]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
Merge tag 'topic/designware-baytrail-2017-03-02' of git://anongit.freedesktop.org...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_bios.h"
59 #include "intel_dpll_mgr.h"
60 #include "intel_uc.h"
61 #include "intel_lrc.h"
62 #include "intel_ringbuffer.h"
63
64 #include "i915_gem.h"
65 #include "i915_gem_context.h"
66 #include "i915_gem_fence_reg.h"
67 #include "i915_gem_object.h"
68 #include "i915_gem_gtt.h"
69 #include "i915_gem_render_state.h"
70 #include "i915_gem_request.h"
71 #include "i915_gem_timeline.h"
72
73 #include "i915_vma.h"
74
75 #include "intel_gvt.h"
76
77 /* General customization:
78 */
79
80 #define DRIVER_NAME "i915"
81 #define DRIVER_DESC "Intel Graphics"
82 #define DRIVER_DATE "20170306"
83 #define DRIVER_TIMESTAMP 1488785683
84
85 #undef WARN_ON
86 /* Many gcc seem to no see through this and fall over :( */
87 #if 0
88 #define WARN_ON(x) ({ \
89 bool __i915_warn_cond = (x); \
90 if (__builtin_constant_p(__i915_warn_cond)) \
91 BUILD_BUG_ON(__i915_warn_cond); \
92 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
93 #else
94 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
95 #endif
96
97 #undef WARN_ON_ONCE
98 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
99
100 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
101 (long) (x), __func__);
102
103 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
104 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
105 * which may not necessarily be a user visible problem. This will either
106 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
107 * enable distros and users to tailor their preferred amount of i915 abrt
108 * spam.
109 */
110 #define I915_STATE_WARN(condition, format...) ({ \
111 int __ret_warn_on = !!(condition); \
112 if (unlikely(__ret_warn_on)) \
113 if (!WARN(i915.verbose_state_checks, format)) \
114 DRM_ERROR(format); \
115 unlikely(__ret_warn_on); \
116 })
117
118 #define I915_STATE_WARN_ON(x) \
119 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
120
121 bool __i915_inject_load_failure(const char *func, int line);
122 #define i915_inject_load_failure() \
123 __i915_inject_load_failure(__func__, __LINE__)
124
125 typedef struct {
126 uint32_t val;
127 } uint_fixed_16_16_t;
128
129 #define FP_16_16_MAX ({ \
130 uint_fixed_16_16_t fp; \
131 fp.val = UINT_MAX; \
132 fp; \
133 })
134
135 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val)
136 {
137 uint_fixed_16_16_t fp;
138
139 WARN_ON(val >> 16);
140
141 fp.val = val << 16;
142 return fp;
143 }
144
145 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp)
146 {
147 return DIV_ROUND_UP(fp.val, 1 << 16);
148 }
149
150 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp)
151 {
152 return fp.val >> 16;
153 }
154
155 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1,
156 uint_fixed_16_16_t min2)
157 {
158 uint_fixed_16_16_t min;
159
160 min.val = min(min1.val, min2.val);
161 return min;
162 }
163
164 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1,
165 uint_fixed_16_16_t max2)
166 {
167 uint_fixed_16_16_t max;
168
169 max.val = max(max1.val, max2.val);
170 return max;
171 }
172
173 static inline uint_fixed_16_16_t fixed_16_16_div_round_up(uint32_t val,
174 uint32_t d)
175 {
176 uint_fixed_16_16_t fp, res;
177
178 fp = u32_to_fixed_16_16(val);
179 res.val = DIV_ROUND_UP(fp.val, d);
180 return res;
181 }
182
183 static inline uint_fixed_16_16_t fixed_16_16_div_round_up_u64(uint32_t val,
184 uint32_t d)
185 {
186 uint_fixed_16_16_t res;
187 uint64_t interm_val;
188
189 interm_val = (uint64_t)val << 16;
190 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
191 WARN_ON(interm_val >> 32);
192 res.val = (uint32_t) interm_val;
193
194 return res;
195 }
196
197 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val,
198 uint_fixed_16_16_t mul)
199 {
200 uint64_t intermediate_val;
201 uint_fixed_16_16_t fp;
202
203 intermediate_val = (uint64_t) val * mul.val;
204 WARN_ON(intermediate_val >> 32);
205 fp.val = (uint32_t) intermediate_val;
206 return fp;
207 }
208
209 static inline const char *yesno(bool v)
210 {
211 return v ? "yes" : "no";
212 }
213
214 static inline const char *onoff(bool v)
215 {
216 return v ? "on" : "off";
217 }
218
219 static inline const char *enableddisabled(bool v)
220 {
221 return v ? "enabled" : "disabled";
222 }
223
224 enum pipe {
225 INVALID_PIPE = -1,
226 PIPE_A = 0,
227 PIPE_B,
228 PIPE_C,
229 _PIPE_EDP,
230 I915_MAX_PIPES = _PIPE_EDP
231 };
232 #define pipe_name(p) ((p) + 'A')
233
234 enum transcoder {
235 TRANSCODER_A = 0,
236 TRANSCODER_B,
237 TRANSCODER_C,
238 TRANSCODER_EDP,
239 TRANSCODER_DSI_A,
240 TRANSCODER_DSI_C,
241 I915_MAX_TRANSCODERS
242 };
243
244 static inline const char *transcoder_name(enum transcoder transcoder)
245 {
246 switch (transcoder) {
247 case TRANSCODER_A:
248 return "A";
249 case TRANSCODER_B:
250 return "B";
251 case TRANSCODER_C:
252 return "C";
253 case TRANSCODER_EDP:
254 return "EDP";
255 case TRANSCODER_DSI_A:
256 return "DSI A";
257 case TRANSCODER_DSI_C:
258 return "DSI C";
259 default:
260 return "<invalid>";
261 }
262 }
263
264 static inline bool transcoder_is_dsi(enum transcoder transcoder)
265 {
266 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
267 }
268
269 /*
270 * Global legacy plane identifier. Valid only for primary/sprite
271 * planes on pre-g4x, and only for primary planes on g4x+.
272 */
273 enum plane {
274 PLANE_A,
275 PLANE_B,
276 PLANE_C,
277 };
278 #define plane_name(p) ((p) + 'A')
279
280 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
281
282 /*
283 * Per-pipe plane identifier.
284 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
285 * number of planes per CRTC. Not all platforms really have this many planes,
286 * which means some arrays of size I915_MAX_PLANES may have unused entries
287 * between the topmost sprite plane and the cursor plane.
288 *
289 * This is expected to be passed to various register macros
290 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
291 */
292 enum plane_id {
293 PLANE_PRIMARY,
294 PLANE_SPRITE0,
295 PLANE_SPRITE1,
296 PLANE_SPRITE2,
297 PLANE_CURSOR,
298 I915_MAX_PLANES,
299 };
300
301 #define for_each_plane_id_on_crtc(__crtc, __p) \
302 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
303 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
304
305 enum port {
306 PORT_NONE = -1,
307 PORT_A = 0,
308 PORT_B,
309 PORT_C,
310 PORT_D,
311 PORT_E,
312 I915_MAX_PORTS
313 };
314 #define port_name(p) ((p) + 'A')
315
316 #define I915_NUM_PHYS_VLV 2
317
318 enum dpio_channel {
319 DPIO_CH0,
320 DPIO_CH1
321 };
322
323 enum dpio_phy {
324 DPIO_PHY0,
325 DPIO_PHY1,
326 DPIO_PHY2,
327 };
328
329 enum intel_display_power_domain {
330 POWER_DOMAIN_PIPE_A,
331 POWER_DOMAIN_PIPE_B,
332 POWER_DOMAIN_PIPE_C,
333 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
334 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
335 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
336 POWER_DOMAIN_TRANSCODER_A,
337 POWER_DOMAIN_TRANSCODER_B,
338 POWER_DOMAIN_TRANSCODER_C,
339 POWER_DOMAIN_TRANSCODER_EDP,
340 POWER_DOMAIN_TRANSCODER_DSI_A,
341 POWER_DOMAIN_TRANSCODER_DSI_C,
342 POWER_DOMAIN_PORT_DDI_A_LANES,
343 POWER_DOMAIN_PORT_DDI_B_LANES,
344 POWER_DOMAIN_PORT_DDI_C_LANES,
345 POWER_DOMAIN_PORT_DDI_D_LANES,
346 POWER_DOMAIN_PORT_DDI_E_LANES,
347 POWER_DOMAIN_PORT_DDI_A_IO,
348 POWER_DOMAIN_PORT_DDI_B_IO,
349 POWER_DOMAIN_PORT_DDI_C_IO,
350 POWER_DOMAIN_PORT_DDI_D_IO,
351 POWER_DOMAIN_PORT_DDI_E_IO,
352 POWER_DOMAIN_PORT_DSI,
353 POWER_DOMAIN_PORT_CRT,
354 POWER_DOMAIN_PORT_OTHER,
355 POWER_DOMAIN_VGA,
356 POWER_DOMAIN_AUDIO,
357 POWER_DOMAIN_PLLS,
358 POWER_DOMAIN_AUX_A,
359 POWER_DOMAIN_AUX_B,
360 POWER_DOMAIN_AUX_C,
361 POWER_DOMAIN_AUX_D,
362 POWER_DOMAIN_GMBUS,
363 POWER_DOMAIN_MODESET,
364 POWER_DOMAIN_INIT,
365
366 POWER_DOMAIN_NUM,
367 };
368
369 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
370 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
371 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
372 #define POWER_DOMAIN_TRANSCODER(tran) \
373 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
374 (tran) + POWER_DOMAIN_TRANSCODER_A)
375
376 enum hpd_pin {
377 HPD_NONE = 0,
378 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
379 HPD_CRT,
380 HPD_SDVO_B,
381 HPD_SDVO_C,
382 HPD_PORT_A,
383 HPD_PORT_B,
384 HPD_PORT_C,
385 HPD_PORT_D,
386 HPD_PORT_E,
387 HPD_NUM_PINS
388 };
389
390 #define for_each_hpd_pin(__pin) \
391 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
392
393 #define HPD_STORM_DEFAULT_THRESHOLD 5
394
395 struct i915_hotplug {
396 struct work_struct hotplug_work;
397
398 struct {
399 unsigned long last_jiffies;
400 int count;
401 enum {
402 HPD_ENABLED = 0,
403 HPD_DISABLED = 1,
404 HPD_MARK_DISABLED = 2
405 } state;
406 } stats[HPD_NUM_PINS];
407 u32 event_bits;
408 struct delayed_work reenable_work;
409
410 struct intel_digital_port *irq_port[I915_MAX_PORTS];
411 u32 long_port_mask;
412 u32 short_port_mask;
413 struct work_struct dig_port_work;
414
415 struct work_struct poll_init_work;
416 bool poll_enabled;
417
418 unsigned int hpd_storm_threshold;
419
420 /*
421 * if we get a HPD irq from DP and a HPD irq from non-DP
422 * the non-DP HPD could block the workqueue on a mode config
423 * mutex getting, that userspace may have taken. However
424 * userspace is waiting on the DP workqueue to run which is
425 * blocked behind the non-DP one.
426 */
427 struct workqueue_struct *dp_wq;
428 };
429
430 #define I915_GEM_GPU_DOMAINS \
431 (I915_GEM_DOMAIN_RENDER | \
432 I915_GEM_DOMAIN_SAMPLER | \
433 I915_GEM_DOMAIN_COMMAND | \
434 I915_GEM_DOMAIN_INSTRUCTION | \
435 I915_GEM_DOMAIN_VERTEX)
436
437 #define for_each_pipe(__dev_priv, __p) \
438 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
439 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
440 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
441 for_each_if ((__mask) & (1 << (__p)))
442 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
443 for ((__p) = 0; \
444 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
445 (__p)++)
446 #define for_each_sprite(__dev_priv, __p, __s) \
447 for ((__s) = 0; \
448 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
449 (__s)++)
450
451 #define for_each_port_masked(__port, __ports_mask) \
452 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
453 for_each_if ((__ports_mask) & (1 << (__port)))
454
455 #define for_each_crtc(dev, crtc) \
456 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
457
458 #define for_each_intel_plane(dev, intel_plane) \
459 list_for_each_entry(intel_plane, \
460 &(dev)->mode_config.plane_list, \
461 base.head)
462
463 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
464 list_for_each_entry(intel_plane, \
465 &(dev)->mode_config.plane_list, \
466 base.head) \
467 for_each_if ((plane_mask) & \
468 (1 << drm_plane_index(&intel_plane->base)))
469
470 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
471 list_for_each_entry(intel_plane, \
472 &(dev)->mode_config.plane_list, \
473 base.head) \
474 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
475
476 #define for_each_intel_crtc(dev, intel_crtc) \
477 list_for_each_entry(intel_crtc, \
478 &(dev)->mode_config.crtc_list, \
479 base.head)
480
481 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
482 list_for_each_entry(intel_crtc, \
483 &(dev)->mode_config.crtc_list, \
484 base.head) \
485 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
486
487 #define for_each_intel_encoder(dev, intel_encoder) \
488 list_for_each_entry(intel_encoder, \
489 &(dev)->mode_config.encoder_list, \
490 base.head)
491
492 #define for_each_intel_connector_iter(intel_connector, iter) \
493 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
494
495 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
496 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
497 for_each_if ((intel_encoder)->base.crtc == (__crtc))
498
499 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
500 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
501 for_each_if ((intel_connector)->base.encoder == (__encoder))
502
503 #define for_each_power_domain(domain, mask) \
504 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
505 for_each_if (BIT_ULL(domain) & (mask))
506
507 #define for_each_power_well(__dev_priv, __power_well) \
508 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
509 (__power_well) - (__dev_priv)->power_domains.power_wells < \
510 (__dev_priv)->power_domains.power_well_count; \
511 (__power_well)++)
512
513 #define for_each_power_well_rev(__dev_priv, __power_well) \
514 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
515 (__dev_priv)->power_domains.power_well_count - 1; \
516 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
517 (__power_well)--)
518
519 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
520 for_each_power_well(__dev_priv, __power_well) \
521 for_each_if ((__power_well)->domains & (__domain_mask))
522
523 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
524 for_each_power_well_rev(__dev_priv, __power_well) \
525 for_each_if ((__power_well)->domains & (__domain_mask))
526
527 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
528 for ((__i) = 0; \
529 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
530 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
531 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
532 (__i)++) \
533 for_each_if (plane_state)
534
535 struct drm_i915_private;
536 struct i915_mm_struct;
537 struct i915_mmu_object;
538
539 struct drm_i915_file_private {
540 struct drm_i915_private *dev_priv;
541 struct drm_file *file;
542
543 struct {
544 spinlock_t lock;
545 struct list_head request_list;
546 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
547 * chosen to prevent the CPU getting more than a frame ahead of the GPU
548 * (when using lax throttling for the frontbuffer). We also use it to
549 * offer free GPU waitboosts for severely congested workloads.
