]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915/dp: make is_edp non-static and rename to intel_dp_is_edp
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_crtc_helper.h>
39 #include <drm/drm_edid.h>
40 #include "intel_drv.h"
41 #include <drm/i915_drm.h>
42 #include "i915_drv.h"
43
44 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
45
46 /* Compliance test status bits */
47 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
48 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
50 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
51
52 struct dp_link_dpll {
53 int clock;
54 struct dpll dpll;
55 };
56
57 static const struct dp_link_dpll gen4_dpll[] = {
58 { 162000,
59 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
60 { 270000,
61 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
62 };
63
64 static const struct dp_link_dpll pch_dpll[] = {
65 { 162000,
66 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
67 { 270000,
68 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
69 };
70
71 static const struct dp_link_dpll vlv_dpll[] = {
72 { 162000,
73 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
74 { 270000,
75 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
76 };
77
78 /*
79 * CHV supports eDP 1.4 that have more link rates.
80 * Below only provides the fixed rate but exclude variable rate.
81 */
82 static const struct dp_link_dpll chv_dpll[] = {
83 /*
84 * CHV requires to program fractional division for m2.
85 * m2 is stored in fixed point format using formula below
86 * (m2_int << 22) | m2_fraction
87 */
88 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
89 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
90 { 270000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
92 { 540000, /* m2_int = 27, m2_fraction = 0 */
93 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
94 };
95
96 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
97 324000, 432000, 540000 };
98 static const int skl_rates[] = { 162000, 216000, 270000,
99 324000, 432000, 540000 };
100 static const int default_rates[] = { 162000, 270000, 540000 };
101
102 /**
103 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
104 * @intel_dp: DP struct
105 *
106 * If a CPU or PCH DP output is attached to an eDP panel, this function
107 * will return true, and false otherwise.
108 */
109 bool intel_dp_is_edp(struct intel_dp *intel_dp)
110 {
111 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
112
113 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
114 }
115
116 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
117 {
118 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
119
120 return intel_dig_port->base.base.dev;
121 }
122
123 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
124 {
125 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
126 }
127
128 static void intel_dp_link_down(struct intel_dp *intel_dp);
129 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
130 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
131 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
132 static void vlv_steal_power_sequencer(struct drm_device *dev,
133 enum pipe pipe);
134 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
135
136 static int intel_dp_num_rates(u8 link_bw_code)
137 {
138 switch (link_bw_code) {
139 default:
140 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
141 link_bw_code);
142 case DP_LINK_BW_1_62:
143 return 1;
144 case DP_LINK_BW_2_7:
145 return 2;
146 case DP_LINK_BW_5_4:
147 return 3;
148 }
149 }
150
151 /* update sink rates from dpcd */
152 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
153 {
154 int i, num_rates;
155
156 num_rates = intel_dp_num_rates(intel_dp->dpcd[DP_MAX_LINK_RATE]);
157
158 for (i = 0; i < num_rates; i++)
159 intel_dp->sink_rates[i] = default_rates[i];
160
161 intel_dp->num_sink_rates = num_rates;
162 }
163
164 /* Theoretical max between source and sink */
165 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
166 {
167 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
168 }
169
170 /* Theoretical max between source and sink */
171 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
172 {
173 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
174 int source_max = intel_dig_port->max_lanes;
175 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
176
177 return min(source_max, sink_max);
178 }
179
180 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
181 {
182 return intel_dp->max_link_lane_count;
183 }
184
185 int
186 intel_dp_link_required(int pixel_clock, int bpp)
187 {
188 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
189 return DIV_ROUND_UP(pixel_clock * bpp, 8);
190 }
191
192 int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
196 * link rate that is generally expressed in Gbps. Since, 8 bits of data
197 * is transmitted every LS_Clk per lane, there is no need to account for
198 * the channel encoding that is done in the PHY layer here.
199 */
200
201 return max_link_clock * max_lanes;
202 }
203
204 static int
205 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
206 {
207 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
208 struct intel_encoder *encoder = &intel_dig_port->base;
209 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
210 int max_dotclk = dev_priv->max_dotclk_freq;
211 int ds_max_dotclk;
212
213 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
214
215 if (type != DP_DS_PORT_TYPE_VGA)
216 return max_dotclk;
217
218 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
219 intel_dp->downstream_ports);
220
221 if (ds_max_dotclk != 0)
222 max_dotclk = min(max_dotclk, ds_max_dotclk);
223
224 return max_dotclk;
225 }
226
227 static void
228 intel_dp_set_source_rates(struct intel_dp *intel_dp)
229 {
230 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
231 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
232 const int *source_rates;
233 int size;
234
235 /* This should only be done once */
236 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
237
238 if (IS_GEN9_LP(dev_priv)) {
239 source_rates = bxt_rates;
240 size = ARRAY_SIZE(bxt_rates);
241 } else if (IS_GEN9_BC(dev_priv)) {
242 source_rates = skl_rates;
243 size = ARRAY_SIZE(skl_rates);
244 } else {
245 source_rates = default_rates;
246 size = ARRAY_SIZE(default_rates);
247 }
248
249 /* This depends on the fact that 5.4 is last value in the array */
250 if (!intel_dp_source_supports_hbr2(intel_dp))
251 size--;
252
253 intel_dp->source_rates = source_rates;
254 intel_dp->num_source_rates = size;
255 }
256
257 static int intersect_rates(const int *source_rates, int source_len,
258 const int *sink_rates, int sink_len,
259 int *common_rates)
260 {
261 int i = 0, j = 0, k = 0;
262
263 while (i < source_len && j < sink_len) {
264 if (source_rates[i] == sink_rates[j]) {
265 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
266 return k;
267 common_rates[k] = source_rates[i];
268 ++k;
269 ++i;
270 ++j;
271 } else if (source_rates[i] < sink_rates[j]) {
272 ++i;
273 } else {
274 ++j;
275 }
276 }
277 return k;
278 }
279
280 /* return index of rate in rates array, or -1 if not found */
281 static int intel_dp_rate_index(const int *rates, int len, int rate)
282 {
283 int i;
284
285 for (i = 0; i < len; i++)
286 if (rate == rates[i])
287 return i;
288
289 return -1;
290 }
291
292 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
293 {
294 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
295
296 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
297 intel_dp->num_source_rates,
298 intel_dp->sink_rates,
299 intel_dp->num_sink_rates,
300 intel_dp->common_rates);
301
302 /* Paranoia, there should always be something in common. */
303 if (WARN_ON(intel_dp->num_common_rates == 0)) {
304 intel_dp->common_rates[0] = default_rates[0];
305 intel_dp->num_common_rates = 1;
306 }
307 }
308
309 /* get length of common rates potentially limited by max_rate */
310 static int intel_dp_common_len_rate_limit(struct intel_dp *intel_dp,
311 int max_rate)
312 {
313 const int *common_rates = intel_dp->common_rates;
314 int i, common_len = intel_dp->num_common_rates;
315
316 /* Limit results by potentially reduced max rate */
317 for (i = 0; i < common_len; i++) {
318 if (common_rates[common_len - i - 1] <= max_rate)
319 return common_len - i;
320 }
321
322 return 0;
323 }
324
325 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp)
326 {
327 /*
328 * FIXME: we need to synchronize the current link parameters with
329 * hardware readout. Currently fast link training doesn't work on
330 * boot-up.
331 */
332 if (intel_dp->link_rate == 0 ||
333 intel_dp->link_rate > intel_dp->max_link_rate)
334 return false;
335
336 if (intel_dp->lane_count == 0 ||
337 intel_dp->lane_count > intel_dp_max_lane_count(intel_dp))
338 return false;
339
340 return true;
341 }
342
343 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
344 int link_rate, uint8_t lane_count)
345 {
346 int index;
347
348 index = intel_dp_rate_index(intel_dp->common_rates,
349 intel_dp->num_common_rates,
350 link_rate);
351 if (index > 0) {
352 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
353 intel_dp->max_link_lane_count = lane_count;
354 } else if (lane_count > 1) {
355 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
356 intel_dp->max_link_lane_count = lane_count >> 1;
357 } else {
358 DRM_ERROR("Link Training Unsuccessful\n");
359 return -1;
360 }
361
362 return 0;
363 }
364
365 static enum drm_mode_status
366 intel_dp_mode_valid(struct drm_connector *connector,
367 struct drm_display_mode *mode)
368 {
369 struct intel_dp *intel_dp = intel_attached_dp(connector);
370 struct intel_connector *intel_connector = to_intel_connector(connector);
371 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
372 int target_clock = mode->clock;
373 int max_rate, mode_rate, max_lanes, max_link_clock;
374 int max_dotclk;
375
376 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
377
378 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
379 if (mode->hdisplay > fixed_mode->hdisplay)
380 return MODE_PANEL;
381
382 if (mode->vdisplay > fixed_mode->vdisplay)
383 return MODE_PANEL;
384
385 target_clock = fixed_mode->clock;
386 }
387
388 max_link_clock = intel_dp_max_link_rate(intel_dp);
389 max_lanes = intel_dp_max_lane_count(intel_dp);
390
391 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
392 mode_rate = intel_dp_link_required(target_clock, 18);
393
394 if (mode_rate > max_rate || target_clock > max_dotclk)
395 return MODE_CLOCK_HIGH;
396
397 if (mode->clock < 10000)
398 return MODE_CLOCK_LOW;
399
400 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
401 return MODE_H_ILLEGAL;
402
403 return MODE_OK;
404 }
405
406 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
407 {
408 int i;
409 uint32_t v = 0;
410
411 if (src_bytes > 4)
412 src_bytes = 4;
413 for (i = 0; i < src_bytes; i++)
414 v |= ((uint32_t) src[i]) << ((3-i) * 8);
415 return v;
416 }
417
418 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
419 {
420 int i;
421 if (dst_bytes > 4)
422 dst_bytes = 4;
423 for (i = 0; i < dst_bytes; i++)
424 dst[i] = src >> ((3-i) * 8);
425 }
426
427 static void
428 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
429 struct intel_dp *intel_dp);
430 static void
431 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
432 struct intel_dp *intel_dp,
433 bool force_disable_vdd);
434 static void
435 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
436
437 static void pps_lock(struct intel_dp *intel_dp)
438 {
439 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
440 struct intel_encoder *encoder = &intel_dig_port->base;
441 struct drm_device *dev = encoder->base.dev;
442 struct drm_i915_private *dev_priv = to_i915(dev);
443
444 /*
445 * See vlv_power_sequencer_reset() why we need
446 * a power domain reference here.
447 */
448 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
449
450 mutex_lock(&dev_priv->pps_mutex);
451 }
452
453 static void pps_unlock(struct intel_dp *intel_dp)
454 {
455 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
456 struct intel_encoder *encoder = &intel_dig_port->base;
457 struct drm_device *dev = encoder->base.dev;
458 struct drm_i915_private *dev_priv = to_i915(dev);
459
460 mutex_unlock(&dev_priv->pps_mutex);
461
462 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
463 }
464
465 static void
466 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
467 {
468 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
469 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
470 enum pipe pipe = intel_dp->pps_pipe;
471 bool pll_enabled, release_cl_override = false;
472 enum dpio_phy phy = DPIO_PHY(pipe);
473 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
474 uint32_t DP;
475
476 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
477 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
478 pipe_name(pipe), port_name(intel_dig_port->port)))
479 return;
480
481 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
482 pipe_name(pipe), port_name(intel_dig_port->port));
483
484 /* Preserve the BIOS-computed detected bit. This is
485 * supposed to be read-only.
486 */
487 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
488 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
489 DP |= DP_PORT_WIDTH(1);
490 DP |= DP_LINK_TRAIN_PAT_1;
491
492 if (IS_CHERRYVIEW(dev_priv))
493 DP |= DP_PIPE_SELECT_CHV(pipe);
494 else if (pipe == PIPE_B)
495 DP |= DP_PIPEB_SELECT;
496
497 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
498
499 /*
500 * The DPLL for the pipe must be enabled for this to work.
501 * So enable temporarily it if it's not already enabled.
502 */
503 if (!pll_enabled) {
504 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
505 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
506
507 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
508 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
509 DRM_ERROR("Failed to force on pll for pipe %c!\n",
510 pipe_name(pipe));
511 return;
512 }
513 }
514
515 /*
516 * Similar magic as in intel_dp_enable_port().
517 * We _must_ do this port enable + disable trick
518 * to make this power seqeuencer lock onto the port.
519 * Otherwise even VDD force bit won't work.
520 */
521 I915_WRITE(intel_dp->output_reg, DP);
522 POSTING_READ(intel_dp->output_reg);
523
524 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
525 POSTING_READ(intel_dp->output_reg);
526
527 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
528 POSTING_READ(intel_dp->output_reg);
529
530 if (!pll_enabled) {
531 vlv_force_pll_off(dev_priv, pipe);
532
533 if (release_cl_override)
534 chv_phy_powergate_ch(dev_priv, phy, ch, false);
535 }
536 }
537
538 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
539 {
540 struct intel_encoder *encoder;
541 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
542
543 /*
544 * We don't have power sequencer currently.
545 * Pick one that's not used by other ports.
546 */
547 for_each_intel_encoder(&dev_priv->drm, encoder) {
548 struct intel_dp *intel_dp;
549
550 if (encoder->type != INTEL_OUTPUT_DP &&
551 encoder->type != INTEL_OUTPUT_EDP)
552 continue;
553
554 intel_dp = enc_to_intel_dp(&encoder->base);
555
556 if (encoder->type == INTEL_OUTPUT_EDP) {
557 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
558 intel_dp->active_pipe != intel_dp->pps_pipe);
559
560 if (intel_dp->pps_pipe != INVALID_PIPE)
561 pipes &= ~(1 << intel_dp->pps_pipe);
562 } else {
563 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
564
565 if (intel_dp->active_pipe != INVALID_PIPE)
566 pipes &= ~(1 << intel_dp->active_pipe);
567 }
568 }
569
570 if (pipes == 0)
571 return INVALID_PIPE;
572
573 return ffs(pipes) - 1;
574 }
575
576 static enum pipe
577 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
578 {
579 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
580 struct drm_device *dev = intel_dig_port->base.base.dev;
581 struct drm_i915_private *dev_priv = to_i915(dev);
582 enum pipe pipe;
583
584 lockdep_assert_held(&dev_priv->pps_mutex);
585
586 /* We should never land here with regular DP ports */
587 WARN_ON(!intel_dp_is_edp(intel_dp));
588
589 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
590 intel_dp->active_pipe != intel_dp->pps_pipe);
591
592 if (intel_dp->pps_pipe != INVALID_PIPE)
593 return intel_dp->pps_pipe;
594
595 pipe = vlv_find_free_pps(dev_priv);
596
597 /*
598 * Didn't find one. This should not happen since there
599 * are two power sequencers and up to two eDP ports.
600 */
601 if (WARN_ON(pipe == INVALID_PIPE))
602 pipe = PIPE_A;
603
604 vlv_steal_power_sequencer(dev, pipe);
605 intel_dp->pps_pipe = pipe;
606
607 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
608 pipe_name(intel_dp->pps_pipe),
609 port_name(intel_dig_port->port));
610
611 /* init power sequencer on this pipe and port */
612 intel_dp_init_panel_power_sequencer(dev, intel_dp);
613 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
614
615 /*
616 * Even vdd force doesn't work until we've made
617 * the power sequencer lock in on the port.
618 */
619 vlv_power_sequencer_kick(intel_dp);
620
621 return intel_dp->pps_pipe;
622 }
623
624 static int
625 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
626 {
627 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
628 struct drm_device *dev = intel_dig_port->base.base.dev;
629 struct drm_i915_private *dev_priv = to_i915(dev);
630
631 lockdep_assert_held(&dev_priv->pps_mutex);
632
633 /* We should never land here with regular DP ports */
634 WARN_ON(!intel_dp_is_edp(intel_dp));
635
636 /*
637 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
638 * mapping needs to be retrieved from VBT, for now just hard-code to
639 * use instance #0 always.
640 */
641 if (!intel_dp->pps_reset)
642 return 0;
643
644 intel_dp->pps_reset = false;
645
646 /*
647 * Only the HW needs to be reprogrammed, the SW state is fixed and
648 * has been setup during connector init.
649 */
650 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
651
652 return 0;
653 }
654
655 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
656 enum pipe pipe);
657
658 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
659 enum pipe pipe)
660 {
661 return I915_READ(PP_STATUS(pipe)) & PP_ON;
662 }
663
664 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
665 enum pipe pipe)
666 {
667 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
668 }
669
670 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
671 enum pipe pipe)
672 {
673 return true;
674 }
675
676 static enum pipe
677 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
678 enum port port,
679 vlv_pipe_check pipe_check)
680 {
681 enum pipe pipe;
682
683 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
684 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
685 PANEL_PORT_SELECT_MASK;
686
687 if (port_sel != PANEL_PORT_SELECT_VLV(port))
688 continue;
689
690 if (!pipe_check(dev_priv, pipe))
691 continue;
692
693 return pipe;
694 }
695
696 return INVALID_PIPE;
697 }
698
699 static void
700 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
701 {
702 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
703 struct drm_device *dev = intel_dig_port->base.base.dev;
704 struct drm_i915_private *dev_priv = to_i915(dev);
705 enum port port = intel_dig_port->port;
706
707 lockdep_assert_held(&dev_priv->pps_mutex);
708
709 /* try to find a pipe with this port selected */
710 /* first pick one where the panel is on */
711 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
712 vlv_pipe_has_pp_on);
713 /* didn't find one? pick one where vdd is on */
714 if (intel_dp->pps_pipe == INVALID_PIPE)
715 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
716 vlv_pipe_has_vdd_on);
717 /* didn't find one? pick one with just the correct port */
718 if (intel_dp->pps_pipe == INVALID_PIPE)
719 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
720 vlv_pipe_any);
721
722 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
723 if (intel_dp->pps_pipe == INVALID_PIPE) {
724 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
725 port_name(port));
726 return;
727 }
728
729 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
730 port_name(port), pipe_name(intel_dp->pps_pipe));
731
732 intel_dp_init_panel_power_sequencer(dev, intel_dp);
733 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
734 }
735
736 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
737 {
738 struct drm_device *dev = &dev_priv->drm;
739 struct intel_encoder *encoder;
740
741 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
742 !IS_GEN9_LP(dev_priv)))
743 return;
744
745 /*
746 * We can't grab pps_mutex here due to deadlock with power_domain
747 * mutex when power_domain functions are called while holding pps_mutex.
748 * That also means that in order to use pps_pipe the code needs to
749 * hold both a power domain reference and pps_mutex, and the power domain
750 * reference get/put must be done while _not_ holding pps_mutex.
751 * pps_{lock,unlock}() do these steps in the correct order, so one
752 * should use them always.
