c
3 *
4 * Anticipatory & deadline i/o scheduler.
5 *
6 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
7 * Nick Piggin <piggin@cyberone.com.au>
8 *
9 */
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/bio.h>
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/compiler.h>
20 #include <linux/hash.h>
21 #include <linux/rbtree.h>
22 #include <linux/interrupt.h>
23
24 #define REQ_SYNC 1
25 #define REQ_ASYNC 0
26
27 /*
28 * See Documentation/block/as-iosched.txt
29 */
30
31 /*
32 * max time before a read is submitted.
33 */
34 #define default_read_expire (HZ / 8)
35
36 /*
37 * ditto for writes, these limits are not hard, even
38 * if the disk is capable of satisfying them.
39 */
40 #define default_write_expire (HZ / 4)
41
42 /*
43 * read_batch_expire describes how long we will allow a stream of reads to
44 * persist before looking to see whether it is time to switch over to writes.
45 */
46 #define default_read_batch_expire (HZ / 2)
47
48 /*
49 * write_batch_expire describes how long we want a stream of writes to run for.
50 * This is not a hard limit, but a target we set for the auto-tuning thingy.
51 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
52 * a short amount of time...
53 */
54 #define default_write_batch_expire (HZ / 8)
55
56 /*
57 * max time we may wait to anticipate a read (default around 6ms)
58 */
59 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
60
61 /*
62 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
63 * however huge values tend to interfere and not decay fast enough. A program
64 * might be in a non-io phase of operation. Waiting on user input for example,
65 * or doing a lengthy computation. A small penalty can be justified there, and
66 * will still catch out those processes that constantly have large thinktimes.
67 */
68 #define MAX_THINKTIME (HZ/50UL)
69
70 /* Bits in as_io_context.state */
71 enum as_io_states {
72 AS_TASK_RUNNING=0, /* Process has not exitted */
73 AS_TASK_IOSTARTED, /* Process has started some IO */
74 AS_TASK_IORUNNING, /* Process has completed some IO */
75 };
76
77 enum anticipation_status {
78 ANTIC_OFF=0, /* Not anticipating (normal operation) */
79 ANTIC_WAIT_REQ, /* The last read has not yet completed */
80 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
81 last read (which has completed) */
82 ANTIC_FINISHED, /* Anticipating but have found a candidate
83 * or timed out */
84 };
85
86 struct as_data {
87 /*
88 * run time data
89 */
90
91 struct request_queue *q; /* the "owner" queue */
92
93 /*
94 * requests (as_rq s) are present on both sort_list and fifo_list
95 */
96 struct rb_root sort_list[2];
97 struct list_head fifo_list[2];
98
99 struct as_rq *next_arq[2]; /* next in sort order */
100 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
101 struct list_head *hash; /* request hash */
102
103 unsigned long exit_prob; /* probability a task will exit while
104 being waited on */
105 unsigned long new_ttime_total; /* mean thinktime on new proc */
106 unsigned long new_ttime_mean;
107 u64 new_seek_total; /* mean seek on new proc */
108 sector_t new_seek_mean;
109
110 unsigned long current_batch_expires;
111 unsigned long last_check_fifo[2];
112 int changed_batch; /* 1: waiting for old batch to end */
113 int new_batch; /* 1: waiting on first read complete */
114 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
115 int write_batch_count; /* max # of reqs in a write batch */
116 int current_write_count; /* how many requests left this batch */
117 int write_batch_idled; /* has the write batch gone idle? */
118 mempool_t *arq_pool;
119
120 enum anticipation_status antic_status;
121 unsigned long antic_start; /* jiffies: when it started */
122 struct timer_list antic_timer; /* anticipatory scheduling timer */
123 struct work_struct antic_work; /* Deferred unplugging */
124 struct io_context *io_context; /* Identify the expected process */
125 int ioc_finished; /* IO associated with io_context is finished */
126 int nr_dispatched;
127
128 /*
129 * settings that change how the i/o scheduler behaves
130 */
131 unsigned long fifo_expire[2];
132 unsigned long batch_expire[2];
133 unsigned long antic_expire;
134 };
135
136 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
137
138 /*
139 * per-request data.
140 */
141 enum arq_state {
142 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
143 AS_RQ_QUEUED, /* In the request queue. It belongs to the
144 scheduler */
145 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
146 driver now */
147 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
148 AS_RQ_REMOVED,
149 AS_RQ_MERGED,
150 AS_RQ_POSTSCHED, /* when they shouldn't be */
151 };
152
153 struct as_rq {
154 /*
155 * rbtree index, key is the starting offset
156 */
157 struct rb_node rb_node;
158 sector_t rb_key;
159
160 struct request *request;
161
162 struct io_context *io_context; /* The submitting task */
163
164 /*
165 * request hash, key is the ending offset (for back merge lookup)
166 */
167 struct list_head hash;
168 unsigned int on_hash;
169
170 /*
171 * expire fifo
172 */
173 struct list_head fifo;
174 unsigned long expires;
175
176 unsigned int is_sync;
177 enum arq_state state;
178 };
179
180 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
181
182 static kmem_cache_t *arq_pool;
183
184 /*
185 * IO Context helper functions
186 */
187
188 /* Called to deallocate the as_io_context */
189 static void free_as_io_context(struct as_io_context *aic)
190 {
191 kfree(aic);
192 }
193
194 /* Called when the task exits */
195 static void exit_as_io_context(struct as_io_context *aic)
196 {
197 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
198 clear_bit(AS_TASK_RUNNING, &aic->state);
199 }
200
201 static struct as_io_context *alloc_as_io_context(void)
202 {
203 struct as_io_context *ret;
204
205 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
206 if (ret) {
207 ret->dtor = free_as_io_context;
208 ret->exit = exit_as_io_context;
209 ret->state = 1 << AS_TASK_RUNNING;
210 atomic_set(&ret->nr_queued, 0);
211 atomic_set(&ret->nr_dispatched, 0);
212 spin_lock_init(&ret->lock);
213 ret->ttime_total = 0;
214 ret->ttime_samples = 0;
215 ret->ttime_mean = 0;
216 ret->seek_total = 0;
217 ret->seek_samples = 0;
218 ret->seek_mean = 0;
219 }
220
221 return ret;
222 }
223
224 /*
225 * If the current task has no AS IO context then create one and initialise it.
226 * Then take a ref on the task's io context and return it.