550 */
551 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
552 } mm;
553 struct idr context_idr;
554
555 struct intel_rps_client {
556 struct list_head link;
557 unsigned boosts;
558 } rps;
559
560 unsigned int bsd_engine;
561
562 /* Client can have a maximum of 3 contexts banned before
563 * it is denied of creating new contexts. As one context
564 * ban needs 4 consecutive hangs, and more if there is
565 * progress in between, this is a last resort stop gap measure
566 * to limit the badly behaving clients access to gpu.
567 */
568 #define I915_MAX_CLIENT_CONTEXT_BANS 3
569 int context_bans;
570 };
571
572 /* Used by dp and fdi links */
573 struct intel_link_m_n {
574 uint32_t tu;
575 uint32_t gmch_m;
576 uint32_t gmch_n;
577 uint32_t link_m;
578 uint32_t link_n;
579 };
580
581 void intel_link_compute_m_n(int bpp, int nlanes,
582 int pixel_clock, int link_clock,
583 struct intel_link_m_n *m_n);
584
585 /* Interface history:
586 *
587 * 1.1: Original.
588 * 1.2: Add Power Management
589 * 1.3: Add vblank support
590 * 1.4: Fix cmdbuffer path, add heap destroy
591 * 1.5: Add vblank pipe configuration
592 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
593 * - Support vertical blank on secondary display pipe
594 */
595 #define DRIVER_MAJOR 1
596 #define DRIVER_MINOR 6
597 #define DRIVER_PATCHLEVEL 0
598
599 struct opregion_header;
600 struct opregion_acpi;
601 struct opregion_swsci;
602 struct opregion_asle;
603
604 struct intel_opregion {
605 struct opregion_header *header;
606 struct opregion_acpi *acpi;
607 struct opregion_swsci *swsci;
608 u32 swsci_gbda_sub_functions;
609 u32 swsci_sbcb_sub_functions;
610 struct opregion_asle *asle;
611 void *rvda;
612 const void *vbt;
613 u32 vbt_size;
614 u32 *lid_state;
615 struct work_struct asle_work;
616 };
617 #define OPREGION_SIZE (8*1024)
618
619 struct intel_overlay;
620 struct intel_overlay_error_state;
621
622 struct sdvo_device_mapping {
623 u8 initialized;
624 u8 dvo_port;
625 u8 slave_addr;
626 u8 dvo_wiring;
627 u8 i2c_pin;
628 u8 ddc_pin;
629 };
630
631 struct intel_connector;
632 struct intel_encoder;
633 struct intel_atomic_state;
634 struct intel_crtc_state;
635 struct intel_initial_plane_config;
636 struct intel_crtc;
637 struct intel_limit;
638 struct dpll;
639 struct intel_cdclk_state;
640
641 struct drm_i915_display_funcs {
642 void (*get_cdclk)(struct drm_i915_private *dev_priv,
643 struct intel_cdclk_state *cdclk_state);
644 void (*set_cdclk)(struct drm_i915_private *dev_priv,
645 const struct intel_cdclk_state *cdclk_state);
646 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
647 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
648 int (*compute_intermediate_wm)(struct drm_device *dev,
649 struct intel_crtc *intel_crtc,
650 struct intel_crtc_state *newstate);
651 void (*initial_watermarks)(struct intel_atomic_state *state,
652 struct intel_crtc_state *cstate);
653 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
654 struct intel_crtc_state *cstate);
655 void (*optimize_watermarks)(struct intel_atomic_state *state,
656 struct intel_crtc_state *cstate);
657 int (*compute_global_watermarks)(struct drm_atomic_state *state);
658 void (*update_wm)(struct intel_crtc *crtc);
659 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
660 /* Returns the active state of the crtc, and if the crtc is active,
661 * fills out the pipe-config with the hw state. */
662 bool (*get_pipe_config)(struct intel_crtc *,
663 struct intel_crtc_state *);
664 void (*get_initial_plane_config)(struct intel_crtc *,
665 struct intel_initial_plane_config *);
666 int (*crtc_compute_clock)(struct intel_crtc *crtc,
667 struct intel_crtc_state *crtc_state);
668 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
669 struct drm_atomic_state *old_state);
670 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
671 struct drm_atomic_state *old_state);
672 void (*update_crtcs)(struct drm_atomic_state *state,
673 unsigned int *crtc_vblank_mask);
674 void (*audio_codec_enable)(struct drm_connector *connector,
675 struct intel_encoder *encoder,
676 const struct drm_display_mode *adjusted_mode);
677 void (*audio_codec_disable)(struct intel_encoder *encoder);
678 void (*fdi_link_train)(struct intel_crtc *crtc,
679 const struct intel_crtc_state *crtc_state);
680 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
681 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
682 struct drm_framebuffer *fb,
683 struct drm_i915_gem_object *obj,
684 struct drm_i915_gem_request *req,
685 uint32_t flags);
686 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
687 /* clock updates for mode set */
688 /* cursor updates */
689 /* render clock increase/decrease */
690 /* display clock increase/decrease */
691 /* pll clock increase/decrease */
692
693 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
694 void (*load_luts)(struct drm_crtc_state *crtc_state);
695 };
696
697 enum forcewake_domain_id {
698 FW_DOMAIN_ID_RENDER = 0,
699 FW_DOMAIN_ID_BLITTER,
700 FW_DOMAIN_ID_MEDIA,
701
702 FW_DOMAIN_ID_COUNT
703 };
704
705 enum forcewake_domains {
706 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
707 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
708 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
709 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
710 FORCEWAKE_BLITTER |
711 FORCEWAKE_MEDIA)
712 };
713
714 #define FW_REG_READ (1)
715 #define FW_REG_WRITE (2)
716
717 enum decoupled_power_domain {
718 GEN9_DECOUPLED_PD_BLITTER = 0,
719 GEN9_DECOUPLED_PD_RENDER,
720 GEN9_DECOUPLED_PD_MEDIA,
721 GEN9_DECOUPLED_PD_ALL
722 };
723
724 enum decoupled_ops {
725 GEN9_DECOUPLED_OP_WRITE = 0,
726 GEN9_DECOUPLED_OP_READ
727 };
728
729 enum forcewake_domains
730 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
731 i915_reg_t reg, unsigned int op);
732
733 struct intel_uncore_funcs {
734 void (*force_wake_get)(struct drm_i915_private *dev_priv,
735 enum forcewake_domains domains);
736 void (*force_wake_put)(struct drm_i915_private *dev_priv,
737 enum forcewake_domains domains);
738
739 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
740 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
741 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
742 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
743
744 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
745 uint8_t val, bool trace);
746 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
747 uint16_t val, bool trace);
748 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
749 uint32_t val, bool trace);
750 };
751
752 struct intel_forcewake_range {
753 u32 start;
754 u32 end;
755
756 enum forcewake_domains domains;
757 };
758
759 struct intel_uncore {
760 spinlock_t lock; /** lock is also taken in irq contexts. */
761
762 const struct intel_forcewake_range *fw_domains_table;
763 unsigned int fw_domains_table_entries;
764
765 struct notifier_block pmic_bus_access_nb;
766 struct intel_uncore_funcs funcs;
767
768 unsigned fifo_count;
769
770 enum forcewake_domains fw_domains;
771 enum forcewake_domains fw_domains_active;
772
773 struct intel_uncore_forcewake_domain {
774 struct drm_i915_private *i915;
775 enum forcewake_domain_id id;
776 enum forcewake_domains mask;
777 unsigned wake_count;
778 struct hrtimer timer;
779 i915_reg_t reg_set;
780 u32 val_set;
781 u32 val_clear;
782 i915_reg_t reg_ack;
783 i915_reg_t reg_post;
784 u32 val_reset;
785 } fw_domain[FW_DOMAIN_ID_COUNT];
786
787 int unclaimed_mmio_check;
788 };
789
790 /* Iterate over initialised fw domains */
791 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
792 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
793 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
794 (domain__)++) \
795 for_each_if ((mask__) & (domain__)->mask)
796
797 #define for_each_fw_domain(domain__, dev_priv__) \
798 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
799
800 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
801 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
802 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
803
804 struct intel_csr {
805 struct work_struct work;
806 const char *fw_path;
807 uint32_t *dmc_payload;
808 uint32_t dmc_fw_size;
809 uint32_t version;
810 uint32_t mmio_count;
811 i915_reg_t mmioaddr[8];
812 uint32_t mmiodata[8];
813 uint32_t dc_state;
814 uint32_t allowed_dc_mask;
815 };
816
817 #define DEV_INFO_FOR_EACH_FLAG(func) \
818 func(is_mobile); \
819 func(is_lp); \
820 func(is_alpha_support); \
821 /* Keep has_* in alphabetical order */ \
822 func(has_64bit_reloc); \
823 func(has_aliasing_ppgtt); \
824 func(has_csr); \
825 func(has_ddi); \
826 func(has_decoupled_mmio); \
827 func(has_dp_mst); \
828 func(has_fbc); \
829 func(has_fpga_dbg); \
830 func(has_full_ppgtt); \
831 func(has_full_48bit_ppgtt); \
832 func(has_gmbus_irq); \
833 func(has_gmch_display); \
834 func(has_guc); \
835 func(has_hotplug); \
836 func(has_hw_contexts); \
837 func(has_l3_dpf); \
838 func(has_llc); \
839 func(has_logical_ring_contexts); \
840 func(has_overlay); \
841 func(has_pipe_cxsr); \
842 func(has_pooled_eu); \
843 func(has_psr); \
844 func(has_rc6); \
845 func(has_rc6p); \
846 func(has_resource_streamer); \
847 func(has_runtime_pm); \
848 func(has_snoop); \
849 func(cursor_needs_physical); \
850 func(hws_needs_physical); \
851 func(overlay_needs_physical); \
852 func(supports_tv);
853
854 struct sseu_dev_info {
855 u8 slice_mask;
856 u8 subslice_mask;
857 u8 eu_total;
858 u8 eu_per_subslice;
859 u8 min_eu_in_pool;
860 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
861 u8 subslice_7eu[3];
862 u8 has_slice_pg:1;
863 u8 has_subslice_pg:1;
864 u8 has_eu_pg:1;
865 };
866
867 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
868 {
869 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
870 }
871
872 /* Keep in gen based order, and chronological order within a gen */
873 enum intel_platform {
874 INTEL_PLATFORM_UNINITIALIZED = 0,
875 INTEL_I830,
876 INTEL_I845G,
877 INTEL_I85X,
878 INTEL_I865G,
879 INTEL_I915G,
880 INTEL_I915GM,
881 INTEL_I945G,
882 INTEL_I945GM,
883 INTEL_G33,
884 INTEL_PINEVIEW,
885 INTEL_I965G,
886 INTEL_I965GM,
887 INTEL_G45,
888 INTEL_GM45,
889 INTEL_IRONLAKE,
890 INTEL_SANDYBRIDGE,
891 INTEL_IVYBRIDGE,
892 INTEL_VALLEYVIEW,
893 INTEL_HASWELL,
894 INTEL_BROADWELL,
895 INTEL_CHERRYVIEW,
896 INTEL_SKYLAKE,
897 INTEL_BROXTON,
898 INTEL_KABYLAKE,
899 INTEL_GEMINILAKE,
900 INTEL_MAX_PLATFORMS
901 };
902
903 struct intel_device_info {
904 u32 display_mmio_offset;
905 u16 device_id;
906 u8 num_pipes;
907 u8 num_sprites[I915_MAX_PIPES];
908 u8 num_scalers[I915_MAX_PIPES];
909 u8 gen;
910 u16 gen_mask;
911 enum intel_platform platform;
912 u8 ring_mask; /* Rings supported by the HW */
913 u8 num_rings;
914 #define DEFINE_FLAG(name) u8 name:1
915 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
916 #undef DEFINE_FLAG
917 u16 ddb_size; /* in blocks */
918 /* Register offsets for the various display pipes and transcoders */
919 int pipe_offsets[I915_MAX_TRANSCODERS];
920 int trans_offsets[I915_MAX_TRANSCODERS];
921 int palette_offsets[I915_MAX_PIPES];
922 int cursor_offsets[I915_MAX_PIPES];
923
924 /* Slice/subslice/EU info */
925 struct sseu_dev_info sseu;
926
927 struct color_luts {
928 u16 degamma_lut_size;
929 u16 gamma_lut_size;
930 } color;
931 };
932
933 struct intel_display_error_state;
934
935 struct i915_gpu_state {
936 struct kref ref;
937 struct timeval time;
938 struct timeval boottime;
939 struct timeval uptime;
940
941 struct drm_i915_private *i915;
942
943 char error_msg[128];
944 bool simulated;
945 bool awake;
946 bool wakelock;
947 bool suspended;
948 int iommu;
949 u32 reset_count;
950 u32 suspend_count;
951 struct intel_device_info device_info;
952 struct i915_params params;
953
954 /* Generic register state */
955 u32 eir;
956 u32 pgtbl_er;
957 u32 ier;
958 u32 gtier[4], ngtier;
959 u32 ccid;
960 u32 derrmr;
961 u32 forcewake;
962 u32 error; /* gen6+ */
963 u32 err_int; /* gen7 */
964 u32 fault_data0; /* gen8, gen9 */
965 u32 fault_data1; /* gen8, gen9 */
966 u32 done_reg;
967 u32 gac_eco;
968 u32 gam_ecochk;
969 u32 gab_ctl;
970 u32 gfx_mode;
971
972 u32 nfence;
973 u64 fence[I915_MAX_NUM_FENCES];
974 struct intel_overlay_error_state *overlay;
975 struct intel_display_error_state *display;
976 struct drm_i915_error_object *semaphore;
977 struct drm_i915_error_object *guc_log;
978
979 struct drm_i915_error_engine {
980 int engine_id;
981 /* Software tracked state */
982 bool waiting;
983 int num_waiters;
984 unsigned long hangcheck_timestamp;
985 bool hangcheck_stalled;
986 enum intel_engine_hangcheck_action hangcheck_action;
987 struct i915_address_space *vm;
988 int num_requests;
989
990 /* position of active request inside the ring */
991 u32 rq_head, rq_post, rq_tail;
992
993 /* our own tracking of ring head and tail */
994 u32 cpu_ring_head;
995 u32 cpu_ring_tail;
996
997 u32 last_seqno;
998
999 /* Register state */
1000 u32 start;
1001 u32 tail;
1002 u32 head;
1003 u32 ctl;