753 */
754
755 for_each_intel_encoder(dev, encoder) {
756 struct intel_dp *intel_dp;
757
758 if (encoder->type != INTEL_OUTPUT_DP &&
759 encoder->type != INTEL_OUTPUT_EDP)
760 continue;
761
762 intel_dp = enc_to_intel_dp(&encoder->base);
763
764 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
765
766 if (encoder->type != INTEL_OUTPUT_EDP)
767 continue;
768
769 if (IS_GEN9_LP(dev_priv))
770 intel_dp->pps_reset = true;
771 else
772 intel_dp->pps_pipe = INVALID_PIPE;
773 }
774 }
775
776 struct pps_registers {
777 i915_reg_t pp_ctrl;
778 i915_reg_t pp_stat;
779 i915_reg_t pp_on;
780 i915_reg_t pp_off;
781 i915_reg_t pp_div;
782 };
783
784 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
785 struct intel_dp *intel_dp,
786 struct pps_registers *regs)
787 {
788 int pps_idx = 0;
789
790 memset(regs, 0, sizeof(*regs));
791
792 if (IS_GEN9_LP(dev_priv))
793 pps_idx = bxt_power_sequencer_idx(intel_dp);
794 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
795 pps_idx = vlv_power_sequencer_pipe(intel_dp);
796
797 regs->pp_ctrl = PP_CONTROL(pps_idx);
798 regs->pp_stat = PP_STATUS(pps_idx);
799 regs->pp_on = PP_ON_DELAYS(pps_idx);
800 regs->pp_off = PP_OFF_DELAYS(pps_idx);
801 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv))
802 regs->pp_div = PP_DIVISOR(pps_idx);
803 }
804
805 static i915_reg_t
806 _pp_ctrl_reg(struct intel_dp *intel_dp)
807 {
808 struct pps_registers regs;
809
810 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
811 &regs);
812
813 return regs.pp_ctrl;
814 }
815
816 static i915_reg_t
817 _pp_stat_reg(struct intel_dp *intel_dp)
818 {
819 struct pps_registers regs;
820
821 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
822 &regs);
823
824 return regs.pp_stat;
825 }
826
827 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
828 This function only applicable when panel PM state is not to be tracked */
829 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
830 void *unused)
831 {
832 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
833 edp_notifier);
834 struct drm_device *dev = intel_dp_to_dev(intel_dp);
835 struct drm_i915_private *dev_priv = to_i915(dev);
836
837 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
838 return 0;
839
840 pps_lock(intel_dp);
841
842 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
843 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
844 i915_reg_t pp_ctrl_reg, pp_div_reg;
845 u32 pp_div;
846
847 pp_ctrl_reg = PP_CONTROL(pipe);
848 pp_div_reg = PP_DIVISOR(pipe);
849 pp_div = I915_READ(pp_div_reg);
850 pp_div &= PP_REFERENCE_DIVIDER_MASK;
851
852 /* 0x1F write to PP_DIV_REG sets max cycle delay */
853 I915_WRITE(pp_div_reg, pp_div | 0x1F);
854 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
855 msleep(intel_dp->panel_power_cycle_delay);
856 }
857
858 pps_unlock(intel_dp);
859
860 return 0;
861 }
862
863 static bool edp_have_panel_power(struct intel_dp *intel_dp)
864 {
865 struct drm_device *dev = intel_dp_to_dev(intel_dp);
866 struct drm_i915_private *dev_priv = to_i915(dev);
867
868 lockdep_assert_held(&dev_priv->pps_mutex);
869
870 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
871 intel_dp->pps_pipe == INVALID_PIPE)
872 return false;
873
874 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
875 }
876
877 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
878 {
879 struct drm_device *dev = intel_dp_to_dev(intel_dp);
880 struct drm_i915_private *dev_priv = to_i915(dev);
881
882 lockdep_assert_held(&dev_priv->pps_mutex);
883
884 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
885 intel_dp->pps_pipe == INVALID_PIPE)
886 return false;
887
888 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
889 }
890
891 static void
892 intel_dp_check_edp(struct intel_dp *intel_dp)
893 {
894 struct drm_device *dev = intel_dp_to_dev(intel_dp);
895 struct drm_i915_private *dev_priv = to_i915(dev);
896
897 if (!intel_dp_is_edp(intel_dp))
898 return;
899
900 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
901 WARN(1, "eDP powered off while attempting aux channel communication.\n");
902 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
903 I915_READ(_pp_stat_reg(intel_dp)),
904 I915_READ(_pp_ctrl_reg(intel_dp)));
905 }
906 }
907
908 static uint32_t
909 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
910 {
911 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
912 struct drm_device *dev = intel_dig_port->base.base.dev;
913 struct drm_i915_private *dev_priv = to_i915(dev);
914 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
915 uint32_t status;
916 bool done;
917
918 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
919 if (has_aux_irq)
920 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
921 msecs_to_jiffies_timeout(10));
922 else
923 done = wait_for(C, 10) == 0;
924 if (!done)
925 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
926 has_aux_irq);
927 #undef C
928
929 return status;
930 }
931
932 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
933 {
934 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
935 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
936
937 if (index)
938 return 0;
939
940 /*
941 * The clock divider is based off the hrawclk, and would like to run at
942 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
943 */
944 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
945 }
946
947 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
948 {
949 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
950 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
951
952 if (index)
953 return 0;
954
955 /*
956 * The clock divider is based off the cdclk or PCH rawclk, and would
957 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
958 * divide by 2000 and use that
959 */
960 if (intel_dig_port->port == PORT_A)
961 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
962 else
963 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
964 }
965
966 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
967 {
968 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
969 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
970
971 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
972 /* Workaround for non-ULT HSW */
973 switch (index) {
974 case 0: return 63;
975 case 1: return 72;
976 default: return 0;
977 }
978 }
979
980 return ilk_get_aux_clock_divider(intel_dp, index);
981 }
982
983 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
984 {
985 /*
986 * SKL doesn't need us to program the AUX clock divider (Hardware will
987 * derive the clock from CDCLK automatically). We still implement the
988 * get_aux_clock_divider vfunc to plug-in into the existing code.
989 */
990 return index ? 0 : 1;
991 }
992
993 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
994 bool has_aux_irq,
995 int send_bytes,
996 uint32_t aux_clock_divider)
997 {
998 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
999 struct drm_i915_private *dev_priv =
1000 to_i915(intel_dig_port->base.base.dev);
1001 uint32_t precharge, timeout;
1002
1003 if (IS_GEN6(dev_priv))
1004 precharge = 3;
1005 else
1006 precharge = 5;
1007
1008 if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
1009 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1010 else
1011 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1012
1013 return DP_AUX_CH_CTL_SEND_BUSY |
1014 DP_AUX_CH_CTL_DONE |
1015 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1016 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1017 timeout |
1018 DP_AUX_CH_CTL_RECEIVE_ERROR |
1019 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1020 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1021 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1022 }
1023
1024 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1025 bool has_aux_irq,
1026 int send_bytes,
1027 uint32_t unused)
1028 {
1029 return DP_AUX_CH_CTL_SEND_BUSY |
1030 DP_AUX_CH_CTL_DONE |
1031 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1032 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1033 DP_AUX_CH_CTL_TIME_OUT_1600us |
1034 DP_AUX_CH_CTL_RECEIVE_ERROR |
1035 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1036 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1037 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1038 }
1039
1040 static int
1041 intel_dp_aux_ch(struct intel_dp *intel_dp,
1042 const uint8_t *send, int send_bytes,
1043 uint8_t *recv, int recv_size)
1044 {
1045 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1046 struct drm_i915_private *dev_priv =
1047 to_i915(intel_dig_port->base.base.dev);
1048 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
1049 uint32_t aux_clock_divider;
1050 int i, ret, recv_bytes;
1051 uint32_t status;
1052 int try, clock = 0;
1053 bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
1054 bool vdd;
1055
1056 pps_lock(intel_dp);
1057
1058 /*
1059 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1060 * In such cases we want to leave VDD enabled and it's up to upper layers
1061 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1062 * ourselves.
1063 */
1064 vdd = edp_panel_vdd_on(intel_dp);
1065
1066 /* dp aux is extremely sensitive to irq latency, hence request the
1067 * lowest possible wakeup latency and so prevent the cpu from going into
1068 * deep sleep states.
1069 */
1070 pm_qos_update_request(&dev_priv->pm_qos, 0);
1071
1072 intel_dp_check_edp(intel_dp);
1073
1074 /* Try to wait for any previous AUX channel activity */
1075 for (try = 0; try < 3; try++) {
1076 status = I915_READ_NOTRACE(ch_ctl);
1077 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1078 break;
1079 msleep(1);
1080 }
1081
1082 if (try == 3) {
1083 static u32 last_status = -1;
1084 const u32 status = I915_READ(ch_ctl);
1085
1086 if (status != last_status) {
1087 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1088 status);
1089 last_status = status;
1090 }
1091
1092 ret = -EBUSY;
1093 goto out;
1094 }
1095
1096 /* Only 5 data registers! */
1097 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1098 ret = -E2BIG;
1099 goto out;
1100 }
1101
1102 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1103 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1104 has_aux_irq,
1105 send_bytes,
1106 aux_clock_divider);
1107
1108 /* Must try at least 3 times according to DP spec */
1109 for (try = 0; try < 5; try++) {
1110 /* Load the send data into the aux channel data registers */
1111 for (i = 0; i < send_bytes; i += 4)
1112 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
1113 intel_dp_pack_aux(send + i,
1114 send_bytes - i));
1115
1116 /* Send the command and wait for it to complete */
1117 I915_WRITE(ch_ctl, send_ctl);
1118
1119 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
1120
1121 /* Clear done status and any errors */
1122 I915_WRITE(ch_ctl,
1123 status |
1124 DP_AUX_CH_CTL_DONE |
1125 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1126 DP_AUX_CH_CTL_RECEIVE_ERROR);
1127
1128 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1129 continue;
1130
1131 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1132 * 400us delay required for errors and timeouts
1133 * Timeout errors from the HW already meet this
1134 * requirement so skip to next iteration
1135 */
1136 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1137 usleep_range(400, 500);
1138 continue;
1139 }
1140 if (status & DP_AUX_CH_CTL_DONE)
1141 goto done;
1142 }
1143 }
1144
1145 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1146 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1147 ret = -EBUSY;
1148 goto out;
1149 }
1150
1151 done:
1152 /* Check for timeout or receive error.
1153 * Timeouts occur when the sink is not connected
1154 */
1155 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1156 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1157 ret = -EIO;
1158 goto out;
1159 }
1160
1161 /* Timeouts occur when the device isn't connected, so they're
1162 * "normal" -- don't fill the kernel log with these */
1163 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1164 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1165 ret = -ETIMEDOUT;
1166 goto out;
1167 }
1168
1169 /* Unload any bytes sent back from the other side */
1170 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1171 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1172
1173 /*
1174 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1175 * We have no idea of what happened so we return -EBUSY so
1176 * drm layer takes care for the necessary retries.
1177 */
1178 if (recv_bytes == 0 || recv_bytes > 20) {
1179 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1180 recv_bytes);
1181 /*
1182 * FIXME: This patch was created on top of a series that
1183 * organize the retries at drm level. There EBUSY should
1184 * also take care for 1ms wait before retrying.
1185 * That aux retries re-org is still needed and after that is
1186 * merged we remove this sleep from here.
1187 */
1188 usleep_range(1000, 1500);
1189 ret = -EBUSY;
1190 goto out;
1191 }
1192
1193 if (recv_bytes > recv_size)
1194 recv_bytes = recv_size;
1195
1196 for (i = 0; i < recv_bytes; i += 4)
1197 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1198 recv + i, recv_bytes - i);
1199
1200 ret = recv_bytes;
1201 out:
1202 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1203
1204 if (vdd)
1205 edp_panel_vdd_off(intel_dp, false);
1206
1207 pps_unlock(intel_dp);
1208
1209 return ret;
1210 }
1211
1212 #define BARE_ADDRESS_SIZE 3
1213 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1214 static ssize_t
1215 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1216 {
1217 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1218 uint8_t txbuf[20], rxbuf[20];
1219 size_t txsize, rxsize;
1220 int ret;
1221
1222 txbuf[0] = (msg->request << 4) |
1223 ((msg->address >> 16) & 0xf);
1224 txbuf[1] = (msg->address >> 8) & 0xff;
1225 txbuf[2] = msg->address & 0xff;
1226 txbuf[3] = msg->size - 1;
1227
1228 switch (msg->request & ~DP_AUX_I2C_MOT) {
1229 case DP_AUX_NATIVE_WRITE:
1230 case DP_AUX_I2C_WRITE:
1231 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1232 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1233 rxsize = 2; /* 0 or 1 data bytes */
1234
1235 if (WARN_ON(txsize > 20))
1236 return -E2BIG;
1237
1238 WARN_ON(!msg->buffer != !msg->size);
1239
1240 if (msg->buffer)
1241 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1242
1243 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1244 if (ret > 0) {
1245 msg->reply = rxbuf[0] >> 4;
1246
1247 if (ret > 1) {
1248 /* Number of bytes written in a short write. */
1249 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1250 } else {
1251 /* Return payload size. */
1252 ret = msg->size;
1253 }
1254 }
1255 break;
1256
1257 case DP_AUX_NATIVE_READ:
1258 case DP_AUX_I2C_READ:
1259 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1260 rxsize = msg->size + 1;
1261
1262 if (WARN_ON(rxsize > 20))
1263 return -E2BIG;
1264
1265 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1266 if (ret > 0) {
1267 msg->reply = rxbuf[0] >> 4;
1268 /*
1269 * Assume happy day, and copy the data. The caller is
1270 * expected to check msg->reply before touching it.
1271 *
1272 * Return payload size.
1273 */
1274 ret--;
1275 memcpy(msg->buffer, rxbuf + 1, ret);
1276 }
1277 break;
1278
1279 default:
1280 ret = -EINVAL;
1281 break;
1282 }
1283
1284 return ret;
1285 }
1286
1287 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1288 enum port port)
1289 {
1290 const struct ddi_vbt_port_info *info =
1291 &dev_priv->vbt.ddi_port_info[port];
1292 enum port aux_port;
1293
1294 if (!info->alternate_aux_channel) {
1295 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1296 port_name(port), port_name(port));
1297 return port;
1298 }
1299
1300 switch (info->alternate_aux_channel) {
1301 case DP_AUX_A:
1302 aux_port = PORT_A;
1303 break;
1304 case DP_AUX_B:
1305 aux_port = PORT_B;
1306 break;
1307 case DP_AUX_C:
1308 aux_port = PORT_C;
1309 break;
1310 case DP_AUX_D:
1311 aux_port = PORT_D;
1312 break;
1313 default:
1314 MISSING_CASE(info->alternate_aux_channel);
1315 aux_port = PORT_A;
1316 break;
1317 }
1318
1319 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1320 port_name(aux_port), port_name(port));
1321
1322 return aux_port;
1323 }
1324
1325 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1326 enum port port)
1327 {
1328 switch (port) {
1329 case PORT_B:
1330 case PORT_C:
1331 case PORT_D:
1332 return DP_AUX_CH_CTL(port);
1333 default:
1334 MISSING_CASE(port);
1335 return DP_AUX_CH_CTL(PORT_B);
1336 }
1337 }
1338
1339 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1340 enum port port, int index)
1341 {
1342 switch (port) {
1343 case PORT_B:
1344 case PORT_C:
1345 case PORT_D:
1346 return DP_AUX_CH_DATA(port, index);
1347 default:
1348 MISSING_CASE(port);
1349 return DP_AUX_CH_DATA(PORT_B, index);
1350 }
1351 }
1352
1353 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1354 enum port port)
1355 {
1356 switch (port) {
1357 case PORT_A:
1358 return DP_AUX_CH_CTL(port);
1359 case PORT_B:
1360 case PORT_C:
1361 case PORT_D:
1362 return PCH_DP_AUX_CH_CTL(port);
1363 default:
1364 MISSING_CASE(port);
1365 return DP_AUX_CH_CTL(PORT_A);
1366 }
1367 }
1368
1369 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1370 enum port port, int index)
1371 {
1372 switch (port) {
1373 case PORT_A:
1374 return DP_AUX_CH_DATA(port, index);
1375 case PORT_B:
1376 case PORT_C:
1377 case PORT_D:
1378 return PCH_DP_AUX_CH_DATA(port, index);
1379 default:
1380 MISSING_CASE(port);
1381 return DP_AUX_CH_DATA(PORT_A, index);
1382 }
1383 }
1384
1385 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1386 enum port port)
1387 {
1388 switch (port) {
1389 case PORT_A:
1390 case PORT_B:
1391 case PORT_C:
1392 case PORT_D:
1393 return DP_AUX_CH_CTL(port);
1394 default:
1395 MISSING_CASE(port);
1396 return DP_AUX_CH_CTL(PORT_A);
1397 }
1398 }
1399
1400 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1401 enum port port, int index)
1402 {
1403 switch (port) {
1404 case PORT_A:
1405 case PORT_B:
1406 case PORT_C:
1407 case PORT_D:
1408 return DP_AUX_CH_DATA(port, index);
1409 default:
1410 MISSING_CASE(port);
1411 return DP_AUX_CH_DATA(PORT_A, index);
1412 }
1413 }
1414
1415 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1416 enum port port)
1417 {
1418 if (INTEL_INFO(dev_priv)->gen >= 9)
1419 return skl_aux_ctl_reg(dev_priv, port);
1420 else if (HAS_PCH_SPLIT(dev_priv))
1421 return ilk_aux_ctl_reg(dev_priv, port);
1422 else
1423 return g4x_aux_ctl_reg(dev_priv, port);
1424 }
1425
1426 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1427 enum port port, int index)
1428 {
1429 if (INTEL_INFO(dev_priv)->gen >= 9)
1430 return skl_aux_data_reg(dev_priv, port, index);
1431 else if (HAS_PCH_SPLIT(dev_priv))
1432 return ilk_aux_data_reg(dev_priv, port, index);
1433 else
1434 return g4x_aux_data_reg(dev_priv, port, index);
1435 }
1436
1437 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1438 {
1439 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1440 enum port port = intel_aux_port(dev_priv,
1441 dp_to_dig_port(intel_dp)->port);
1442 int i;
1443
1444 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1445 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1446 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1447 }
1448
1449 static void
1450 intel_dp_aux_fini(struct intel_dp *intel_dp)
1451 {
1452 kfree(intel_dp->aux.name);
1453 }
1454
1455 static void
1456 intel_dp_aux_init(struct intel_dp *intel_dp)
1457 {
1458 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1459 enum port port = intel_dig_port->port;
1460
1461 intel_aux_reg_init(intel_dp);
1462 drm_dp_aux_init(&intel_dp->aux);
1463
1464 /* Failure to allocate our preferred name is not critical */
1465 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1466 intel_dp->aux.transfer = intel_dp_aux_transfer;
1467 }
1468
1469 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1470 {
1471 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1472 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1473
1474 if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
1475 IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1476 return true;
1477 else
1478 return false;
1479 }
1480
1481 static void
1482 intel_dp_set_clock(struct intel_encoder *encoder,
1483 struct intel_crtc_state *pipe_config)
1484 {
1485 struct drm_device *dev = encoder->base.dev;
1486 struct drm_i915_private *dev_priv = to_i915(dev);
1487 const struct dp_link_dpll *divisor = NULL;
1488 int i, count = 0;
1489
1490 if (IS_G4X(dev_priv)) {
1491 divisor = gen4_dpll;
1492 count = ARRAY_SIZE(gen4_dpll);
1493 } else if (HAS_PCH_SPLIT(dev_priv)) {
1494 divisor = pch_dpll;
1495 count = ARRAY_SIZE(pch_dpll);
1496 } else if (IS_CHERRYVIEW(dev_priv)) {
1497 divisor = chv_dpll;
1498 count = ARRAY_SIZE(chv_dpll);
1499 } else if (IS_VALLEYVIEW(dev_priv)) {
1500 divisor = vlv_dpll;
1501 count = ARRAY_SIZE(vlv_dpll);
1502 }
1503
1504 if (divisor && count) {
1505 for (i = 0; i < count; i++) {
1506 if (pipe_config->port_clock == divisor[i].clock) {
1507 pipe_config->dpll = divisor[i].dpll;
1508 pipe_config->clock_set = true;
1509 break;
1510 }
1511 }
1512 }
1513 }
1514
1515 static void snprintf_int_array(char *str, size_t len,
1516 const int *array, int nelem)
1517 {
1518 int i;
1519
1520 str[0] = '\0';
1521
1522 for (i = 0; i < nelem; i++) {
1523 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1524 if (r >= len)
1525 return;
1526 str += r;
1527 len -= r;
1528 }
1529 }
1530
1531 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1532 {
1533 char str[128]; /* FIXME: too big for stack? */
1534
1535 if ((drm_debug & DRM_UT_KMS) == 0)
1536 return;
1537
1538 snprintf_int_array(str, sizeof(str),
1539 intel_dp->source_rates, intel_dp->num_source_rates);
1540 DRM_DEBUG_KMS("source rates: %s\n", str);
1541
1542 snprintf_int_array(str, sizeof(str),
1543 intel_dp->sink_rates, intel_dp->num_sink_rates);
1544 DRM_DEBUG_KMS("sink rates: %s\n", str);
1545
1546 snprintf_int_array(str, sizeof(str),
1547 intel_dp->common_rates, intel_dp->num_common_rates);
1548 DRM_DEBUG_KMS("common rates: %s\n", str);
1549 }
1550
1551 int
1552 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1553 {
1554 int len;
1555
1556 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1557 if (WARN_ON(len <= 0))
1558 return 162000;
1559
1560 return intel_dp->common_rates[len - 1];
1561 }
1562
1563 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1564 {
1565 int i = intel_dp_rate_index(intel_dp->sink_rates,
1566 intel_dp->num_sink_rates, rate);
1567
1568 if (WARN_ON(i < 0))
1569 i = 0;
1570
1571 return i;
1572 }
1573
1574 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1575 uint8_t *link_bw, uint8_t *rate_select)
1576 {
1577 /* eDP 1.4 rate select method. */
1578 if (intel_dp->use_rate_select) {
1579 *link_bw = 0;
1580 *rate_select =
1581 intel_dp_rate_select(intel_dp, port_clock);
1582 } else {
1583 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1584 *rate_select = 0;
1585 }
1586 }
1587
1588 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1589 struct intel_crtc_state *pipe_config)
1590 {
1591 int bpp, bpc;
1592
1593 bpp = pipe_config->pipe_bpp;
1594 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1595
1596 if (bpc > 0)
1597 bpp = min(bpp, 3*bpc);
1598
1599 /* For DP Compliance we override the computed bpp for the pipe */
1600 if (intel_dp->compliance.test_data.bpc != 0) {
1601 pipe_config->pipe_bpp = 3*intel_dp->compliance.test_data.bpc;
1602 pipe_config->dither_force_disable = pipe_config->pipe_bpp == 6*3;
1603 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n",
1604 pipe_config->pipe_bpp);
1605 }
1606 return bpp;
1607 }
1608
1609 static bool intel_edp_compare_alt_mode(struct drm_display_mode *m1,
1610 struct drm_display_mode *m2)
1611 {
1612 bool bres = false;
1613
1614 if (m1 && m2)
1615 bres = (m1->hdisplay == m2->hdisplay &&
1616 m1->hsync_start == m2->hsync_start &&
1617 m1->hsync_end == m2->hsync_end &&
1618 m1->htotal == m2->htotal &&
1619 m1->vdisplay == m2->vdisplay &&
1620 m1->vsync_start == m2->vsync_start &&
1621 m1->vsync_end == m2->vsync_end &&
1622 m1->vtotal == m2->vtotal);
1623 return bres;
1624 }
1625
1626 bool
1627 intel_dp_compute_config(struct intel_encoder *encoder,
1628 struct intel_crtc_state *pipe_config,
1629 struct drm_connector_state *conn_state)
1630 {
1631 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1632 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1633 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1634 enum port port = dp_to_dig_port(intel_dp)->port;
1635 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1636 struct intel_connector *intel_connector = intel_dp->attached_connector;
1637 struct intel_digital_connector_state *intel_conn_state =
1638 to_intel_digital_connector_state(conn_state);
1639 int lane_count, clock;
1640 int min_lane_count = 1;
1641 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1642 /* Conveniently, the link BW constants become indices with a shift...*/
1643 int min_clock = 0;
1644 int max_clock;
1645 int bpp, mode_rate;
1646 int link_avail, link_clock;
1647 int common_len;
1648 uint8_t link_bw, rate_select;
1649 bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
1650 DP_DPCD_QUIRK_LIMITED_M_N);
1651
1652 common_len = intel_dp_common_len_rate_limit(intel_dp,
1653 intel_dp->max_link_rate);
1654
1655 /* No common link rates between source and sink */
1656 WARN_ON(common_len <= 0);
1657
1658 max_clock = common_len - 1;
1659
1660 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1661 pipe_config->has_pch_encoder = true;
1662
1663 pipe_config->has_drrs = false;
1664 if (port == PORT_A)
1665 pipe_config->has_audio = false;
1666 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
1667 pipe_config->has_audio = intel_dp->has_audio;
1668 else
1669 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
1670
1671 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1672 struct drm_display_mode *panel_mode =
1673 intel_connector->panel.alt_fixed_mode;
1674 struct drm_display_mode *req_mode = &pipe_config->base.mode;
1675
1676 if (!intel_edp_compare_alt_mode(req_mode, panel_mode))
1677 panel_mode = intel_connector->panel.fixed_mode;
1678
1679 drm_mode_debug_printmodeline(panel_mode);
1680
1681 intel_fixed_panel_mode(panel_mode, adjusted_mode);
1682
1683 if (INTEL_GEN(dev_priv) >= 9) {
1684 int ret;
1685 ret = skl_update_scaler_crtc(pipe_config);
1686 if (ret)
1687 return ret;
1688 }
1689
1690 if (HAS_GMCH_DISPLAY(dev_priv))
1691 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1692 conn_state->scaling_mode);
1693 else
1694 intel_pch_panel_fitting(intel_crtc, pipe_config,
1695 conn_state->scaling_mode);
1696 }
1697
1698 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1699 return false;
1700
1701 /* Use values requested by Compliance Test Request */
1702 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1703 int index;
1704
1705 index = intel_dp_rate_index(intel_dp->common_rates,
1706 intel_dp->num_common_rates,
1707 intel_dp->compliance.test_link_rate);
1708 if (index >= 0)
1709 min_clock = max_clock = index;
1710 min_lane_count = max_lane_count = intel_dp->compliance.test_lane_count;
1711 }
1712 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1713 "max bw %d pixel clock %iKHz\n",
1714 max_lane_count, intel_dp->common_rates[max_clock],
1715 adjusted_mode->crtc_clock);
1716
1717 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1718 * bpc in between. */
1719 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1720 if (intel_dp_is_edp(intel_dp)) {
1721
1722 /* Get bpp from vbt only for panels that dont have bpp in edid */
1723 if (intel_connector->base.display_info.bpc == 0 &&
1724 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1725 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1726 dev_priv->vbt.edp.bpp);
1727 bpp = dev_priv->vbt.edp.bpp;
1728 }
1729
1730 /*
1731 * Use the maximum clock and number of lanes the eDP panel
1732 * advertizes being capable of. The panels are generally
1733 * designed to support only a single clock and lane
1734 * configuration, and typically these values correspond to the
1735 * native resolution of the panel.