227 */
228 static struct io_context *as_get_io_context(void)
229 {
230 struct io_context *ioc = get_io_context(GFP_ATOMIC);
231 if (ioc && !ioc->aic) {
232 ioc->aic = alloc_as_io_context();
233 if (!ioc->aic) {
234 put_io_context(ioc);
235 ioc = NULL;
236 }
237 }
238 return ioc;
239 }
240
241 static void as_put_io_context(struct as_rq *arq)
242 {
243 struct as_io_context *aic;
244
245 if (unlikely(!arq->io_context))
246 return;
247
248 aic = arq->io_context->aic;
249
250 if (arq->is_sync == REQ_SYNC && aic) {
251 spin_lock(&aic->lock);
252 set_bit(AS_TASK_IORUNNING, &aic->state);
253 aic->last_end_request = jiffies;
254 spin_unlock(&aic->lock);
255 }
256
257 put_io_context(arq->io_context);
258 }
259
260 /*
261 * the back merge hash support functions
262 */
263 static const int as_hash_shift = 6;
264 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
265 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
266 #define AS_HASH_ENTRIES (1 << as_hash_shift)
267 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
268 #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash)
269
270 static inline void __as_del_arq_hash(struct as_rq *arq)
271 {
272 arq->on_hash = 0;
273 list_del_init(&arq->hash);
274 }
275
276 static inline void as_del_arq_hash(struct as_rq *arq)
277 {
278 if (arq->on_hash)
279 __as_del_arq_hash(arq);
280 }
281
282 static void as_remove_merge_hints(request_queue_t *q, struct as_rq *arq)
283 {
284 as_del_arq_hash(arq);
285
286 if (q->last_merge == arq->request)
287 q->last_merge = NULL;
288 }
289
290 static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
291 {
292 struct request *rq = arq->request;
293
294 BUG_ON(arq->on_hash);
295
296 arq->on_hash = 1;
297 list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
298 }
299
300 /*
301 * move hot entry to front of chain
302 */
303 static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq)
304 {
305 struct request *rq = arq->request;
306 struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))];
307
308 if (!arq->on_hash) {
309 WARN_ON(1);
310 return;
311 }
312
313 if (arq->hash.prev != head) {
314 list_del(&arq->hash);
315 list_add(&arq->hash, head);
316 }
317 }
318
319 static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
320 {
321 struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
322 struct list_head *entry, *next = hash_list->next;
323
324 while ((entry = next) != hash_list) {
325 struct as_rq *arq = list_entry_hash(entry);
326 struct request *__rq = arq->request;
327
328 next = entry->next;
329
330 BUG_ON(!arq->on_hash);
331
332 if (!rq_mergeable(__rq)) {
333 as_remove_merge_hints(ad->q, arq);
334 continue;
335 }
336
337 if (rq_hash_key(__rq) == offset)
338 return __rq;
339 }
340
341 return NULL;
342 }
343
344 /*
345 * rb tree support functions
346 */
347 #define RB_NONE (2)
348 #define RB_EMPTY(root) ((root)->rb_node == NULL)
349 #define ON_RB(node) ((node)->rb_color != RB_NONE)
350 #define RB_CLEAR(node) ((node)->rb_color = RB_NONE)
351 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
352 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
353 #define rq_rb_key(rq) (rq)->sector
354
355 /*
356 * as_find_first_arq finds the first (lowest sector numbered) request
357 * for the specified data_dir. Used to sweep back to the start of the disk
358 * (1-way elevator) after we process the last (highest sector) request.
359 */
360 static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
361 {
362 struct rb_node *n = ad->sort_list[data_dir].rb_node;
363
364 if (n == NULL)
365 return NULL;
366
367 for (;;) {
368 if (n->rb_left == NULL)
369 return rb_entry_arq(n);
370
371 n = n->rb_left;
372 }
373 }
374
375 /*
376 * Add the request to the rb tree if it is unique. If there is an alias (an
377 * existing request against the same sector), which can happen when using
378 * direct IO, then return the alias.
379 */
380 static struct as_rq *as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
381 {
382 struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
383 struct rb_node *parent = NULL;
384 struct as_rq *__arq;
385 struct request *rq = arq->request;
386
387 arq->rb_key = rq_rb_key(rq);
388
389 while (*p) {
390 parent = *p;
391 __arq = rb_entry_arq(parent);
392
393 if (arq->rb_key < __arq->rb_key)
394 p = &(*p)->rb_left;
395 else if (arq->rb_key > __arq->rb_key)
396 p = &(*p)->rb_right;
397 else
398 return __arq;
399 }
400
401 rb_link_node(&arq->rb_node, parent, p);
402 rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
403
404 return NULL;
405 }
406
407 static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
408 {
409 if (!ON_RB(&arq->rb_node)) {
410 WARN_ON(1);
411 return;
412 }
413
414 rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
415 RB_CLEAR(&arq->rb_node);
416 }
417
418 static struct request *
419 as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
420 {
421 struct rb_node *n = ad->sort_list[data_dir].rb_node;
422 struct as_rq *arq;
423
424 while (n) {
425 arq = rb_entry_arq(n);
426
427 if (sector < arq->rb_key)
428 n = n->rb_left;
429 else if (sector > arq->rb_key)
430 n = n->rb_right;
431 else
432 return arq->request;
433 }
434
435 return NULL;
436 }
437
438 /*
439 * IO Scheduler proper
440 */
441
442 #define MAXBACK (1024 * 1024) /*
443 * Maximum distance the disk will go backward
444 * for a request.
445 */
446
447 #define BACK_PENALTY 2
448
449 /*
450 * as_choose_req selects the preferred one of two requests of the same data_dir
451 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
452 */
453 static struct as_rq *
454 as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
455 {
456 int data_dir;
457 sector_t last, s1, s2, d1, d2;
458 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
459 const sector_t maxback = MAXBACK;
460
461 if (arq1 == NULL || arq1 == arq2)
462 return arq2;
463 if (arq2 == NULL)
464 return arq1;
465
466 data_dir = arq1->is_sync;
467
468 last = ad->last_sector[data_dir];
469 s1 = arq1->request->sector;
470 s2 = arq2->request->sector;
471
472 BUG_ON(data_dir != arq2->is_sync);
473
474 /*
475 * Strict one way elevator _except_ in the case where we allow
476 * short backward seeks which are biased as twice the cost of a
477 * similar forward seek.
478 */
479 if (s1 >= last)
480 d1 = s1 - last;
481 else if (s1+maxback >= last)
482 d1 = (last - s1)*BACK_PENALTY;
483 else {
484 r1_wrap = 1;
485 d1 = 0; /* shut up, gcc */
486 }
487
488 if (s2 >= last)
489 d2 = s2 - last;
490 else if (s2+maxback >= last)
491 d2 = (last - s2)*BACK_PENALTY;
492 else {
493 r2_wrap = 1;
494 d2 = 0;
495 }
496
497 /* Found required data */
498 if (!r1_wrap && r2_wrap)
499 return arq1;
500 else if (!r2_wrap && r1_wrap)
501 return arq2;
502 else if (r1_wrap && r2_wrap) {
503 /* both behind the head */
504 if (s1 <= s2)
505 return arq1;
506 else
507 return arq2;
508 }
509
510 /* Both requests in front of the head */
511 if (d1 < d2)
512 return arq1;
513 else if (d2 < d1)
514 return arq2;
515 else {
516 if (s1 >= s2)
517 return arq1;
518 else
519 return arq2;
520 }
521 }
522
523 /*
524 * as_find_next_arq finds the next request after @prev in elevator order.
525 * this with as_choose_req form the basis for how the scheduler chooses
526 * what request to process next. Anticipation works on top of this.
527 */
528 static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
529 {
530 const int data_dir = last->is_sync;
531 struct as_rq *ret;
532 struct rb_node *rbnext = rb_next(&last->rb_node);
533 struct rb_node *rbprev = rb_prev(&last->rb_node);
534 struct as_rq *arq_next, *arq_prev;
535
536 BUG_ON(!ON_RB(&last->rb_node));
537
538 if (rbprev)
539 arq_prev = rb_entry_arq(rbprev);
540 else
541 arq_prev = NULL;
542
543 if (rbnext)
544 arq_next = rb_entry_arq(rbnext);
545 else {
546 arq_next = as_find_first_arq(ad, data_dir);
547 if (arq_next == last)
548 arq_next = NULL;
549 }
550
551 ret = as_choose_req(ad, arq_next, arq_prev);
552
553 return ret;
554 }
555
556 /*
557 * anticipatory scheduling functions follow
558 */
559
560 /*
561 * as_antic_expired tells us when we have anticipated too long.