1004 u32 mode;
1005 u32 hws;
1006 u32 ipeir;
1007 u32 ipehr;
1008 u32 bbstate;
1009 u32 instpm;
1010 u32 instps;
1011 u32 seqno;
1012 u64 bbaddr;
1013 u64 acthd;
1014 u32 fault_reg;
1015 u64 faddr;
1016 u32 rc_psmi; /* sleep state */
1017 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
1018 struct intel_instdone instdone;
1019
1020 struct drm_i915_error_context {
1021 char comm[TASK_COMM_LEN];
1022 pid_t pid;
1023 u32 handle;
1024 u32 hw_id;
1025 int ban_score;
1026 int active;
1027 int guilty;
1028 } context;
1029
1030 struct drm_i915_error_object {
1031 u64 gtt_offset;
1032 u64 gtt_size;
1033 int page_count;
1034 int unused;
1035 u32 *pages[0];
1036 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
1037
1038 struct drm_i915_error_object *wa_ctx;
1039
1040 struct drm_i915_error_request {
1041 long jiffies;
1042 pid_t pid;
1043 u32 context;
1044 int ban_score;
1045 u32 seqno;
1046 u32 head;
1047 u32 tail;
1048 } *requests, execlist[2];
1049
1050 struct drm_i915_error_waiter {
1051 char comm[TASK_COMM_LEN];
1052 pid_t pid;
1053 u32 seqno;
1054 } *waiters;
1055
1056 struct {
1057 u32 gfx_mode;
1058 union {
1059 u64 pdp[4];
1060 u32 pp_dir_base;
1061 };
1062 } vm_info;
1063 } engine[I915_NUM_ENGINES];
1064
1065 struct drm_i915_error_buffer {
1066 u32 size;
1067 u32 name;
1068 u32 rseqno[I915_NUM_ENGINES], wseqno;
1069 u64 gtt_offset;
1070 u32 read_domains;
1071 u32 write_domain;
1072 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1073 u32 tiling:2;
1074 u32 dirty:1;
1075 u32 purgeable:1;
1076 u32 userptr:1;
1077 s32 engine:4;
1078 u32 cache_level:3;
1079 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1080 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1081 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1082 };
1083
1084 enum i915_cache_level {
1085 I915_CACHE_NONE = 0,
1086 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1087 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1088 caches, eg sampler/render caches, and the
1089 large Last-Level-Cache. LLC is coherent with
1090 the CPU, but L3 is only visible to the GPU. */
1091 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1092 };
1093
1094 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1095
1096 enum fb_op_origin {
1097 ORIGIN_GTT,
1098 ORIGIN_CPU,
1099 ORIGIN_CS,
1100 ORIGIN_FLIP,
1101 ORIGIN_DIRTYFB,
1102 };
1103
1104 struct intel_fbc {
1105 /* This is always the inner lock when overlapping with struct_mutex and
1106 * it's the outer lock when overlapping with stolen_lock. */
1107 struct mutex lock;
1108 unsigned threshold;
1109 unsigned int possible_framebuffer_bits;
1110 unsigned int busy_bits;
1111 unsigned int visible_pipes_mask;
1112 struct intel_crtc *crtc;
1113
1114 struct drm_mm_node compressed_fb;
1115 struct drm_mm_node *compressed_llb;
1116
1117 bool false_color;
1118
1119 bool enabled;
1120 bool active;
1121
1122 bool underrun_detected;
1123 struct work_struct underrun_work;
1124
1125 struct intel_fbc_state_cache {
1126 struct i915_vma *vma;
1127
1128 struct {
1129 unsigned int mode_flags;
1130 uint32_t hsw_bdw_pixel_rate;
1131 } crtc;
1132
1133 struct {
1134 unsigned int rotation;
1135 int src_w;
1136 int src_h;
1137 bool visible;
1138 } plane;
1139
1140 struct {
1141 const struct drm_format_info *format;
1142 unsigned int stride;
1143 } fb;
1144 } state_cache;
1145
1146 struct intel_fbc_reg_params {
1147 struct i915_vma *vma;
1148
1149 struct {
1150 enum pipe pipe;
1151 enum plane plane;
1152 unsigned int fence_y_offset;
1153 } crtc;
1154
1155 struct {
1156 const struct drm_format_info *format;
1157 unsigned int stride;
1158 } fb;
1159
1160 int cfb_size;
1161 } params;
1162
1163 struct intel_fbc_work {
1164 bool scheduled;
1165 u32 scheduled_vblank;
1166 struct work_struct work;
1167 } work;
1168
1169 const char *no_fbc_reason;
1170 };
1171
1172 /*
1173 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1174 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1175 * parsing for same resolution.
1176 */
1177 enum drrs_refresh_rate_type {
1178 DRRS_HIGH_RR,
1179 DRRS_LOW_RR,
1180 DRRS_MAX_RR, /* RR count */
1181 };
1182
1183 enum drrs_support_type {
1184 DRRS_NOT_SUPPORTED = 0,
1185 STATIC_DRRS_SUPPORT = 1,
1186 SEAMLESS_DRRS_SUPPORT = 2
1187 };
1188
1189 struct intel_dp;
1190 struct i915_drrs {
1191 struct mutex mutex;
1192 struct delayed_work work;
1193 struct intel_dp *dp;
1194 unsigned busy_frontbuffer_bits;
1195 enum drrs_refresh_rate_type refresh_rate_type;
1196 enum drrs_support_type type;
1197 };
1198
1199 struct i915_psr {
1200 struct mutex lock;
1201 bool sink_support;
1202 bool source_ok;
1203 struct intel_dp *enabled;
1204 bool active;
1205 struct delayed_work work;
1206 unsigned busy_frontbuffer_bits;
1207 bool psr2_support;
1208 bool aux_frame_sync;
1209 bool link_standby;
1210 bool y_cord_support;
1211 bool colorimetry_support;
1212 bool alpm;
1213 };
1214
1215 enum intel_pch {
1216 PCH_NONE = 0, /* No PCH present */
1217 PCH_IBX, /* Ibexpeak PCH */
1218 PCH_CPT, /* Cougarpoint PCH */
1219 PCH_LPT, /* Lynxpoint PCH */
1220 PCH_SPT, /* Sunrisepoint PCH */
1221 PCH_KBP, /* Kabypoint PCH */
1222 PCH_NOP,
1223 };
1224
1225 enum intel_sbi_destination {
1226 SBI_ICLK,
1227 SBI_MPHY,
1228 };
1229
1230 #define QUIRK_PIPEA_FORCE (1<<0)
1231 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1232 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1233 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1234 #define QUIRK_PIPEB_FORCE (1<<4)
1235 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1236
1237 struct intel_fbdev;
1238 struct intel_fbc_work;
1239
1240 struct intel_gmbus {
1241 struct i2c_adapter adapter;
1242 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1243 u32 force_bit;
1244 u32 reg0;
1245 i915_reg_t gpio_reg;
1246 struct i2c_algo_bit_data bit_algo;
1247 struct drm_i915_private *dev_priv;
1248 };
1249
1250 struct i915_suspend_saved_registers {
1251 u32 saveDSPARB;
1252 u32 saveFBC_CONTROL;
1253 u32 saveCACHE_MODE_0;
1254 u32 saveMI_ARB_STATE;
1255 u32 saveSWF0[16];
1256 u32 saveSWF1[16];
1257 u32 saveSWF3[3];
1258 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1259 u32 savePCH_PORT_HOTPLUG;
1260 u16 saveGCDGMBUS;
1261 };
1262
1263 struct vlv_s0ix_state {
1264 /* GAM */
1265 u32 wr_watermark;
1266 u32 gfx_prio_ctrl;
1267 u32 arb_mode;
1268 u32 gfx_pend_tlb0;
1269 u32 gfx_pend_tlb1;
1270 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1271 u32 media_max_req_count;
1272 u32 gfx_max_req_count;
1273 u32 render_hwsp;
1274 u32 ecochk;
1275 u32 bsd_hwsp;
1276 u32 blt_hwsp;
1277 u32 tlb_rd_addr;
1278
1279 /* MBC */
1280 u32 g3dctl;
1281 u32 gsckgctl;
1282 u32 mbctl;
1283
1284 /* GCP */
1285 u32 ucgctl1;
1286 u32 ucgctl3;
1287 u32 rcgctl1;
1288 u32 rcgctl2;
1289 u32 rstctl;
1290 u32 misccpctl;
1291
1292 /* GPM */
1293 u32 gfxpause;
1294 u32 rpdeuhwtc;
1295 u32 rpdeuc;
1296 u32 ecobus;
1297 u32 pwrdwnupctl;
1298 u32 rp_down_timeout;
1299 u32 rp_deucsw;
1300 u32 rcubmabdtmr;
1301 u32 rcedata;
1302 u32 spare2gh;
1303
1304 /* Display 1 CZ domain */
1305 u32 gt_imr;
1306 u32 gt_ier;
1307 u32 pm_imr;
1308 u32 pm_ier;
1309 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1310
1311 /* GT SA CZ domain */
1312 u32 tilectl;
1313 u32 gt_fifoctl;
1314 u32 gtlc_wake_ctrl;
1315 u32 gtlc_survive;
1316 u32 pmwgicz;
1317
1318 /* Display 2 CZ domain */
1319 u32 gu_ctl0;
1320 u32 gu_ctl1;
1321 u32 pcbr;
1322 u32 clock_gate_dis2;
1323 };
1324
1325 struct intel_rps_ei {
1326 u32 cz_clock;
1327 u32 render_c0;
1328 u32 media_c0;
1329 };
1330
1331 struct intel_gen6_power_mgmt {
1332 /*
1333 * work, interrupts_enabled and pm_iir are protected by
1334 * dev_priv->irq_lock
1335 */
1336 struct work_struct work;
1337 bool interrupts_enabled;
1338 u32 pm_iir;
1339
1340 /* PM interrupt bits that should never be masked */
1341 u32 pm_intrmsk_mbz;
1342
1343 /* Frequencies are stored in potentially platform dependent multiples.
1344 * In other words, *_freq needs to be multiplied by X to be interesting.
1345 * Soft limits are those which are used for the dynamic reclocking done
1346 * by the driver (raise frequencies under heavy loads, and lower for
1347 * lighter loads). Hard limits are those imposed by the hardware.
1348 *
1349 * A distinction is made for overclocking, which is never enabled by
1350 * default, and is considered to be above the hard limit if it's
1351 * possible at all.
1352 */
1353 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1354 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1355 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1356 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1357 u8 min_freq; /* AKA RPn. Minimum frequency */
1358 u8 boost_freq; /* Frequency to request when wait boosting */
1359 u8 idle_freq; /* Frequency to request when we are idle */
1360 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1361 u8 rp1_freq; /* "less than" RP0 power/freqency */
1362 u8 rp0_freq; /* Non-overclocked max frequency. */
1363 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1364
1365 u8 up_threshold; /* Current %busy required to uplock */
1366 u8 down_threshold; /* Current %busy required to downclock */
1367
1368 int last_adj;
1369 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1370
1371 spinlock_t client_lock;
1372 struct list_head clients;
1373 bool client_boost;
1374
1375 bool enabled;
1376 struct delayed_work autoenable_work;
1377 unsigned boosts;
1378
1379 /* manual wa residency calculations */
1380 struct intel_rps_ei ei;
1381
1382 /*
1383 * Protects RPS/RC6 register access and PCU communication.
1384 * Must be taken after struct_mutex if nested. Note that
1385 * this lock may be held for long periods of time when
1386 * talking to hw - so only take it when talking to hw!
1387 */
1388 struct mutex hw_lock;
1389 };
1390
1391 /* defined intel_pm.c */
1392 extern spinlock_t mchdev_lock;
1393
1394 struct intel_ilk_power_mgmt {
1395 u8 cur_delay;
1396 u8 min_delay;
1397 u8 max_delay;
1398 u8 fmax;
1399 u8 fstart;
1400
1401 u64 last_count1;
1402 unsigned long last_time1;
1403 unsigned long chipset_power;
1404 u64 last_count2;
1405 u64 last_time2;
1406 unsigned long gfx_power;
1407 u8 corr;
1408
1409 int c_m;
1410 int r_t;
1411 };
1412
1413 struct drm_i915_private;
1414 struct i915_power_well;
1415
1416 struct i915_power_well_ops {
1417 /*
1418 * Synchronize the well's hw state to match the current sw state, for
1419 * example enable/disable it based on the current refcount. Called
1420 * during driver init and resume time, possibly after first calling
1421 * the enable/disable handlers.
1422 */
1423 void (*sync_hw)(struct drm_i915_private *dev_priv,
1424 struct i915_power_well *power_well);
1425 /*
1426 * Enable the well and resources that depend on it (for example
1427 * interrupts located on the well). Called after the 0->1 refcount
1428 * transition.
1429 */
1430 void (*enable)(struct drm_i915_private *dev_priv,
1431 struct i915_power_well *power_well);
1432 /*
1433 * Disable the well and resources that depend on it. Called after
1434 * the 1->0 refcount transition.
1435 */
1436 void (*disable)(struct drm_i915_private *dev_priv,
1437 struct i915_power_well *power_well);
1438 /* Returns the hw enabled state. */
1439 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1440 struct i915_power_well *power_well);
1441 };
1442
1443 /* Power well structure for haswell */
1444 struct i915_power_well {
1445 const char *name;
1446 bool always_on;
1447 /* power well enable/disable usage count */
1448 int count;
1449 /* cached hw enabled state */
1450 bool hw_enabled;
1451 u64 domains;
1452 /* unique identifier for this power well */
1453 unsigned long id;
1454 /*
1455 * Arbitraty data associated with this power well. Platform and power
1456 * well specific.
1457 */
1458 unsigned long data;
1459 const struct i915_power_well_ops *ops;
1460 };
1461
1462 struct i915_power_domains {
1463 /*
1464 * Power wells needed for initialization at driver init and suspend
1465 * time are on. They are kept on until after the first modeset.
1466 */
1467 bool init_power_on;
1468 bool initializing;
1469 int power_well_count;
1470
1471 struct mutex lock;
1472 int domain_use_count[POWER_DOMAIN_NUM];
1473 struct i915_power_well *power_wells;
1474 };
1475
1476 #define MAX_L3_SLICES 2
1477 struct intel_l3_parity {
1478 u32 *remap_info[MAX_L3_SLICES];
1479 struct work_struct error_work;
1480 int which_slice;
1481 };
1482
1483 struct i915_gem_mm {
1484 /** Memory allocator for GTT stolen memory */
1485 struct drm_mm stolen;
1486 /** Protects the usage of the GTT stolen memory allocator. This is
1487 * always the inner lock when overlapping with struct_mutex. */
1488 struct mutex stolen_lock;
1489
1490 /** List of all objects in gtt_space. Used to restore gtt
1491 * mappings on resume */
1492 struct list_head bound_list;
1493 /**
1494 * List of objects which are not bound to the GTT (thus
1495 * are idle and not used by the GPU). These objects may or may
1496 * not actually have any pages attached.