1736 */
1737 min_lane_count = max_lane_count;
1738 min_clock = max_clock;
1739 }
1740
1741 for (; bpp >= 6*3; bpp -= 2*3) {
1742 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1743 bpp);
1744
1745 for (clock = min_clock; clock <= max_clock; clock++) {
1746 for (lane_count = min_lane_count;
1747 lane_count <= max_lane_count;
1748 lane_count <<= 1) {
1749
1750 link_clock = intel_dp->common_rates[clock];
1751 link_avail = intel_dp_max_data_rate(link_clock,
1752 lane_count);
1753
1754 if (mode_rate <= link_avail) {
1755 goto found;
1756 }
1757 }
1758 }
1759 }
1760
1761 return false;
1762
1763 found:
1764 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1765 /*
1766 * See:
1767 * CEA-861-E - 5.1 Default Encoding Parameters
1768 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1769 */
1770 pipe_config->limited_color_range =
1771 bpp != 18 &&
1772 drm_default_rgb_quant_range(adjusted_mode) ==
1773 HDMI_QUANTIZATION_RANGE_LIMITED;
1774 } else {
1775 pipe_config->limited_color_range =
1776 intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1777 }
1778
1779 pipe_config->lane_count = lane_count;
1780
1781 pipe_config->pipe_bpp = bpp;
1782 pipe_config->port_clock = intel_dp->common_rates[clock];
1783
1784 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1785 &link_bw, &rate_select);
1786
1787 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1788 link_bw, rate_select, pipe_config->lane_count,
1789 pipe_config->port_clock, bpp);
1790 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1791 mode_rate, link_avail);
1792
1793 intel_link_compute_m_n(bpp, lane_count,
1794 adjusted_mode->crtc_clock,
1795 pipe_config->port_clock,
1796 &pipe_config->dp_m_n,
1797 reduce_m_n);
1798
1799 if (intel_connector->panel.downclock_mode != NULL &&
1800 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1801 pipe_config->has_drrs = true;
1802 intel_link_compute_m_n(bpp, lane_count,
1803 intel_connector->panel.downclock_mode->clock,
1804 pipe_config->port_clock,
1805 &pipe_config->dp_m2_n2,
1806 reduce_m_n);
1807 }
1808
1809 /*
1810 * DPLL0 VCO may need to be adjusted to get the correct
1811 * clock for eDP. This will affect cdclk as well.
1812 */
1813 if (intel_dp_is_edp(intel_dp) && IS_GEN9_BC(dev_priv)) {
1814 int vco;
1815
1816 switch (pipe_config->port_clock / 2) {
1817 case 108000:
1818 case 216000:
1819 vco = 8640000;
1820 break;
1821 default:
1822 vco = 8100000;
1823 break;
1824 }
1825
1826 to_intel_atomic_state(pipe_config->base.state)->cdclk.logical.vco = vco;
1827 }
1828
1829 if (!HAS_DDI(dev_priv))
1830 intel_dp_set_clock(encoder, pipe_config);
1831
1832 return true;
1833 }
1834
1835 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1836 int link_rate, uint8_t lane_count,
1837 bool link_mst)
1838 {
1839 intel_dp->link_rate = link_rate;
1840 intel_dp->lane_count = lane_count;
1841 intel_dp->link_mst = link_mst;
1842 }
1843
1844 static void intel_dp_prepare(struct intel_encoder *encoder,
1845 struct intel_crtc_state *pipe_config)
1846 {
1847 struct drm_device *dev = encoder->base.dev;
1848 struct drm_i915_private *dev_priv = to_i915(dev);
1849 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1850 enum port port = dp_to_dig_port(intel_dp)->port;
1851 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1852 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1853
1854 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1855 pipe_config->lane_count,
1856 intel_crtc_has_type(pipe_config,
1857 INTEL_OUTPUT_DP_MST));
1858
1859 /*
1860 * There are four kinds of DP registers:
1861 *
1862 * IBX PCH
1863 * SNB CPU
1864 * IVB CPU
1865 * CPT PCH
1866 *
1867 * IBX PCH and CPU are the same for almost everything,
1868 * except that the CPU DP PLL is configured in this
1869 * register
1870 *
1871 * CPT PCH is quite different, having many bits moved
1872 * to the TRANS_DP_CTL register instead. That
1873 * configuration happens (oddly) in ironlake_pch_enable
1874 */
1875
1876 /* Preserve the BIOS-computed detected bit. This is
1877 * supposed to be read-only.
1878 */
1879 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1880
1881 /* Handle DP bits in common between all three register formats */
1882 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1883 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1884
1885 /* Split out the IBX/CPU vs CPT settings */
1886
1887 if (IS_GEN7(dev_priv) && port == PORT_A) {
1888 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1889 intel_dp->DP |= DP_SYNC_HS_HIGH;
1890 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1891 intel_dp->DP |= DP_SYNC_VS_HIGH;
1892 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1893
1894 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1895 intel_dp->DP |= DP_ENHANCED_FRAMING;
1896
1897 intel_dp->DP |= crtc->pipe << 29;
1898 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1899 u32 trans_dp;
1900
1901 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1902
1903 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1904 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1905 trans_dp |= TRANS_DP_ENH_FRAMING;
1906 else
1907 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1908 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1909 } else {
1910 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
1911 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1912
1913 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1914 intel_dp->DP |= DP_SYNC_HS_HIGH;
1915 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1916 intel_dp->DP |= DP_SYNC_VS_HIGH;
1917 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1918
1919 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1920 intel_dp->DP |= DP_ENHANCED_FRAMING;
1921
1922 if (IS_CHERRYVIEW(dev_priv))
1923 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1924 else if (crtc->pipe == PIPE_B)
1925 intel_dp->DP |= DP_PIPEB_SELECT;
1926 }
1927 }
1928
1929 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1930 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1931
1932 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1933 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1934
1935 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1936 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1937
1938 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1939 struct intel_dp *intel_dp);
1940
1941 static void wait_panel_status(struct intel_dp *intel_dp,
1942 u32 mask,
1943 u32 value)
1944 {
1945 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1946 struct drm_i915_private *dev_priv = to_i915(dev);
1947 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1948
1949 lockdep_assert_held(&dev_priv->pps_mutex);
1950
1951 intel_pps_verify_state(dev_priv, intel_dp);
1952
1953 pp_stat_reg = _pp_stat_reg(intel_dp);
1954 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1955
1956 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1957 mask, value,
1958 I915_READ(pp_stat_reg),
1959 I915_READ(pp_ctrl_reg));
1960
1961 if (intel_wait_for_register(dev_priv,
1962 pp_stat_reg, mask, value,
1963 5000))
1964 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1965 I915_READ(pp_stat_reg),
1966 I915_READ(pp_ctrl_reg));
1967
1968 DRM_DEBUG_KMS("Wait complete\n");
1969 }
1970
1971 static void wait_panel_on(struct intel_dp *intel_dp)
1972 {
1973 DRM_DEBUG_KMS("Wait for panel power on\n");
1974 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1975 }
1976
1977 static void wait_panel_off(struct intel_dp *intel_dp)
1978 {
1979 DRM_DEBUG_KMS("Wait for panel power off time\n");
1980 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1981 }
1982
1983 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1984 {
1985 ktime_t panel_power_on_time;
1986 s64 panel_power_off_duration;
1987
1988 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1989
1990 /* take the difference of currrent time and panel power off time
1991 * and then make panel wait for t11_t12 if needed. */
1992 panel_power_on_time = ktime_get_boottime();
1993 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1994
1995 /* When we disable the VDD override bit last we have to do the manual
1996 * wait. */
1997 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1998 wait_remaining_ms_from_jiffies(jiffies,
1999 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2000
2001 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2002 }
2003
2004 static void wait_backlight_on(struct intel_dp *intel_dp)
2005 {
2006 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2007 intel_dp->backlight_on_delay);
2008 }
2009
2010 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2011 {
2012 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2013 intel_dp->backlight_off_delay);
2014 }
2015
2016 /* Read the current pp_control value, unlocking the register if it
2017 * is locked
2018 */
2019
2020 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2021 {
2022 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2023 struct drm_i915_private *dev_priv = to_i915(dev);
2024 u32 control;
2025
2026 lockdep_assert_held(&dev_priv->pps_mutex);
2027
2028 control = I915_READ(_pp_ctrl_reg(intel_dp));
2029 if (WARN_ON(!HAS_DDI(dev_priv) &&
2030 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2031 control &= ~PANEL_UNLOCK_MASK;
2032 control |= PANEL_UNLOCK_REGS;
2033 }
2034 return control;
2035 }
2036
2037 /*
2038 * Must be paired with edp_panel_vdd_off().
2039 * Must hold pps_mutex around the whole on/off sequence.
2040 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2041 */
2042 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2043 {
2044 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2045 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2046 struct drm_i915_private *dev_priv = to_i915(dev);
2047 u32 pp;
2048 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2049 bool need_to_disable = !intel_dp->want_panel_vdd;
2050
2051 lockdep_assert_held(&dev_priv->pps_mutex);
2052
2053 if (!intel_dp_is_edp(intel_dp))
2054 return false;
2055
2056 cancel_delayed_work(&intel_dp->panel_vdd_work);
2057 intel_dp->want_panel_vdd = true;
2058
2059 if (edp_have_panel_vdd(intel_dp))
2060 return need_to_disable;
2061
2062 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2063
2064 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2065 port_name(intel_dig_port->port));
2066
2067 if (!edp_have_panel_power(intel_dp))
2068 wait_panel_power_cycle(intel_dp);
2069
2070 pp = ironlake_get_pp_control(intel_dp);
2071 pp |= EDP_FORCE_VDD;
2072
2073 pp_stat_reg = _pp_stat_reg(intel_dp);
2074 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2075
2076 I915_WRITE(pp_ctrl_reg, pp);
2077 POSTING_READ(pp_ctrl_reg);
2078 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2079 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2080 /*
2081 * If the panel wasn't on, delay before accessing aux channel
2082 */
2083 if (!edp_have_panel_power(intel_dp)) {
2084 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2085 port_name(intel_dig_port->port));
2086 msleep(intel_dp->panel_power_up_delay);
2087 }
2088
2089 return need_to_disable;
2090 }
2091
2092 /*
2093 * Must be paired with intel_edp_panel_vdd_off() or
2094 * intel_edp_panel_off().
2095 * Nested calls to these functions are not allowed since
2096 * we drop the lock. Caller must use some higher level
2097 * locking to prevent nested calls from other threads.
2098 */
2099 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2100 {
2101 bool vdd;
2102
2103 if (!intel_dp_is_edp(intel_dp))
2104 return;
2105
2106 pps_lock(intel_dp);
2107 vdd = edp_panel_vdd_on(intel_dp);
2108 pps_unlock(intel_dp);
2109
2110 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2111 port_name(dp_to_dig_port(intel_dp)->port));
2112 }
2113
2114 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2115 {
2116 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2117 struct drm_i915_private *dev_priv = to_i915(dev);
2118 struct intel_digital_port *intel_dig_port =
2119 dp_to_dig_port(intel_dp);
2120 u32 pp;
2121 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2122
2123 lockdep_assert_held(&dev_priv->pps_mutex);
2124
2125 WARN_ON(intel_dp->want_panel_vdd);
2126
2127 if (!edp_have_panel_vdd(intel_dp))
2128 return;
2129
2130 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2131 port_name(intel_dig_port->port));
2132
2133 pp = ironlake_get_pp_control(intel_dp);
2134 pp &= ~EDP_FORCE_VDD;
2135
2136 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2137 pp_stat_reg = _pp_stat_reg(intel_dp);
2138
2139 I915_WRITE(pp_ctrl_reg, pp);
2140 POSTING_READ(pp_ctrl_reg);
2141
2142 /* Make sure sequencer is idle before allowing subsequent activity */
2143 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2144 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2145
2146 if ((pp & PANEL_POWER_ON) == 0)
2147 intel_dp->panel_power_off_time = ktime_get_boottime();
2148
2149 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2150 }
2151
2152 static void edp_panel_vdd_work(struct work_struct *__work)
2153 {
2154 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2155 struct intel_dp, panel_vdd_work);
2156
2157 pps_lock(intel_dp);
2158 if (!intel_dp->want_panel_vdd)
2159 edp_panel_vdd_off_sync(intel_dp);
2160 pps_unlock(intel_dp);
2161 }
2162
2163 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2164 {
2165 unsigned long delay;
2166
2167 /*
2168 * Queue the timer to fire a long time from now (relative to the power
2169 * down delay) to keep the panel power up across a sequence of
2170 * operations.
2171 */
2172 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2173 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2174 }
2175
2176 /*
2177 * Must be paired with edp_panel_vdd_on().
2178 * Must hold pps_mutex around the whole on/off sequence.
2179 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2180 */
2181 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2182 {
2183 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2184
2185 lockdep_assert_held(&dev_priv->pps_mutex);
2186
2187 if (!intel_dp_is_edp(intel_dp))
2188 return;
2189
2190 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2191 port_name(dp_to_dig_port(intel_dp)->port));
2192
2193 intel_dp->want_panel_vdd = false;
2194
2195 if (sync)
2196 edp_panel_vdd_off_sync(intel_dp);
2197 else
2198 edp_panel_vdd_schedule_off(intel_dp);
2199 }
2200
2201 static void edp_panel_on(struct intel_dp *intel_dp)
2202 {
2203 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2204 struct drm_i915_private *dev_priv = to_i915(dev);
2205 u32 pp;
2206 i915_reg_t pp_ctrl_reg;
2207
2208 lockdep_assert_held(&dev_priv->pps_mutex);
2209
2210 if (!intel_dp_is_edp(intel_dp))
2211 return;
2212
2213 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2214 port_name(dp_to_dig_port(intel_dp)->port));
2215
2216 if (WARN(edp_have_panel_power(intel_dp),
2217 "eDP port %c panel power already on\n",
2218 port_name(dp_to_dig_port(intel_dp)->port)))
2219 return;
2220
2221 wait_panel_power_cycle(intel_dp);
2222
2223 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2224 pp = ironlake_get_pp_control(intel_dp);
2225 if (IS_GEN5(dev_priv)) {
2226 /* ILK workaround: disable reset around power sequence */
2227 pp &= ~PANEL_POWER_RESET;
2228 I915_WRITE(pp_ctrl_reg, pp);
2229 POSTING_READ(pp_ctrl_reg);
2230 }
2231
2232 pp |= PANEL_POWER_ON;
2233 if (!IS_GEN5(dev_priv))
2234 pp |= PANEL_POWER_RESET;
2235
2236 I915_WRITE(pp_ctrl_reg, pp);
2237 POSTING_READ(pp_ctrl_reg);
2238
2239 wait_panel_on(intel_dp);
2240 intel_dp->last_power_on = jiffies;
2241
2242 if (IS_GEN5(dev_priv)) {
2243 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2244 I915_WRITE(pp_ctrl_reg, pp);
2245 POSTING_READ(pp_ctrl_reg);
2246 }
2247 }
2248
2249 void intel_edp_panel_on(struct intel_dp *intel_dp)
2250 {
2251 if (!intel_dp_is_edp(intel_dp))
2252 return;
2253
2254 pps_lock(intel_dp);
2255 edp_panel_on(intel_dp);
2256 pps_unlock(intel_dp);
2257 }
2258
2259
2260 static void edp_panel_off(struct intel_dp *intel_dp)
2261 {
2262 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2263 struct drm_i915_private *dev_priv = to_i915(dev);
2264 u32 pp;
2265 i915_reg_t pp_ctrl_reg;
2266
2267 lockdep_assert_held(&dev_priv->pps_mutex);
2268
2269 if (!intel_dp_is_edp(intel_dp))
2270 return;
2271
2272 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2273 port_name(dp_to_dig_port(intel_dp)->port));
2274
2275 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2276 port_name(dp_to_dig_port(intel_dp)->port));
2277
2278 pp = ironlake_get_pp_control(intel_dp);
2279 /* We need to switch off panel power _and_ force vdd, for otherwise some
2280 * panels get very unhappy and cease to work. */
2281 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2282 EDP_BLC_ENABLE);
2283
2284 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2285
2286 intel_dp->want_panel_vdd = false;
2287
2288 I915_WRITE(pp_ctrl_reg, pp);
2289 POSTING_READ(pp_ctrl_reg);
2290
2291 wait_panel_off(intel_dp);
2292 intel_dp->panel_power_off_time = ktime_get_boottime();
2293
2294 /* We got a reference when we enabled the VDD. */
2295 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2296 }
2297
2298 void intel_edp_panel_off(struct intel_dp *intel_dp)
2299 {
2300 if (!intel_dp_is_edp(intel_dp))
2301 return;
2302
2303 pps_lock(intel_dp);
2304 edp_panel_off(intel_dp);
2305 pps_unlock(intel_dp);
2306 }
2307
2308 /* Enable backlight in the panel power control. */
2309 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2310 {
2311 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2312 struct drm_device *dev = intel_dig_port->base.base.dev;
2313 struct drm_i915_private *dev_priv = to_i915(dev);
2314 u32 pp;
2315 i915_reg_t pp_ctrl_reg;
2316
2317 /*
2318 * If we enable the backlight right away following a panel power
2319 * on, we may see slight flicker as the panel syncs with the eDP
2320 * link. So delay a bit to make sure the image is solid before
2321 * allowing it to appear.