562 * The funny "absolute difference" math on the elapsed time is to handle
563 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
564 */
565 static int as_antic_expired(struct as_data *ad)
566 {
567 long delta_jif;
568
569 delta_jif = jiffies - ad->antic_start;
570 if (unlikely(delta_jif < 0))
571 delta_jif = -delta_jif;
572 if (delta_jif < ad->antic_expire)
573 return 0;
574
575 return 1;
576 }
577
578 /*
579 * as_antic_waitnext starts anticipating that a nice request will soon be
580 * submitted. See also as_antic_waitreq
581 */
582 static void as_antic_waitnext(struct as_data *ad)
583 {
584 unsigned long timeout;
585
586 BUG_ON(ad->antic_status != ANTIC_OFF
587 && ad->antic_status != ANTIC_WAIT_REQ);
588
589 timeout = ad->antic_start + ad->antic_expire;
590
591 mod_timer(&ad->antic_timer, timeout);
592
593 ad->antic_status = ANTIC_WAIT_NEXT;
594 }
595
596 /*
597 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
598 * until the request that we're anticipating on has finished. This means we
599 * are timing from when the candidate process wakes up hopefully.
600 */
601 static void as_antic_waitreq(struct as_data *ad)
602 {
603 BUG_ON(ad->antic_status == ANTIC_FINISHED);
604 if (ad->antic_status == ANTIC_OFF) {
605 if (!ad->io_context || ad->ioc_finished)
606 as_antic_waitnext(ad);
607 else
608 ad->antic_status = ANTIC_WAIT_REQ;
609 }
610 }
611
612 /*
613 * This is called directly by the functions in this file to stop anticipation.
614 * We kill the timer and schedule a call to the request_fn asap.
615 */
616 static void as_antic_stop(struct as_data *ad)
617 {
618 int status = ad->antic_status;
619
620 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
621 if (status == ANTIC_WAIT_NEXT)
622 del_timer(&ad->antic_timer);
623 ad->antic_status = ANTIC_FINISHED;
624 /* see as_work_handler */
625 kblockd_schedule_work(&ad->antic_work);
626 }
627 }
628
629 /*
630 * as_antic_timeout is the timer function set by as_antic_waitnext.
631 */
632 static void as_antic_timeout(unsigned long data)
633 {
634 struct request_queue *q = (struct request_queue *)data;
635 struct as_data *ad = q->elevator->elevator_data;
636 unsigned long flags;
637
638 spin_lock_irqsave(q->queue_lock, flags);
639 if (ad->antic_status == ANTIC_WAIT_REQ
640 || ad->antic_status == ANTIC_WAIT_NEXT) {
641 struct as_io_context *aic = ad->io_context->aic;
642
643 ad->antic_status = ANTIC_FINISHED;
644 kblockd_schedule_work(&ad->antic_work);
645
646 if (aic->ttime_samples == 0) {
647 /* process anticipated on has exitted or timed out*/
648 ad->exit_prob = (7*ad->exit_prob + 256)/8;
649 }
650 }
651 spin_unlock_irqrestore(q->queue_lock, flags);
652 }
653
654 /*
655 * as_close_req decides if one request is considered "close" to the
656 * previous one issued.
657 */
658 static int as_close_req(struct as_data *ad, struct as_rq *arq)
659 {
660 unsigned long delay; /* milliseconds */
661 sector_t last = ad->last_sector[ad->batch_data_dir];
662 sector_t next = arq->request->sector;
663 sector_t delta; /* acceptable close offset (in sectors) */
664
665 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
666 delay = 0;
667 else
668 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
669
670 if (delay <= 1)
671 delta = 64;
672 else if (delay <= 20 && delay <= ad->antic_expire)
673 delta = 64 << (delay-1);
674 else
675 return 1;
676
677 return (last - (delta>>1) <= next) && (next <= last + delta);
678 }
679
680 /*
681 * as_can_break_anticipation returns true if we have been anticipating this
682 * request.
683 *
684 * It also returns true if the process against which we are anticipating
685 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
686 * dispatch it ASAP, because we know that application will not be submitting
687 * any new reads.
688 *
689 * If the task which has submitted the request has exitted, break anticipation.
690 *
691 * If this task has queued some other IO, do not enter enticipation.
692 */
693 static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
694 {
695 struct io_context *ioc;
696 struct as_io_context *aic;
697 sector_t s;
698
699 ioc = ad->io_context;
700 BUG_ON(!ioc);
701
702 if (arq && ioc == arq->io_context) {
703 /* request from same process */
704 return 1;
705 }
706
707 if (ad->ioc_finished && as_antic_expired(ad)) {
708 /*
709 * In this situation status should really be FINISHED,
710 * however the timer hasn't had the chance to run yet.
711 */
712 return 1;
713 }
714
715 aic = ioc->aic;
716 if (!aic)
717 return 0;
718
719 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
720 /* process anticipated on has exitted */
721 if (aic->ttime_samples == 0)
722 ad->exit_prob = (7*ad->exit_prob + 256)/8;
723 return 1;
724 }
725
726 if (atomic_read(&aic->nr_queued) > 0) {
727 /* process has more requests queued */
728 return 1;
729 }
730
731 if (atomic_read(&aic->nr_dispatched) > 0) {
732 /* process has more requests dispatched */
733 return 1;
734 }
735
736 if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, arq)) {
737 /*
738 * Found a close request that is not one of ours.
739 *
740 * This makes close requests from another process reset
741 * our thinktime delay. Is generally useful when there are
742 * two or more cooperating processes working in the same
743 * area.
744 */
745 spin_lock(&aic->lock);
746 aic->last_end_request = jiffies;
747 spin_unlock(&aic->lock);
748 return 1;
749 }
750
751
752 if (aic->ttime_samples == 0) {
753 if (ad->new_ttime_mean > ad->antic_expire)
754 return 1;
755 if (ad->exit_prob > 128)
756 return 1;
757 } else if (aic->ttime_mean > ad->antic_expire) {
758 /* the process thinks too much between requests */
759 return 1;
760 }
761
762 if (!arq)
763 return 0;
764
765 if (ad->last_sector[REQ_SYNC] < arq->request->sector)
766 s = arq->request->sector - ad->last_sector[REQ_SYNC];
767 else
768 s = ad->last_sector[REQ_SYNC] - arq->request->sector;
769
770 if (aic->seek_samples == 0) {
771 /*
772 * Process has just started IO. Use past statistics to
773 * guage success possibility
774 */
775 if (ad->new_seek_mean > s) {
776 /* this request is better than what we're expecting */
777 return 1;
778 }
779
780 } else {
781 if (aic->seek_mean > s) {
782 /* this request is better than what we're expecting */
783 return 1;
784 }
785 }
786
787 return 0;
788 }
789
790 /*
791 * as_can_anticipate indicates weather we should either run arq
792 * or keep anticipating a better request.
793 */
794 static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
795 {
796 if (!ad->io_context)
797 /*
798 * Last request submitted was a write
799 */
800 return 0;
801
802 if (ad->antic_status == ANTIC_FINISHED)
803 /*
804 * Don't restart if we have just finished. Run the next request
805 */
806 return 0;
807
808 if (as_can_break_anticipation(ad, arq))
809 /*
810 * This request is a good candidate. Don't keep anticipating,
811 * run it.
812 */
813 return 0;
814
815 /*
816 * OK from here, we haven't finished, and don't have a decent request!