1497 */
1498 struct list_head unbound_list;
1499
1500 /** List of all objects in gtt_space, currently mmaped by userspace.
1501 * All objects within this list must also be on bound_list.
1502 */
1503 struct list_head userfault_list;
1504
1505 /**
1506 * List of objects which are pending destruction.
1507 */
1508 struct llist_head free_list;
1509 struct work_struct free_work;
1510
1511 /** Usable portion of the GTT for GEM */
1512 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1513
1514 /** PPGTT used for aliasing the PPGTT with the GTT */
1515 struct i915_hw_ppgtt *aliasing_ppgtt;
1516
1517 struct notifier_block oom_notifier;
1518 struct notifier_block vmap_notifier;
1519 struct shrinker shrinker;
1520
1521 /** LRU list of objects with fence regs on them. */
1522 struct list_head fence_list;
1523
1524 /**
1525 * Are we in a non-interruptible section of code like
1526 * modesetting?
1527 */
1528 bool interruptible;
1529
1530 /* the indicator for dispatch video commands on two BSD rings */
1531 atomic_t bsd_engine_dispatch_index;
1532
1533 /** Bit 6 swizzling required for X tiling */
1534 uint32_t bit_6_swizzle_x;
1535 /** Bit 6 swizzling required for Y tiling */
1536 uint32_t bit_6_swizzle_y;
1537
1538 /* accounting, useful for userland debugging */
1539 spinlock_t object_stat_lock;
1540 u64 object_memory;
1541 u32 object_count;
1542 };
1543
1544 struct drm_i915_error_state_buf {
1545 struct drm_i915_private *i915;
1546 unsigned bytes;
1547 unsigned size;
1548 int err;
1549 u8 *buf;
1550 loff_t start;
1551 loff_t pos;
1552 };
1553
1554 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1555 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1556
1557 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1558 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1559
1560 struct i915_gpu_error {
1561 /* For hangcheck timer */
1562 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1563 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1564
1565 struct delayed_work hangcheck_work;
1566
1567 /* For reset and error_state handling. */
1568 spinlock_t lock;
1569 /* Protected by the above dev->gpu_error.lock. */
1570 struct i915_gpu_state *first_error;
1571
1572 unsigned long missed_irq_rings;
1573
1574 /**
1575 * State variable controlling the reset flow and count
1576 *
1577 * This is a counter which gets incremented when reset is triggered,
1578 *
1579 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set
1580 * meaning that any waiters holding onto the struct_mutex should
1581 * relinquish the lock immediately in order for the reset to start.
1582 *
1583 * If reset is not completed succesfully, the I915_WEDGE bit is
1584 * set meaning that hardware is terminally sour and there is no
1585 * recovery. All waiters on the reset_queue will be woken when
1586 * that happens.
1587 *
1588 * This counter is used by the wait_seqno code to notice that reset
1589 * event happened and it needs to restart the entire ioctl (since most
1590 * likely the seqno it waited for won't ever signal anytime soon).
1591 *
1592 * This is important for lock-free wait paths, where no contended lock
1593 * naturally enforces the correct ordering between the bail-out of the
1594 * waiter and the gpu reset work code.
1595 */
1596 unsigned long reset_count;
1597
1598 unsigned long flags;
1599 #define I915_RESET_IN_PROGRESS 0
1600 #define I915_WEDGED (BITS_PER_LONG - 1)
1601
1602 /**
1603 * Waitqueue to signal when a hang is detected. Used to for waiters
1604 * to release the struct_mutex for the reset to procede.
1605 */
1606 wait_queue_head_t wait_queue;
1607
1608 /**
1609 * Waitqueue to signal when the reset has completed. Used by clients
1610 * that wait for dev_priv->mm.wedged to settle.
1611 */
1612 wait_queue_head_t reset_queue;
1613
1614 /* For missed irq/seqno simulation. */
1615 unsigned long test_irq_rings;
1616 };
1617
1618 enum modeset_restore {
1619 MODESET_ON_LID_OPEN,
1620 MODESET_DONE,
1621 MODESET_SUSPENDED,
1622 };
1623
1624 #define DP_AUX_A 0x40
1625 #define DP_AUX_B 0x10
1626 #define DP_AUX_C 0x20
1627 #define DP_AUX_D 0x30
1628
1629 #define DDC_PIN_B 0x05
1630 #define DDC_PIN_C 0x04
1631 #define DDC_PIN_D 0x06
1632
1633 struct ddi_vbt_port_info {
1634 /*
1635 * This is an index in the HDMI/DVI DDI buffer translation table.
1636 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1637 * populate this field.
1638 */
1639 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1640 uint8_t hdmi_level_shift;
1641
1642 uint8_t supports_dvi:1;
1643 uint8_t supports_hdmi:1;
1644 uint8_t supports_dp:1;
1645 uint8_t supports_edp:1;
1646
1647 uint8_t alternate_aux_channel;
1648 uint8_t alternate_ddc_pin;
1649
1650 uint8_t dp_boost_level;
1651 uint8_t hdmi_boost_level;
1652 };
1653
1654 enum psr_lines_to_wait {
1655 PSR_0_LINES_TO_WAIT = 0,
1656 PSR_1_LINE_TO_WAIT,
1657 PSR_4_LINES_TO_WAIT,
1658 PSR_8_LINES_TO_WAIT
1659 };
1660
1661 struct intel_vbt_data {
1662 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1663 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1664
1665 /* Feature bits */
1666 unsigned int int_tv_support:1;
1667 unsigned int lvds_dither:1;
1668 unsigned int lvds_vbt:1;
1669 unsigned int int_crt_support:1;
1670 unsigned int lvds_use_ssc:1;
1671 unsigned int display_clock_mode:1;
1672 unsigned int fdi_rx_polarity_inverted:1;
1673 unsigned int panel_type:4;
1674 int lvds_ssc_freq;
1675 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1676
1677 enum drrs_support_type drrs_type;
1678
1679 struct {
1680 int rate;
1681 int lanes;
1682 int preemphasis;
1683 int vswing;
1684 bool low_vswing;
1685 bool initialized;
1686 bool support;
1687 int bpp;
1688 struct edp_power_seq pps;
1689 } edp;
1690
1691 struct {
1692 bool full_link;
1693 bool require_aux_wakeup;
1694 int idle_frames;
1695 enum psr_lines_to_wait lines_to_wait;
1696 int tp1_wakeup_time;
1697 int tp2_tp3_wakeup_time;
1698 } psr;
1699
1700 struct {
1701 u16 pwm_freq_hz;
1702 bool present;
1703 bool active_low_pwm;
1704 u8 min_brightness; /* min_brightness/255 of max */
1705 u8 controller; /* brightness controller number */
1706 enum intel_backlight_type type;
1707 } backlight;
1708
1709 /* MIPI DSI */
1710 struct {
1711 u16 panel_id;
1712 struct mipi_config *config;
1713 struct mipi_pps_data *pps;
1714 u8 seq_version;
1715 u32 size;
1716 u8 *data;
1717 const u8 *sequence[MIPI_SEQ_MAX];
1718 } dsi;
1719
1720 int crt_ddc_pin;
1721
1722 int child_dev_num;
1723 union child_device_config *child_dev;
1724
1725 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1726 struct sdvo_device_mapping sdvo_mappings[2];
1727 };
1728
1729 enum intel_ddb_partitioning {
1730 INTEL_DDB_PART_1_2,
1731 INTEL_DDB_PART_5_6, /* IVB+ */
1732 };
1733
1734 struct intel_wm_level {
1735 bool enable;
1736 uint32_t pri_val;
1737 uint32_t spr_val;
1738 uint32_t cur_val;
1739 uint32_t fbc_val;
1740 };
1741
1742 struct ilk_wm_values {
1743 uint32_t wm_pipe[3];
1744 uint32_t wm_lp[3];
1745 uint32_t wm_lp_spr[3];
1746 uint32_t wm_linetime[3];
1747 bool enable_fbc_wm;
1748 enum intel_ddb_partitioning partitioning;
1749 };
1750
1751 struct vlv_pipe_wm {
1752 uint16_t plane[I915_MAX_PLANES];
1753 };
1754
1755 struct vlv_sr_wm {
1756 uint16_t plane;
1757 uint16_t cursor;
1758 };
1759
1760 struct vlv_wm_ddl_values {
1761 uint8_t plane[I915_MAX_PLANES];
1762 };
1763
1764 struct vlv_wm_values {
1765 struct vlv_pipe_wm pipe[3];
1766 struct vlv_sr_wm sr;
1767 struct vlv_wm_ddl_values ddl[3];
1768 uint8_t level;
1769 bool cxsr;
1770 };
1771
1772 struct skl_ddb_entry {
1773 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1774 };
1775
1776 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1777 {
1778 return entry->end - entry->start;
1779 }
1780
1781 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1782 const struct skl_ddb_entry *e2)
1783 {
1784 if (e1->start == e2->start && e1->end == e2->end)
1785 return true;
1786
1787 return false;
1788 }
1789
1790 struct skl_ddb_allocation {
1791 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1792 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1793 };
1794
1795 struct skl_wm_values {
1796 unsigned dirty_pipes;
1797 struct skl_ddb_allocation ddb;
1798 };
1799
1800 struct skl_wm_level {
1801 bool plane_en;
1802 uint16_t plane_res_b;
1803 uint8_t plane_res_l;
1804 };
1805
1806 /*
1807 * This struct helps tracking the state needed for runtime PM, which puts the
1808 * device in PCI D3 state. Notice that when this happens, nothing on the
1809 * graphics device works, even register access, so we don't get interrupts nor
1810 * anything else.
1811 *
1812 * Every piece of our code that needs to actually touch the hardware needs to
1813 * either call intel_runtime_pm_get or call intel_display_power_get with the
1814 * appropriate power domain.
1815 *
1816 * Our driver uses the autosuspend delay feature, which means we'll only really
1817 * suspend if we stay with zero refcount for a certain amount of time. The
1818 * default value is currently very conservative (see intel_runtime_pm_enable), but
1819 * it can be changed with the standard runtime PM files from sysfs.
1820 *
1821 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1822 * goes back to false exactly before we reenable the IRQs. We use this variable
1823 * to check if someone is trying to enable/disable IRQs while they're supposed
1824 * to be disabled. This shouldn't happen and we'll print some error messages in
1825 * case it happens.
1826 *
1827 * For more, read the Documentation/power/runtime_pm.txt.
1828 */
1829 struct i915_runtime_pm {
1830 atomic_t wakeref_count;
1831 bool suspended;
1832 bool irqs_enabled;
1833 };
1834
1835 enum intel_pipe_crc_source {
1836 INTEL_PIPE_CRC_SOURCE_NONE,
1837 INTEL_PIPE_CRC_SOURCE_PLANE1,
1838 INTEL_PIPE_CRC_SOURCE_PLANE2,
1839 INTEL_PIPE_CRC_SOURCE_PF,
1840 INTEL_PIPE_CRC_SOURCE_PIPE,
1841 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1842 INTEL_PIPE_CRC_SOURCE_TV,
1843 INTEL_PIPE_CRC_SOURCE_DP_B,
1844 INTEL_PIPE_CRC_SOURCE_DP_C,
1845 INTEL_PIPE_CRC_SOURCE_DP_D,
1846 INTEL_PIPE_CRC_SOURCE_AUTO,
1847 INTEL_PIPE_CRC_SOURCE_MAX,
1848 };
1849
1850 struct intel_pipe_crc_entry {
1851 uint32_t frame;
1852 uint32_t crc[5];
1853 };
1854
1855 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1856 struct intel_pipe_crc {
1857 spinlock_t lock;
1858 bool opened; /* exclusive access to the result file */
1859 struct intel_pipe_crc_entry *entries;
1860 enum intel_pipe_crc_source source;
1861 int head, tail;
1862 wait_queue_head_t wq;
1863 int skipped;
1864 };
1865
1866 struct i915_frontbuffer_tracking {
1867 spinlock_t lock;
1868
1869 /*
1870 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1871 * scheduled flips.
1872 */
1873 unsigned busy_bits;
1874 unsigned flip_bits;
1875 };
1876
1877 struct i915_wa_reg {
1878 i915_reg_t addr;
1879 u32 value;
1880 /* bitmask representing WA bits */
1881 u32 mask;
1882 };
1883
1884 /*
1885 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1886 * allowing it for RCS as we don't foresee any requirement of having
1887 * a whitelist for other engines. When it is really required for
1888 * other engines then the limit need to be increased.
1889 */
1890 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1891
1892 struct i915_workarounds {
1893 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1894 u32 count;
1895 u32 hw_whitelist_count[I915_NUM_ENGINES];
1896 };
1897
1898 struct i915_virtual_gpu {
1899 bool active;
1900 };
1901
1902 /* used in computing the new watermarks state */
1903 struct intel_wm_config {
1904 unsigned int num_pipes_active;
1905 bool sprites_enabled;
1906 bool sprites_scaled;
1907 };
1908
1909 struct i915_oa_format {
1910 u32 format;
1911 int size;
1912 };
1913
1914 struct i915_oa_reg {
1915 i915_reg_t addr;
1916 u32 value;
1917 };
1918
1919 struct i915_perf_stream;
1920
1921 /**
1922 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1923 */
1924 struct i915_perf_stream_ops {
1925 /**
1926 * @enable: Enables the collection of HW samples, either in response to
1927 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1928 * without `I915_PERF_FLAG_DISABLED`.
1929 */
1930 void (*enable)(struct i915_perf_stream *stream);
1931
1932 /**
1933 * @disable: Disables the collection of HW samples, either in response
1934 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1935 * the stream.
1936 */
1937 void (*disable)(struct i915_perf_stream *stream);
1938
1939 /**
1940 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1941 * once there is something ready to read() for the stream
1942 */
1943 void (*poll_wait)(struct i915_perf_stream *stream,
1944 struct file *file,
1945 poll_table *wait);
1946
1947 /**
1948 * @wait_unlocked: For handling a blocking read, wait until there is
1949 * something to ready to read() for the stream. E.g. wait on the same
1950 * wait queue that would be passed to poll_wait().
1951 */
1952 int (*wait_unlocked)(struct i915_perf_stream *stream);
1953
1954 /**
1955 * @read: Copy buffered metrics as records to userspace
1956 * **buf**: the userspace, destination buffer
1957 * **count**: the number of bytes to copy, requested by userspace
1958 * **offset**: zero at the start of the read, updated as the read
1959 * proceeds, it represents how many bytes have been copied so far and
1960 * the buffer offset for copying the next record.