2322 */
2323 wait_backlight_on(intel_dp);
2324
2325 pps_lock(intel_dp);
2326
2327 pp = ironlake_get_pp_control(intel_dp);
2328 pp |= EDP_BLC_ENABLE;
2329
2330 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2331
2332 I915_WRITE(pp_ctrl_reg, pp);
2333 POSTING_READ(pp_ctrl_reg);
2334
2335 pps_unlock(intel_dp);
2336 }
2337
2338 /* Enable backlight PWM and backlight PP control. */
2339 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2340 const struct drm_connector_state *conn_state)
2341 {
2342 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2343
2344 if (!intel_dp_is_edp(intel_dp))
2345 return;
2346
2347 DRM_DEBUG_KMS("\n");
2348
2349 intel_panel_enable_backlight(crtc_state, conn_state);
2350 _intel_edp_backlight_on(intel_dp);
2351 }
2352
2353 /* Disable backlight in the panel power control. */
2354 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2355 {
2356 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2357 struct drm_i915_private *dev_priv = to_i915(dev);
2358 u32 pp;
2359 i915_reg_t pp_ctrl_reg;
2360
2361 if (!intel_dp_is_edp(intel_dp))
2362 return;
2363
2364 pps_lock(intel_dp);
2365
2366 pp = ironlake_get_pp_control(intel_dp);
2367 pp &= ~EDP_BLC_ENABLE;
2368
2369 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2370
2371 I915_WRITE(pp_ctrl_reg, pp);
2372 POSTING_READ(pp_ctrl_reg);
2373
2374 pps_unlock(intel_dp);
2375
2376 intel_dp->last_backlight_off = jiffies;
2377 edp_wait_backlight_off(intel_dp);
2378 }
2379
2380 /* Disable backlight PP control and backlight PWM. */
2381 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2382 {
2383 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2384
2385 if (!intel_dp_is_edp(intel_dp))
2386 return;
2387
2388 DRM_DEBUG_KMS("\n");
2389
2390 _intel_edp_backlight_off(intel_dp);
2391 intel_panel_disable_backlight(old_conn_state);
2392 }
2393
2394 /*
2395 * Hook for controlling the panel power control backlight through the bl_power
2396 * sysfs attribute. Take care to handle multiple calls.
2397 */
2398 static void intel_edp_backlight_power(struct intel_connector *connector,
2399 bool enable)
2400 {
2401 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2402 bool is_enabled;
2403
2404 pps_lock(intel_dp);
2405 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2406 pps_unlock(intel_dp);
2407
2408 if (is_enabled == enable)
2409 return;
2410
2411 DRM_DEBUG_KMS("panel power control backlight %s\n",
2412 enable ? "enable" : "disable");
2413
2414 if (enable)
2415 _intel_edp_backlight_on(intel_dp);
2416 else
2417 _intel_edp_backlight_off(intel_dp);
2418 }
2419
2420 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2421 {
2422 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2423 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2424 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2425
2426 I915_STATE_WARN(cur_state != state,
2427 "DP port %c state assertion failure (expected %s, current %s)\n",
2428 port_name(dig_port->port),
2429 onoff(state), onoff(cur_state));
2430 }
2431 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2432
2433 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2434 {
2435 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2436
2437 I915_STATE_WARN(cur_state != state,
2438 "eDP PLL state assertion failure (expected %s, current %s)\n",
2439 onoff(state), onoff(cur_state));
2440 }
2441 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2442 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2443
2444 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2445 struct intel_crtc_state *pipe_config)
2446 {
2447 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2448 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2449
2450 assert_pipe_disabled(dev_priv, crtc->pipe);
2451 assert_dp_port_disabled(intel_dp);
2452 assert_edp_pll_disabled(dev_priv);
2453
2454 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2455 pipe_config->port_clock);
2456
2457 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2458
2459 if (pipe_config->port_clock == 162000)
2460 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2461 else
2462 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2463
2464 I915_WRITE(DP_A, intel_dp->DP);
2465 POSTING_READ(DP_A);
2466 udelay(500);
2467
2468 /*
2469 * [DevILK] Work around required when enabling DP PLL
2470 * while a pipe is enabled going to FDI:
2471 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2472 * 2. Program DP PLL enable
2473 */
2474 if (IS_GEN5(dev_priv))
2475 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2476
2477 intel_dp->DP |= DP_PLL_ENABLE;
2478
2479 I915_WRITE(DP_A, intel_dp->DP);
2480 POSTING_READ(DP_A);
2481 udelay(200);
2482 }
2483
2484 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2485 {
2486 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2487 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2488 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2489
2490 assert_pipe_disabled(dev_priv, crtc->pipe);
2491 assert_dp_port_disabled(intel_dp);
2492 assert_edp_pll_enabled(dev_priv);
2493
2494 DRM_DEBUG_KMS("disabling eDP PLL\n");
2495
2496 intel_dp->DP &= ~DP_PLL_ENABLE;
2497
2498 I915_WRITE(DP_A, intel_dp->DP);
2499 POSTING_READ(DP_A);
2500 udelay(200);
2501 }
2502
2503 /* If the sink supports it, try to set the power state appropriately */
2504 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2505 {
2506 int ret, i;
2507
2508 /* Should have a valid DPCD by this point */
2509 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2510 return;
2511
2512 if (mode != DRM_MODE_DPMS_ON) {
2513 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2514 DP_SET_POWER_D3);
2515 } else {
2516 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2517
2518 /*
2519 * When turning on, we need to retry for 1ms to give the sink
2520 * time to wake up.
2521 */
2522 for (i = 0; i < 3; i++) {
2523 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2524 DP_SET_POWER_D0);
2525 if (ret == 1)
2526 break;
2527 msleep(1);
2528 }
2529
2530 if (ret == 1 && lspcon->active)
2531 lspcon_wait_pcon_mode(lspcon);
2532 }
2533
2534 if (ret != 1)
2535 DRM_DEBUG_KMS("failed to %s sink power state\n",
2536 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2537 }
2538
2539 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2540 enum pipe *pipe)
2541 {
2542 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2543 enum port port = dp_to_dig_port(intel_dp)->port;
2544 struct drm_device *dev = encoder->base.dev;
2545 struct drm_i915_private *dev_priv = to_i915(dev);
2546 u32 tmp;
2547 bool ret;
2548
2549 if (!intel_display_power_get_if_enabled(dev_priv,
2550 encoder->power_domain))
2551 return false;
2552
2553 ret = false;
2554
2555 tmp = I915_READ(intel_dp->output_reg);
2556
2557 if (!(tmp & DP_PORT_EN))
2558 goto out;
2559
2560 if (IS_GEN7(dev_priv) && port == PORT_A) {
2561 *pipe = PORT_TO_PIPE_CPT(tmp);
2562 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2563 enum pipe p;
2564
2565 for_each_pipe(dev_priv, p) {
2566 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2567 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2568 *pipe = p;
2569 ret = true;
2570
2571 goto out;
2572 }
2573 }
2574
2575 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2576 i915_mmio_reg_offset(intel_dp->output_reg));
2577 } else if (IS_CHERRYVIEW(dev_priv)) {
2578 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2579 } else {
2580 *pipe = PORT_TO_PIPE(tmp);
2581 }
2582
2583 ret = true;
2584
2585 out:
2586 intel_display_power_put(dev_priv, encoder->power_domain);
2587
2588 return ret;
2589 }
2590
2591 static void intel_dp_get_config(struct intel_encoder *encoder,
2592 struct intel_crtc_state *pipe_config)
2593 {
2594 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2595 u32 tmp, flags = 0;
2596 struct drm_device *dev = encoder->base.dev;
2597 struct drm_i915_private *dev_priv = to_i915(dev);
2598 enum port port = dp_to_dig_port(intel_dp)->port;
2599 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2600
2601 tmp = I915_READ(intel_dp->output_reg);
2602
2603 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2604
2605 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2606 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2607
2608 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2609 flags |= DRM_MODE_FLAG_PHSYNC;
2610 else
2611 flags |= DRM_MODE_FLAG_NHSYNC;
2612
2613 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2614 flags |= DRM_MODE_FLAG_PVSYNC;
2615 else
2616 flags |= DRM_MODE_FLAG_NVSYNC;
2617 } else {
2618 if (tmp & DP_SYNC_HS_HIGH)
2619 flags |= DRM_MODE_FLAG_PHSYNC;
2620 else
2621 flags |= DRM_MODE_FLAG_NHSYNC;
2622
2623 if (tmp & DP_SYNC_VS_HIGH)
2624 flags |= DRM_MODE_FLAG_PVSYNC;
2625 else
2626 flags |= DRM_MODE_FLAG_NVSYNC;
2627 }
2628
2629 pipe_config->base.adjusted_mode.flags |= flags;
2630
2631 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2632 pipe_config->limited_color_range = true;
2633
2634 pipe_config->lane_count =
2635 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2636
2637 intel_dp_get_m_n(crtc, pipe_config);
2638
2639 if (port == PORT_A) {
2640 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2641 pipe_config->port_clock = 162000;
2642 else
2643 pipe_config->port_clock = 270000;
2644 }
2645
2646 pipe_config->base.adjusted_mode.crtc_clock =
2647 intel_dotclock_calculate(pipe_config->port_clock,
2648 &pipe_config->dp_m_n);
2649
2650 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2651 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2652 /*
2653 * This is a big fat ugly hack.
2654 *
2655 * Some machines in UEFI boot mode provide us a VBT that has 18
2656 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2657 * unknown we fail to light up. Yet the same BIOS boots up with
2658 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2659 * max, not what it tells us to use.
2660 *
2661 * Note: This will still be broken if the eDP panel is not lit
2662 * up by the BIOS, and thus we can't get the mode at module
2663 * load.
2664 */
2665 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2666 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2667 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2668 }
2669 }
2670
2671 static void intel_disable_dp(struct intel_encoder *encoder,
2672 struct intel_crtc_state *old_crtc_state,
2673 struct drm_connector_state *old_conn_state)
2674 {
2675 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2676 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2677
2678 if (old_crtc_state->has_audio)
2679 intel_audio_codec_disable(encoder);
2680
2681 if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2682 intel_psr_disable(intel_dp);
2683
2684 /* Make sure the panel is off before trying to change the mode. But also
2685 * ensure that we have vdd while we switch off the panel. */
2686 intel_edp_panel_vdd_on(intel_dp);
2687 intel_edp_backlight_off(old_conn_state);
2688 if (!(dev_priv->quirks & QUIRK_SKIP_DP_DPMS_D3))
2689 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2690 intel_edp_panel_off(intel_dp);
2691
2692 /* disable the port before the pipe on g4x */
2693 if (INTEL_GEN(dev_priv) < 5)
2694 intel_dp_link_down(intel_dp);
2695 }
2696
2697 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2698 struct intel_crtc_state *old_crtc_state,
2699 struct drm_connector_state *old_conn_state)
2700 {
2701 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2702 enum port port = dp_to_dig_port(intel_dp)->port;
2703
2704 intel_dp_link_down(intel_dp);
2705
2706 /* Only ilk+ has port A */
2707 if (port == PORT_A)
2708 ironlake_edp_pll_off(intel_dp);
2709 }
2710
2711 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2712 struct intel_crtc_state *old_crtc_state,
2713 struct drm_connector_state *old_conn_state)
2714 {
2715 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2716
2717 intel_dp_link_down(intel_dp);
2718 }
2719
2720 static void chv_post_disable_dp(struct intel_encoder *encoder,
2721 struct intel_crtc_state *old_crtc_state,
2722 struct drm_connector_state *old_conn_state)
2723 {
2724 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2725 struct drm_device *dev = encoder->base.dev;
2726 struct drm_i915_private *dev_priv = to_i915(dev);
2727
2728 intel_dp_link_down(intel_dp);
2729
2730 mutex_lock(&dev_priv->sb_lock);
2731
2732 /* Assert data lane reset */
2733 chv_data_lane_soft_reset(encoder, true);
2734
2735 mutex_unlock(&dev_priv->sb_lock);
2736 }
2737
2738 static void
2739 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2740 uint32_t *DP,
2741 uint8_t dp_train_pat)
2742 {
2743 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2744 struct drm_device *dev = intel_dig_port->base.base.dev;
2745 struct drm_i915_private *dev_priv = to_i915(dev);
2746 enum port port = intel_dig_port->port;
2747
2748 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2749 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2750 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2751
2752 if (HAS_DDI(dev_priv)) {
2753 uint32_t temp = I915_READ(DP_TP_CTL(port));
2754
2755 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2756 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2757 else
2758 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2759
2760 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2761 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2762 case DP_TRAINING_PATTERN_DISABLE:
2763 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2764
2765 break;
2766 case DP_TRAINING_PATTERN_1:
2767 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2768 break;
2769 case DP_TRAINING_PATTERN_2:
2770 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2771 break;
2772 case DP_TRAINING_PATTERN_3:
2773 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2774 break;
2775 }
2776 I915_WRITE(DP_TP_CTL(port), temp);
2777
2778 } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2779 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2780 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2781
2782 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2783 case DP_TRAINING_PATTERN_DISABLE:
2784 *DP |= DP_LINK_TRAIN_OFF_CPT;
2785 break;
2786 case DP_TRAINING_PATTERN_1:
2787 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2788 break;
2789 case DP_TRAINING_PATTERN_2:
2790 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2791 break;
2792 case DP_TRAINING_PATTERN_3:
2793 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2794 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2795 break;
2796 }
2797
2798 } else {
2799 if (IS_CHERRYVIEW(dev_priv))
2800 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2801 else
2802 *DP &= ~DP_LINK_TRAIN_MASK;
2803
2804 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2805 case DP_TRAINING_PATTERN_DISABLE:
2806 *DP |= DP_LINK_TRAIN_OFF;
2807 break;
2808 case DP_TRAINING_PATTERN_1:
2809 *DP |= DP_LINK_TRAIN_PAT_1;
2810 break;
2811 case DP_TRAINING_PATTERN_2:
2812 *DP |= DP_LINK_TRAIN_PAT_2;
2813 break;
2814 case DP_TRAINING_PATTERN_3:
2815 if (IS_CHERRYVIEW(dev_priv)) {
2816 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2817 } else {
2818 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2819 *DP |= DP_LINK_TRAIN_PAT_2;
2820 }
2821 break;
2822 }
2823 }
2824 }
2825
2826 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2827 struct intel_crtc_state *old_crtc_state)
2828 {
2829 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2830 struct drm_i915_private *dev_priv = to_i915(dev);
2831
2832 /* enable with pattern 1 (as per spec) */
2833
2834 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2835
2836 /*
2837 * Magic for VLV/CHV. We _must_ first set up the register
2838 * without actually enabling the port, and then do another
2839 * write to enable the port. Otherwise link training will
2840 * fail when the power sequencer is freshly used for this port.
2841 */
2842 intel_dp->DP |= DP_PORT_EN;
2843 if (old_crtc_state->has_audio)
2844 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2845
2846 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2847 POSTING_READ(intel_dp->output_reg);
2848 }
2849
2850 static void intel_enable_dp(struct intel_encoder *encoder,
2851 struct intel_crtc_state *pipe_config,
2852 struct drm_connector_state *conn_state)
2853 {
2854 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2855 struct drm_device *dev = encoder->base.dev;
2856 struct drm_i915_private *dev_priv = to_i915(dev);
2857 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2858 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2859 enum pipe pipe = crtc->pipe;
2860
2861 if (WARN_ON(dp_reg & DP_PORT_EN))
2862 return;
2863
2864 pps_lock(intel_dp);
2865
2866 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2867 vlv_init_panel_power_sequencer(intel_dp);
2868
2869 intel_dp_enable_port(intel_dp, pipe_config);
2870
2871 edp_panel_vdd_on(intel_dp);
2872 edp_panel_on(intel_dp);
2873 edp_panel_vdd_off(intel_dp, true);
2874
2875 pps_unlock(intel_dp);
2876
2877 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2878 unsigned int lane_mask = 0x0;
2879
2880 if (IS_CHERRYVIEW(dev_priv))
2881 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2882
2883 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2884 lane_mask);
2885 }
2886
2887 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2888 intel_dp_start_link_train(intel_dp);
2889 intel_dp_stop_link_train(intel_dp);
2890
2891 if (pipe_config->has_audio) {
2892 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2893 pipe_name(pipe));
2894 intel_audio_codec_enable(encoder, pipe_config, conn_state);
2895 }
2896 }
2897
2898 static void g4x_enable_dp(struct intel_encoder *encoder,
2899 struct intel_crtc_state *pipe_config,
2900 struct drm_connector_state *conn_state)
2901 {
2902 intel_enable_dp(encoder, pipe_config, conn_state);
2903 intel_edp_backlight_on(pipe_config, conn_state);
2904 }
2905
2906 static void vlv_enable_dp(struct intel_encoder *encoder,
2907 struct intel_crtc_state *pipe_config,
2908 struct drm_connector_state *conn_state)
2909 {
2910 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2911
2912 intel_edp_backlight_on(pipe_config, conn_state);
2913 intel_psr_enable(intel_dp);
2914 }
2915
2916 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2917 struct intel_crtc_state *pipe_config,
2918 struct drm_connector_state *conn_state)
2919 {
2920 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2921 enum port port = dp_to_dig_port(intel_dp)->port;
2922
2923 intel_dp_prepare(encoder, pipe_config);
2924
2925 /* Only ilk+ has port A */
2926 if (port == PORT_A)
2927 ironlake_edp_pll_on(intel_dp, pipe_config);
2928 }
2929
2930 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2931 {
2932 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2933 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2934 enum pipe pipe = intel_dp->pps_pipe;
2935 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2936
2937 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
2938
2939 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2940 return;
2941
2942 edp_panel_vdd_off_sync(intel_dp);
2943
2944 /*
2945 * VLV seems to get confused when multiple power seqeuencers
2946 * have the same port selected (even if only one has power/vdd
2947 * enabled). The failure manifests as vlv_wait_port_ready() failing
2948 * CHV on the other hand doesn't seem to mind having the same port
2949 * selected in multiple power seqeuencers, but let's clear the
2950 * port select always when logically disconnecting a power sequencer
2951 * from a port.
2952 */
2953 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2954 pipe_name(pipe), port_name(intel_dig_port->port));
2955 I915_WRITE(pp_on_reg, 0);
2956 POSTING_READ(pp_on_reg);
2957
2958 intel_dp->pps_pipe = INVALID_PIPE;
2959 }
2960
2961 static void vlv_steal_power_sequencer(struct drm_device *dev,
2962 enum pipe pipe)
2963 {
2964 struct drm_i915_private *dev_priv = to_i915(dev);
2965 struct intel_encoder *encoder;
2966
2967 lockdep_assert_held(&dev_priv->pps_mutex);
2968
2969 for_each_intel_encoder(dev, encoder) {
2970 struct intel_dp *intel_dp;
2971 enum port port;
2972
2973 if (encoder->type != INTEL_OUTPUT_DP &&
2974 encoder->type != INTEL_OUTPUT_EDP)
2975 continue;
2976
2977 intel_dp = enc_to_intel_dp(&encoder->base);
2978 port = dp_to_dig_port(intel_dp)->port;
2979
2980 WARN(intel_dp->active_pipe == pipe,
2981 "stealing pipe %c power sequencer from active (e)DP port %c\n",
2982 pipe_name(pipe), port_name(port));
2983
2984 if (intel_dp->pps_pipe != pipe)
2985 continue;
2986
2987 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2988 pipe_name(pipe), port_name(port));
2989
2990 /* make sure vdd is off before we steal it */
2991 vlv_detach_power_sequencer(intel_dp);
2992 }
2993 }
2994
2995 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2996 {
2997 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2998 struct intel_encoder *encoder = &intel_dig_port->base;
2999 struct drm_device *dev = encoder->base.dev;
3000 struct drm_i915_private *dev_priv = to_i915(dev);
3001 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
3002
3003 lockdep_assert_held(&dev_priv->pps_mutex);
3004
3005 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3006
3007 if (intel_dp->pps_pipe != INVALID_PIPE &&
3008 intel_dp->pps_pipe != crtc->pipe) {
3009 /*
3010 * If another power sequencer was being used on this
3011 * port previously make sure to turn off vdd there while
3012 * we still have control of it.
3013 */
3014 vlv_detach_power_sequencer(intel_dp);
3015 }
3016
3017 /*
3018 * We may be stealing the power
3019 * sequencer from another port.