817 * Status is either ANTIC_OFF so start waiting,
818 * ANTIC_WAIT_REQ so continue waiting for request to finish
819 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
820 *
821 */
822
823 return 1;
824 }
825
826 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, unsigned long ttime)
827 {
828 /* fixed point: 1.0 == 1<<8 */
829 if (aic->ttime_samples == 0) {
830 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
831 ad->new_ttime_mean = ad->new_ttime_total / 256;
832
833 ad->exit_prob = (7*ad->exit_prob)/8;
834 }
835 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
836 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
837 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
838 }
839
840 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, sector_t sdist)
841 {
842 u64 total;
843
844 if (aic->seek_samples == 0) {
845 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
846 ad->new_seek_mean = ad->new_seek_total / 256;
847 }
848
849 /*
850 * Don't allow the seek distance to get too large from the
851 * odd fragment, pagein, etc
852 */
853 if (aic->seek_samples <= 60) /* second&third seek */
854 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
855 else
856 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
857
858 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
859 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
860 total = aic->seek_total + (aic->seek_samples/2);
861 do_div(total, aic->seek_samples);
862 aic->seek_mean = (sector_t)total;
863 }
864
865 /*
866 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
867 * updates @aic->ttime_mean based on that. It is called when a new
868 * request is queued.
869 */
870 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, struct request *rq)
871 {
872 struct as_rq *arq = RQ_DATA(rq);
873 int data_dir = arq->is_sync;
874 unsigned long thinktime;
875 sector_t seek_dist;
876
877 if (aic == NULL)
878 return;
879
880 if (data_dir == REQ_SYNC) {
881 unsigned long in_flight = atomic_read(&aic->nr_queued)
882 + atomic_read(&aic->nr_dispatched);
883 spin_lock(&aic->lock);
884 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
885 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
886 /* Calculate read -> read thinktime */
887 if (test_bit(AS_TASK_IORUNNING, &aic->state)
888 && in_flight == 0) {
889 thinktime = jiffies - aic->last_end_request;
890 thinktime = min(thinktime, MAX_THINKTIME-1);
891 } else
892 thinktime = 0;
893 as_update_thinktime(ad, aic, thinktime);
894
895 /* Calculate read -> read seek distance */
896 if (aic->last_request_pos < rq->sector)
897 seek_dist = rq->sector - aic->last_request_pos;
898 else
899 seek_dist = aic->last_request_pos - rq->sector;
900 as_update_seekdist(ad, aic, seek_dist);
901 }
902 aic->last_request_pos = rq->sector + rq->nr_sectors;
903 set_bit(AS_TASK_IOSTARTED, &aic->state);
904 spin_unlock(&aic->lock);
905 }
906 }
907
908 /*
909 * as_update_arq must be called whenever a request (arq) is added to
910 * the sort_list. This function keeps caches up to date, and checks if the
911 * request might be one we are "anticipating"
912 */
913 static void as_update_arq(struct as_data *ad, struct as_rq *arq)
914 {
915 const int data_dir = arq->is_sync;
916
917 /* keep the next_arq cache up to date */
918 ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
919
920 /*
921 * have we been anticipating this request?
922 * or does it come from the same process as the one we are anticipating
923 * for?
924 */
925 if (ad->antic_status == ANTIC_WAIT_REQ
926 || ad->antic_status == ANTIC_WAIT_NEXT) {
927 if (as_can_break_anticipation(ad, arq))
928 as_antic_stop(ad);
929 }
930 }
931
932 /*
933 * Gathers timings and resizes the write batch automatically
934 */
935 static void update_write_batch(struct as_data *ad)
936 {
937 unsigned long batch = ad->batch_expire[REQ_ASYNC];
938 long write_time;
939
940 write_time = (jiffies - ad->current_batch_expires) + batch;
941 if (write_time < 0)
942 write_time = 0;
943
944 if (write_time > batch && !ad->write_batch_idled) {
945 if (write_time > batch * 3)
946 ad->write_batch_count /= 2;
947 else
948 ad->write_batch_count--;
949 } else if (write_time < batch && ad->current_write_count == 0) {
950 if (batch > write_time * 3)
951 ad->write_batch_count *= 2;
952 else
953 ad->write_batch_count++;
954 }
955
956 if (ad->write_batch_count < 1)
957 ad->write_batch_count = 1;
958 }
959
960 /*
961 * as_completed_request is to be called when a request has completed and
962 * returned something to the requesting process, be it an error or data.
963 */
964 static void as_completed_request(request_queue_t *q, struct request *rq)
965 {
966 struct as_data *ad = q->elevator->elevator_data;
967 struct as_rq *arq = RQ_DATA(rq);
968
969 WARN_ON(!list_empty(&rq->queuelist));
970
971 if (arq->state != AS_RQ_REMOVED) {
972 printk("arq->state %d\n", arq->state);
973 WARN_ON(1);
974 goto out;
975 }
976
977 if (ad->changed_batch && ad->nr_dispatched == 1) {
978 kblockd_schedule_work(&ad->antic_work);
979 ad->changed_batch = 0;
980
981 if (ad->batch_data_dir == REQ_SYNC)
982 ad->new_batch = 1;
983 }
984 WARN_ON(ad->nr_dispatched == 0);
985 ad->nr_dispatched--;
986
987 /*
988 * Start counting the batch from when a request of that direction is
989 * actually serviced. This should help devices with big TCQ windows
990 * and writeback caches
991 */
992 if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
993 update_write_batch(ad);
994 ad->current_batch_expires = jiffies +
995 ad->batch_expire[REQ_SYNC];
996 ad->new_batch = 0;
997 }
998
999 if (ad->io_context == arq->io_context && ad->io_context) {
1000 ad->antic_start = jiffies;
1001 ad->ioc_finished = 1;
1002 if (ad->antic_status == ANTIC_WAIT_REQ) {
1003 /*
1004 * We were waiting on this request, now anticipate
1005 * the next one
1006 */
1007 as_antic_waitnext(ad);
1008 }
1009 }
1010
1011 as_put_io_context(arq);
1012 out:
1013 arq->state = AS_RQ_POSTSCHED;
1014 }
1015
1016 /*
1017 * as_remove_queued_request removes a request from the pre dispatch queue
1018 * without updating refcounts. It is expected the caller will drop the
1019 * reference unless it replaces the request at somepart of the elevator
1020 * (ie. the dispatch queue)
1021 */
1022 static void as_remove_queued_request(request_queue_t *q, struct request *rq)
1023 {
1024 struct as_rq *arq = RQ_DATA(rq);
1025 const int data_dir = arq->is_sync;
1026 struct as_data *ad = q->elevator->elevator_data;
1027
1028 WARN_ON(arq->state != AS_RQ_QUEUED);
1029
1030 if (arq->io_context && arq->io_context->aic) {
1031 BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
1032 atomic_dec(&arq->io_context->aic->nr_queued);
1033 }
1034
1035 /*
1036 * Update the "next_arq" cache if we are about to remove its
1037 * entry
1038 */
1039 if (ad->next_arq[data_dir] == arq)
1040 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1041
1042 list_del_init(&arq->fifo);
1043 as_remove_merge_hints(q, arq);
1044 as_del_arq_rb(ad, arq);
1045 }
1046
1047 /*
1048 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1049 * 1 otherwise. It is ratelimited so that we only perform the check once per
1050 * `fifo_expire' interval. Otherwise a large number of expired requests
1051 * would create a hopeless seekstorm.
1052 *
1053 * See as_antic_expired comment.
1054 */
1055 static int as_fifo_expired(struct as_data *ad, int adir)
1056 {
1057 struct as_rq *arq;
1058 long delta_jif;
1059
1060 delta_jif = jiffies - ad->last_check_fifo[adir];
1061 if (unlikely(delta_jif < 0))
1062 delta_jif = -delta_jif;
1063 if (delta_jif < ad->fifo_expire[adir])
1064 return 0;
1065
1066 ad->last_check_fifo[adir] = jiffies;
1067
1068 if (list_empty(&ad->fifo_list[adir]))
1069 return 0;
1070
1071 arq = list_entry_fifo(ad->fifo_list[adir].next);
1072
1073 return time_after(jiffies, arq->expires);
1074 }
1075
1076 /*
1077 * as_batch_expired returns true if the current batch has expired. A batch
1078 * is a set of reads or a set of writes.