1961 *
1962 * Copy as many buffered i915 perf samples and records for this stream
1963 * to userspace as will fit in the given buffer.
1964 *
1965 * Only write complete records; returning -%ENOSPC if there isn't room
1966 * for a complete record.
1967 *
1968 * Return any error condition that results in a short read such as
1969 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1970 * returning to userspace.
1971 */
1972 int (*read)(struct i915_perf_stream *stream,
1973 char __user *buf,
1974 size_t count,
1975 size_t *offset);
1976
1977 /**
1978 * @destroy: Cleanup any stream specific resources.
1979 *
1980 * The stream will always be disabled before this is called.
1981 */
1982 void (*destroy)(struct i915_perf_stream *stream);
1983 };
1984
1985 /**
1986 * struct i915_perf_stream - state for a single open stream FD
1987 */
1988 struct i915_perf_stream {
1989 /**
1990 * @dev_priv: i915 drm device
1991 */
1992 struct drm_i915_private *dev_priv;
1993
1994 /**
1995 * @link: Links the stream into ``&drm_i915_private->streams``
1996 */
1997 struct list_head link;
1998
1999 /**
2000 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2001 * properties given when opening a stream, representing the contents
2002 * of a single sample as read() by userspace.
2003 */
2004 u32 sample_flags;
2005
2006 /**
2007 * @sample_size: Considering the configured contents of a sample
2008 * combined with the required header size, this is the total size
2009 * of a single sample record.
2010 */
2011 int sample_size;
2012
2013 /**
2014 * @ctx: %NULL if measuring system-wide across all contexts or a
2015 * specific context that is being monitored.
2016 */
2017 struct i915_gem_context *ctx;
2018
2019 /**
2020 * @enabled: Whether the stream is currently enabled, considering
2021 * whether the stream was opened in a disabled state and based
2022 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2023 */
2024 bool enabled;
2025
2026 /**
2027 * @ops: The callbacks providing the implementation of this specific
2028 * type of configured stream.
2029 */
2030 const struct i915_perf_stream_ops *ops;
2031 };
2032
2033 /**
2034 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2035 */
2036 struct i915_oa_ops {
2037 /**
2038 * @init_oa_buffer: Resets the head and tail pointers of the
2039 * circular buffer for periodic OA reports.
2040 *
2041 * Called when first opening a stream for OA metrics, but also may be
2042 * called in response to an OA buffer overflow or other error
2043 * condition.
2044 *
2045 * Note it may be necessary to clear the full OA buffer here as part of
2046 * maintaining the invariable that new reports must be written to
2047 * zeroed memory for us to be able to reliable detect if an expected
2048 * report has not yet landed in memory. (At least on Haswell the OA
2049 * buffer tail pointer is not synchronized with reports being visible
2050 * to the CPU)
2051 */
2052 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2053
2054 /**
2055 * @enable_metric_set: Applies any MUX configuration to set up the
2056 * Boolean and Custom (B/C) counters that are part of the counter
2057 * reports being sampled. May apply system constraints such as
2058 * disabling EU clock gating as required.
2059 */
2060 int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2061
2062 /**
2063 * @disable_metric_set: Remove system constraints associated with using
2064 * the OA unit.
2065 */
2066 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2067
2068 /**
2069 * @oa_enable: Enable periodic sampling
2070 */
2071 void (*oa_enable)(struct drm_i915_private *dev_priv);
2072
2073 /**
2074 * @oa_disable: Disable periodic sampling
2075 */
2076 void (*oa_disable)(struct drm_i915_private *dev_priv);
2077
2078 /**
2079 * @read: Copy data from the circular OA buffer into a given userspace
2080 * buffer.
2081 */
2082 int (*read)(struct i915_perf_stream *stream,
2083 char __user *buf,
2084 size_t count,
2085 size_t *offset);
2086
2087 /**
2088 * @oa_buffer_is_empty: Check if OA buffer empty (false positives OK)
2089 *
2090 * This is either called via fops or the poll check hrtimer (atomic
2091 * ctx) without any locks taken.
2092 *
2093 * It's safe to read OA config state here unlocked, assuming that this
2094 * is only called while the stream is enabled, while the global OA
2095 * configuration can't be modified.
2096 *
2097 * Efficiency is more important than avoiding some false positives
2098 * here, which will be handled gracefully - likely resulting in an
2099 * %EAGAIN error for userspace.
2100 */
2101 bool (*oa_buffer_is_empty)(struct drm_i915_private *dev_priv);
2102 };
2103
2104 struct intel_cdclk_state {
2105 unsigned int cdclk, vco, ref;
2106 };
2107
2108 struct drm_i915_private {
2109 struct drm_device drm;
2110
2111 struct kmem_cache *objects;
2112 struct kmem_cache *vmas;
2113 struct kmem_cache *requests;
2114 struct kmem_cache *dependencies;
2115
2116 const struct intel_device_info info;
2117
2118 void __iomem *regs;
2119
2120 struct intel_uncore uncore;
2121
2122 struct i915_virtual_gpu vgpu;
2123
2124 struct intel_gvt *gvt;
2125
2126 struct intel_huc huc;
2127 struct intel_guc guc;
2128
2129 struct intel_csr csr;
2130
2131 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2132
2133 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2134 * controller on different i2c buses. */
2135 struct mutex gmbus_mutex;
2136
2137 /**
2138 * Base address of the gmbus and gpio block.
2139 */
2140 uint32_t gpio_mmio_base;
2141
2142 /* MMIO base address for MIPI regs */
2143 uint32_t mipi_mmio_base;
2144
2145 uint32_t psr_mmio_base;
2146
2147 uint32_t pps_mmio_base;
2148
2149 wait_queue_head_t gmbus_wait_queue;
2150
2151 struct pci_dev *bridge_dev;
2152 struct i915_gem_context *kernel_context;
2153 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2154 struct i915_vma *semaphore;
2155
2156 struct drm_dma_handle *status_page_dmah;
2157 struct resource mch_res;
2158
2159 /* protects the irq masks */
2160 spinlock_t irq_lock;
2161
2162 /* protects the mmio flip data */
2163 spinlock_t mmio_flip_lock;
2164
2165 bool display_irqs_enabled;
2166
2167 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2168 struct pm_qos_request pm_qos;
2169
2170 /* Sideband mailbox protection */
2171 struct mutex sb_lock;
2172
2173 /** Cached value of IMR to avoid reads in updating the bitfield */
2174 union {
2175 u32 irq_mask;
2176 u32 de_irq_mask[I915_MAX_PIPES];
2177 };
2178 u32 gt_irq_mask;
2179 u32 pm_imr;
2180 u32 pm_ier;
2181 u32 pm_rps_events;
2182 u32 pm_guc_events;
2183 u32 pipestat_irq_mask[I915_MAX_PIPES];
2184
2185 struct i915_hotplug hotplug;
2186 struct intel_fbc fbc;
2187 struct i915_drrs drrs;
2188 struct intel_opregion opregion;
2189 struct intel_vbt_data vbt;
2190
2191 bool preserve_bios_swizzle;
2192
2193 /* overlay */
2194 struct intel_overlay *overlay;
2195
2196 /* backlight registers and fields in struct intel_panel */
2197 struct mutex backlight_lock;
2198
2199 /* LVDS info */
2200 bool no_aux_handshake;
2201
2202 /* protects panel power sequencer state */
2203 struct mutex pps_mutex;
2204
2205 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2206 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2207
2208 unsigned int fsb_freq, mem_freq, is_ddr3;
2209 unsigned int skl_preferred_vco_freq;
2210 unsigned int max_cdclk_freq;
2211
2212 unsigned int max_dotclk_freq;
2213 unsigned int rawclk_freq;
2214 unsigned int hpll_freq;
2215 unsigned int czclk_freq;
2216
2217 struct {
2218 /*
2219 * The current logical cdclk state.
2220 * See intel_atomic_state.cdclk.logical
2221 *
2222 * For reading holding any crtc lock is sufficient,
2223 * for writing must hold all of them.
2224 */
2225 struct intel_cdclk_state logical;
2226 /*
2227 * The current actual cdclk state.
2228 * See intel_atomic_state.cdclk.actual
2229 */
2230 struct intel_cdclk_state actual;
2231 /* The current hardware cdclk state */
2232 struct intel_cdclk_state hw;
2233 } cdclk;
2234
2235 /**
2236 * wq - Driver workqueue for GEM.
2237 *
2238 * NOTE: Work items scheduled here are not allowed to grab any modeset
2239 * locks, for otherwise the flushing done in the pageflip code will
2240 * result in deadlocks.
2241 */
2242 struct workqueue_struct *wq;
2243
2244 /* Display functions */
2245 struct drm_i915_display_funcs display;
2246
2247 /* PCH chipset type */
2248 enum intel_pch pch_type;
2249 unsigned short pch_id;
2250
2251 unsigned long quirks;
2252
2253 enum modeset_restore modeset_restore;
2254 struct mutex modeset_restore_lock;
2255 struct drm_atomic_state *modeset_restore_state;
2256 struct drm_modeset_acquire_ctx reset_ctx;
2257
2258 struct list_head vm_list; /* Global list of all address spaces */
2259 struct i915_ggtt ggtt; /* VM representing the global address space */
2260
2261 struct i915_gem_mm mm;
2262 DECLARE_HASHTABLE(mm_structs, 7);
2263 struct mutex mm_lock;
2264
2265 /* The hw wants to have a stable context identifier for the lifetime
2266 * of the context (for OA, PASID, faults, etc). This is limited
2267 * in execlists to 21 bits.
2268 */
2269 struct ida context_hw_ida;
2270 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2271
2272 /* Kernel Modesetting */
2273
2274 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2275 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2276 wait_queue_head_t pending_flip_queue;
2277
2278 #ifdef CONFIG_DEBUG_FS
2279 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2280 #endif
2281
2282 /* dpll and cdclk state is protected by connection_mutex */
2283 int num_shared_dpll;
2284 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2285 const struct intel_dpll_mgr *dpll_mgr;
2286
2287 /*
2288 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2289 * Must be global rather than per dpll, because on some platforms
2290 * plls share registers.
2291 */
2292 struct mutex dpll_lock;
2293
2294 unsigned int active_crtcs;
2295 unsigned int min_pixclk[I915_MAX_PIPES];
2296
2297 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2298
2299 struct i915_workarounds workarounds;
2300
2301 struct i915_frontbuffer_tracking fb_tracking;
2302
2303 struct intel_atomic_helper {
2304 struct llist_head free_list;
2305 struct work_struct free_work;
2306 } atomic_helper;
2307
2308 u16 orig_clock;
2309
2310 bool mchbar_need_disable;
2311
2312 struct intel_l3_parity l3_parity;
2313
2314 /* Cannot be determined by PCIID. You must always read a register. */
2315 u32 edram_cap;
2316
2317 /* gen6+ rps state */
2318 struct intel_gen6_power_mgmt rps;
2319
2320 /* ilk-only ips/rps state. Everything in here is protected by the global
2321 * mchdev_lock in intel_pm.c */
2322 struct intel_ilk_power_mgmt ips;
2323
2324 struct i915_power_domains power_domains;
2325
2326 struct i915_psr psr;
2327
2328 struct i915_gpu_error gpu_error;
2329
2330 struct drm_i915_gem_object *vlv_pctx;
2331
2332 #ifdef CONFIG_DRM_FBDEV_EMULATION
2333 /* list of fbdev register on this device */
2334 struct intel_fbdev *fbdev;
2335 struct work_struct fbdev_suspend_work;
2336 #endif
2337
2338 struct drm_property *broadcast_rgb_property;
2339 struct drm_property *force_audio_property;
2340
2341 /* hda/i915 audio component */
2342 struct i915_audio_component *audio_component;
2343 bool audio_component_registered;
2344 /**
2345 * av_mutex - mutex for audio/video sync
2346 *
2347 */
2348 struct mutex av_mutex;
2349
2350 uint32_t hw_context_size;
2351 struct list_head context_list;
2352
2353 u32 fdi_rx_config;
2354
2355 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2356 u32 chv_phy_control;
2357 /*
2358 * Shadows for CHV DPLL_MD regs to keep the state
2359 * checker somewhat working in the presence hardware
2360 * crappiness (can't read out DPLL_MD for pipes B & C).
2361 */
2362 u32 chv_dpll_md[I915_MAX_PIPES];
2363 u32 bxt_phy_grc;
2364
2365 u32 suspend_count;
2366 bool suspended_to_idle;
2367 struct i915_suspend_saved_registers regfile;
2368 struct vlv_s0ix_state vlv_s0ix_state;
2369
2370 enum {
2371 I915_SAGV_UNKNOWN = 0,
2372 I915_SAGV_DISABLED,
2373 I915_SAGV_ENABLED,
2374 I915_SAGV_NOT_CONTROLLED
2375 } sagv_status;
2376
2377 struct {
2378 /* protects DSPARB registers on pre-g4x/vlv/chv */
2379 spinlock_t dsparb_lock;
2380
2381 /*
2382 * Raw watermark latency values:
2383 * in 0.1us units for WM0,
2384 * in 0.5us units for WM1+.
2385 */
2386 /* primary */
2387 uint16_t pri_latency[5];
2388 /* sprite */
2389 uint16_t spr_latency[5];
2390 /* cursor */
2391 uint16_t cur_latency[5];
2392 /*
2393 * Raw watermark memory latency values
2394 * for SKL for all 8 levels
2395 * in 1us units.
2396 */
2397 uint16_t skl_latency[8];
2398
2399 /* current hardware state */
2400 union {
2401 struct ilk_wm_values hw;
2402 struct skl_wm_values skl_hw;
2403 struct vlv_wm_values vlv;
2404 };
2405
2406 uint8_t max_level;
2407
2408 /*
2409 * Should be held around atomic WM register writing; also
2410 * protects * intel_crtc->wm.active and
2411 * cstate->wm.need_postvbl_update.
2412 */
2413 struct mutex wm_mutex;
2414
2415 /*
2416 * Set during HW readout of watermarks/DDB. Some platforms
2417 * need to know when we're still using BIOS-provided values
2418 * (which we don't fully trust).