3020 */
3021 vlv_steal_power_sequencer(dev, crtc->pipe);
3022
3023 intel_dp->active_pipe = crtc->pipe;
3024
3025 if (!intel_dp_is_edp(intel_dp))
3026 return;
3027
3028 /* now it's all ours */
3029 intel_dp->pps_pipe = crtc->pipe;
3030
3031 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3032 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
3033
3034 /* init power sequencer on this pipe and port */
3035 intel_dp_init_panel_power_sequencer(dev, intel_dp);
3036 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
3037 }
3038
3039 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3040 struct intel_crtc_state *pipe_config,
3041 struct drm_connector_state *conn_state)
3042 {
3043 vlv_phy_pre_encoder_enable(encoder);
3044
3045 intel_enable_dp(encoder, pipe_config, conn_state);
3046 }
3047
3048 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3049 struct intel_crtc_state *pipe_config,
3050 struct drm_connector_state *conn_state)
3051 {
3052 intel_dp_prepare(encoder, pipe_config);
3053
3054 vlv_phy_pre_pll_enable(encoder);
3055 }
3056
3057 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3058 struct intel_crtc_state *pipe_config,
3059 struct drm_connector_state *conn_state)
3060 {
3061 chv_phy_pre_encoder_enable(encoder);
3062
3063 intel_enable_dp(encoder, pipe_config, conn_state);
3064
3065 /* Second common lane will stay alive on its own now */
3066 chv_phy_release_cl2_override(encoder);
3067 }
3068
3069 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3070 struct intel_crtc_state *pipe_config,
3071 struct drm_connector_state *conn_state)
3072 {
3073 intel_dp_prepare(encoder, pipe_config);
3074
3075 chv_phy_pre_pll_enable(encoder);
3076 }
3077
3078 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3079 struct intel_crtc_state *pipe_config,
3080 struct drm_connector_state *conn_state)
3081 {
3082 chv_phy_post_pll_disable(encoder);
3083 }
3084
3085 /*
3086 * Fetch AUX CH registers 0x202 - 0x207 which contain
3087 * link status information
3088 */
3089 bool
3090 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3091 {
3092 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3093 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3094 }
3095
3096 static bool intel_dp_get_y_cord_status(struct intel_dp *intel_dp)
3097 {
3098 uint8_t psr_caps = 0;
3099
3100 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_CAPS, &psr_caps) != 1)
3101 return false;
3102 return psr_caps & DP_PSR2_SU_Y_COORDINATE_REQUIRED;
3103 }
3104
3105 static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
3106 {
3107 uint8_t dprx = 0;
3108
3109 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
3110 &dprx) != 1)
3111 return false;
3112 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
3113 }
3114
3115 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
3116 {
3117 uint8_t alpm_caps = 0;
3118
3119 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
3120 &alpm_caps) != 1)
3121 return false;
3122 return alpm_caps & DP_ALPM_CAP;
3123 }
3124
3125 /* These are source-specific values. */
3126 uint8_t
3127 intel_dp_voltage_max(struct intel_dp *intel_dp)
3128 {
3129 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3130 enum port port = dp_to_dig_port(intel_dp)->port;
3131
3132 if (IS_GEN9_LP(dev_priv))
3133 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3134 else if (INTEL_GEN(dev_priv) >= 9) {
3135 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3136 return intel_ddi_dp_voltage_max(encoder);
3137 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3138 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3139 else if (IS_GEN7(dev_priv) && port == PORT_A)
3140 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3141 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3142 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3143 else
3144 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3145 }
3146
3147 uint8_t
3148 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3149 {
3150 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3151 enum port port = dp_to_dig_port(intel_dp)->port;
3152
3153 if (INTEL_GEN(dev_priv) >= 9) {
3154 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3155 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3156 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3157 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3158 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3159 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3160 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3161 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3162 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3163 default:
3164 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3165 }
3166 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3167 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3168 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3169 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3170 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3171 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3172 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3173 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3174 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3175 default:
3176 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3177 }
3178 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3179 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3180 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3181 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3182 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3183 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3184 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3185 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3186 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3187 default:
3188 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3189 }
3190 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3191 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3192 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3193 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3196 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3197 default:
3198 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3199 }
3200 } else {
3201 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3203 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3205 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3206 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3207 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3208 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3209 default:
3210 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3211 }
3212 }
3213 }
3214
3215 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3216 {
3217 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3218 unsigned long demph_reg_value, preemph_reg_value,
3219 uniqtranscale_reg_value;
3220 uint8_t train_set = intel_dp->train_set[0];
3221
3222 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3223 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3224 preemph_reg_value = 0x0004000;
3225 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3226 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3227 demph_reg_value = 0x2B405555;
3228 uniqtranscale_reg_value = 0x552AB83A;
3229 break;
3230 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3231 demph_reg_value = 0x2B404040;
3232 uniqtranscale_reg_value = 0x5548B83A;
3233 break;
3234 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3235 demph_reg_value = 0x2B245555;
3236 uniqtranscale_reg_value = 0x5560B83A;
3237 break;
3238 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3239 demph_reg_value = 0x2B405555;
3240 uniqtranscale_reg_value = 0x5598DA3A;
3241 break;
3242 default:
3243 return 0;
3244 }
3245 break;
3246 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3247 preemph_reg_value = 0x0002000;
3248 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3249 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3250 demph_reg_value = 0x2B404040;
3251 uniqtranscale_reg_value = 0x5552B83A;
3252 break;
3253 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3254 demph_reg_value = 0x2B404848;
3255 uniqtranscale_reg_value = 0x5580B83A;
3256 break;
3257 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3258 demph_reg_value = 0x2B404040;
3259 uniqtranscale_reg_value = 0x55ADDA3A;
3260 break;
3261 default:
3262 return 0;
3263 }
3264 break;
3265 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3266 preemph_reg_value = 0x0000000;
3267 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3268 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3269 demph_reg_value = 0x2B305555;
3270 uniqtranscale_reg_value = 0x5570B83A;
3271 break;
3272 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3273 demph_reg_value = 0x2B2B4040;
3274 uniqtranscale_reg_value = 0x55ADDA3A;
3275 break;
3276 default:
3277 return 0;
3278 }
3279 break;
3280 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3281 preemph_reg_value = 0x0006000;
3282 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3283 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3284 demph_reg_value = 0x1B405555;
3285 uniqtranscale_reg_value = 0x55ADDA3A;
3286 break;
3287 default:
3288 return 0;
3289 }
3290 break;
3291 default:
3292 return 0;
3293 }
3294
3295 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3296 uniqtranscale_reg_value, 0);
3297
3298 return 0;
3299 }
3300
3301 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3302 {
3303 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3304 u32 deemph_reg_value, margin_reg_value;
3305 bool uniq_trans_scale = false;
3306 uint8_t train_set = intel_dp->train_set[0];
3307
3308 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3309 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3310 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3311 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3312 deemph_reg_value = 128;
3313 margin_reg_value = 52;
3314 break;
3315 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3316 deemph_reg_value = 128;
3317 margin_reg_value = 77;
3318 break;
3319 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3320 deemph_reg_value = 128;
3321 margin_reg_value = 102;
3322 break;
3323 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3324 deemph_reg_value = 128;
3325 margin_reg_value = 154;
3326 uniq_trans_scale = true;
3327 break;
3328 default:
3329 return 0;
3330 }
3331 break;
3332 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3333 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3335 deemph_reg_value = 85;
3336 margin_reg_value = 78;
3337 break;
3338 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3339 deemph_reg_value = 85;
3340 margin_reg_value = 116;
3341 break;
3342 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3343 deemph_reg_value = 85;
3344 margin_reg_value = 154;
3345 break;
3346 default:
3347 return 0;
3348 }
3349 break;
3350 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3351 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3352 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3353 deemph_reg_value = 64;
3354 margin_reg_value = 104;
3355 break;
3356 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3357 deemph_reg_value = 64;
3358 margin_reg_value = 154;
3359 break;
3360 default:
3361 return 0;
3362 }
3363 break;
3364 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3365 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3366 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3367 deemph_reg_value = 43;
3368 margin_reg_value = 154;
3369 break;
3370 default:
3371 return 0;
3372 }
3373 break;
3374 default:
3375 return 0;
3376 }
3377
3378 chv_set_phy_signal_level(encoder, deemph_reg_value,
3379 margin_reg_value, uniq_trans_scale);
3380
3381 return 0;
3382 }
3383
3384 static uint32_t
3385 gen4_signal_levels(uint8_t train_set)
3386 {
3387 uint32_t signal_levels = 0;
3388
3389 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3390 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3391 default:
3392 signal_levels |= DP_VOLTAGE_0_4;
3393 break;
3394 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3395 signal_levels |= DP_VOLTAGE_0_6;
3396 break;
3397 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3398 signal_levels |= DP_VOLTAGE_0_8;
3399 break;
3400 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3401 signal_levels |= DP_VOLTAGE_1_2;
3402 break;
3403 }
3404 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3405 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3406 default:
3407 signal_levels |= DP_PRE_EMPHASIS_0;
3408 break;
3409 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3410 signal_levels |= DP_PRE_EMPHASIS_3_5;
3411 break;
3412 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3413 signal_levels |= DP_PRE_EMPHASIS_6;
3414 break;
3415 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3416 signal_levels |= DP_PRE_EMPHASIS_9_5;
3417 break;
3418 }
3419 return signal_levels;
3420 }
3421
3422 /* Gen6's DP voltage swing and pre-emphasis control */
3423 static uint32_t
3424 gen6_edp_signal_levels(uint8_t train_set)
3425 {
3426 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3427 DP_TRAIN_PRE_EMPHASIS_MASK);
3428 switch (signal_levels) {
3429 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3430 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3431 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3432 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3433 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3434 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3435 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3436 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3437 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3438 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3439 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3440 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3441 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3442 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3443 default:
3444 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3445 "0x%x\n", signal_levels);
3446 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3447 }
3448 }
3449
3450 /* Gen7's DP voltage swing and pre-emphasis control */
3451 static uint32_t
3452 gen7_edp_signal_levels(uint8_t train_set)
3453 {
3454 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3455 DP_TRAIN_PRE_EMPHASIS_MASK);
3456 switch (signal_levels) {
3457 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3458 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3459 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3460 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3461 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3462 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3463
3464 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3465 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3466 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3467 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3468
3469 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3470 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3471 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3472 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3473
3474 default:
3475 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3476 "0x%x\n", signal_levels);
3477 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3478 }
3479 }
3480
3481 void
3482 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3483 {
3484 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3485 enum port port = intel_dig_port->port;
3486 struct drm_device *dev = intel_dig_port->base.base.dev;
3487 struct drm_i915_private *dev_priv = to_i915(dev);
3488 uint32_t signal_levels, mask = 0;
3489 uint8_t train_set = intel_dp->train_set[0];
3490
3491 if (HAS_DDI(dev_priv)) {
3492 signal_levels = ddi_signal_levels(intel_dp);
3493
3494 if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv))
3495 signal_levels = 0;
3496 else
3497 mask = DDI_BUF_EMP_MASK;
3498 } else if (IS_CHERRYVIEW(dev_priv)) {
3499 signal_levels = chv_signal_levels(intel_dp);
3500 } else if (IS_VALLEYVIEW(dev_priv)) {
3501 signal_levels = vlv_signal_levels(intel_dp);
3502 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3503 signal_levels = gen7_edp_signal_levels(train_set);
3504 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3505 } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3506 signal_levels = gen6_edp_signal_levels(train_set);
3507 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3508 } else {
3509 signal_levels = gen4_signal_levels(train_set);
3510 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3511 }
3512
3513 if (mask)
3514 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3515
3516 DRM_DEBUG_KMS("Using vswing level %d\n",
3517 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3518 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3519 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3520 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3521
3522 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3523
3524 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3525 POSTING_READ(intel_dp->output_reg);
3526 }
3527
3528 void
3529 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3530 uint8_t dp_train_pat)
3531 {
3532 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3533 struct drm_i915_private *dev_priv =
3534 to_i915(intel_dig_port->base.base.dev);
3535
3536 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3537
3538 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3539 POSTING_READ(intel_dp->output_reg);
3540 }
3541
3542 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3543 {
3544 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3545 struct drm_device *dev = intel_dig_port->base.base.dev;
3546 struct drm_i915_private *dev_priv = to_i915(dev);
3547 enum port port = intel_dig_port->port;
3548 uint32_t val;
3549
3550 if (!HAS_DDI(dev_priv))
3551 return;
3552
3553 val = I915_READ(DP_TP_CTL(port));
3554 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3555 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3556 I915_WRITE(DP_TP_CTL(port), val);
3557
3558 /*
3559 * On PORT_A we can have only eDP in SST mode. There the only reason
3560 * we need to set idle transmission mode is to work around a HW issue
3561 * where we enable the pipe while not in idle link-training mode.
3562 * In this case there is requirement to wait for a minimum number of
3563 * idle patterns to be sent.
3564 */
3565 if (port == PORT_A)
3566 return;
3567
3568 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3569 DP_TP_STATUS_IDLE_DONE,
3570 DP_TP_STATUS_IDLE_DONE,
3571 1))
3572 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3573 }
3574
3575 static void
3576 intel_dp_link_down(struct intel_dp *intel_dp)
3577 {
3578 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3579 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3580 enum port port = intel_dig_port->port;
3581 struct drm_device *dev = intel_dig_port->base.base.dev;
3582 struct drm_i915_private *dev_priv = to_i915(dev);
3583 uint32_t DP = intel_dp->DP;
3584
3585 if (WARN_ON(HAS_DDI(dev_priv)))
3586 return;
3587
3588 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3589 return;
3590
3591 DRM_DEBUG_KMS("\n");
3592
3593 if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3594 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3595 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3596 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3597 } else {
3598 if (IS_CHERRYVIEW(dev_priv))
3599 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3600 else
3601 DP &= ~DP_LINK_TRAIN_MASK;
3602 DP |= DP_LINK_TRAIN_PAT_IDLE;
3603 }
3604 I915_WRITE(intel_dp->output_reg, DP);
3605 POSTING_READ(intel_dp->output_reg);
3606
3607 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3608 I915_WRITE(intel_dp->output_reg, DP);
3609 POSTING_READ(intel_dp->output_reg);
3610
3611 /*
3612 * HW workaround for IBX, we need to move the port
3613 * to transcoder A after disabling it to allow the
3614 * matching HDMI port to be enabled on transcoder A.
3615 */
3616 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3617 /*
3618 * We get CPU/PCH FIFO underruns on the other pipe when
3619 * doing the workaround. Sweep them under the rug.
3620 */
3621 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3622 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3623
3624 /* always enable with pattern 1 (as per spec) */
3625 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3626 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3627 I915_WRITE(intel_dp->output_reg, DP);
3628 POSTING_READ(intel_dp->output_reg);
3629
3630 DP &= ~DP_PORT_EN;
3631 I915_WRITE(intel_dp->output_reg, DP);
3632 POSTING_READ(intel_dp->output_reg);
3633
3634 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3635 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3636 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3637 }
3638
3639 msleep(intel_dp->panel_power_down_delay);
3640
3641 intel_dp->DP = DP;
3642
3643 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3644 pps_lock(intel_dp);
3645 intel_dp->active_pipe = INVALID_PIPE;
3646 pps_unlock(intel_dp);
3647 }
3648 }
3649
3650 bool
3651 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3652 {
3653 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3654 sizeof(intel_dp->dpcd)) < 0)
3655 return false; /* aux transfer failed */
3656
3657 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3658
3659 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3660 }
3661
3662 static bool
3663 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3664 {
3665 struct drm_i915_private *dev_priv =
3666 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3667
3668 /* this function is meant to be called only once */
3669 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3670
3671 if (!intel_dp_read_dpcd(intel_dp))
3672 return false;
3673
3674 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
3675 drm_dp_is_branch(intel_dp->dpcd));
3676
3677 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3678 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3679 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3680
3681 /* Check if the panel supports PSR */
3682 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3683 intel_dp->psr_dpcd,
3684 sizeof(intel_dp->psr_dpcd));
3685 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3686 dev_priv->psr.sink_support = true;
3687 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3688 }
3689
3690 if (INTEL_GEN(dev_priv) >= 9 &&
3691 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3692 uint8_t frame_sync_cap;
3693
3694 dev_priv->psr.sink_support = true;
3695 if (drm_dp_dpcd_readb(&intel_dp->aux,
3696 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3697 &frame_sync_cap) != 1)
3698 frame_sync_cap = 0;
3699 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3700 /* PSR2 needs frame sync as well */
3701 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3702 DRM_DEBUG_KMS("PSR2 %s on sink",
3703 dev_priv->psr.psr2_support ? "supported" : "not supported");
3704
3705 if (dev_priv->psr.psr2_support) {
3706 dev_priv->psr.y_cord_support =
3707 intel_dp_get_y_cord_status(intel_dp);
3708 dev_priv->psr.colorimetry_support =
3709 intel_dp_get_colorimetry_status(intel_dp);
3710 dev_priv->psr.alpm =
3711 intel_dp_get_alpm_status(intel_dp);
3712 }
3713
3714 }
3715
3716 /*
3717 * Read the eDP display control registers.
3718 *
3719 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
3720 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
3721 * set, but require eDP 1.4+ detection (e.g. for supported link rates
3722 * method). The display control registers should read zero if they're
3723 * not supported anyway.
3724 */
3725 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3726 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3727 sizeof(intel_dp->edp_dpcd))
3728 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3729 intel_dp->edp_dpcd);
3730
3731 /* Intermediate frequency support */
3732 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3733 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3734 int i;
3735
3736 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3737 sink_rates, sizeof(sink_rates));
3738
3739 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3740 int val = le16_to_cpu(sink_rates[i]);
3741
3742 if (val == 0)
3743 break;
3744
3745 /* Value read multiplied by 200kHz gives the per-lane
3746 * link rate in kHz. The source rates are, however,
3747 * stored in terms of LS_Clk kHz. The full conversion
3748 * back to symbols is
3749 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
3750 */
3751 intel_dp->sink_rates[i] = (val * 200) / 10;
3752 }
3753 intel_dp->num_sink_rates = i;
3754 }
3755
3756 if (intel_dp->num_sink_rates)
3757 intel_dp->use_rate_select = true;
3758 else
3759 intel_dp_set_sink_rates(intel_dp);
3760
3761 intel_dp_set_common_rates(intel_dp);
3762
3763 return true;
3764 }
3765
3766
3767 static bool
3768 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3769 {
3770 u8 sink_count;
3771
3772 if (!intel_dp_read_dpcd(intel_dp))
3773 return false;
3774
3775 /* Don't clobber cached eDP rates. */
3776 if (!intel_dp_is_edp(intel_dp)) {
3777 intel_dp_set_sink_rates(intel_dp);
3778 intel_dp_set_common_rates(intel_dp);
3779 }
3780
3781 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3782 return false;
3783
3784 /*
3785 * Sink count can change between short pulse hpd hence
3786 * a member variable in intel_dp will track any changes
3787 * between short pulse interrupts.
3788 */
3789 intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3790
3791 /*
3792 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3793 * a dongle is present but no display. Unless we require to know
3794 * if a dongle is present or not, we don't need to update
3795 * downstream port information. So, an early return here saves
3796 * time from performing other operations which are not required.