1079 */
1080 static inline int as_batch_expired(struct as_data *ad)
1081 {
1082 if (ad->changed_batch || ad->new_batch)
1083 return 0;
1084
1085 if (ad->batch_data_dir == REQ_SYNC)
1086 /* TODO! add a check so a complete fifo gets written? */
1087 return time_after(jiffies, ad->current_batch_expires);
1088
1089 return time_after(jiffies, ad->current_batch_expires)
1090 || ad->current_write_count == 0;
1091 }
1092
1093 /*
1094 * move an entry to dispatch queue
1095 */
1096 static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
1097 {
1098 struct request *rq = arq->request;
1099 const int data_dir = arq->is_sync;
1100
1101 BUG_ON(!ON_RB(&arq->rb_node));
1102
1103 as_antic_stop(ad);
1104 ad->antic_status = ANTIC_OFF;
1105
1106 /*
1107 * This has to be set in order to be correctly updated by
1108 * as_find_next_arq
1109 */
1110 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
1111
1112 if (data_dir == REQ_SYNC) {
1113 /* In case we have to anticipate after this */
1114 copy_io_context(&ad->io_context, &arq->io_context);
1115 } else {
1116 if (ad->io_context) {
1117 put_io_context(ad->io_context);
1118 ad->io_context = NULL;
1119 }
1120
1121 if (ad->current_write_count != 0)
1122 ad->current_write_count--;
1123 }
1124 ad->ioc_finished = 0;
1125
1126 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1127
1128 /*
1129 * take it off the sort and fifo list, add to dispatch queue
1130 */
1131 while (!list_empty(&rq->queuelist)) {
1132 struct request *__rq = list_entry_rq(rq->queuelist.next);
1133 struct as_rq *__arq = RQ_DATA(__rq);
1134
1135 list_del(&__rq->queuelist);
1136
1137 elv_dispatch_add_tail(ad->q, __rq);
1138
1139 if (__arq->io_context && __arq->io_context->aic)
1140 atomic_inc(&__arq->io_context->aic->nr_dispatched);
1141
1142 WARN_ON(__arq->state != AS_RQ_QUEUED);
1143 __arq->state = AS_RQ_DISPATCHED;
1144
1145 ad->nr_dispatched++;
1146 }
1147
1148 as_remove_queued_request(ad->q, rq);
1149 WARN_ON(arq->state != AS_RQ_QUEUED);
1150
1151 elv_dispatch_sort(ad->q, rq);
1152
1153 arq->state = AS_RQ_DISPATCHED;
1154 if (arq->io_context && arq->io_context->aic)
1155 atomic_inc(&arq->io_context->aic->nr_dispatched);
1156 ad->nr_dispatched++;
1157 }
1158
1159 /*
1160 * as_dispatch_request selects the best request according to
1161 * read/write expire, batch expire, etc, and moves it to the dispatch
1162 * queue. Returns 1 if a request was found, 0 otherwise.
1163 */
1164 static int as_dispatch_request(request_queue_t *q, int force)
1165 {
1166 struct as_data *ad = q->elevator->elevator_data;
1167 struct as_rq *arq;
1168 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1169 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1170
1171 if (unlikely(force)) {
1172 /*
1173 * Forced dispatch, accounting is useless. Reset
1174 * accounting states and dump fifo_lists. Note that
1175 * batch_data_dir is reset to REQ_SYNC to avoid
1176 * screwing write batch accounting as write batch
1177 * accounting occurs on W->R transition.
1178 */
1179 int dispatched = 0;
1180
1181 ad->batch_data_dir = REQ_SYNC;
1182 ad->changed_batch = 0;
1183 ad->new_batch = 0;
1184
1185 while (ad->next_arq[REQ_SYNC]) {
1186 as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
1187 dispatched++;
1188 }
1189 ad->last_check_fifo[REQ_SYNC] = jiffies;
1190
1191 while (ad->next_arq[REQ_ASYNC]) {
1192 as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
1193 dispatched++;
1194 }
1195 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1196
1197 return dispatched;
1198 }
1199
1200 /* Signal that the write batch was uncontended, so we can't time it */
1201 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1202 if (ad->current_write_count == 0 || !writes)
1203 ad->write_batch_idled = 1;
1204 }
1205
1206 if (!(reads || writes)
1207 || ad->antic_status == ANTIC_WAIT_REQ
1208 || ad->antic_status == ANTIC_WAIT_NEXT
1209 || ad->changed_batch)
1210 return 0;
1211
1212 if (!(reads && writes && as_batch_expired(ad)) ) {
1213 /*
1214 * batch is still running or no reads or no writes
1215 */
1216 arq = ad->next_arq[ad->batch_data_dir];
1217
1218 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1219 if (as_fifo_expired(ad, REQ_SYNC))
1220 goto fifo_expired;
1221
1222 if (as_can_anticipate(ad, arq)) {
1223 as_antic_waitreq(ad);
1224 return 0;
1225 }
1226 }
1227
1228 if (arq) {
1229 /* we have a "next request" */
1230 if (reads && !writes)
1231 ad->current_batch_expires =
1232 jiffies + ad->batch_expire[REQ_SYNC];
1233 goto dispatch_request;
1234 }
1235 }
1236
1237 /*
1238 * at this point we are not running a batch. select the appropriate
1239 * data direction (read / write)
1240 */
1241
1242 if (reads) {
1243 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC]));
1244
1245 if (writes && ad->batch_data_dir == REQ_SYNC)
1246 /*
1247 * Last batch was a read, switch to writes
1248 */
1249 goto dispatch_writes;
1250
1251 if (ad->batch_data_dir == REQ_ASYNC) {
1252 WARN_ON(ad->new_batch);
1253 ad->changed_batch = 1;
1254 }
1255 ad->batch_data_dir = REQ_SYNC;
1256 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1257 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1258 goto dispatch_request;
1259 }
1260
1261 /*
1262 * the last batch was a read
1263 */
1264
1265 if (writes) {
1266 dispatch_writes:
1267 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC]));
1268
1269 if (ad->batch_data_dir == REQ_SYNC) {
1270 ad->changed_batch = 1;
1271
1272 /*
1273 * new_batch might be 1 when the queue runs out of
1274 * reads. A subsequent submission of a write might
1275 * cause a change of batch before the read is finished.
1276 */
1277 ad->new_batch = 0;
1278 }
1279 ad->batch_data_dir = REQ_ASYNC;
1280 ad->current_write_count = ad->write_batch_count;
1281 ad->write_batch_idled = 0;
1282 arq = ad->next_arq[ad->batch_data_dir];
1283 goto dispatch_request;
1284 }
1285
1286 BUG();
1287 return 0;
1288
1289 dispatch_request:
1290 /*
1291 * If a request has expired, service it.
1292 */
1293
1294 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1295 fifo_expired:
1296 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1297 BUG_ON(arq == NULL);
1298 }
1299
1300 if (ad->changed_batch) {
1301 WARN_ON(ad->new_batch);
1302
1303 if (ad->nr_dispatched)
1304 return 0;
1305
1306 if (ad->batch_data_dir == REQ_ASYNC)
1307 ad->current_batch_expires = jiffies +
1308 ad->batch_expire[REQ_ASYNC];
1309 else
1310 ad->new_batch = 1;
1311
1312 ad->changed_batch = 0;
1313 }
1314
1315 /*
1316 * arq is the selected appropriate request.