2419 */
2420 bool distrust_bios_wm;
2421 } wm;
2422
2423 struct i915_runtime_pm pm;
2424
2425 struct {
2426 bool initialized;
2427
2428 struct kobject *metrics_kobj;
2429 struct ctl_table_header *sysctl_header;
2430
2431 struct mutex lock;
2432 struct list_head streams;
2433
2434 spinlock_t hook_lock;
2435
2436 struct {
2437 struct i915_perf_stream *exclusive_stream;
2438
2439 u32 specific_ctx_id;
2440
2441 struct hrtimer poll_check_timer;
2442 wait_queue_head_t poll_wq;
2443 bool pollin;
2444
2445 bool periodic;
2446 int period_exponent;
2447 int timestamp_frequency;
2448
2449 int tail_margin;
2450
2451 int metrics_set;
2452
2453 const struct i915_oa_reg *mux_regs;
2454 int mux_regs_len;
2455 const struct i915_oa_reg *b_counter_regs;
2456 int b_counter_regs_len;
2457
2458 struct {
2459 struct i915_vma *vma;
2460 u8 *vaddr;
2461 int format;
2462 int format_size;
2463 } oa_buffer;
2464
2465 u32 gen7_latched_oastatus1;
2466
2467 struct i915_oa_ops ops;
2468 const struct i915_oa_format *oa_formats;
2469 int n_builtin_sets;
2470 } oa;
2471 } perf;
2472
2473 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2474 struct {
2475 void (*resume)(struct drm_i915_private *);
2476 void (*cleanup_engine)(struct intel_engine_cs *engine);
2477
2478 struct list_head timelines;
2479 struct i915_gem_timeline global_timeline;
2480 u32 active_requests;
2481
2482 /**
2483 * Is the GPU currently considered idle, or busy executing
2484 * userspace requests? Whilst idle, we allow runtime power
2485 * management to power down the hardware and display clocks.
2486 * In order to reduce the effect on performance, there
2487 * is a slight delay before we do so.
2488 */
2489 bool awake;
2490
2491 /**
2492 * We leave the user IRQ off as much as possible,
2493 * but this means that requests will finish and never
2494 * be retired once the system goes idle. Set a timer to
2495 * fire periodically while the ring is running. When it
2496 * fires, go retire requests.
2497 */
2498 struct delayed_work retire_work;
2499
2500 /**
2501 * When we detect an idle GPU, we want to turn on
2502 * powersaving features. So once we see that there
2503 * are no more requests outstanding and no more
2504 * arrive within a small period of time, we fire
2505 * off the idle_work.
2506 */
2507 struct delayed_work idle_work;
2508
2509 ktime_t last_init_time;
2510 } gt;
2511
2512 /* perform PHY state sanity checks? */
2513 bool chv_phy_assert[2];
2514
2515 bool ipc_enabled;
2516
2517 /* Used to save the pipe-to-encoder mapping for audio */
2518 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2519
2520 /* necessary resource sharing with HDMI LPE audio driver. */
2521 struct {
2522 struct platform_device *platdev;
2523 int irq;
2524 } lpe_audio;
2525
2526 /*
2527 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2528 * will be rejected. Instead look for a better place.
2529 */
2530 };
2531
2532 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2533 {
2534 return container_of(dev, struct drm_i915_private, drm);
2535 }
2536
2537 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2538 {
2539 return to_i915(dev_get_drvdata(kdev));
2540 }
2541
2542 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2543 {
2544 return container_of(guc, struct drm_i915_private, guc);
2545 }
2546
2547 /* Simple iterator over all initialised engines */
2548 #define for_each_engine(engine__, dev_priv__, id__) \
2549 for ((id__) = 0; \
2550 (id__) < I915_NUM_ENGINES; \
2551 (id__)++) \
2552 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2553
2554 #define __mask_next_bit(mask) ({ \
2555 int __idx = ffs(mask) - 1; \
2556 mask &= ~BIT(__idx); \
2557 __idx; \
2558 })
2559
2560 /* Iterator over subset of engines selected by mask */
2561 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2562 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2563 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2564
2565 enum hdmi_force_audio {
2566 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2567 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2568 HDMI_AUDIO_AUTO, /* trust EDID */
2569 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2570 };
2571
2572 #define I915_GTT_OFFSET_NONE ((u32)-1)
2573
2574 /*
2575 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2576 * considered to be the frontbuffer for the given plane interface-wise. This
2577 * doesn't mean that the hw necessarily already scans it out, but that any
2578 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2579 *
2580 * We have one bit per pipe and per scanout plane type.
2581 */
2582 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2583 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2584 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2585 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2586 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2587 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2588 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2589 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2590 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2591 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2592 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2593 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2594
2595 /*
2596 * Optimised SGL iterator for GEM objects
2597 */
2598 static __always_inline struct sgt_iter {
2599 struct scatterlist *sgp;
2600 union {
2601 unsigned long pfn;
2602 dma_addr_t dma;
2603 };
2604 unsigned int curr;
2605 unsigned int max;
2606 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2607 struct sgt_iter s = { .sgp = sgl };
2608
2609 if (s.sgp) {
2610 s.max = s.curr = s.sgp->offset;
2611 s.max += s.sgp->length;
2612 if (dma)
2613 s.dma = sg_dma_address(s.sgp);
2614 else
2615 s.pfn = page_to_pfn(sg_page(s.sgp));
2616 }
2617
2618 return s;
2619 }
2620
2621 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2622 {
2623 ++sg;
2624 if (unlikely(sg_is_chain(sg)))
2625 sg = sg_chain_ptr(sg);
2626 return sg;
2627 }
2628
2629 /**
2630 * __sg_next - return the next scatterlist entry in a list
2631 * @sg: The current sg entry
2632 *
2633 * Description:
2634 * If the entry is the last, return NULL; otherwise, step to the next
2635 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2636 * otherwise just return the pointer to the current element.
2637 **/
2638 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2639 {
2640 #ifdef CONFIG_DEBUG_SG
2641 BUG_ON(sg->sg_magic != SG_MAGIC);
2642 #endif
2643 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2644 }
2645
2646 /**
2647 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2648 * @__dmap: DMA address (output)
2649 * @__iter: 'struct sgt_iter' (iterator state, internal)
2650 * @__sgt: sg_table to iterate over (input)
2651 */
2652 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2653 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2654 ((__dmap) = (__iter).dma + (__iter).curr); \
2655 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2656 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2657
2658 /**
2659 * for_each_sgt_page - iterate over the pages of the given sg_table
2660 * @__pp: page pointer (output)
2661 * @__iter: 'struct sgt_iter' (iterator state, internal)
2662 * @__sgt: sg_table to iterate over (input)
2663 */
2664 #define for_each_sgt_page(__pp, __iter, __sgt) \
2665 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2666 ((__pp) = (__iter).pfn == 0 ? NULL : \
2667 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2668 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2669 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2670
2671 static inline const struct intel_device_info *
2672 intel_info(const struct drm_i915_private *dev_priv)
2673 {
2674 return &dev_priv->info;
2675 }
2676
2677 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2678
2679 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2680 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2681
2682 #define REVID_FOREVER 0xff
2683 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2684
2685 #define GEN_FOREVER (0)
2686 /*
2687 * Returns true if Gen is in inclusive range [Start, End].
2688 *
2689 * Use GEN_FOREVER for unbound start and or end.
2690 */
2691 #define IS_GEN(dev_priv, s, e) ({ \
2692 unsigned int __s = (s), __e = (e); \
2693 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2694 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2695 if ((__s) != GEN_FOREVER) \
2696 __s = (s) - 1; \
2697 if ((__e) == GEN_FOREVER) \
2698 __e = BITS_PER_LONG - 1; \
2699 else \
2700 __e = (e) - 1; \
2701 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2702 })
2703
2704 /*
2705 * Return true if revision is in range [since,until] inclusive.
2706 *
2707 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2708 */
2709 #define IS_REVID(p, since, until) \
2710 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2711
2712 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2713 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2714 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2715 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2716 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2717 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2718 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2719 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2720 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2721 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2722 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2723 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2724 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2725 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2726 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2727 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2728 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2729 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2730 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2731 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2732 INTEL_DEVID(dev_priv) == 0x0152 || \
2733 INTEL_DEVID(dev_priv) == 0x015a)
2734 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2735 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2736 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2737 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2738 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2739 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2740 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2741 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2742 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2743 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2744 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2745 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2746 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2747 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2748 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2749 /* ULX machines are also considered ULT. */
2750 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2751 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2752 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2753 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2754 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2755 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2756 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2757 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2758 /* ULX machines are also considered ULT. */
2759 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2760 INTEL_DEVID(dev_priv) == 0x0A1E)
2761 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2762 INTEL_DEVID(dev_priv) == 0x1913 || \
2763 INTEL_DEVID(dev_priv) == 0x1916 || \
2764 INTEL_DEVID(dev_priv) == 0x1921 || \
2765 INTEL_DEVID(dev_priv) == 0x1926)
2766 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2767 INTEL_DEVID(dev_priv) == 0x1915 || \
2768 INTEL_DEVID(dev_priv) == 0x191E)
2769 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2770 INTEL_DEVID(dev_priv) == 0x5913 || \
2771 INTEL_DEVID(dev_priv) == 0x5916 || \
2772 INTEL_DEVID(dev_priv) == 0x5921 || \
2773 INTEL_DEVID(dev_priv) == 0x5926)
2774 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2775 INTEL_DEVID(dev_priv) == 0x5915 || \
2776 INTEL_DEVID(dev_priv) == 0x591E)
2777 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2778 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2779 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2780 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2781
2782 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2783
2784 #define SKL_REVID_A0 0x0
2785 #define SKL_REVID_B0 0x1
2786 #define SKL_REVID_C0 0x2
2787 #define SKL_REVID_D0 0x3
2788 #define SKL_REVID_E0 0x4
2789 #define SKL_REVID_F0 0x5
2790 #define SKL_REVID_G0 0x6
2791 #define SKL_REVID_H0 0x7
2792
2793 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2794
2795 #define BXT_REVID_A0 0x0
2796 #define BXT_REVID_A1 0x1
2797 #define BXT_REVID_B0 0x3
2798 #define BXT_REVID_B_LAST 0x8
2799 #define BXT_REVID_C0 0x9
2800
2801 #define IS_BXT_REVID(dev_priv, since, until) \
2802 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2803
2804 #define KBL_REVID_A0 0x0
2805 #define KBL_REVID_B0 0x1
2806 #define KBL_REVID_C0 0x2
2807 #define KBL_REVID_D0 0x3
2808 #define KBL_REVID_E0 0x4
2809
2810 #define IS_KBL_REVID(dev_priv, since, until) \
2811 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2812
2813 #define GLK_REVID_A0 0x0
2814 #define GLK_REVID_A1 0x1
2815
2816 #define IS_GLK_REVID(dev_priv, since, until) \
2817 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2818
2819 /*
2820 * The genX designation typically refers to the render engine, so render
2821 * capability related checks should use IS_GEN, while display and other checks
2822 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2823 * chips, etc.).
2824 */
2825 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2826 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2827 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2828 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2829 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2830 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2831 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2832 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2833
2834 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2835 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2836 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2837
2838 #define ENGINE_MASK(id) BIT(id)
2839 #define RENDER_RING ENGINE_MASK(RCS)
2840 #define BSD_RING ENGINE_MASK(VCS)
2841 #define BLT_RING ENGINE_MASK(BCS)
2842 #define VEBOX_RING ENGINE_MASK(VECS)
2843 #define BSD2_RING ENGINE_MASK(VCS2)
2844 #define ALL_ENGINES (~0)
2845
2846 #define HAS_ENGINE(dev_priv, id) \
2847 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2848
2849 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2850 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2851 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2852 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2853
2854 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2855 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2856 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2857 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2858 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2859
2860 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2861
2862 #define HAS_HW_CONTEXTS(dev_priv) ((dev_priv)->info.has_hw_contexts)
2863 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2864 ((dev_priv)->info.has_logical_ring_contexts)
2865 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
2866 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
2867 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2868
2869 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2870 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2871 ((dev_priv)->info.overlay_needs_physical)
2872
2873 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2874 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2875
2876 /* WaRsDisableCoarsePowerGating:skl,bxt */
2877 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2878 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2879
2880 /*
2881 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2882 * even when in MSI mode. This results in spurious interrupt warnings if the
2883 * legacy irq no. is shared with another device. The kernel then disables that
2884 * interrupt source and so prevents the other device from working properly.
2885 */
2886 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
2887 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2888
2889 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2890 * rows, which changed the alignment requirements and fence programming.
2891 */
2892 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2893 !(IS_I915G(dev_priv) || \
2894 IS_I915GM(dev_priv)))
2895 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2896 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2897
2898 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2899 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2900 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2901
2902 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2903
2904 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2905
2906 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2907 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2908 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2909 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2910 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2911
2912 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2913
2914 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2915 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2916
2917 /*
2918 * For now, anything with a GuC requires uCode loading, and then supports
2919 * command submission once loaded. But these are logically independent
2920 * properties, so we have separate macros to test them.
2921 */
2922 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
2923 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2924 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2925 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2926
2927 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2928
2929 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2930
2931 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2932 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2933 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2934 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2935 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2936 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2937 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2938 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2939 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2940 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2941 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2942 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2943
2944 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2945 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2946 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2947 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2948 #define HAS_PCH_LPT_LP(dev_priv) \
2949 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2950 #define HAS_PCH_LPT_H(dev_priv) \
2951 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2952 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2953 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2954 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2955 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2956
2957 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2958
2959 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv))
2960
2961 /* DPF == dynamic parity feature */
2962 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2963 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2964 2 : HAS_L3_DPF(dev_priv))
2965
2966 #define GT_FREQUENCY_MULTIPLIER 50
2967 #define GEN9_FREQ_SCALER 3
2968
2969 #define HAS_DECOUPLED_MMIO(dev_priv) (INTEL_INFO(dev_priv)->has_decoupled_mmio)
2970
2971 #include "i915_trace.h"
2972
2973 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2974 {
2975 #ifdef CONFIG_INTEL_IOMMU
2976 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2977 return true;
2978 #endif
2979 return false;
2980 }
2981
2982 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2983 int enable_ppgtt);
2984
2985 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2986
2987 /* i915_drv.c */
2988 void __printf(3, 4)
2989 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2990 const char *fmt, ...);
2991
2992 #define i915_report_error(dev_priv, fmt, ...) \
2993 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2994
2995 #ifdef CONFIG_COMPAT
2996 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2997 unsigned long arg);
2998 #else
2999 #define i915_compat_ioctl NULL
3000 #endif
3001 extern const struct dev_pm_ops i915_pm_ops;
3002
3003 extern int i915_driver_load(struct pci_dev *pdev,
3004 const struct pci_device_id *ent);
3005 extern void i915_driver_unload(struct drm_device *dev);
3006 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3007 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3008 extern void i915_reset(struct drm_i915_private *dev_priv);
3009 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3010 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3011 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3012 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3013 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3014 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3015 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3016 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3017
3018 int intel_engines_init_early(struct drm_i915_private *dev_priv);
3019 int intel_engines_init(struct drm_i915_private *dev_priv);
3020
3021 /* intel_hotplug.c */
3022 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3023 u32 pin_mask, u32 long_mask);
3024 void intel_hpd_init(struct drm_i915_private *dev_priv);
3025 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3026 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3027 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3028 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3029 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3030
3031 /* i915_irq.c */
3032 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3033 {
3034 unsigned long delay;
3035
3036 if (unlikely(!i915.enable_hangcheck))
3037 return;
3038
3039 /* Don't continually defer the hangcheck so that it is always run at
3040 * least once after work has been scheduled on any ring. Otherwise,
3041 * we will ignore a hung ring if a second ring is kept busy.