3797 */
3798 if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3799 return false;
3800
3801 if (!drm_dp_is_branch(intel_dp->dpcd))
3802 return true; /* native DP sink */
3803
3804 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3805 return true; /* no per-port downstream info */
3806
3807 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3808 intel_dp->downstream_ports,
3809 DP_MAX_DOWNSTREAM_PORTS) < 0)
3810 return false; /* downstream port status fetch failed */
3811
3812 return true;
3813 }
3814
3815 static bool
3816 intel_dp_can_mst(struct intel_dp *intel_dp)
3817 {
3818 u8 mstm_cap;
3819
3820 if (!i915.enable_dp_mst)
3821 return false;
3822
3823 if (!intel_dp->can_mst)
3824 return false;
3825
3826 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3827 return false;
3828
3829 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3830 return false;
3831
3832 return mstm_cap & DP_MST_CAP;
3833 }
3834
3835 static void
3836 intel_dp_configure_mst(struct intel_dp *intel_dp)
3837 {
3838 if (!i915.enable_dp_mst)
3839 return;
3840
3841 if (!intel_dp->can_mst)
3842 return;
3843
3844 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3845
3846 if (intel_dp->is_mst)
3847 DRM_DEBUG_KMS("Sink is MST capable\n");
3848 else
3849 DRM_DEBUG_KMS("Sink is not MST capable\n");
3850
3851 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3852 intel_dp->is_mst);
3853 }
3854
3855 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3856 {
3857 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3858 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3859 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3860 u8 buf;
3861 int ret = 0;
3862 int count = 0;
3863 int attempts = 10;
3864
3865 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3866 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3867 ret = -EIO;
3868 goto out;
3869 }
3870
3871 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3872 buf & ~DP_TEST_SINK_START) < 0) {
3873 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3874 ret = -EIO;
3875 goto out;
3876 }
3877
3878 do {
3879 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3880
3881 if (drm_dp_dpcd_readb(&intel_dp->aux,
3882 DP_TEST_SINK_MISC, &buf) < 0) {
3883 ret = -EIO;
3884 goto out;
3885 }
3886 count = buf & DP_TEST_COUNT_MASK;
3887 } while (--attempts && count);
3888
3889 if (attempts == 0) {
3890 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3891 ret = -ETIMEDOUT;
3892 }
3893
3894 out:
3895 hsw_enable_ips(intel_crtc);
3896 return ret;
3897 }
3898
3899 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3900 {
3901 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3902 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3903 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3904 u8 buf;
3905 int ret;
3906
3907 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3908 return -EIO;
3909
3910 if (!(buf & DP_TEST_CRC_SUPPORTED))
3911 return -ENOTTY;
3912
3913 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3914 return -EIO;
3915
3916 if (buf & DP_TEST_SINK_START) {
3917 ret = intel_dp_sink_crc_stop(intel_dp);
3918 if (ret)
3919 return ret;
3920 }
3921
3922 hsw_disable_ips(intel_crtc);
3923
3924 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3925 buf | DP_TEST_SINK_START) < 0) {
3926 hsw_enable_ips(intel_crtc);
3927 return -EIO;
3928 }
3929
3930 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3931 return 0;
3932 }
3933
3934 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3935 {
3936 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3937 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3938 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3939 u8 buf;
3940 int count, ret;
3941 int attempts = 6;
3942
3943 ret = intel_dp_sink_crc_start(intel_dp);
3944 if (ret)
3945 return ret;
3946
3947 do {
3948 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3949
3950 if (drm_dp_dpcd_readb(&intel_dp->aux,
3951 DP_TEST_SINK_MISC, &buf) < 0) {
3952 ret = -EIO;
3953 goto stop;
3954 }
3955 count = buf & DP_TEST_COUNT_MASK;
3956
3957 } while (--attempts && count == 0);
3958
3959 if (attempts == 0) {
3960 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3961 ret = -ETIMEDOUT;
3962 goto stop;
3963 }
3964
3965 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3966 ret = -EIO;
3967 goto stop;
3968 }
3969
3970 stop:
3971 intel_dp_sink_crc_stop(intel_dp);
3972 return ret;
3973 }
3974
3975 static bool
3976 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3977 {
3978 return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
3979 sink_irq_vector) == 1;
3980 }
3981
3982 static bool
3983 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3984 {
3985 int ret;
3986
3987 ret = drm_dp_dpcd_read(&intel_dp->aux,
3988 DP_SINK_COUNT_ESI,
3989 sink_irq_vector, 14);
3990 if (ret != 14)
3991 return false;
3992
3993 return true;
3994 }
3995
3996 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3997 {
3998 int status = 0;
3999 int min_lane_count = 1;
4000 int link_rate_index, test_link_rate;
4001 uint8_t test_lane_count, test_link_bw;
4002 /* (DP CTS 1.2)
4003 * 4.3.1.11
4004 */
4005 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4006 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4007 &test_lane_count);
4008
4009 if (status <= 0) {
4010 DRM_DEBUG_KMS("Lane count read failed\n");
4011 return DP_TEST_NAK;
4012 }
4013 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4014 /* Validate the requested lane count */
4015 if (test_lane_count < min_lane_count ||
4016 test_lane_count > intel_dp->max_link_lane_count)
4017 return DP_TEST_NAK;
4018
4019 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4020 &test_link_bw);
4021 if (status <= 0) {
4022 DRM_DEBUG_KMS("Link Rate read failed\n");
4023 return DP_TEST_NAK;
4024 }
4025 /* Validate the requested link rate */
4026 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4027 link_rate_index = intel_dp_rate_index(intel_dp->common_rates,
4028 intel_dp->num_common_rates,
4029 test_link_rate);
4030 if (link_rate_index < 0)
4031 return DP_TEST_NAK;
4032
4033 intel_dp->compliance.test_lane_count = test_lane_count;
4034 intel_dp->compliance.test_link_rate = test_link_rate;
4035
4036 return DP_TEST_ACK;
4037 }
4038
4039 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4040 {
4041 uint8_t test_pattern;
4042 uint8_t test_misc;
4043 __be16 h_width, v_height;
4044 int status = 0;
4045
4046 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4047 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4048 &test_pattern);
4049 if (status <= 0) {
4050 DRM_DEBUG_KMS("Test pattern read failed\n");
4051 return DP_TEST_NAK;
4052 }
4053 if (test_pattern != DP_COLOR_RAMP)
4054 return DP_TEST_NAK;
4055
4056 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4057 &h_width, 2);
4058 if (status <= 0) {
4059 DRM_DEBUG_KMS("H Width read failed\n");
4060 return DP_TEST_NAK;
4061 }
4062
4063 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4064 &v_height, 2);
4065 if (status <= 0) {
4066 DRM_DEBUG_KMS("V Height read failed\n");
4067 return DP_TEST_NAK;
4068 }
4069
4070 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4071 &test_misc);
4072 if (status <= 0) {
4073 DRM_DEBUG_KMS("TEST MISC read failed\n");
4074 return DP_TEST_NAK;
4075 }
4076 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4077 return DP_TEST_NAK;
4078 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4079 return DP_TEST_NAK;
4080 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4081 case DP_TEST_BIT_DEPTH_6:
4082 intel_dp->compliance.test_data.bpc = 6;
4083 break;
4084 case DP_TEST_BIT_DEPTH_8:
4085 intel_dp->compliance.test_data.bpc = 8;
4086 break;
4087 default:
4088 return DP_TEST_NAK;
4089 }
4090
4091 intel_dp->compliance.test_data.video_pattern = test_pattern;
4092 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4093 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4094 /* Set test active flag here so userspace doesn't interrupt things */
4095 intel_dp->compliance.test_active = 1;
4096
4097 return DP_TEST_ACK;
4098 }
4099
4100 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4101 {
4102 uint8_t test_result = DP_TEST_ACK;
4103 struct intel_connector *intel_connector = intel_dp->attached_connector;
4104 struct drm_connector *connector = &intel_connector->base;
4105
4106 if (intel_connector->detect_edid == NULL ||
4107 connector->edid_corrupt ||
4108 intel_dp->aux.i2c_defer_count > 6) {
4109 /* Check EDID read for NACKs, DEFERs and corruption
4110 * (DP CTS 1.2 Core r1.1)
4111 * 4.2.2.4 : Failed EDID read, I2C_NAK
4112 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4113 * 4.2.2.6 : EDID corruption detected
4114 * Use failsafe mode for all cases
4115 */
4116 if (intel_dp->aux.i2c_nack_count > 0 ||
4117 intel_dp->aux.i2c_defer_count > 0)
4118 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4119 intel_dp->aux.i2c_nack_count,
4120 intel_dp->aux.i2c_defer_count);
4121 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4122 } else {
4123 struct edid *block = intel_connector->detect_edid;
4124
4125 /* We have to write the checksum
4126 * of the last block read
4127 */
4128 block += intel_connector->detect_edid->extensions;
4129
4130 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4131 block->checksum) <= 0)
4132 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4133
4134 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4135 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4136 }
4137
4138 /* Set test active flag here so userspace doesn't interrupt things */
4139 intel_dp->compliance.test_active = 1;
4140
4141 return test_result;
4142 }
4143
4144 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4145 {
4146 uint8_t test_result = DP_TEST_NAK;
4147 return test_result;
4148 }
4149
4150 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4151 {
4152 uint8_t response = DP_TEST_NAK;
4153 uint8_t request = 0;
4154 int status;
4155
4156 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4157 if (status <= 0) {
4158 DRM_DEBUG_KMS("Could not read test request from sink\n");
4159 goto update_status;
4160 }
4161
4162 switch (request) {
4163 case DP_TEST_LINK_TRAINING:
4164 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4165 response = intel_dp_autotest_link_training(intel_dp);
4166 break;
4167 case DP_TEST_LINK_VIDEO_PATTERN:
4168 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4169 response = intel_dp_autotest_video_pattern(intel_dp);
4170 break;
4171 case DP_TEST_LINK_EDID_READ:
4172 DRM_DEBUG_KMS("EDID test requested\n");
4173 response = intel_dp_autotest_edid(intel_dp);
4174 break;
4175 case DP_TEST_LINK_PHY_TEST_PATTERN:
4176 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4177 response = intel_dp_autotest_phy_pattern(intel_dp);
4178 break;
4179 default:
4180 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4181 break;
4182 }
4183
4184 if (response & DP_TEST_ACK)
4185 intel_dp->compliance.test_type = request;
4186
4187 update_status:
4188 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4189 if (status <= 0)
4190 DRM_DEBUG_KMS("Could not write test response to sink\n");
4191 }
4192
4193 static int
4194 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4195 {
4196 bool bret;
4197
4198 if (intel_dp->is_mst) {
4199 u8 esi[16] = { 0 };
4200 int ret = 0;
4201 int retry;
4202 bool handled;
4203 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4204 go_again:
4205 if (bret == true) {
4206
4207 /* check link status - esi[10] = 0x200c */
4208 if (intel_dp->active_mst_links &&
4209 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4210 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4211 intel_dp_start_link_train(intel_dp);
4212 intel_dp_stop_link_train(intel_dp);
4213 }
4214
4215 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4216 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4217
4218 if (handled) {
4219 for (retry = 0; retry < 3; retry++) {
4220 int wret;
4221 wret = drm_dp_dpcd_write(&intel_dp->aux,
4222 DP_SINK_COUNT_ESI+1,
4223 &esi[1], 3);
4224 if (wret == 3) {
4225 break;
4226 }
4227 }
4228
4229 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4230 if (bret == true) {
4231 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4232 goto go_again;
4233 }
4234 } else
4235 ret = 0;
4236
4237 return ret;
4238 } else {
4239 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4240 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4241 intel_dp->is_mst = false;
4242 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4243 /* send a hotplug event */
4244 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4245 }
4246 }
4247 return -EINVAL;
4248 }
4249
4250 static void
4251 intel_dp_retrain_link(struct intel_dp *intel_dp)
4252 {
4253 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4254 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4255 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4256
4257 /* Suppress underruns caused by re-training */
4258 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4259 if (crtc->config->has_pch_encoder)
4260 intel_set_pch_fifo_underrun_reporting(dev_priv,
4261 intel_crtc_pch_transcoder(crtc), false);
4262
4263 intel_dp_start_link_train(intel_dp);
4264 intel_dp_stop_link_train(intel_dp);
4265
4266 /* Keep underrun reporting disabled until things are stable */
4267 intel_wait_for_vblank(dev_priv, crtc->pipe);
4268
4269 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4270 if (crtc->config->has_pch_encoder)
4271 intel_set_pch_fifo_underrun_reporting(dev_priv,
4272 intel_crtc_pch_transcoder(crtc), true);
4273 }
4274
4275 static void
4276 intel_dp_check_link_status(struct intel_dp *intel_dp)
4277 {
4278 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4279 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4280 u8 link_status[DP_LINK_STATUS_SIZE];
4281
4282 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4283
4284 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4285 DRM_ERROR("Failed to get link status\n");
4286 return;
4287 }
4288
4289 if (!intel_encoder->base.crtc)
4290 return;
4291
4292 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4293 return;
4294
4295 /*
4296 * Validate the cached values of intel_dp->link_rate and
4297 * intel_dp->lane_count before attempting to retrain.
4298 */
4299 if (!intel_dp_link_params_valid(intel_dp))
4300 return;
4301
4302 /* Retrain if Channel EQ or CR not ok */
4303 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4304 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4305 intel_encoder->base.name);
4306
4307 intel_dp_retrain_link(intel_dp);
4308 }
4309 }
4310
4311 /*
4312 * According to DP spec
4313 * 5.1.2:
4314 * 1. Read DPCD
4315 * 2. Configure link according to Receiver Capabilities
4316 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4317 * 4. Check link status on receipt of hot-plug interrupt
4318 *
4319 * intel_dp_short_pulse - handles short pulse interrupts
4320 * when full detection is not required.
4321 * Returns %true if short pulse is handled and full detection
4322 * is NOT required and %false otherwise.
4323 */
4324 static bool
4325 intel_dp_short_pulse(struct intel_dp *intel_dp)
4326 {
4327 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4328 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4329 u8 sink_irq_vector = 0;
4330 u8 old_sink_count = intel_dp->sink_count;
4331 bool ret;
4332
4333 /*
4334 * Clearing compliance test variables to allow capturing
4335 * of values for next automated test request.
4336 */
4337 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4338
4339 /*
4340 * Now read the DPCD to see if it's actually running
4341 * If the current value of sink count doesn't match with
4342 * the value that was stored earlier or dpcd read failed
4343 * we need to do full detection
4344 */
4345 ret = intel_dp_get_dpcd(intel_dp);
4346
4347 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4348 /* No need to proceed if we are going to do full detect */
4349 return false;
4350 }
4351
4352 /* Try to read the source of the interrupt */
4353 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4354 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4355 sink_irq_vector != 0) {
4356 /* Clear interrupt source */
4357 drm_dp_dpcd_writeb(&intel_dp->aux,
4358 DP_DEVICE_SERVICE_IRQ_VECTOR,
4359 sink_irq_vector);
4360
4361 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4362 intel_dp_handle_test_request(intel_dp);
4363 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4364 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4365 }
4366
4367 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4368 intel_dp_check_link_status(intel_dp);
4369 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4370 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4371 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4372 /* Send a Hotplug Uevent to userspace to start modeset */
4373 drm_kms_helper_hotplug_event(intel_encoder->base.dev);
4374 }
4375
4376 return true;
4377 }
4378
4379 /* XXX this is probably wrong for multiple downstream ports */
4380 static enum drm_connector_status
4381 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4382 {
4383 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4384 uint8_t *dpcd = intel_dp->dpcd;
4385 uint8_t type;
4386
4387 if (lspcon->active)
4388 lspcon_resume(lspcon);
4389
4390 if (!intel_dp_get_dpcd(intel_dp))
4391 return connector_status_disconnected;
4392
4393 if (intel_dp_is_edp(intel_dp))
4394 return connector_status_connected;
4395
4396 /* if there's no downstream port, we're done */
4397 if (!drm_dp_is_branch(dpcd))
4398 return connector_status_connected;
4399
4400 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4401 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4402 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4403
4404 return intel_dp->sink_count ?
4405 connector_status_connected : connector_status_disconnected;
4406 }
4407
4408 if (intel_dp_can_mst(intel_dp))
4409 return connector_status_connected;
4410
4411 /* If no HPD, poke DDC gently */
4412 if (drm_probe_ddc(&intel_dp->aux.ddc))
4413 return connector_status_connected;
4414
4415 /* Well we tried, say unknown for unreliable port types */
4416 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4417 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4418 if (type == DP_DS_PORT_TYPE_VGA ||
4419 type == DP_DS_PORT_TYPE_NON_EDID)
4420 return connector_status_unknown;
4421 } else {
4422 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4423 DP_DWN_STRM_PORT_TYPE_MASK;
4424 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4425 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4426 return connector_status_unknown;
4427 }
4428
4429 /* Anything else is out of spec, warn and ignore */
4430 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4431 return connector_status_disconnected;
4432 }
4433
4434 static enum drm_connector_status
4435 edp_detect(struct intel_dp *intel_dp)
4436 {
4437 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4438 struct drm_i915_private *dev_priv = to_i915(dev);
4439 enum drm_connector_status status;
4440
4441 status = intel_panel_detect(dev_priv);
4442 if (status == connector_status_unknown)
4443 status = connector_status_connected;
4444
4445 return status;
4446 }
4447
4448 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4449 struct intel_digital_port *port)
4450 {
4451 u32 bit;
4452
4453 switch (port->port) {
4454 case PORT_A:
4455 return true;
4456 case PORT_B:
4457 bit = SDE_PORTB_HOTPLUG;
4458 break;
4459 case PORT_C:
4460 bit = SDE_PORTC_HOTPLUG;
4461 break;
4462 case PORT_D:
4463 bit = SDE_PORTD_HOTPLUG;
4464 break;
4465 default:
4466 MISSING_CASE(port->port);
4467 return false;
4468 }
4469
4470 return I915_READ(SDEISR) & bit;
4471 }
4472
4473 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4474 struct intel_digital_port *port)
4475 {
4476 u32 bit;
4477
4478 switch (port->port) {
4479 case PORT_A:
4480 return true;
4481 case PORT_B:
4482 bit = SDE_PORTB_HOTPLUG_CPT;
4483 break;
4484 case PORT_C:
4485 bit = SDE_PORTC_HOTPLUG_CPT;
4486 break;
4487 case PORT_D:
4488 bit = SDE_PORTD_HOTPLUG_CPT;
4489 break;
4490 case PORT_E:
4491 bit = SDE_PORTE_HOTPLUG_SPT;
4492 break;
4493 default:
4494 MISSING_CASE(port->port);
4495 return false;
4496 }
4497
4498 return I915_READ(SDEISR) & bit;
4499 }
4500
4501 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4502 struct intel_digital_port *port)
4503 {
4504 u32 bit;
4505
4506 switch (port->port) {
4507 case PORT_B:
4508 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4509 break;
4510 case PORT_C:
4511 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4512 break;
4513 case PORT_D:
4514 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4515 break;
4516 default:
4517 MISSING_CASE(port->port);
4518 return false;
4519 }
4520
4521 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4522 }
4523
4524 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4525 struct intel_digital_port *port)
4526 {
4527 u32 bit;
4528
4529 switch (port->port) {
4530 case PORT_B:
4531 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4532 break;
4533 case PORT_C:
4534 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4535 break;
4536 case PORT_D:
4537 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4538 break;
4539 default:
4540 MISSING_CASE(port->port);
4541 return false;
4542 }
4543
4544 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4545 }
4546
4547 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4548 struct intel_digital_port *intel_dig_port)
4549 {
4550 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4551 enum port port;
4552 u32 bit;
4553
4554 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4555 switch (port) {
4556 case PORT_A:
4557 bit = BXT_DE_PORT_HP_DDIA;
4558 break;
4559 case PORT_B:
4560 bit = BXT_DE_PORT_HP_DDIB;
4561 break;
4562 case PORT_C:
4563 bit = BXT_DE_PORT_HP_DDIC;
4564 break;
4565 default:
4566 MISSING_CASE(port);
4567 return false;
4568 }
4569
4570 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4571 }
4572
4573 /*
4574 * intel_digital_port_connected - is the specified port connected?
4575 * @dev_priv: i915 private structure
4576 * @port: the port to test
4577 *
4578 * Return %true if @port is connected, %false otherwise.
4579 */
4580 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4581 struct intel_digital_port *port)
4582 {
4583 if (HAS_PCH_IBX(dev_priv))
4584 return ibx_digital_port_connected(dev_priv, port);
4585 else if (HAS_PCH_SPLIT(dev_priv))
4586 return cpt_digital_port_connected(dev_priv, port);
4587 else if (IS_GEN9_LP(dev_priv))
4588 return bxt_digital_port_connected(dev_priv, port);
4589 else if (IS_GM45(dev_priv))
4590 return gm45_digital_port_connected(dev_priv, port);
4591 else
4592 return g4x_digital_port_connected(dev_priv, port);
4593 }
4594
4595 static struct edid *
4596 intel_dp_get_edid(struct intel_dp *intel_dp)
4597 {
4598 struct intel_connector *intel_connector = intel_dp->attached_connector;
4599
4600 /* use cached edid if we have one */
4601 if (intel_connector->edid) {
4602 /* invalid edid */
4603 if (IS_ERR(intel_connector->edid))
4604 return NULL;
4605
4606 return drm_edid_duplicate(intel_connector->edid);
4607 } else
4608 return drm_get_edid(&intel_connector->base,
4609 &intel_dp->aux.ddc);
4610 }
4611
4612 static void
4613 intel_dp_set_edid(struct intel_dp *intel_dp)
4614 {
4615 struct intel_connector *intel_connector = intel_dp->attached_connector;
4616 struct edid *edid;
4617
4618 intel_dp_unset_edid(intel_dp);
4619 edid = intel_dp_get_edid(intel_dp);
4620 intel_connector->detect_edid = edid;
4621
4622 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4623 }
4624
4625 static void
4626 intel_dp_unset_edid(struct intel_dp *intel_dp)
4627 {
4628 struct intel_connector *intel_connector = intel_dp->attached_connector;
4629
4630 kfree(intel_connector->detect_edid);
4631 intel_connector->detect_edid = NULL;
4632
4633 intel_dp->has_audio = false;
4634 }
4635
4636 static int
4637 intel_dp_long_pulse(struct intel_connector *intel_connector)
4638 {
4639 struct drm_connector *connector = &intel_connector->base;
4640 struct intel_dp *intel_dp = intel_attached_dp(connector);
4641 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4642 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4643 struct drm_device *dev = connector->dev;
4644 enum drm_connector_status status;
4645 u8 sink_irq_vector = 0;
4646
4647 WARN_ON(!drm_modeset_is_locked(&connector->dev->mode_config.connection_mutex));
4648
4649 intel_display_power_get(to_i915(dev), intel_dp->aux_power_domain);
4650
4651 /* Can't disconnect eDP, but you can close the lid... */
4652 if (intel_dp_is_edp(intel_dp))
4653 status = edp_detect(intel_dp);
4654 else if (intel_digital_port_connected(to_i915(dev),
4655 dp_to_dig_port(intel_dp)))
4656 status = intel_dp_detect_dpcd(intel_dp);
4657 else
4658 status = connector_status_disconnected;
4659
4660 if (status == connector_status_disconnected) {
4661 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4662
4663 if (intel_dp->is_mst) {
4664 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4665 intel_dp->is_mst,
4666 intel_dp->mst_mgr.mst_state);
4667 intel_dp->is_mst = false;
4668 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4669 intel_dp->is_mst);
4670 }
4671
4672 goto out;
4673 }
4674
4675 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4676 intel_encoder->type = INTEL_OUTPUT_DP;
4677
4678 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4679 yesno(intel_dp_source_supports_hbr2(intel_dp)),
4680 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4681
4682 if (intel_dp->reset_link_params) {
4683 /* Initial max link lane count */
4684 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4685
4686 /* Initial max link rate */
4687 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4688
4689 intel_dp->reset_link_params = false;
4690 }
4691
4692 intel_dp_print_rates(intel_dp);
4693
4694 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4695 drm_dp_is_branch(intel_dp->dpcd));
4696
4697 intel_dp_configure_mst(intel_dp);
4698
4699 if (intel_dp->is_mst) {
4700 /*
4701 * If we are in MST mode then this connector
4702 * won't appear connected or have anything
4703 * with EDID on it
4704 */
4705 status = connector_status_disconnected;
4706 goto out;
4707 } else {
4708 /*
4709 * If display is now connected check links status,
4710 * there has been known issues of link loss triggerring
4711 * long pulse.
4712 *
4713 * Some sinks (eg. ASUS PB287Q) seem to perform some
4714 * weird HPD ping pong during modesets. So we can apparently
4715 * end up with HPD going low during a modeset, and then
4716 * going back up soon after. And once that happens we must
4717 * retrain the link to get a picture. That's in case no
4718 * userspace component reacted to intermittent HPD dip.