1317 */
1318 as_move_to_dispatch(ad, arq);
1319
1320 return 1;
1321 }
1322
1323 /*
1324 * Add arq to a list behind alias
1325 */
1326 static inline void
1327 as_add_aliased_request(struct as_data *ad, struct as_rq *arq, struct as_rq *alias)
1328 {
1329 struct request *req = arq->request;
1330 struct list_head *insert = alias->request->queuelist.prev;
1331
1332 /*
1333 * Transfer list of aliases
1334 */
1335 while (!list_empty(&req->queuelist)) {
1336 struct request *__rq = list_entry_rq(req->queuelist.next);
1337 struct as_rq *__arq = RQ_DATA(__rq);
1338
1339 list_move_tail(&__rq->queuelist, &alias->request->queuelist);
1340
1341 WARN_ON(__arq->state != AS_RQ_QUEUED);
1342 }
1343
1344 /*
1345 * Another request with the same start sector on the rbtree.
1346 * Link this request to that sector. They are untangled in
1347 * as_move_to_dispatch
1348 */
1349 list_add(&arq->request->queuelist, insert);
1350
1351 /*
1352 * Don't want to have to handle merges.
1353 */
1354 as_remove_merge_hints(ad->q, arq);
1355 }
1356
1357 /*
1358 * add arq to rbtree and fifo
1359 */
1360 static void as_add_request(request_queue_t *q, struct request *rq)
1361 {
1362 struct as_data *ad = q->elevator->elevator_data;
1363 struct as_rq *arq = RQ_DATA(rq);
1364 struct as_rq *alias;
1365 int data_dir;
1366
1367 if (arq->state != AS_RQ_PRESCHED) {
1368 printk("arq->state: %d\n", arq->state);
1369 WARN_ON(1);
1370 }
1371 arq->state = AS_RQ_NEW;
1372
1373 if (rq_data_dir(arq->request) == READ
1374 || current->flags&PF_SYNCWRITE)
1375 arq->is_sync = 1;
1376 else
1377 arq->is_sync = 0;
1378 data_dir = arq->is_sync;
1379
1380 arq->io_context = as_get_io_context();
1381
1382 if (arq->io_context) {
1383 as_update_iohist(ad, arq->io_context->aic, arq->request);
1384 atomic_inc(&arq->io_context->aic->nr_queued);
1385 }
1386
1387 alias = as_add_arq_rb(ad, arq);
1388 if (!alias) {
1389 /*
1390 * set expire time (only used for reads) and add to fifo list
1391 */
1392 arq->expires = jiffies + ad->fifo_expire[data_dir];
1393 list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
1394
1395 if (rq_mergeable(arq->request)) {
1396 as_add_arq_hash(ad, arq);
1397
1398 if (!ad->q->last_merge)
1399 ad->q->last_merge = arq->request;
1400 }
1401 as_update_arq(ad, arq); /* keep state machine up to date */
1402
1403 } else {
1404 as_add_aliased_request(ad, arq, alias);
1405
1406 /*
1407 * have we been anticipating this request?
1408 * or does it come from the same process as the one we are
1409 * anticipating for?
1410 */
1411 if (ad->antic_status == ANTIC_WAIT_REQ
1412 || ad->antic_status == ANTIC_WAIT_NEXT) {
1413 if (as_can_break_anticipation(ad, arq))
1414 as_antic_stop(ad);
1415 }
1416 }
1417
1418 arq->state = AS_RQ_QUEUED;
1419 }
1420
1421 static void as_activate_request(request_queue_t *q, struct request *rq)
1422 {
1423 struct as_rq *arq = RQ_DATA(rq);
1424
1425 WARN_ON(arq->state != AS_RQ_DISPATCHED);
1426 arq->state = AS_RQ_REMOVED;
1427 if (arq->io_context && arq->io_context->aic)
1428 atomic_dec(&arq->io_context->aic->nr_dispatched);
1429 }
1430
1431 static void as_deactivate_request(request_queue_t *q, struct request *rq)
1432 {
1433 struct as_rq *arq = RQ_DATA(rq);
1434
1435 WARN_ON(arq->state != AS_RQ_REMOVED);
1436 arq->state = AS_RQ_DISPATCHED;
1437 if (arq->io_context && arq->io_context->aic)
1438 atomic_inc(&arq->io_context->aic->nr_dispatched);
1439 }
1440
1441 /*
1442 * as_queue_empty tells us if there are requests left in the device. It may
1443 * not be the case that a driver can get the next request even if the queue
1444 * is not empty - it is used in the block layer to check for plugging and
1445 * merging opportunities
1446 */
1447 static int as_queue_empty(request_queue_t *q)
1448 {
1449 struct as_data *ad = q->elevator->elevator_data;
1450
1451 return list_empty(&ad->fifo_list[REQ_ASYNC])
1452 && list_empty(&ad->fifo_list[REQ_SYNC]);
1453 }
1454
1455 static struct request *
1456 as_former_request(request_queue_t *q, struct request *rq)
1457 {
1458 struct as_rq *arq = RQ_DATA(rq);
1459 struct rb_node *rbprev = rb_prev(&arq->rb_node);
1460 struct request *ret = NULL;
1461
1462 if (rbprev)
1463 ret = rb_entry_arq(rbprev)->request;
1464
1465 return ret;
1466 }
1467
1468 static struct request *
1469 as_latter_request(request_queue_t *q, struct request *rq)
1470 {
1471 struct as_rq *arq = RQ_DATA(rq);
1472 struct rb_node *rbnext = rb_next(&arq->rb_node);
1473 struct request *ret = NULL;
1474
1475 if (rbnext)
1476 ret = rb_entry_arq(rbnext)->request;
1477
1478 return ret;
1479 }
1480
1481 static int
1482 as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1483 {
1484 struct as_data *ad = q->elevator->elevator_data;
1485 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1486 struct request *__rq;
1487 int ret;
1488
1489 /*
1490 * try last_merge to avoid going to hash
1491 */
1492 ret = elv_try_last_merge(q, bio);
1493 if (ret != ELEVATOR_NO_MERGE) {
1494 __rq = q->last_merge;
1495 goto out_insert;
1496 }
1497
1498 /*
1499 * see if the merge hash can satisfy a back merge
1500 */
1501 __rq = as_find_arq_hash(ad, bio->bi_sector);
1502 if (__rq) {
1503 BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
1504
1505 if (elv_rq_merge_ok(__rq, bio)) {
1506 ret = ELEVATOR_BACK_MERGE;
1507 goto out;
1508 }
1509 }
1510
1511 /*
1512 * check for front merge
1513 */
1514 __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
1515 if (__rq) {
1516 BUG_ON(rb_key != rq_rb_key(__rq));
1517
1518 if (elv_rq_merge_ok(__rq, bio)) {
1519 ret = ELEVATOR_FRONT_MERGE;
1520 goto out;
1521 }
1522 }
1523
1524 return ELEVATOR_NO_MERGE;
1525 out:
1526 if (rq_mergeable(__rq))
1527 q->last_merge = __rq;
1528 out_insert:
1529 if (ret) {
1530 if (rq_mergeable(__rq))
1531 as_hot_arq_hash(ad, RQ_DATA(__rq));
1532 }
1533 *req = __rq;
1534 return ret;
1535 }
1536
1537 static void as_merged_request(request_queue_t *q, struct request *req)
1538 {
1539 struct as_data *ad = q->elevator->elevator_data;
1540 struct as_rq *arq = RQ_DATA(req);
1541
1542 /*
1543 * hash always needs to be repositioned, key is end sector
1544 */
1545 as_del_arq_hash(arq);
1546 as_add_arq_hash(ad, arq);
1547
1548 /*
1549 * if the merge was a front merge, we need to reposition request
1550 */
1551 if (rq_rb_key(req) != arq->rb_key) {
1552 struct as_rq *alias, *next_arq = NULL;
1553
1554 if (ad->next_arq[arq->is_sync] == arq)
1555 next_arq = as_find_next_arq(ad, arq);
1556
1557 /*
1558 * Note! We should really be moving any old aliased requests
1559 * off this request and try to insert them into the rbtree. We
1560 * currently don't bother. Ditto the next function.