3042 */
3043
3044 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3045 queue_delayed_work(system_long_wq,
3046 &dev_priv->gpu_error.hangcheck_work, delay);
3047 }
3048
3049 __printf(3, 4)
3050 void i915_handle_error(struct drm_i915_private *dev_priv,
3051 u32 engine_mask,
3052 const char *fmt, ...);
3053
3054 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3055 int intel_irq_install(struct drm_i915_private *dev_priv);
3056 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3057
3058 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
3059 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
3060 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
3061 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
3062 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
3063 extern void intel_uncore_suspend(struct drm_i915_private *dev_priv);
3064 extern void intel_uncore_resume_early(struct drm_i915_private *dev_priv);
3065 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
3066 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
3067 enum forcewake_domains domains);
3068 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
3069 enum forcewake_domains domains);
3070 /* Like above but the caller must manage the uncore.lock itself.
3071 * Must be used with I915_READ_FW and friends.
3072 */
3073 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
3074 enum forcewake_domains domains);
3075 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
3076 enum forcewake_domains domains);
3077 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
3078
3079 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
3080
3081 int intel_wait_for_register(struct drm_i915_private *dev_priv,
3082 i915_reg_t reg,
3083 const u32 mask,
3084 const u32 value,
3085 const unsigned long timeout_ms);
3086 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3087 i915_reg_t reg,
3088 const u32 mask,
3089 const u32 value,
3090 const unsigned long timeout_ms);
3091
3092 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3093 {
3094 return dev_priv->gvt;
3095 }
3096
3097 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3098 {
3099 return dev_priv->vgpu.active;
3100 }
3101
3102 void
3103 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3104 u32 status_mask);
3105
3106 void
3107 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3108 u32 status_mask);
3109
3110 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3111 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3112 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3113 uint32_t mask,
3114 uint32_t bits);
3115 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3116 uint32_t interrupt_mask,
3117 uint32_t enabled_irq_mask);
3118 static inline void
3119 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3120 {
3121 ilk_update_display_irq(dev_priv, bits, bits);
3122 }
3123 static inline void
3124 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3125 {
3126 ilk_update_display_irq(dev_priv, bits, 0);
3127 }
3128 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3129 enum pipe pipe,
3130 uint32_t interrupt_mask,
3131 uint32_t enabled_irq_mask);
3132 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3133 enum pipe pipe, uint32_t bits)
3134 {
3135 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3136 }
3137 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3138 enum pipe pipe, uint32_t bits)
3139 {
3140 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3141 }
3142 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3143 uint32_t interrupt_mask,
3144 uint32_t enabled_irq_mask);
3145 static inline void
3146 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3147 {
3148 ibx_display_interrupt_update(dev_priv, bits, bits);
3149 }
3150 static inline void
3151 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3152 {
3153 ibx_display_interrupt_update(dev_priv, bits, 0);
3154 }
3155
3156 /* i915_gem.c */
3157 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3158 struct drm_file *file_priv);
3159 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3160 struct drm_file *file_priv);
3161 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3162 struct drm_file *file_priv);
3163 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3164 struct drm_file *file_priv);
3165 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3166 struct drm_file *file_priv);
3167 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3168 struct drm_file *file_priv);
3169 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3170 struct drm_file *file_priv);
3171 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3172 struct drm_file *file_priv);
3173 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3174 struct drm_file *file_priv);
3175 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3176 struct drm_file *file_priv);
3177 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3178 struct drm_file *file);
3179 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3180 struct drm_file *file);
3181 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3182 struct drm_file *file_priv);
3183 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3184 struct drm_file *file_priv);
3185 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3186 struct drm_file *file_priv);
3187 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3188 struct drm_file *file_priv);
3189 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3190 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3191 struct drm_file *file);
3192 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3193 struct drm_file *file_priv);
3194 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3195 struct drm_file *file_priv);
3196 void i915_gem_sanitize(struct drm_i915_private *i915);
3197 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3198 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3199 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3200 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3201 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3202
3203 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3204 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3205 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3206 const struct drm_i915_gem_object_ops *ops);
3207 struct drm_i915_gem_object *
3208 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3209 struct drm_i915_gem_object *
3210 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3211 const void *data, size_t size);
3212 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3213 void i915_gem_free_object(struct drm_gem_object *obj);
3214
3215 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3216 {
3217 /* A single pass should suffice to release all the freed objects (along
3218 * most call paths) , but be a little more paranoid in that freeing
3219 * the objects does take a little amount of time, during which the rcu
3220 * callbacks could have added new objects into the freed list, and
3221 * armed the work again.
3222 */
3223 do {
3224 rcu_barrier();
3225 } while (flush_work(&i915->mm.free_work));
3226 }
3227
3228 struct i915_vma * __must_check
3229 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3230 const struct i915_ggtt_view *view,
3231 u64 size,
3232 u64 alignment,
3233 u64 flags);
3234
3235 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3236 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3237
3238 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3239
3240 static inline int __sg_page_count(const struct scatterlist *sg)
3241 {
3242 return sg->length >> PAGE_SHIFT;
3243 }
3244
3245 struct scatterlist *
3246 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3247 unsigned int n, unsigned int *offset);
3248
3249 struct page *
3250 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3251 unsigned int n);
3252
3253 struct page *
3254 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3255 unsigned int n);
3256
3257 dma_addr_t
3258 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3259 unsigned long n);
3260
3261 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3262 struct sg_table *pages);
3263 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3264
3265 static inline int __must_check
3266 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3267 {
3268 might_lock(&obj->mm.lock);
3269
3270 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3271 return 0;
3272
3273 return __i915_gem_object_get_pages(obj);
3274 }
3275
3276 static inline void
3277 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3278 {
3279 GEM_BUG_ON(!obj->mm.pages);
3280
3281 atomic_inc(&obj->mm.pages_pin_count);
3282 }
3283
3284 static inline bool
3285 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3286 {
3287 return atomic_read(&obj->mm.pages_pin_count);
3288 }
3289
3290 static inline void
3291 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3292 {
3293 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3294 GEM_BUG_ON(!obj->mm.pages);
3295
3296 atomic_dec(&obj->mm.pages_pin_count);
3297 }
3298
3299 static inline void
3300 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3301 {
3302 __i915_gem_object_unpin_pages(obj);
3303 }
3304
3305 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3306 I915_MM_NORMAL = 0,
3307 I915_MM_SHRINKER
3308 };
3309
3310 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3311 enum i915_mm_subclass subclass);
3312 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3313
3314 enum i915_map_type {
3315 I915_MAP_WB = 0,
3316 I915_MAP_WC,
3317 };
3318
3319 /**
3320 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3321 * @obj: the object to map into kernel address space
3322 * @type: the type of mapping, used to select pgprot_t
3323 *
3324 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3325 * pages and then returns a contiguous mapping of the backing storage into
3326 * the kernel address space. Based on the @type of mapping, the PTE will be
3327 * set to either WriteBack or WriteCombine (via pgprot_t).
3328 *
3329 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3330 * mapping is no longer required.
3331 *
3332 * Returns the pointer through which to access the mapped object, or an
3333 * ERR_PTR() on error.
3334 */
3335 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3336 enum i915_map_type type);
3337
3338 /**
3339 * i915_gem_object_unpin_map - releases an earlier mapping
3340 * @obj: the object to unmap
3341 *
3342 * After pinning the object and mapping its pages, once you are finished
3343 * with your access, call i915_gem_object_unpin_map() to release the pin
3344 * upon the mapping. Once the pin count reaches zero, that mapping may be
3345 * removed.
3346 */
3347 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3348 {
3349 i915_gem_object_unpin_pages(obj);
3350 }
3351
3352 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3353 unsigned int *needs_clflush);
3354 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3355 unsigned int *needs_clflush);
3356 #define CLFLUSH_BEFORE 0x1
3357 #define CLFLUSH_AFTER 0x2
3358 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3359
3360 static inline void
3361 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3362 {
3363 i915_gem_object_unpin_pages(obj);
3364 }
3365
3366 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3367 void i915_vma_move_to_active(struct i915_vma *vma,
3368 struct drm_i915_gem_request *req,
3369 unsigned int flags);
3370 int i915_gem_dumb_create(struct drm_file *file_priv,
3371 struct drm_device *dev,
3372 struct drm_mode_create_dumb *args);
3373 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3374 uint32_t handle, uint64_t *offset);
3375 int i915_gem_mmap_gtt_version(void);
3376
3377 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3378 struct drm_i915_gem_object *new,
3379 unsigned frontbuffer_bits);
3380
3381 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3382
3383 struct drm_i915_gem_request *
3384 i915_gem_find_active_request(struct intel_engine_cs *engine);
3385
3386 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3387
3388 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3389 {
3390 return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags));
3391 }
3392
3393 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3394 {
3395 return unlikely(test_bit(I915_WEDGED, &error->flags));
3396 }
3397
3398 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3399 {
3400 return i915_reset_in_progress(error) | i915_terminally_wedged(error);
3401 }
3402
3403 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3404 {
3405 return READ_ONCE(error->reset_count);
3406 }
3407
3408 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3409 void i915_gem_reset(struct drm_i915_private *dev_priv);
3410 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3411 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3412
3413 void i915_gem_init_mmio(struct drm_i915_private *i915);
3414 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3415 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3416 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3417 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3418 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3419 unsigned int flags);
3420 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3421 void i915_gem_resume(struct drm_i915_private *dev_priv);
3422 int i915_gem_fault(struct vm_fault *vmf);
3423 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3424 unsigned int flags,
3425 long timeout,
3426 struct intel_rps_client *rps);
3427 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3428 unsigned int flags,
3429 int priority);
3430 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3431
3432 int __must_check
3433 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3434 bool write);
3435 int __must_check
3436 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3437 struct i915_vma * __must_check
3438 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3439 u32 alignment,
3440 const struct i915_ggtt_view *view);
3441 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3442 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3443 int align);
3444 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3445 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3446
3447 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3448 enum i915_cache_level cache_level);
3449
3450 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3451 struct dma_buf *dma_buf);
3452
3453 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3454 struct drm_gem_object *gem_obj, int flags);
3455
3456 static inline struct i915_hw_ppgtt *
3457 i915_vm_to_ppgtt(struct i915_address_space *vm)
3458 {
3459 return container_of(vm, struct i915_hw_ppgtt, base);
3460 }
3461
3462 /* i915_gem_fence_reg.c */
3463 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3464 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3465
3466 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3467 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3468
3469 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3470 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3471 struct sg_table *pages);
3472 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3473 struct sg_table *pages);
3474
3475 static inline struct i915_gem_context *
3476 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3477 {
3478 struct i915_gem_context *ctx;
3479
3480 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3481
3482 ctx = idr_find(&file_priv->context_idr, id);
3483 if (!ctx)
3484 return ERR_PTR(-ENOENT);
3485
3486 return ctx;
3487 }
3488
3489 static inline struct i915_gem_context *
3490 i915_gem_context_get(struct i915_gem_context *ctx)
3491 {
3492 kref_get(&ctx->ref);
3493 return ctx;
3494 }
3495
3496 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3497 {
3498 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3499 kref_put(&ctx->ref, i915_gem_context_free);
3500 }
3501
3502 static inline void i915_gem_context_put_unlocked(struct i915_gem_context *ctx)
3503 {
3504 struct mutex *lock = &ctx->i915->drm.struct_mutex;
3505
3506 if (kref_put_mutex(&ctx->ref, i915_gem_context_free, lock))
3507 mutex_unlock(lock);
3508 }
3509
3510 static inline struct intel_timeline *
3511 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3512 struct intel_engine_cs *engine)
3513 {
3514 struct i915_address_space *vm;
3515
3516 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3517 return &vm->timeline.engine[engine->id];
3518 }
3519
3520 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3521 struct drm_file *file);
3522
3523 /* i915_gem_evict.c */
3524 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3525 u64 min_size, u64 alignment,
3526 unsigned cache_level,
3527 u64 start, u64 end,
3528 unsigned flags);
3529 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3530 struct drm_mm_node *node,
3531 unsigned int flags);
3532 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3533
3534 /* belongs in i915_gem_gtt.h */
3535 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3536 {
3537 wmb();
3538 if (INTEL_GEN(dev_priv) < 6)
3539 intel_gtt_chipset_flush();
3540 }
3541
3542 /* i915_gem_stolen.c */
3543 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3544 struct drm_mm_node *node, u64 size,
3545 unsigned alignment);
3546 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3547 struct drm_mm_node *node, u64 size,
3548 unsigned alignment, u64 start,
3549 u64 end);
3550 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3551 struct drm_mm_node *node);
3552 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3553 void i915_gem_cleanup_stolen(struct drm_device *dev);
3554 struct drm_i915_gem_object *
3555 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3556 struct drm_i915_gem_object *
3557 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3558 u32 stolen_offset,
3559 u32 gtt_offset,
3560 u32 size);
3561
3562 /* i915_gem_internal.c */
3563 struct drm_i915_gem_object *
3564 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3565 phys_addr_t size);
3566
3567 /* i915_gem_shrinker.c */
3568 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3569 unsigned long target,
3570 unsigned flags);
3571 #define I915_SHRINK_PURGEABLE 0x1
3572 #define I915_SHRINK_UNBOUND 0x2
3573 #define I915_SHRINK_BOUND 0x4
3574 #define I915_SHRINK_ACTIVE 0x8
3575 #define I915_SHRINK_VMAPS 0x10
3576 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3577 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3578 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3579
3580
3581 /* i915_gem_tiling.c */
3582 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3583 {
3584 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3585
3586 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3587 i915_gem_object_is_tiled(obj);
3588 }
3589
3590 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3591 unsigned int tiling, unsigned int stride);
3592 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3593 unsigned int tiling, unsigned int stride);
3594
3595 /* i915_debugfs.c */
3596 #ifdef CONFIG_DEBUG_FS
3597 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3598 int i915_debugfs_connector_add(struct drm_connector *connector);
3599 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3600 #else
3601 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3602 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3603 { return 0; }
3604 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3605 #endif
3606
3607 /* i915_gpu_error.c */
3608 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3609
3610 __printf(2, 3)
3611 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3612 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3613 const struct i915_gpu_state *gpu);
3614 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3615 struct drm_i915_private *i915,
3616 size_t count, loff_t pos);
3617 static inline void i915_error_state_buf_release(
3618 struct drm_i915_error_state_buf *eb)
3619 {
3620 kfree(eb->buf);
3621 }
3622
3623 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3624 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3625 u32 engine_mask,