4719 */
4720 intel_dp_check_link_status(intel_dp);
4721 }
4722
4723 /*
4724 * Clearing NACK and defer counts to get their exact values
4725 * while reading EDID which are required by Compliance tests
4726 * 4.2.2.4 and 4.2.2.5
4727 */
4728 intel_dp->aux.i2c_nack_count = 0;
4729 intel_dp->aux.i2c_defer_count = 0;
4730
4731 intel_dp_set_edid(intel_dp);
4732 if (intel_dp_is_edp(intel_dp) || intel_connector->detect_edid)
4733 status = connector_status_connected;
4734 intel_dp->detect_done = true;
4735
4736 /* Try to read the source of the interrupt */
4737 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4738 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4739 sink_irq_vector != 0) {
4740 /* Clear interrupt source */
4741 drm_dp_dpcd_writeb(&intel_dp->aux,
4742 DP_DEVICE_SERVICE_IRQ_VECTOR,
4743 sink_irq_vector);
4744
4745 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4746 intel_dp_handle_test_request(intel_dp);
4747 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4748 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4749 }
4750
4751 out:
4752 if (status != connector_status_connected && !intel_dp->is_mst)
4753 intel_dp_unset_edid(intel_dp);
4754
4755 intel_display_power_put(to_i915(dev), intel_dp->aux_power_domain);
4756 return status;
4757 }
4758
4759 static int
4760 intel_dp_detect(struct drm_connector *connector,
4761 struct drm_modeset_acquire_ctx *ctx,
4762 bool force)
4763 {
4764 struct intel_dp *intel_dp = intel_attached_dp(connector);
4765 int status = connector->status;
4766
4767 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4768 connector->base.id, connector->name);
4769
4770 /* If full detect is not performed yet, do a full detect */
4771 if (!intel_dp->detect_done)
4772 status = intel_dp_long_pulse(intel_dp->attached_connector);
4773
4774 intel_dp->detect_done = false;
4775
4776 return status;
4777 }
4778
4779 static void
4780 intel_dp_force(struct drm_connector *connector)
4781 {
4782 struct intel_dp *intel_dp = intel_attached_dp(connector);
4783 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4784 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4785
4786 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4787 connector->base.id, connector->name);
4788 intel_dp_unset_edid(intel_dp);
4789
4790 if (connector->status != connector_status_connected)
4791 return;
4792
4793 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4794
4795 intel_dp_set_edid(intel_dp);
4796
4797 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4798
4799 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4800 intel_encoder->type = INTEL_OUTPUT_DP;
4801 }
4802
4803 static int intel_dp_get_modes(struct drm_connector *connector)
4804 {
4805 struct intel_connector *intel_connector = to_intel_connector(connector);
4806 struct edid *edid;
4807
4808 edid = intel_connector->detect_edid;
4809 if (edid) {
4810 int ret = intel_connector_update_modes(connector, edid);
4811 if (ret)
4812 return ret;
4813 }
4814
4815 /* if eDP has no EDID, fall back to fixed mode */
4816 if (intel_dp_is_edp(intel_attached_dp(connector)) &&
4817 intel_connector->panel.fixed_mode) {
4818 struct drm_display_mode *mode;
4819
4820 mode = drm_mode_duplicate(connector->dev,
4821 intel_connector->panel.fixed_mode);
4822 if (mode) {
4823 drm_mode_probed_add(connector, mode);
4824 return 1;
4825 }
4826 }
4827
4828 return 0;
4829 }
4830
4831 static int
4832 intel_dp_connector_register(struct drm_connector *connector)
4833 {
4834 struct intel_dp *intel_dp = intel_attached_dp(connector);
4835 int ret;
4836
4837 ret = intel_connector_register(connector);
4838 if (ret)
4839 return ret;
4840
4841 i915_debugfs_connector_add(connector);
4842
4843 DRM_DEBUG_KMS("registering %s bus for %s\n",
4844 intel_dp->aux.name, connector->kdev->kobj.name);
4845
4846 intel_dp->aux.dev = connector->kdev;
4847 return drm_dp_aux_register(&intel_dp->aux);
4848 }
4849
4850 static void
4851 intel_dp_connector_unregister(struct drm_connector *connector)
4852 {
4853 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4854 intel_connector_unregister(connector);
4855 }
4856
4857 static void
4858 intel_dp_connector_destroy(struct drm_connector *connector)
4859 {
4860 struct intel_connector *intel_connector = to_intel_connector(connector);
4861
4862 kfree(intel_connector->detect_edid);
4863
4864 if (!IS_ERR_OR_NULL(intel_connector->edid))
4865 kfree(intel_connector->edid);
4866
4867 /*
4868 * Can't call intel_dp_is_edp() since the encoder may have been
4869 * destroyed already.
4870 */
4871 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4872 intel_panel_fini(&intel_connector->panel);
4873
4874 drm_connector_cleanup(connector);
4875 kfree(connector);
4876 }
4877
4878 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4879 {
4880 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4881 struct intel_dp *intel_dp = &intel_dig_port->dp;
4882
4883 intel_dp_mst_encoder_cleanup(intel_dig_port);
4884 if (intel_dp_is_edp(intel_dp)) {
4885 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4886 /*
4887 * vdd might still be enabled do to the delayed vdd off.
4888 * Make sure vdd is actually turned off here.
4889 */
4890 pps_lock(intel_dp);
4891 edp_panel_vdd_off_sync(intel_dp);
4892 pps_unlock(intel_dp);
4893
4894 if (intel_dp->edp_notifier.notifier_call) {
4895 unregister_reboot_notifier(&intel_dp->edp_notifier);
4896 intel_dp->edp_notifier.notifier_call = NULL;
4897 }
4898 }
4899
4900 intel_dp_aux_fini(intel_dp);
4901
4902 drm_encoder_cleanup(encoder);
4903 kfree(intel_dig_port);
4904 }
4905
4906 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4907 {
4908 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4909
4910 if (!intel_dp_is_edp(intel_dp))
4911 return;
4912
4913 /*
4914 * vdd might still be enabled do to the delayed vdd off.
4915 * Make sure vdd is actually turned off here.
4916 */
4917 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4918 pps_lock(intel_dp);
4919 edp_panel_vdd_off_sync(intel_dp);
4920 pps_unlock(intel_dp);
4921 }
4922
4923 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4924 {
4925 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4926 struct drm_device *dev = intel_dig_port->base.base.dev;
4927 struct drm_i915_private *dev_priv = to_i915(dev);
4928
4929 lockdep_assert_held(&dev_priv->pps_mutex);
4930
4931 if (!edp_have_panel_vdd(intel_dp))
4932 return;
4933
4934 /*
4935 * The VDD bit needs a power domain reference, so if the bit is
4936 * already enabled when we boot or resume, grab this reference and
4937 * schedule a vdd off, so we don't hold on to the reference
4938 * indefinitely.
4939 */
4940 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4941 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4942
4943 edp_panel_vdd_schedule_off(intel_dp);
4944 }
4945
4946 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
4947 {
4948 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4949
4950 if ((intel_dp->DP & DP_PORT_EN) == 0)
4951 return INVALID_PIPE;
4952
4953 if (IS_CHERRYVIEW(dev_priv))
4954 return DP_PORT_TO_PIPE_CHV(intel_dp->DP);
4955 else
4956 return PORT_TO_PIPE(intel_dp->DP);
4957 }
4958
4959 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4960 {
4961 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4962 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4963 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4964
4965 if (!HAS_DDI(dev_priv))
4966 intel_dp->DP = I915_READ(intel_dp->output_reg);
4967
4968 if (lspcon->active)
4969 lspcon_resume(lspcon);
4970
4971 intel_dp->reset_link_params = true;
4972
4973 pps_lock(intel_dp);
4974
4975 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4976 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
4977
4978 if (intel_dp_is_edp(intel_dp)) {
4979 /* Reinit the power sequencer, in case BIOS did something with it. */
4980 intel_dp_pps_init(encoder->dev, intel_dp);
4981 intel_edp_panel_vdd_sanitize(intel_dp);
4982 }
4983
4984 pps_unlock(intel_dp);
4985 }
4986
4987 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4988 .dpms = drm_atomic_helper_connector_dpms,
4989 .force = intel_dp_force,
4990 .fill_modes = drm_helper_probe_single_connector_modes,
4991 .set_property = drm_atomic_helper_connector_set_property,
4992 .atomic_get_property = intel_digital_connector_atomic_get_property,
4993 .atomic_set_property = intel_digital_connector_atomic_set_property,
4994 .late_register = intel_dp_connector_register,
4995 .early_unregister = intel_dp_connector_unregister,
4996 .destroy = intel_dp_connector_destroy,
4997 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4998 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
4999 };
5000
5001 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5002 .detect_ctx = intel_dp_detect,
5003 .get_modes = intel_dp_get_modes,
5004 .mode_valid = intel_dp_mode_valid,
5005 .atomic_check = intel_digital_connector_atomic_check,
5006 };
5007
5008 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5009 .reset = intel_dp_encoder_reset,
5010 .destroy = intel_dp_encoder_destroy,
5011 };
5012
5013 enum irqreturn
5014 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5015 {
5016 struct intel_dp *intel_dp = &intel_dig_port->dp;
5017 struct drm_device *dev = intel_dig_port->base.base.dev;
5018 struct drm_i915_private *dev_priv = to_i915(dev);
5019 enum irqreturn ret = IRQ_NONE;
5020
5021 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
5022 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
5023 intel_dig_port->base.type = INTEL_OUTPUT_DP;
5024
5025 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5026 /*
5027 * vdd off can generate a long pulse on eDP which
5028 * would require vdd on to handle it, and thus we
5029 * would end up in an endless cycle of
5030 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5031 */
5032 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5033 port_name(intel_dig_port->port));
5034 return IRQ_HANDLED;
5035 }
5036
5037 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5038 port_name(intel_dig_port->port),
5039 long_hpd ? "long" : "short");
5040
5041 if (long_hpd) {
5042 intel_dp->reset_link_params = true;
5043 intel_dp->detect_done = false;
5044 return IRQ_NONE;
5045 }
5046
5047 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5048
5049 if (intel_dp->is_mst) {
5050 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5051 /*
5052 * If we were in MST mode, and device is not
5053 * there, get out of MST mode
5054 */
5055 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5056 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5057 intel_dp->is_mst = false;
5058 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5059 intel_dp->is_mst);
5060 intel_dp->detect_done = false;
5061 goto put_power;
5062 }
5063 }
5064
5065 if (!intel_dp->is_mst) {
5066 if (!intel_dp_short_pulse(intel_dp)) {
5067 intel_dp->detect_done = false;
5068 goto put_power;
5069 }
5070 }
5071
5072 ret = IRQ_HANDLED;
5073
5074 put_power:
5075 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5076
5077 return ret;
5078 }
5079
5080 /* check the VBT to see whether the eDP is on another port */
5081 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5082 {
5083 /*
5084 * eDP not supported on g4x. so bail out early just
5085 * for a bit extra safety in case the VBT is bonkers.
5086 */
5087 if (INTEL_GEN(dev_priv) < 5)
5088 return false;
5089
5090 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5091 return true;
5092
5093 return intel_bios_is_port_edp(dev_priv, port);
5094 }
5095
5096 static void
5097 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5098 {
5099 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5100
5101 intel_attach_force_audio_property(connector);
5102 intel_attach_broadcast_rgb_property(connector);
5103
5104 if (intel_dp_is_edp(intel_dp)) {
5105 u32 allowed_scalers;
5106
5107 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
5108 if (!HAS_GMCH_DISPLAY(dev_priv))
5109 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
5110
5111 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
5112
5113 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5114
5115 }
5116 }
5117
5118 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5119 {
5120 intel_dp->panel_power_off_time = ktime_get_boottime();
5121 intel_dp->last_power_on = jiffies;
5122 intel_dp->last_backlight_off = jiffies;
5123 }
5124
5125 static void
5126 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
5127 struct intel_dp *intel_dp, struct edp_power_seq *seq)
5128 {
5129 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5130 struct pps_registers regs;
5131
5132 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5133
5134 /* Workaround: Need to write PP_CONTROL with the unlock key as
5135 * the very first thing. */
5136 pp_ctl = ironlake_get_pp_control(intel_dp);
5137
5138 pp_on = I915_READ(regs.pp_on);
5139 pp_off = I915_READ(regs.pp_off);
5140 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv)) {
5141 I915_WRITE(regs.pp_ctrl, pp_ctl);
5142 pp_div = I915_READ(regs.pp_div);
5143 }
5144
5145 /* Pull timing values out of registers */
5146 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5147 PANEL_POWER_UP_DELAY_SHIFT;
5148
5149 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5150 PANEL_LIGHT_ON_DELAY_SHIFT;
5151
5152 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5153 PANEL_LIGHT_OFF_DELAY_SHIFT;
5154
5155 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5156 PANEL_POWER_DOWN_DELAY_SHIFT;
5157
5158 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5159 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5160 BXT_POWER_CYCLE_DELAY_SHIFT;
5161 if (tmp > 0)
5162 seq->t11_t12 = (tmp - 1) * 1000;
5163 else
5164 seq->t11_t12 = 0;
5165 } else {
5166 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5167 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5168 }
5169 }
5170
5171 static void
5172 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5173 {
5174 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5175 state_name,
5176 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5177 }
5178
5179 static void
5180 intel_pps_verify_state(struct drm_i915_private *dev_priv,
5181 struct intel_dp *intel_dp)
5182 {
5183 struct edp_power_seq hw;
5184 struct edp_power_seq *sw = &intel_dp->pps_delays;
5185
5186 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
5187
5188 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5189 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5190 DRM_ERROR("PPS state mismatch\n");
5191 intel_pps_dump_state("sw", sw);
5192 intel_pps_dump_state("hw", &hw);
5193 }
5194 }
5195
5196 static void
5197 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5198 struct intel_dp *intel_dp)
5199 {
5200 struct drm_i915_private *dev_priv = to_i915(dev);
5201 struct edp_power_seq cur, vbt, spec,
5202 *final = &intel_dp->pps_delays;
5203
5204 lockdep_assert_held(&dev_priv->pps_mutex);
5205
5206 /* already initialized? */
5207 if (final->t11_t12 != 0)
5208 return;
5209
5210 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5211
5212 intel_pps_dump_state("cur", &cur);
5213
5214 vbt = dev_priv->vbt.edp.pps;
5215
5216 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5217 * our hw here, which are all in 100usec. */
5218 spec.t1_t3 = 210 * 10;
5219 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5220 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5221 spec.t10 = 500 * 10;
5222 /* This one is special and actually in units of 100ms, but zero
5223 * based in the hw (so we need to add 100 ms). But the sw vbt
5224 * table multiplies it with 1000 to make it in units of 100usec,
5225 * too. */
5226 spec.t11_t12 = (510 + 100) * 10;
5227
5228 intel_pps_dump_state("vbt", &vbt);
5229
5230 /* Use the max of the register settings and vbt. If both are
5231 * unset, fall back to the spec limits. */
5232 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5233 spec.field : \
5234 max(cur.field, vbt.field))
5235 assign_final(t1_t3);
5236 assign_final(t8);
5237 assign_final(t9);
5238 assign_final(t10);
5239 assign_final(t11_t12);
5240 #undef assign_final
5241
5242 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5243 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5244 intel_dp->backlight_on_delay = get_delay(t8);
5245 intel_dp->backlight_off_delay = get_delay(t9);
5246 intel_dp->panel_power_down_delay = get_delay(t10);
5247 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5248 #undef get_delay
5249
5250 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5251 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5252 intel_dp->panel_power_cycle_delay);
5253
5254 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5255 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5256
5257 /*
5258 * We override the HW backlight delays to 1 because we do manual waits
5259 * on them. For T8, even BSpec recommends doing it. For T9, if we
5260 * don't do this, we'll end up waiting for the backlight off delay
5261 * twice: once when we do the manual sleep, and once when we disable
5262 * the panel and wait for the PP_STATUS bit to become zero.
5263 */
5264 final->t8 = 1;
5265 final->t9 = 1;
5266 }
5267
5268 static void
5269 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5270 struct intel_dp *intel_dp,
5271 bool force_disable_vdd)
5272 {
5273 struct drm_i915_private *dev_priv = to_i915(dev);
5274 u32 pp_on, pp_off, pp_div, port_sel = 0;
5275 int div = dev_priv->rawclk_freq / 1000;
5276 struct pps_registers regs;
5277 enum port port = dp_to_dig_port(intel_dp)->port;
5278 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5279
5280 lockdep_assert_held(&dev_priv->pps_mutex);
5281
5282 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5283
5284 /*
5285 * On some VLV machines the BIOS can leave the VDD
5286 * enabled even on power seqeuencers which aren't
5287 * hooked up to any port. This would mess up the
5288 * power domain tracking the first time we pick
5289 * one of these power sequencers for use since
5290 * edp_panel_vdd_on() would notice that the VDD was
5291 * already on and therefore wouldn't grab the power
5292 * domain reference. Disable VDD first to avoid this.
5293 * This also avoids spuriously turning the VDD on as
5294 * soon as the new power seqeuencer gets initialized.
5295 */
5296 if (force_disable_vdd) {
5297 u32 pp = ironlake_get_pp_control(intel_dp);
5298
5299 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5300
5301 if (pp & EDP_FORCE_VDD)
5302 DRM_DEBUG_KMS("VDD already on, disabling first\n");
5303
5304 pp &= ~EDP_FORCE_VDD;
5305
5306 I915_WRITE(regs.pp_ctrl, pp);
5307 }
5308
5309 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5310 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5311 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5312 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5313 /* Compute the divisor for the pp clock, simply match the Bspec
5314 * formula. */
5315 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5316 pp_div = I915_READ(regs.pp_ctrl);
5317 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5318 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5319 << BXT_POWER_CYCLE_DELAY_SHIFT);
5320 } else {
5321 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5322 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5323 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5324 }
5325
5326 /* Haswell doesn't have any port selection bits for the panel
5327 * power sequencer any more. */
5328 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5329 port_sel = PANEL_PORT_SELECT_VLV(port);
5330 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5331 if (port == PORT_A)
5332 port_sel = PANEL_PORT_SELECT_DPA;
5333 else
5334 port_sel = PANEL_PORT_SELECT_DPD;
5335 }
5336
5337 pp_on |= port_sel;
5338
5339 I915_WRITE(regs.pp_on, pp_on);
5340 I915_WRITE(regs.pp_off, pp_off);
5341 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv))
5342 I915_WRITE(regs.pp_ctrl, pp_div);
5343 else
5344 I915_WRITE(regs.pp_div, pp_div);
5345
5346 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5347 I915_READ(regs.pp_on),
5348 I915_READ(regs.pp_off),
5349 (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) ?
5350 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5351 I915_READ(regs.pp_div));
5352 }
5353
5354 static void intel_dp_pps_init(struct drm_device *dev,
5355 struct intel_dp *intel_dp)
5356 {
5357 struct drm_i915_private *dev_priv = to_i915(dev);
5358
5359 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5360 vlv_initial_power_sequencer_setup(intel_dp);
5361 } else {
5362 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5363 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
5364 }
5365 }
5366
5367 /**
5368 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5369 * @dev_priv: i915 device
5370 * @crtc_state: a pointer to the active intel_crtc_state
5371 * @refresh_rate: RR to be programmed
5372 *
5373 * This function gets called when refresh rate (RR) has to be changed from
5374 * one frequency to another. Switches can be between high and low RR
5375 * supported by the panel or to any other RR based on media playback (in
5376 * this case, RR value needs to be passed from user space).
5377 *
5378 * The caller of this function needs to take a lock on dev_priv->drrs.
5379 */
5380 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5381 struct intel_crtc_state *crtc_state,
5382 int refresh_rate)
5383 {
5384 struct intel_encoder *encoder;
5385 struct intel_digital_port *dig_port = NULL;
5386 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5387 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5388 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5389
5390 if (refresh_rate <= 0) {
5391 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5392 return;
5393 }
5394
5395 if (intel_dp == NULL) {
5396 DRM_DEBUG_KMS("DRRS not supported.\n");
5397 return;
5398 }
5399
5400 /*
5401 * FIXME: This needs proper synchronization with psr state for some
5402 * platforms that cannot have PSR and DRRS enabled at the same time.
5403 */
5404
5405 dig_port = dp_to_dig_port(intel_dp);
5406 encoder = &dig_port->base;
5407 intel_crtc = to_intel_crtc(encoder->base.crtc);
5408
5409 if (!intel_crtc) {
5410 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5411 return;
5412 }
5413
5414 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5415 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5416 return;
5417 }
5418
5419 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5420 refresh_rate)
5421 index = DRRS_LOW_RR;
5422
5423 if (index == dev_priv->drrs.refresh_rate_type) {
5424 DRM_DEBUG_KMS(
5425 "DRRS requested for previously set RR...ignoring\n");
5426 return;
5427 }
5428
5429 if (!crtc_state->base.active) {
5430 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5431 return;
5432 }
5433
5434 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5435 switch (index) {
5436 case DRRS_HIGH_RR:
5437 intel_dp_set_m_n(intel_crtc, M1_N1);
5438 break;
5439 case DRRS_LOW_RR:
5440 intel_dp_set_m_n(intel_crtc, M2_N2);
5441 break;
5442 case DRRS_MAX_RR:
5443 default:
5444 DRM_ERROR("Unsupported refreshrate type\n");
5445 }
5446 } else if (INTEL_GEN(dev_priv) > 6) {
5447 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5448 u32 val;
5449
5450 val = I915_READ(reg);
5451 if (index > DRRS_HIGH_RR) {
5452 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5453 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5454 else
5455 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5456 } else {
5457 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5458 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5459 else
5460 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5461 }
5462 I915_WRITE(reg, val);
5463 }
5464
5465 dev_priv->drrs.refresh_rate_type = index;
5466
5467 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5468 }
5469
5470 /**
5471 * intel_edp_drrs_enable - init drrs struct if supported
5472 * @intel_dp: DP struct
5473 * @crtc_state: A pointer to the active crtc state.