1561 */
1562 as_del_arq_rb(ad, arq);
1563 if ((alias = as_add_arq_rb(ad, arq)) ) {
1564 list_del_init(&arq->fifo);
1565 as_add_aliased_request(ad, arq, alias);
1566 if (next_arq)
1567 ad->next_arq[arq->is_sync] = next_arq;
1568 }
1569 /*
1570 * Note! At this stage of this and the next function, our next
1571 * request may not be optimal - eg the request may have "grown"
1572 * behind the disk head. We currently don't bother adjusting.
1573 */
1574 }
1575
1576 if (arq->on_hash)
1577 q->last_merge = req;
1578 }
1579
1580 static void
1581 as_merged_requests(request_queue_t *q, struct request *req,
1582 struct request *next)
1583 {
1584 struct as_data *ad = q->elevator->elevator_data;
1585 struct as_rq *arq = RQ_DATA(req);
1586 struct as_rq *anext = RQ_DATA(next);
1587
1588 BUG_ON(!arq);
1589 BUG_ON(!anext);
1590
1591 /*
1592 * reposition arq (this is the merged request) in hash, and in rbtree
1593 * in case of a front merge
1594 */
1595 as_del_arq_hash(arq);
1596 as_add_arq_hash(ad, arq);
1597
1598 if (rq_rb_key(req) != arq->rb_key) {
1599 struct as_rq *alias, *next_arq = NULL;
1600
1601 if (ad->next_arq[arq->is_sync] == arq)
1602 next_arq = as_find_next_arq(ad, arq);
1603
1604 as_del_arq_rb(ad, arq);
1605 if ((alias = as_add_arq_rb(ad, arq)) ) {
1606 list_del_init(&arq->fifo);
1607 as_add_aliased_request(ad, arq, alias);
1608 if (next_arq)
1609 ad->next_arq[arq->is_sync] = next_arq;
1610 }
1611 }
1612
1613 /*
1614 * if anext expires before arq, assign its expire time to arq
1615 * and move into anext position (anext will be deleted) in fifo
1616 */
1617 if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
1618 if (time_before(anext->expires, arq->expires)) {
1619 list_move(&arq->fifo, &anext->fifo);
1620 arq->expires = anext->expires;
1621 /*
1622 * Don't copy here but swap, because when anext is
1623 * removed below, it must contain the unused context
1624 */
1625 swap_io_context(&arq->io_context, &anext->io_context);
1626 }
1627 }
1628
1629 /*
1630 * Transfer list of aliases
1631 */
1632 while (!list_empty(&next->queuelist)) {
1633 struct request *__rq = list_entry_rq(next->queuelist.next);
1634 struct as_rq *__arq = RQ_DATA(__rq);
1635
1636 list_move_tail(&__rq->queuelist, &req->queuelist);
1637
1638 WARN_ON(__arq->state != AS_RQ_QUEUED);
1639 }
1640
1641 /*
1642 * kill knowledge of next, this one is a goner
1643 */
1644 as_remove_queued_request(q, next);
1645 as_put_io_context(anext);
1646
1647 anext->state = AS_RQ_MERGED;
1648 }
1649
1650 /*
1651 * This is executed in a "deferred" process context, by kblockd. It calls the
1652 * driver's request_fn so the driver can submit that request.
1653 *
1654 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1655 * state before calling, and don't rely on any state over calls.
1656 *
1657 * FIXME! dispatch queue is not a queue at all!
1658 */
1659 static void as_work_handler(void *data)
1660 {
1661 struct request_queue *q = data;
1662 unsigned long flags;
1663
1664 spin_lock_irqsave(q->queue_lock, flags);
1665 if (!as_queue_empty(q))
1666 q->request_fn(q);
1667 spin_unlock_irqrestore(q->queue_lock, flags);
1668 }
1669
1670 static void as_put_request(request_queue_t *q, struct request *rq)
1671 {
1672 struct as_data *ad = q->elevator->elevator_data;
1673 struct as_rq *arq = RQ_DATA(rq);
1674
1675 if (!arq) {
1676 WARN_ON(1);
1677 return;
1678 }
1679
1680 if (unlikely(arq->state != AS_RQ_POSTSCHED &&
1681 arq->state != AS_RQ_PRESCHED &&
1682 arq->state != AS_RQ_MERGED)) {
1683 printk("arq->state %d\n", arq->state);
1684 WARN_ON(1);
1685 }
1686
1687 mempool_free(arq, ad->arq_pool);
1688 rq->elevator_private = NULL;
1689 }
1690
1691 static int as_set_request(request_queue_t *q, struct request *rq,
1692 struct bio *bio, int gfp_mask)
1693 {
1694 struct as_data *ad = q->elevator->elevator_data;
1695 struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);
1696
1697 if (arq) {
1698 memset(arq, 0, sizeof(*arq));
1699 RB_CLEAR(&arq->rb_node);
1700 arq->request = rq;
1701 arq->state = AS_RQ_PRESCHED;
1702 arq->io_context = NULL;
1703 INIT_LIST_HEAD(&arq->hash);
1704 arq->on_hash = 0;
1705 INIT_LIST_HEAD(&arq->fifo);
1706 rq->elevator_private = arq;
1707 return 0;
1708 }
1709
1710 return 1;
1711 }
1712
1713 static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
1714 {
1715 int ret = ELV_MQUEUE_MAY;
1716 struct as_data *ad = q->elevator->elevator_data;
1717 struct io_context *ioc;
1718 if (ad->antic_status == ANTIC_WAIT_REQ ||
1719 ad->antic_status == ANTIC_WAIT_NEXT) {
1720 ioc = as_get_io_context();
1721 if (ad->io_context == ioc)
1722 ret = ELV_MQUEUE_MUST;
1723 put_io_context(ioc);
1724 }
1725
1726 return ret;
1727 }
1728
1729 static void as_exit_queue(elevator_t *e)
1730 {
1731 struct as_data *ad = e->elevator_data;
1732
1733 del_timer_sync(&ad->antic_timer);
1734 kblockd_flush();
1735
1736 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1737 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1738
1739 mempool_destroy(ad->arq_pool);
1740 put_io_context(ad->io_context);
1741 kfree(ad->hash);
1742 kfree(ad);
1743 }
1744
1745 /*
1746 * initialize elevator private data (as_data), and alloc a arq for
1747 * each request on the free lists
1748 */
1749 static int as_init_queue(request_queue_t *q, elevator_t *e)
1750 {
1751 struct as_data *ad;
1752 int i;
1753
1754 if (!arq_pool)
1755 return -ENOMEM;
1756
1757 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1758 if (!ad)
1759 return -ENOMEM;
1760 memset(ad, 0, sizeof(*ad));
1761
1762 ad->q = q; /* Identify what queue the data belongs to */
1763
1764 ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES,
1765 GFP_KERNEL, q->node);
1766 if (!ad->hash) {
1767 kfree(ad);
1768 return -ENOMEM;
1769 }
1770
1771 ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1772 mempool_free_slab, arq_pool, q->node);
1773 if (!ad->arq_pool) {
1774 kfree(ad->hash);
1775 kfree(ad);
1776 return -ENOMEM;
1777 }
1778
1779 /* anticipatory scheduling helpers */
1780 ad->antic_timer.function = as_antic_timeout;
1781 ad->antic_timer.data = (unsigned long)q;
1782 init_timer(&ad->antic_timer);
1783 INIT_WORK(&ad->antic_work, as_work_handler, q);
1784
1785 for (i = 0; i < AS_HASH_ENTRIES; i++)
1786 INIT_LIST_HEAD(&ad->hash[i]);
1787
1788 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1789 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1790 ad->sort_list[REQ_SYNC] = RB_ROOT;
1791 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1792 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1793 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1794 ad->antic_expire = default_antic_expire;
1795 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1796 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1797 e->elevator_data = ad;