3626 const char *error_msg);
3627
3628 static inline struct i915_gpu_state *
3629 i915_gpu_state_get(struct i915_gpu_state *gpu)
3630 {
3631 kref_get(&gpu->ref);
3632 return gpu;
3633 }
3634
3635 void __i915_gpu_state_free(struct kref *kref);
3636 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3637 {
3638 if (gpu)
3639 kref_put(&gpu->ref, __i915_gpu_state_free);
3640 }
3641
3642 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3643 void i915_reset_error_state(struct drm_i915_private *i915);
3644
3645 #else
3646
3647 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3648 u32 engine_mask,
3649 const char *error_msg)
3650 {
3651 }
3652
3653 static inline struct i915_gpu_state *
3654 i915_first_error_state(struct drm_i915_private *i915)
3655 {
3656 return NULL;
3657 }
3658
3659 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3660 {
3661 }
3662
3663 #endif
3664
3665 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3666
3667 /* i915_cmd_parser.c */
3668 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3669 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3670 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3671 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3672 struct drm_i915_gem_object *batch_obj,
3673 struct drm_i915_gem_object *shadow_batch_obj,
3674 u32 batch_start_offset,
3675 u32 batch_len,
3676 bool is_master);
3677
3678 /* i915_perf.c */
3679 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3680 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3681 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3682 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3683
3684 /* i915_suspend.c */
3685 extern int i915_save_state(struct drm_i915_private *dev_priv);
3686 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3687
3688 /* i915_sysfs.c */
3689 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3690 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3691
3692 /* intel_lpe_audio.c */
3693 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3694 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3695 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3696 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3697 void *eld, int port, int pipe, int tmds_clk_speed,
3698 bool dp_output, int link_rate);
3699
3700 /* intel_i2c.c */
3701 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3702 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3703 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3704 unsigned int pin);
3705
3706 extern struct i2c_adapter *
3707 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3708 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3709 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3710 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3711 {
3712 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3713 }
3714 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3715
3716 /* intel_bios.c */
3717 int intel_bios_init(struct drm_i915_private *dev_priv);
3718 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3719 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3720 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3721 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3722 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3723 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3724 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3725 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3726 enum port port);
3727 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3728 enum port port);
3729
3730
3731 /* intel_opregion.c */
3732 #ifdef CONFIG_ACPI
3733 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3734 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3735 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3736 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3737 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3738 bool enable);
3739 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3740 pci_power_t state);
3741 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3742 #else
3743 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3744 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3745 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3746 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3747 {
3748 }
3749 static inline int
3750 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3751 {
3752 return 0;
3753 }
3754 static inline int
3755 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3756 {
3757 return 0;
3758 }
3759 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3760 {
3761 return -ENODEV;
3762 }
3763 #endif
3764
3765 /* intel_acpi.c */
3766 #ifdef CONFIG_ACPI
3767 extern void intel_register_dsm_handler(void);
3768 extern void intel_unregister_dsm_handler(void);
3769 #else
3770 static inline void intel_register_dsm_handler(void) { return; }
3771 static inline void intel_unregister_dsm_handler(void) { return; }
3772 #endif /* CONFIG_ACPI */
3773
3774 /* intel_device_info.c */
3775 static inline struct intel_device_info *
3776 mkwrite_device_info(struct drm_i915_private *dev_priv)
3777 {
3778 return (struct intel_device_info *)&dev_priv->info;
3779 }
3780
3781 const char *intel_platform_name(enum intel_platform platform);
3782 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3783 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3784
3785 /* modesetting */
3786 extern void intel_modeset_init_hw(struct drm_device *dev);
3787 extern int intel_modeset_init(struct drm_device *dev);
3788 extern void intel_modeset_gem_init(struct drm_device *dev);
3789 extern void intel_modeset_cleanup(struct drm_device *dev);
3790 extern int intel_connector_register(struct drm_connector *);
3791 extern void intel_connector_unregister(struct drm_connector *);
3792 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3793 bool state);
3794 extern void intel_display_resume(struct drm_device *dev);
3795 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3796 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3797 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3798 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3799 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3800 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3801 bool enable);
3802
3803 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3804 struct drm_file *file);
3805
3806 /* overlay */
3807 extern struct intel_overlay_error_state *
3808 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3809 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3810 struct intel_overlay_error_state *error);
3811
3812 extern struct intel_display_error_state *
3813 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3814 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3815 struct intel_display_error_state *error);
3816
3817 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3818 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3819 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3820 u32 reply_mask, u32 reply, int timeout_base_ms);
3821
3822 /* intel_sideband.c */
3823 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3824 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3825 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3826 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3827 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3828 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3829 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3830 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3831 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3832 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3833 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3834 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3835 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3836 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3837 enum intel_sbi_destination destination);
3838 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3839 enum intel_sbi_destination destination);
3840 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3841 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3842
3843 /* intel_dpio_phy.c */
3844 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3845 enum dpio_phy *phy, enum dpio_channel *ch);
3846 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3847 enum port port, u32 margin, u32 scale,
3848 u32 enable, u32 deemphasis);
3849 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3850 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3851 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3852 enum dpio_phy phy);
3853 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3854 enum dpio_phy phy);
3855 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3856 uint8_t lane_count);
3857 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3858 uint8_t lane_lat_optim_mask);
3859 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3860
3861 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3862 u32 deemph_reg_value, u32 margin_reg_value,
3863 bool uniq_trans_scale);
3864 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3865 bool reset);
3866 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3867 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3868 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3869 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3870
3871 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3872 u32 demph_reg_value, u32 preemph_reg_value,
3873 u32 uniqtranscale_reg_value, u32 tx3_demph);
3874 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3875 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3876 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3877
3878 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3879 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3880
3881 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3882 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3883
3884 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3885 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3886 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3887 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3888
3889 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3890 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3891 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3892 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3893
3894 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3895 * will be implemented using 2 32-bit writes in an arbitrary order with
3896 * an arbitrary delay between them. This can cause the hardware to
3897 * act upon the intermediate value, possibly leading to corruption and
3898 * machine death. For this reason we do not support I915_WRITE64, or
3899 * dev_priv->uncore.funcs.mmio_writeq.
3900 *
3901 * When reading a 64-bit value as two 32-bit values, the delay may cause
3902 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3903 * occasionally a 64-bit register does not actualy support a full readq
3904 * and must be read using two 32-bit reads.
3905 *
3906 * You have been warned.
3907 */
3908 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3909
3910 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3911 u32 upper, lower, old_upper, loop = 0; \
3912 upper = I915_READ(upper_reg); \
3913 do { \
3914 old_upper = upper; \
3915 lower = I915_READ(lower_reg); \
3916 upper = I915_READ(upper_reg); \
3917 } while (upper != old_upper && loop++ < 2); \
3918 (u64)upper << 32 | lower; })
3919
3920 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3921 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3922
3923 #define __raw_read(x, s) \
3924 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3925 i915_reg_t reg) \
3926 { \
3927 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3928 }
3929
3930 #define __raw_write(x, s) \
3931 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3932 i915_reg_t reg, uint##x##_t val) \
3933 { \
3934 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3935 }
3936 __raw_read(8, b)
3937 __raw_read(16, w)
3938 __raw_read(32, l)
3939 __raw_read(64, q)
3940
3941 __raw_write(8, b)
3942 __raw_write(16, w)
3943 __raw_write(32, l)
3944 __raw_write(64, q)
3945
3946 #undef __raw_read
3947 #undef __raw_write
3948
3949 /* These are untraced mmio-accessors that are only valid to be used inside
3950 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3951 * controlled.
3952 *
3953 * Think twice, and think again, before using these.
3954 *
3955 * As an example, these accessors can possibly be used between:
3956 *
3957 * spin_lock_irq(&dev_priv->uncore.lock);
3958 * intel_uncore_forcewake_get__locked();
3959 *
3960 * and
3961 *
3962 * intel_uncore_forcewake_put__locked();
3963 * spin_unlock_irq(&dev_priv->uncore.lock);
3964 *
3965 *
3966 * Note: some registers may not need forcewake held, so
3967 * intel_uncore_forcewake_{get,put} can be omitted, see
3968 * intel_uncore_forcewake_for_reg().
3969 *
3970 * Certain architectures will die if the same cacheline is concurrently accessed
3971 * by different clients (e.g. on Ivybridge). Access to registers should
3972 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3973 * a more localised lock guarding all access to that bank of registers.
3974 */
3975 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3976 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3977 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3978 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3979
3980 /* "Broadcast RGB" property */
3981 #define INTEL_BROADCAST_RGB_AUTO 0
3982 #define INTEL_BROADCAST_RGB_FULL 1
3983 #define INTEL_BROADCAST_RGB_LIMITED 2
3984
3985 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3986 {
3987 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3988 return VLV_VGACNTRL;
3989 else if (INTEL_GEN(dev_priv) >= 5)
3990 return CPU_VGACNTRL;
3991 else
3992 return VGACNTRL;
3993 }
3994
3995 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3996 {
3997 unsigned long j = msecs_to_jiffies(m);
3998
3999 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4000 }
4001
4002 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4003 {
4004 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4005 }
4006
4007 static inline unsigned long
4008 timespec_to_jiffies_timeout(const struct timespec *value)
4009 {
4010 unsigned long j = timespec_to_jiffies(value);
4011
4012 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4013 }
4014
4015 /*
4016 * If you need to wait X milliseconds between events A and B, but event B
4017 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4018 * when event A happened, then just before event B you call this function and
4019 * pass the timestamp as the first argument, and X as the second argument.
4020 */
4021 static inline void
4022 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4023 {
4024 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4025
4026 /*
4027 * Don't re-read the value of "jiffies" every time since it may change
4028 * behind our back and break the math.
4029 */
4030 tmp_jiffies = jiffies;
4031 target_jiffies = timestamp_jiffies +
4032 msecs_to_jiffies_timeout(to_wait_ms);
4033
4034 if (time_after(target_jiffies, tmp_jiffies)) {
4035 remaining_jiffies = target_jiffies - tmp_jiffies;
4036 while (remaining_jiffies)
4037 remaining_jiffies =
4038 schedule_timeout_uninterruptible(remaining_jiffies);
4039 }
4040 }
4041
4042 static inline bool
4043 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4044 {
4045 struct intel_engine_cs *engine = req->engine;
4046 u32 seqno;
4047
4048 /* Note that the engine may have wrapped around the seqno, and
4049 * so our request->global_seqno will be ahead of the hardware,
4050 * even though it completed the request before wrapping. We catch
4051 * this by kicking all the waiters before resetting the seqno
4052 * in hardware, and also signal the fence.
4053 */
4054 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4055 return true;
4056
4057 /* The request was dequeued before we were awoken. We check after
4058 * inspecting the hw to confirm that this was the same request
4059 * that generated the HWS update. The memory barriers within
4060 * the request execution are sufficient to ensure that a check
4061 * after reading the value from hw matches this request.
4062 */
4063 seqno = i915_gem_request_global_seqno(req);
4064 if (!seqno)
4065 return false;
4066
4067 /* Before we do the heavier coherent read of the seqno,
4068 * check the value (hopefully) in the CPU cacheline.
4069 */
4070 if (__i915_gem_request_completed(req, seqno))
4071 return true;
4072
4073 /* Ensure our read of the seqno is coherent so that we
4074 * do not "miss an interrupt" (i.e. if this is the last
4075 * request and the seqno write from the GPU is not visible
4076 * by the time the interrupt fires, we will see that the
4077 * request is incomplete and go back to sleep awaiting
4078 * another interrupt that will never come.)
4079 *
4080 * Strictly, we only need to do this once after an interrupt,
4081 * but it is easier and safer to do it every time the waiter
4082 * is woken.
4083 */
4084 if (engine->irq_seqno_barrier &&
4085 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4086 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4087
4088 /* The ordering of irq_posted versus applying the barrier
4089 * is crucial. The clearing of the current irq_posted must
4090 * be visible before we perform the barrier operation,
4091 * such that if a subsequent interrupt arrives, irq_posted
4092 * is reasserted and our task rewoken (which causes us to
4093 * do another __i915_request_irq_complete() immediately
4094 * and reapply the barrier). Conversely, if the clear
4095 * occurs after the barrier, then an interrupt that arrived
4096 * whilst we waited on the barrier would not trigger a
4097 * barrier on the next pass, and the read may not see the
4098 * seqno update.
4099 */
4100 engine->irq_seqno_barrier(engine);
4101
4102 /* If we consume the irq, but we are no longer the bottom-half,
4103 * the real bottom-half may not have serialised their own
4104 * seqno check with the irq-barrier (i.e. may have inspected
4105 * the seqno before we believe it coherent since they see
4106 * irq_posted == false but we are still running).
4107 */
4108 spin_lock_irq(&b->irq_lock);
4109 if (b->irq_wait && b->irq_wait->tsk != current)
4110 /* Note that if the bottom-half is changed as we
4111 * are sending the wake-up, the new bottom-half will
4112 * be woken by whomever made the change. We only have
4113 * to worry about when we steal the irq-posted for
4114 * ourself.
4115 */
4116 wake_up_process(b->irq_wait->tsk);
4117 spin_unlock_irq(&b->irq_lock);
4118
4119 if (__i915_gem_request_completed(req, seqno))
4120 return true;
4121 }
4122
4123 return false;
4124 }
4125
4126 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4127 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4128
4129 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4130 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4131 * perform the operation. To check beforehand, pass in the parameters to
4132 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4133 * you only need to pass in the minor offsets, page-aligned pointers are
4134 * always valid.
4135 *
4136 * For just checking for SSE4.1, in the foreknowledge that the future use
4137 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4138 */
4139 #define i915_can_memcpy_from_wc(dst, src, len) \
4140 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4141
4142 #define i915_has_memcpy_from_wc() \
4143 i915_memcpy_from_wc(NULL, NULL, 0)
4144
4145 /* i915_mm.c */
4146 int remap_io_mapping(struct vm_area_struct *vma,
4147 unsigned long addr, unsigned long pfn, unsigned long size,
4148 struct io_mapping *iomap);
4149
4150 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj)
4151 {
4152 return (obj->cache_level != I915_CACHE_NONE ||
4153 HAS_LLC(to_i915(obj->base.dev)));
4154 }
4155
4156 #endif