5474 *
5475 * Initializes frontbuffer_bits and drrs.dp
5476 */
5477 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5478 struct intel_crtc_state *crtc_state)
5479 {
5480 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5481 struct drm_i915_private *dev_priv = to_i915(dev);
5482
5483 if (!crtc_state->has_drrs) {
5484 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5485 return;
5486 }
5487
5488 mutex_lock(&dev_priv->drrs.mutex);
5489 if (WARN_ON(dev_priv->drrs.dp)) {
5490 DRM_ERROR("DRRS already enabled\n");
5491 goto unlock;
5492 }
5493
5494 dev_priv->drrs.busy_frontbuffer_bits = 0;
5495
5496 dev_priv->drrs.dp = intel_dp;
5497
5498 unlock:
5499 mutex_unlock(&dev_priv->drrs.mutex);
5500 }
5501
5502 /**
5503 * intel_edp_drrs_disable - Disable DRRS
5504 * @intel_dp: DP struct
5505 * @old_crtc_state: Pointer to old crtc_state.
5506 *
5507 */
5508 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5509 struct intel_crtc_state *old_crtc_state)
5510 {
5511 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5512 struct drm_i915_private *dev_priv = to_i915(dev);
5513
5514 if (!old_crtc_state->has_drrs)
5515 return;
5516
5517 mutex_lock(&dev_priv->drrs.mutex);
5518 if (!dev_priv->drrs.dp) {
5519 mutex_unlock(&dev_priv->drrs.mutex);
5520 return;
5521 }
5522
5523 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5524 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5525 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5526
5527 dev_priv->drrs.dp = NULL;
5528 mutex_unlock(&dev_priv->drrs.mutex);
5529
5530 cancel_delayed_work_sync(&dev_priv->drrs.work);
5531 }
5532
5533 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5534 {
5535 struct drm_i915_private *dev_priv =
5536 container_of(work, typeof(*dev_priv), drrs.work.work);
5537 struct intel_dp *intel_dp;
5538
5539 mutex_lock(&dev_priv->drrs.mutex);
5540
5541 intel_dp = dev_priv->drrs.dp;
5542
5543 if (!intel_dp)
5544 goto unlock;
5545
5546 /*
5547 * The delayed work can race with an invalidate hence we need to
5548 * recheck.
5549 */
5550
5551 if (dev_priv->drrs.busy_frontbuffer_bits)
5552 goto unlock;
5553
5554 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5555 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5556
5557 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5558 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5559 }
5560
5561 unlock:
5562 mutex_unlock(&dev_priv->drrs.mutex);
5563 }
5564
5565 /**
5566 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5567 * @dev_priv: i915 device
5568 * @frontbuffer_bits: frontbuffer plane tracking bits
5569 *
5570 * This function gets called everytime rendering on the given planes start.
5571 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5572 *
5573 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5574 */
5575 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5576 unsigned int frontbuffer_bits)
5577 {
5578 struct drm_crtc *crtc;
5579 enum pipe pipe;
5580
5581 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5582 return;
5583
5584 cancel_delayed_work(&dev_priv->drrs.work);
5585
5586 mutex_lock(&dev_priv->drrs.mutex);
5587 if (!dev_priv->drrs.dp) {
5588 mutex_unlock(&dev_priv->drrs.mutex);
5589 return;
5590 }
5591
5592 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5593 pipe = to_intel_crtc(crtc)->pipe;
5594
5595 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5596 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5597
5598 /* invalidate means busy screen hence upclock */
5599 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5600 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5601 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5602
5603 mutex_unlock(&dev_priv->drrs.mutex);
5604 }
5605
5606 /**
5607 * intel_edp_drrs_flush - Restart Idleness DRRS
5608 * @dev_priv: i915 device
5609 * @frontbuffer_bits: frontbuffer plane tracking bits
5610 *
5611 * This function gets called every time rendering on the given planes has
5612 * completed or flip on a crtc is completed. So DRRS should be upclocked
5613 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5614 * if no other planes are dirty.
5615 *
5616 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5617 */
5618 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5619 unsigned int frontbuffer_bits)
5620 {
5621 struct drm_crtc *crtc;
5622 enum pipe pipe;
5623
5624 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5625 return;
5626
5627 cancel_delayed_work(&dev_priv->drrs.work);
5628
5629 mutex_lock(&dev_priv->drrs.mutex);
5630 if (!dev_priv->drrs.dp) {
5631 mutex_unlock(&dev_priv->drrs.mutex);
5632 return;
5633 }
5634
5635 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5636 pipe = to_intel_crtc(crtc)->pipe;
5637
5638 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5639 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5640
5641 /* flush means busy screen hence upclock */
5642 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5643 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5644 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5645
5646 /*
5647 * flush also means no more activity hence schedule downclock, if all
5648 * other fbs are quiescent too
5649 */
5650 if (!dev_priv->drrs.busy_frontbuffer_bits)
5651 schedule_delayed_work(&dev_priv->drrs.work,
5652 msecs_to_jiffies(1000));
5653 mutex_unlock(&dev_priv->drrs.mutex);
5654 }
5655
5656 /**
5657 * DOC: Display Refresh Rate Switching (DRRS)
5658 *
5659 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5660 * which enables swtching between low and high refresh rates,
5661 * dynamically, based on the usage scenario. This feature is applicable
5662 * for internal panels.
5663 *
5664 * Indication that the panel supports DRRS is given by the panel EDID, which
5665 * would list multiple refresh rates for one resolution.
5666 *
5667 * DRRS is of 2 types - static and seamless.
5668 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5669 * (may appear as a blink on screen) and is used in dock-undock scenario.
5670 * Seamless DRRS involves changing RR without any visual effect to the user
5671 * and can be used during normal system usage. This is done by programming
5672 * certain registers.
5673 *
5674 * Support for static/seamless DRRS may be indicated in the VBT based on
5675 * inputs from the panel spec.
5676 *
5677 * DRRS saves power by switching to low RR based on usage scenarios.
5678 *
5679 * The implementation is based on frontbuffer tracking implementation. When
5680 * there is a disturbance on the screen triggered by user activity or a periodic
5681 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5682 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5683 * made.
5684 *
5685 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5686 * and intel_edp_drrs_flush() are called.
5687 *
5688 * DRRS can be further extended to support other internal panels and also
5689 * the scenario of video playback wherein RR is set based on the rate
5690 * requested by userspace.
5691 */
5692
5693 /**
5694 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5695 * @intel_connector: eDP connector
5696 * @fixed_mode: preferred mode of panel
5697 *
5698 * This function is called only once at driver load to initialize basic
5699 * DRRS stuff.
5700 *
5701 * Returns:
5702 * Downclock mode if panel supports it, else return NULL.
5703 * DRRS support is determined by the presence of downclock mode (apart
5704 * from VBT setting).
5705 */
5706 static struct drm_display_mode *
5707 intel_dp_drrs_init(struct intel_connector *intel_connector,
5708 struct drm_display_mode *fixed_mode)
5709 {
5710 struct drm_connector *connector = &intel_connector->base;
5711 struct drm_device *dev = connector->dev;
5712 struct drm_i915_private *dev_priv = to_i915(dev);
5713 struct drm_display_mode *downclock_mode = NULL;
5714
5715 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5716 mutex_init(&dev_priv->drrs.mutex);
5717
5718 if (INTEL_GEN(dev_priv) <= 6) {
5719 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5720 return NULL;
5721 }
5722
5723 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5724 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5725 return NULL;
5726 }
5727
5728 downclock_mode = intel_find_panel_downclock
5729 (dev_priv, fixed_mode, connector);
5730
5731 if (!downclock_mode) {
5732 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5733 return NULL;
5734 }
5735
5736 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5737
5738 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5739 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5740 return downclock_mode;
5741 }
5742
5743 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5744 struct intel_connector *intel_connector)
5745 {
5746 struct drm_connector *connector = &intel_connector->base;
5747 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5748 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5749 struct drm_device *dev = intel_encoder->base.dev;
5750 struct drm_i915_private *dev_priv = to_i915(dev);
5751 struct drm_display_mode *fixed_mode = NULL;
5752 struct drm_display_mode *alt_fixed_mode = NULL;
5753 struct drm_display_mode *downclock_mode = NULL;
5754 bool has_dpcd;
5755 struct drm_display_mode *scan;
5756 struct edid *edid;
5757 enum pipe pipe = INVALID_PIPE;
5758
5759 if (!intel_dp_is_edp(intel_dp))
5760 return true;
5761
5762 /*
5763 * On IBX/CPT we may get here with LVDS already registered. Since the
5764 * driver uses the only internal power sequencer available for both
5765 * eDP and LVDS bail out early in this case to prevent interfering
5766 * with an already powered-on LVDS power sequencer.
5767 */
5768 if (intel_get_lvds_encoder(dev)) {
5769 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5770 DRM_INFO("LVDS was detected, not registering eDP\n");
5771
5772 return false;
5773 }
5774
5775 pps_lock(intel_dp);
5776
5777 intel_dp_init_panel_power_timestamps(intel_dp);
5778 intel_dp_pps_init(dev, intel_dp);
5779 intel_edp_panel_vdd_sanitize(intel_dp);
5780
5781 pps_unlock(intel_dp);
5782
5783 /* Cache DPCD and EDID for edp. */
5784 has_dpcd = intel_edp_init_dpcd(intel_dp);
5785
5786 if (!has_dpcd) {
5787 /* if this fails, presume the device is a ghost */
5788 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5789 goto out_vdd_off;
5790 }
5791
5792 mutex_lock(&dev->mode_config.mutex);
5793 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5794 if (edid) {
5795 if (drm_add_edid_modes(connector, edid)) {
5796 drm_mode_connector_update_edid_property(connector,
5797 edid);
5798 drm_edid_to_eld(connector, edid);
5799 } else {
5800 kfree(edid);
5801 edid = ERR_PTR(-EINVAL);
5802 }
5803 } else {
5804 edid = ERR_PTR(-ENOENT);
5805 }
5806 intel_connector->edid = edid;
5807
5808 /* prefer fixed mode from EDID if available, save an alt mode also */
5809 list_for_each_entry(scan, &connector->probed_modes, head) {
5810 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5811 fixed_mode = drm_mode_duplicate(dev, scan);
5812 downclock_mode = intel_dp_drrs_init(
5813 intel_connector, fixed_mode);
5814 } else if (!alt_fixed_mode) {
5815 alt_fixed_mode = drm_mode_duplicate(dev, scan);
5816 }
5817 }
5818
5819 /* fallback to VBT if available for eDP */
5820 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5821 fixed_mode = drm_mode_duplicate(dev,
5822 dev_priv->vbt.lfp_lvds_vbt_mode);
5823 if (fixed_mode) {
5824 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5825 connector->display_info.width_mm = fixed_mode->width_mm;
5826 connector->display_info.height_mm = fixed_mode->height_mm;
5827 }
5828 }
5829 mutex_unlock(&dev->mode_config.mutex);
5830
5831 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5832 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5833 register_reboot_notifier(&intel_dp->edp_notifier);
5834
5835 /*
5836 * Figure out the current pipe for the initial backlight setup.
5837 * If the current pipe isn't valid, try the PPS pipe, and if that
5838 * fails just assume pipe A.
5839 */
5840 pipe = vlv_active_pipe(intel_dp);
5841
5842 if (pipe != PIPE_A && pipe != PIPE_B)
5843 pipe = intel_dp->pps_pipe;
5844
5845 if (pipe != PIPE_A && pipe != PIPE_B)
5846 pipe = PIPE_A;
5847
5848 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5849 pipe_name(pipe));
5850 }
5851
5852 intel_panel_init(&intel_connector->panel, fixed_mode, alt_fixed_mode,
5853 downclock_mode);
5854 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5855 intel_panel_setup_backlight(connector, pipe);
5856
5857 return true;
5858
5859 out_vdd_off:
5860 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5861 /*
5862 * vdd might still be enabled do to the delayed vdd off.
5863 * Make sure vdd is actually turned off here.
5864 */
5865 pps_lock(intel_dp);
5866 edp_panel_vdd_off_sync(intel_dp);
5867 pps_unlock(intel_dp);
5868
5869 return false;
5870 }
5871
5872 /* Set up the hotplug pin and aux power domain. */
5873 static void
5874 intel_dp_init_connector_port_info(struct intel_digital_port *intel_dig_port)
5875 {
5876 struct intel_encoder *encoder = &intel_dig_port->base;
5877 struct intel_dp *intel_dp = &intel_dig_port->dp;
5878
5879 switch (intel_dig_port->port) {
5880 case PORT_A:
5881 encoder->hpd_pin = HPD_PORT_A;
5882 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_A;
5883 break;
5884 case PORT_B:
5885 encoder->hpd_pin = HPD_PORT_B;
5886 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_B;
5887 break;
5888 case PORT_C:
5889 encoder->hpd_pin = HPD_PORT_C;
5890 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_C;
5891 break;
5892 case PORT_D:
5893 encoder->hpd_pin = HPD_PORT_D;
5894 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5895 break;
5896 case PORT_E:
5897 encoder->hpd_pin = HPD_PORT_E;
5898
5899 /* FIXME: Check VBT for actual wiring of PORT E */
5900 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5901 break;
5902 default:
5903 MISSING_CASE(intel_dig_port->port);
5904 }
5905 }
5906
5907 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
5908 {
5909 struct intel_connector *intel_connector;
5910 struct drm_connector *connector;
5911
5912 intel_connector = container_of(work, typeof(*intel_connector),
5913 modeset_retry_work);
5914 connector = &intel_connector->base;
5915 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
5916 connector->name);
5917
5918 /* Grab the locks before changing connector property*/
5919 mutex_lock(&connector->dev->mode_config.mutex);
5920 /* Set connector link status to BAD and send a Uevent to notify
5921 * userspace to do a modeset.
5922 */
5923 drm_mode_connector_set_link_status_property(connector,
5924 DRM_MODE_LINK_STATUS_BAD);
5925 mutex_unlock(&connector->dev->mode_config.mutex);
5926 /* Send Hotplug uevent so userspace can reprobe */
5927 drm_kms_helper_hotplug_event(connector->dev);
5928 }
5929
5930 bool
5931 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5932 struct intel_connector *intel_connector)
5933 {
5934 struct drm_connector *connector = &intel_connector->base;
5935 struct intel_dp *intel_dp = &intel_dig_port->dp;
5936 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5937 struct drm_device *dev = intel_encoder->base.dev;
5938 struct drm_i915_private *dev_priv = to_i915(dev);
5939 enum port port = intel_dig_port->port;
5940 int type;
5941
5942 /* Initialize the work for modeset in case of link train failure */
5943 INIT_WORK(&intel_connector->modeset_retry_work,
5944 intel_dp_modeset_retry_work_fn);
5945
5946 if (WARN(intel_dig_port->max_lanes < 1,
5947 "Not enough lanes (%d) for DP on port %c\n",
5948 intel_dig_port->max_lanes, port_name(port)))
5949 return false;
5950
5951 intel_dp_set_source_rates(intel_dp);
5952
5953 intel_dp->reset_link_params = true;
5954 intel_dp->pps_pipe = INVALID_PIPE;
5955 intel_dp->active_pipe = INVALID_PIPE;
5956
5957 /* intel_dp vfuncs */
5958 if (INTEL_GEN(dev_priv) >= 9)
5959 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5960 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5961 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5962 else if (HAS_PCH_SPLIT(dev_priv))
5963 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5964 else
5965 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5966
5967 if (INTEL_GEN(dev_priv) >= 9)
5968 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5969 else
5970 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5971
5972 if (HAS_DDI(dev_priv))
5973 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5974
5975 /* Preserve the current hw state. */
5976 intel_dp->DP = I915_READ(intel_dp->output_reg);
5977 intel_dp->attached_connector = intel_connector;
5978
5979 if (intel_dp_is_port_edp(dev_priv, port))
5980 type = DRM_MODE_CONNECTOR_eDP;
5981 else
5982 type = DRM_MODE_CONNECTOR_DisplayPort;
5983
5984 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5985 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5986
5987 /*
5988 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5989 * for DP the encoder type can be set by the caller to
5990 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5991 */
5992 if (type == DRM_MODE_CONNECTOR_eDP)
5993 intel_encoder->type = INTEL_OUTPUT_EDP;
5994
5995 /* eDP only on port B and/or C on vlv/chv */
5996 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
5997 intel_dp_is_edp(intel_dp) &&
5998 port != PORT_B && port != PORT_C))
5999 return false;
6000
6001 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6002 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6003 port_name(port));
6004
6005 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6006 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6007
6008 connector->interlace_allowed = true;
6009 connector->doublescan_allowed = 0;
6010
6011 intel_dp_init_connector_port_info(intel_dig_port);
6012
6013 intel_dp_aux_init(intel_dp);
6014
6015 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6016 edp_panel_vdd_work);
6017
6018 intel_connector_attach_encoder(intel_connector, intel_encoder);
6019
6020 if (HAS_DDI(dev_priv))
6021 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6022 else
6023 intel_connector->get_hw_state = intel_connector_get_hw_state;
6024
6025 /* init MST on ports that can support it */
6026 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6027 (port == PORT_B || port == PORT_C || port == PORT_D))
6028 intel_dp_mst_encoder_init(intel_dig_port,
6029 intel_connector->base.base.id);
6030
6031 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6032 intel_dp_aux_fini(intel_dp);
6033 intel_dp_mst_encoder_cleanup(intel_dig_port);
6034 goto fail;
6035 }
6036
6037 intel_dp_add_properties(intel_dp, connector);
6038
6039 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6040 * 0xd. Failure to do so will result in spurious interrupts being
6041 * generated on the port when a cable is not attached.
6042 */
6043 if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
6044 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6045 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6046 }
6047
6048 return true;
6049
6050 fail:
6051 drm_connector_cleanup(connector);
6052
6053 return false;
6054 }
6055
6056 bool intel_dp_init(struct drm_i915_private *dev_priv,
6057 i915_reg_t output_reg,
6058 enum port port)
6059 {
6060 struct intel_digital_port *intel_dig_port;
6061 struct intel_encoder *intel_encoder;
6062 struct drm_encoder *encoder;
6063 struct intel_connector *intel_connector;
6064
6065 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6066 if (!intel_dig_port)
6067 return false;
6068
6069 intel_connector = intel_connector_alloc();
6070 if (!intel_connector)
6071 goto err_connector_alloc;
6072
6073 intel_encoder = &intel_dig_port->base;
6074 encoder = &intel_encoder->base;
6075
6076 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6077 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6078 "DP %c", port_name(port)))
6079 goto err_encoder_init;
6080
6081 intel_encoder->compute_config = intel_dp_compute_config;
6082 intel_encoder->disable = intel_disable_dp;
6083 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6084 intel_encoder->get_config = intel_dp_get_config;
6085 intel_encoder->suspend = intel_dp_encoder_suspend;
6086 if (IS_CHERRYVIEW(dev_priv)) {
6087 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6088 intel_encoder->pre_enable = chv_pre_enable_dp;
6089 intel_encoder->enable = vlv_enable_dp;
6090 intel_encoder->post_disable = chv_post_disable_dp;
6091 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6092 } else if (IS_VALLEYVIEW(dev_priv)) {
6093 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6094 intel_encoder->pre_enable = vlv_pre_enable_dp;
6095 intel_encoder->enable = vlv_enable_dp;
6096 intel_encoder->post_disable = vlv_post_disable_dp;
6097 } else {
6098 intel_encoder->pre_enable = g4x_pre_enable_dp;
6099 intel_encoder->enable = g4x_enable_dp;
6100 if (INTEL_GEN(dev_priv) >= 5)
6101 intel_encoder->post_disable = ilk_post_disable_dp;
6102 }
6103
6104 intel_dig_port->port = port;
6105 intel_dig_port->dp.output_reg = output_reg;
6106 intel_dig_port->max_lanes = 4;
6107
6108 intel_encoder->type = INTEL_OUTPUT_DP;
6109 intel_encoder->power_domain = intel_port_to_power_domain(port);
6110 if (IS_CHERRYVIEW(dev_priv)) {
6111 if (port == PORT_D)
6112 intel_encoder->crtc_mask = 1 << 2;
6113 else
6114 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6115 } else {
6116 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6117 }
6118 intel_encoder->cloneable = 0;
6119 intel_encoder->port = port;
6120
6121 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6122 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6123
6124 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6125 goto err_init_connector;
6126
6127 return true;
6128
6129 err_init_connector:
6130 drm_encoder_cleanup(encoder);
6131 err_encoder_init:
6132 kfree(intel_connector);
6133 err_connector_alloc:
6134 kfree(intel_dig_port);
6135 return false;
6136 }
6137
6138 void intel_dp_mst_suspend(struct drm_device *dev)
6139 {
6140 struct drm_i915_private *dev_priv = to_i915(dev);
6141 int i;
6142
6143 /* disable MST */
6144 for (i = 0; i < I915_MAX_PORTS; i++) {
6145 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6146
6147 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6148 continue;
6149
6150 if (intel_dig_port->dp.is_mst)
6151 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6152 }
6153 }
6154
6155 void intel_dp_mst_resume(struct drm_device *dev)
6156 {
6157 struct drm_i915_private *dev_priv = to_i915(dev);
6158 int i;
6159
6160 for (i = 0; i < I915_MAX_PORTS; i++) {
6161 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6162 int ret;
6163
6164 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6165 continue;
6166
6167 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6168 if (ret)
6169 intel_dp_check_mst_status(&intel_dig_port->dp);
6170 }
6171 }