1798
1799 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1800 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1801 if (ad->write_batch_count < 2)
1802 ad->write_batch_count = 2;
1803
1804 return 0;
1805 }
1806
1807 /*
1808 * sysfs parts below
1809 */
1810 struct as_fs_entry {
1811 struct attribute attr;
1812 ssize_t (*show)(struct as_data *, char *);
1813 ssize_t (*store)(struct as_data *, const char *, size_t);
1814 };
1815
1816 static ssize_t
1817 as_var_show(unsigned int var, char *page)
1818 {
1819 return sprintf(page, "%d\n", var);
1820 }
1821
1822 static ssize_t
1823 as_var_store(unsigned long *var, const char *page, size_t count)
1824 {
1825 char *p = (char *) page;
1826
1827 *var = simple_strtoul(p, &p, 10);
1828 return count;
1829 }
1830
1831 static ssize_t as_est_show(struct as_data *ad, char *page)
1832 {
1833 int pos = 0;
1834
1835 pos += sprintf(page+pos, "%lu %% exit probability\n", 100*ad->exit_prob/256);
1836 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1837 pos += sprintf(page+pos, "%llu sectors new seek distance\n", (unsigned long long)ad->new_seek_mean);
1838
1839 return pos;
1840 }
1841
1842 #define SHOW_FUNCTION(__FUNC, __VAR) \
1843 static ssize_t __FUNC(struct as_data *ad, char *page) \
1844 { \
1845 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1846 }
1847 SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[REQ_SYNC]);
1848 SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[REQ_ASYNC]);
1849 SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire);
1850 SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[REQ_SYNC]);
1851 SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[REQ_ASYNC]);
1852 #undef SHOW_FUNCTION
1853
1854 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1855 static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \
1856 { \
1857 int ret = as_var_store(__PTR, (page), count); \
1858 if (*(__PTR) < (MIN)) \
1859 *(__PTR) = (MIN); \
1860 else if (*(__PTR) > (MAX)) \
1861 *(__PTR) = (MAX); \
1862 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1863 return ret; \
1864 }
1865 STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1866 STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1867 STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX);
1868 STORE_FUNCTION(as_read_batchexpire_store,
1869 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1870 STORE_FUNCTION(as_write_batchexpire_store,
1871 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1872 #undef STORE_FUNCTION
1873
1874 static struct as_fs_entry as_est_entry = {
1875 .attr = {.name = "est_time", .mode = S_IRUGO },
1876 .show = as_est_show,
1877 };
1878 static struct as_fs_entry as_readexpire_entry = {
1879 .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR },
1880 .show = as_readexpire_show,
1881 .store = as_readexpire_store,
1882 };
1883 static struct as_fs_entry as_writeexpire_entry = {
1884 .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR },
1885 .show = as_writeexpire_show,
1886 .store = as_writeexpire_store,
1887 };
1888 static struct as_fs_entry as_anticexpire_entry = {
1889 .attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR },
1890 .show = as_anticexpire_show,
1891 .store = as_anticexpire_store,
1892 };
1893 static struct as_fs_entry as_read_batchexpire_entry = {
1894 .attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR },
1895 .show = as_read_batchexpire_show,
1896 .store = as_read_batchexpire_store,
1897 };
1898 static struct as_fs_entry as_write_batchexpire_entry = {
1899 .attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR },
1900 .show = as_write_batchexpire_show,
1901 .store = as_write_batchexpire_store,
1902 };
1903
1904 static struct attribute *default_attrs[] = {
1905 &as_est_entry.attr,
1906 &as_readexpire_entry.attr,
1907 &as_writeexpire_entry.attr,
1908 &as_anticexpire_entry.attr,
1909 &as_read_batchexpire_entry.attr,
1910 &as_write_batchexpire_entry.attr,
1911 NULL,
1912 };
1913
1914 #define to_as(atr) container_of((atr), struct as_fs_entry, attr)
1915
1916 static ssize_t
1917 as_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1918 {
1919 elevator_t *e = container_of(kobj, elevator_t, kobj);
1920 struct as_fs_entry *entry = to_as(attr);
1921
1922 if (!entry->show)
1923 return -EIO;
1924
1925 return entry->show(e->elevator_data, page);
1926 }
1927
1928 static ssize_t
1929 as_attr_store(struct kobject *kobj, struct attribute *attr,
1930 const char *page, size_t length)
1931 {
1932 elevator_t *e = container_of(kobj, elevator_t, kobj);
1933 struct as_fs_entry *entry = to_as(attr);
1934
1935 if (!entry->store)
1936 return -EIO;
1937
1938 return entry->store(e->elevator_data, page, length);
1939 }
1940
1941 static struct sysfs_ops as_sysfs_ops = {
1942 .show = as_attr_show,
1943 .store = as_attr_store,
1944 };
1945
1946 static struct kobj_type as_ktype = {
1947 .sysfs_ops = &as_sysfs_ops,
1948 .default_attrs = default_attrs,
1949 };
1950
1951 static struct elevator_type iosched_as = {
1952 .ops = {
1953 .elevator_merge_fn = as_merge,
1954 .elevator_merged_fn = as_merged_request,
1955 .elevator_merge_req_fn = as_merged_requests,
1956 .elevator_dispatch_fn = as_dispatch_request,
1957 .elevator_add_req_fn = as_add_request,
1958 .elevator_activate_req_fn = as_activate_request,
1959 .elevator_deactivate_req_fn = as_deactivate_request,
1960 .elevator_queue_empty_fn = as_queue_empty,
1961 .elevator_completed_req_fn = as_completed_request,
1962 .elevator_former_req_fn = as_former_request,
1963 .elevator_latter_req_fn = as_latter_request,
1964 .elevator_set_req_fn = as_set_request,
1965 .elevator_put_req_fn = as_put_request,
1966 .elevator_may_queue_fn = as_may_queue,
1967 .elevator_init_fn = as_init_queue,
1968 .elevator_exit_fn = as_exit_queue,
1969 },
1970
1971 .elevator_ktype = &as_ktype,
1972 .elevator_name = "anticipatory",
1973 .elevator_owner = THIS_MODULE,
1974 };
1975
1976 static int __init as_init(void)
1977 {
1978 int ret;
1979
1980 arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
1981 0, 0, NULL, NULL);
1982 if (!arq_pool)
1983 return -ENOMEM;
1984
1985 ret = elv_register(&iosched_as);
1986 if (!ret) {
1987 /*
1988 * don't allow AS to get unregistered, since we would have
1989 * to browse all tasks in the system and release their
1990 * as_io_context first
1991 */
1992 __module_get(THIS_MODULE);
1993 return 0;
1994 }
1995
1996 kmem_cache_destroy(arq_pool);
1997 return ret;
1998 }
1999
2000 static void __exit as_exit(void)
2001 {
2002 kmem_cache_destroy(arq_pool);
2003 elv_unregister(&iosched_as);
2004 }
2005
2006 module_init(as_init);
2007 module_exit(as_exit);
2008
2009 MODULE_AUTHOR("Nick Piggin");
2010 MODULE_LICENSE("GPL");
2011 MODULE_DESCRIPTION("anticipatory IO scheduler");